JP5384758B2 - Plasma etching equipment - Google Patents

Plasma etching equipment Download PDF

Info

Publication number
JP5384758B2
JP5384758B2 JP2013016875A JP2013016875A JP5384758B2 JP 5384758 B2 JP5384758 B2 JP 5384758B2 JP 2013016875 A JP2013016875 A JP 2013016875A JP 2013016875 A JP2013016875 A JP 2013016875A JP 5384758 B2 JP5384758 B2 JP 5384758B2
Authority
JP
Japan
Prior art keywords
regression line
distance
end point
plasma
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013016875A
Other languages
Japanese (ja)
Other versions
JP2013102215A (en
Inventor
丈滋 内田
大輔 白石
祥二 幾原
昭 鹿子嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013016875A priority Critical patent/JP5384758B2/en
Publication of JP2013102215A publication Critical patent/JP2013102215A/en
Application granted granted Critical
Publication of JP5384758B2 publication Critical patent/JP5384758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマエッチング装置に係り、特にプラズマ放電を用いたエッチング処理
の終点を高精度に判定することのできるプラズマエッチング装置に関する。
The present invention relates to a plasma etching apparatus, and more particularly to a plasma etching apparatus that can determine the end point of an etching process using plasma discharge with high accuracy.

半導体ウエハのドライエッチング処理においては、プラズマ発光中の特定波長の光の発
光強度が特定の膜のエッチングの進行に伴い変化する。そこで、半導体ウエハのエッチン
グ処理中にプラズマ発光中の特定波長の光の発光強度の変化を検出し、この検出結果に基
づいて特定の膜のエッチング終点を検出することができる。
In the dry etching process of a semiconductor wafer, the emission intensity of light of a specific wavelength during plasma emission changes with the progress of etching of a specific film. Therefore, it is possible to detect a change in the emission intensity of light having a specific wavelength during plasma emission during the etching process of the semiconductor wafer, and to detect the etching end point of the specific film based on this detection result.

例えば、特許文献1には、被エッチング材をエッチングするときにエッチング装置内で
発生するプラズマ発光信号を取得し、取得した信号に対して多項式による線形モデルまた
は非線形モデルを求める。その後、前記信号と求めたモデルの計算値との誤差を求め、こ
の誤差の時間変化率が所定のしきい値を超えたときをエッチングの終点として検出するこ
とが示されている。
For example, Patent Document 1 acquires a plasma emission signal generated in an etching apparatus when etching a material to be etched, and obtains a linear model or a nonlinear model using a polynomial for the acquired signal. Thereafter, it is shown that an error between the signal and the calculated value of the obtained model is obtained, and when the time change rate of the error exceeds a predetermined threshold value, the end point of etching is detected.

特開2004−79727号公報JP 2004-79727 A

近年では、半導体ウエハにおける加工寸法の微細化、高集積化に伴い、開口率(半導体
ウエハの面積に対する被エッチング面積の比)が小さくなってきた。このため、エッチン
グ終点付近におけるプラズマからの発光強度変化は微小なものとなっている。また、エッ
チングによる加工寸法の精度はますます厳しくなっている。
In recent years, the aperture ratio (ratio of the area to be etched with respect to the area of the semiconductor wafer) has become smaller with the miniaturization and higher integration of the processing dimensions in the semiconductor wafer. For this reason, the light emission intensity change from the plasma in the vicinity of the etching end point is very small. In addition, the accuracy of processing dimensions by etching is becoming increasingly severe.

例えば、エッチングの終点判定において、終点判定時間が数秒遅れるだけでも、エッチ
ングを施したい膜の下層にある膜が過剰にエッチングされ、加工寸法の乱れあるいはサイ
ドエッチング(横方向への過剰なエッチング)が施されて、加工形状が悪化する。
For example, in the end point determination of etching, even if the end point determination time is delayed by only a few seconds, the film under the film to be etched is excessively etched, resulting in disorder of processing dimensions or side etching (excessive etching in the lateral direction). As a result, the processed shape deteriorates.

このような寸法乱れや形状悪化を回避するためには、エッチング終点付近の微小な発光
強度変化を確実にかつ早い段階で検出し、次のオーバーエッチングと言われる被エッチン
グ膜の残滓等を取り除く工程に移ることが必要である。
In order to avoid such dimensional disturbance and shape deterioration, a process of detecting a minute change in light emission intensity near the etching end point reliably and at an early stage and removing a residue of the film to be etched, which is called the next over-etching, etc. It is necessary to move to.

発光強度の変化が微小になると、発光強度の変化を、例えば多項式による線形モデルを
使用して検出する場合などでは、誤差として信号成分方向を含んで検出しているため、低
開口率の場合などでは信号に含まれるノイズ成分の影響を受けやすく、エッチング終点を
確実にしかも早い段階で検出することは困難である。
When the change in emission intensity becomes very small, for example, when the change in emission intensity is detected using a linear model using a polynomial, the signal component direction is detected as an error. However, it is easily affected by noise components included in the signal, and it is difficult to reliably detect the etching end point at an early stage.

本発明はこのような問題点に鑑みてなされたもので、エッチング終点を確実にかつ早い
段階で検出してエッチング終点を判定することのできるエッチング終点判定技術を提供す
るものである。
The present invention has been made in view of such problems, and provides an etching end point determination technique that can detect an etching end point reliably and at an early stage to determine the etching end point.

本発明は上記課題を解決するため、次のような手段を採用した。   In order to solve the above problems, the present invention employs the following means.

真空処理室にガス導入手段を介して処理ガスを導入し、導入した処理ガスに高周波エネ
ルギを供給してプラズマを生成し、生成したプラズマを用いて前記処理室内に収容された
被処理体にプラズマ処理を施すプラズマエッチング装置におけるエッチング処理の終点を
判定するエッチング終点判定方法において、前記真空処理室内に生成されたプラズマの発
光のうち予め設定された波長の光を抽出し、抽出された前記特定波長の光の発光強度を時
系列データとして取得し、取得した時系列データをもとに回帰直線を演算するステップと
、該ステップにより求めた回帰直線と前記時系列データとの時間軸方向の距離を演算する
ステップとを備え、該ステップにより求めた時間軸方向の距離をもとにエッチング処理の
終点を判定する。
A processing gas is introduced into the vacuum processing chamber via a gas introduction means, plasma is generated by supplying high-frequency energy to the introduced processing gas, and plasma is generated on the object to be processed contained in the processing chamber using the generated plasma. In an etching end point determination method for determining an end point of an etching process in a plasma etching apparatus that performs processing, light having a preset wavelength is extracted from light emission of plasma generated in the vacuum processing chamber, and the extracted specific wavelength is extracted Step of calculating a regression line based on the acquired time series data, and a time axis direction distance between the regression line obtained by the step and the time series data. And calculating an end point of the etching process based on the distance in the time axis direction obtained by the step.

本発明は、以上の構成を備えるため、エッチング終点を確実にかつ早い段階で検出して
エッチング終点を判定することのできるエッチング終点判定技術を提供することができる
Since the present invention has the above configuration, it is possible to provide an etching end point determination technique that can detect an etching end point reliably and at an early stage to determine the etching end point.

実施形態に係るエッチング終点判定装置を説明する図である。It is a figure explaining the etching end point judging device concerning an embodiment. エッチングの終点を演算する演算部105の処理を説明する図である。It is a figure explaining the process of the calculating part 105 which calculates the end point of etching. エッチング処理中に得られたプラズマの発光のうち特定波長の光信号を示す図である。It is a figure which shows the optical signal of a specific wavelength among the light emission of the plasma obtained during the etching process. 回帰直線を説明する図である。It is a figure explaining a regression line. 回帰直線と各信号点間の距離の演算結果を示す図である。It is a figure which shows the calculation result of the distance between a regression line and each signal point. 図5で得られた波形に対する閾値の設定方法を説明する図である。It is a figure explaining the setting method of the threshold value with respect to the waveform obtained in FIG. 回帰直線と各信号点間の距離の信号強度方向成分の波形である。It is a waveform of the signal intensity direction component of the distance between the regression line and each signal point. 第2の実施形態を説明する図である。It is a figure explaining 2nd Embodiment. 距離の時間軸方向成分の最大値と回帰直線の傾きの乗算結果を示す図である。It is a figure which shows the multiplication result of the maximum value of the time-axis direction component of distance, and the inclination of a regression line. 第3の実施形態を説明する図である。It is a figure explaining 3rd Embodiment. 回帰直線の上下に作られた面積の差と回帰直線により囲まれた面積の最大値との積の演算結果を示す図である。It is a figure which shows the calculation result of the product of the difference of the area made up and down of the regression line, and the maximum value of the area enclosed by the regression line.

以下、最良の実施形態を添付図面を参照しながら説明する。図1は、本実施形態に係る
エッチング終点判定装置を説明する図である。エッチング装置101は真空容器102を
備えており、真空容器102の内部には、図示しないガス導入手段を介してエッチングガ
スを導入し、さらに導入したエッチングガスにマイクロ波電力等を供給して、エッチング
ガスを分解してプラズマを生成し、このプラズマを用いて前記真空容器内に収容されたウ
エハ等の試料にエッチング処理を施す。
Hereinafter, the best embodiment will be described with reference to the accompanying drawings. FIG. 1 is a diagram for explaining an etching end point determination apparatus according to the present embodiment. The etching apparatus 101 includes a vacuum vessel 102. An etching gas is introduced into the vacuum vessel 102 through a gas introduction unit (not shown), and microwave power is supplied to the introduced etching gas to perform etching. Gas is decomposed to generate plasma, and this plasma is used to etch a sample such as a wafer accommodated in the vacuum vessel.

エッチング処理中に前記真空処理室内に発生したプラズマの特定波長の発光を分光器に
より分光し、分光により得られた特定波長の信号成分は演算部105に取り込まれる。こ
こで、演算部105はたとえばパーソナルコンピュータ(PC)などにより構成される。
The light having a specific wavelength of the plasma generated in the vacuum processing chamber during the etching process is dispersed by a spectroscope, and a signal component of the specific wavelength obtained by the spectroscopy is taken into the calculation unit 105. Here, the operation unit 105 is configured by, for example, a personal computer (PC).

取り込まれた信号は、まず回帰直線演算器106により回帰直線式が導き出される。こ
のとき取り込まれた信号は時間軸方向の変化を際立たせるため、ゲイン(信号強度を増幅
もしくは減衰させる)処理を施すのが望ましい。
The regression line equation is first derived from the retrieved signal by the regression line calculator 106. It is desirable to perform gain (amplifying or attenuating signal intensity) processing for the signal captured at this time to make a change in the time axis direction stand out.

次に、距離演算器107により、最新に得られた信号から過去のある時点までに得られ
た信号と、演算により求められた回帰直線(前記回帰直線式により示される)との距離を
演算する。
Next, the distance calculator 107 calculates the distance between the signal obtained from the most recently obtained signal up to a certain point in the past and the regression line (shown by the regression line equation) obtained by the computation. .

このとき演算に使用される信号数は任意に設定できる。また算出された回帰直線の傾き
の値を保持する直線傾き保持器108、および演算器109を備え、演算器109は、距
離演算器107により求められた値(距離)と直線傾き保持器に保持されている値(傾き
)を演算して、距離の時間方向成分を求める。終点判定器110は、前記演算器109の
演算結果を監視し、演算結果が予め設定した判定レベルを超えるとき終点判定信号を出力
する。この終点判定信号は表示器111に表示する。
At this time, the number of signals used for the calculation can be arbitrarily set. In addition, a linear slope holder 108 that holds the calculated slope value of the regression line and a calculator 109 are provided. The calculator 109 holds the value (distance) obtained by the distance calculator 107 and the linear slope holder. The calculated value (slope) is calculated to obtain the time direction component of the distance. The end point determination unit 110 monitors the calculation result of the calculation unit 109, and outputs an end point determination signal when the calculation result exceeds a preset determination level. This end point determination signal is displayed on the display 111.

図2は、エッチングの終点を演算する演算部105の処理を説明する図である。まずエ
ッチング処理に伴うプラズマ発光のうちの特定波長の光を分光器により時系列データとし
て取り出し、取り出したデータを演算部105に入力する(ステップS200)。
FIG. 2 is a diagram for explaining the processing of the calculation unit 105 that calculates the end point of etching. First, light having a specific wavelength out of plasma emission associated with the etching process is extracted as time series data by a spectroscope, and the extracted data is input to the arithmetic unit 105 (step S200).

入力された時系列データは、まずゲイン演算器によりゲイン処理が行われる。ゲイン処
理ではたとえば0.001倍に信号波形を縮小させることで、時間軸方向成分の変化を顕
著に表すことができるようになる。なお、このデータ次の回帰直線を求める信号点数およ
び回帰直線からの距離を求めるために必要な距離演算信号数よりも多くなければならない
(ステップS201)。
The input time series data is first subjected to gain processing by a gain calculator. In the gain processing, for example, by reducing the signal waveform by 0.001 times, the change in the time axis direction component can be remarkably expressed. It should be noted that the number of signal points for obtaining the regression line next to the data and the number of distance calculation signals necessary for obtaining the distance from the regression line must be larger (step S201).

得られた信号数がそれら必要な信号数以上になり、また所定の判定開始時間が経過した
とき、回帰直線を求める演算処理を行う。回帰直線を求める演算は、例えば最小2乗法な
どにより求めることができる。また、回帰直線を求める演算に使用する信号は最新の信号
から任意の過去の点までとする。なお、このとき得られた回帰直線の傾きのデータは回帰
直線傾き保持器108により保持しておく(ステップS202、S203,S204,2
05)。
When the number of signals obtained exceeds the required number of signals and a predetermined determination start time has elapsed, a calculation process for obtaining a regression line is performed. The calculation for obtaining the regression line can be obtained by, for example, the least square method. In addition, the signal used for the calculation for obtaining the regression line is from the latest signal to any past point. Note that the regression line slope data obtained at this time is retained by the regression line slope retainer 108 (steps S202, S203, S204, 2).
05).

次に、求めた回帰直線を使用し、過去に得られた信号との距離を求める。距離を求める
ために使用する信号は最新の信号から任意の過去の点までを使用することができる。使用
する信号点数Mはたとえば回帰直線を演算するのに使用した点数より多い点数である。
Next, using the obtained regression line, the distance from the signal obtained in the past is obtained. The signal used to determine the distance can be from the latest signal to any past point. The number of signal points M to be used is, for example, more than the number of points used to calculate the regression line.

また、回帰直線からの過去のある点までの距離dは、回帰直線が式1で表されるとする
と式2から求めることができる。なお、式2において、x1、ylは過去のある点でのx
座標およびy座標を示す。

Figure 0005384758
Figure 0005384758
Further, the distance d from the regression line to a point in the past can be obtained from Equation 2 if the regression line is expressed by Equation 1. In Equation 2, x1 and yl are x at a certain point in the past.
Coordinates and y coordinates are shown.
Figure 0005384758
Figure 0005384758

式2により、求められる距離は、横軸を時間軸、縦軸を信号強度とすると、時間及び信
号強度の両成分をも含んでいる(ステップS206)。
The distance obtained by Equation 2 includes both time and signal intensity components, where the horizontal axis is the time axis and the vertical axis is the signal intensity (step S206).

エッチング処理に伴うプラズマからの信号にはノイズ成分が含まれており、このノイズ
成分は縦軸の信号強度成分として現れる。このため、距離演算により得られた信号のうち
時間軸方向成分dtのみを抽出することにより、前記ノイズ成分による影響を低減させる
ことができる。なお、前記回帰直線と前記時系列データとの時間軸方向の距離dtは式3
により算出することができる。

Figure 0005384758
The signal from the plasma accompanying the etching process includes a noise component, and this noise component appears as a signal intensity component on the vertical axis. For this reason, the influence by the noise component can be reduced by extracting only the time-axis direction component dt from the signal obtained by the distance calculation. Note that the distance dt in the time axis direction between the regression line and the time series data is expressed by Equation 3
Can be calculated.
Figure 0005384758

前記回帰直線と前記時系列データとの時間軸方向の距離dtの算出処理は、任意に設定
した距離算出信号点数Mの全てにおいて行う(ステップS207)。
The calculation process of the distance dt in the time axis direction between the regression line and the time series data is performed for all arbitrarily set distance calculation signal points M (step S207).

次に、全ての信号において算出された回帰直線との距離における時間軸方向成分の最大
値(距離最大値)の累乗演算を行う。演算方法としては、例えば入力された信号を2乗し
、その演算値が任意に設定できる闇値を越えた場合終点と判定する(ステップS209,
210)。前記累乗演算を行うことにより、信号成分をさらに増幅し、信号に含まれるノ
イズを減らすことができる。
Next, a power calculation of the maximum value (distance maximum value) of the time-axis direction component in the distance from the regression line calculated for all signals is performed. As a calculation method, for example, the input signal is squared, and when the calculated value exceeds a dark value that can be arbitrarily set, the end point is determined (step S209,
210). By performing the power calculation, it is possible to further amplify the signal component and reduce noise included in the signal.

図3は、エッチング処理中に得られたプラズマの発光のうち特定波長の光信号の例を示
す図である。この光信号波形には、開口率の影響などからノイズ成分と見られる信号の揺
らぎが多く、エッチングが進行したことによる波形の変化を捉えにくい。
FIG. 3 is a diagram illustrating an example of an optical signal having a specific wavelength among plasma emission obtained during the etching process. In this optical signal waveform, there are many signal fluctuations that are considered to be noise components due to the influence of the aperture ratio and the like, and it is difficult to catch the change in the waveform due to the progress of etching.

図4は、回帰直線を説明する図である。回帰直線は得られた光信号波形の内、例えば最
新の信号点と過去の数十個の信号点を使用して回帰直線を求める。回帰直線を算出するた
めに使用する信号点の数は任意に設定でき、たとえば20点などとすることができる。次
に、求めた回帰直線と各信号点間の距離を演算する。回帰直線と各信号点間の距離dは、
回帰直線から各信号点から回帰直線に向かって下ろした垂線の長さであり、その時間軸方
向成分dtが終点判定に必要な信号である。
FIG. 4 is a diagram for explaining a regression line. The regression line is obtained by using, for example, the latest signal point and several tens of past signal points in the obtained optical signal waveform. The number of signal points used for calculating the regression line can be arbitrarily set, for example, 20 points. Next, the distance between the obtained regression line and each signal point is calculated. The distance d between the regression line and each signal point is
This is the length of a perpendicular line drawn from each signal point toward the regression line from the regression line, and its time-axis direction component dt is a signal necessary for end point determination.

図5は、回帰直線と各信号点間の距離dtの演算結果を示す図である。ここでは回帰直
線を求めるのに使用する信号点を20点、距離を求めるのに使用する信号点を100点と
した場合の波形例を示す。得られた波形をもとにエッチングの終点の判定を行う。判定に
使用する閾値は任意に設定できるが、閾値はエッチング終点付近での変化を正確にかつ早
い段階で判定できる値であることが必要である。
FIG. 5 is a diagram illustrating a calculation result of the distance dt between the regression line and each signal point. Here, a waveform example is shown in which 20 signal points are used to obtain the regression line and 100 signal points are used to obtain the distance. The end point of etching is determined based on the obtained waveform. The threshold used for the determination can be arbitrarily set, but the threshold needs to be a value that can accurately determine the change near the etching end point at an early stage.

図6は、図5で得られた波形に対する閾値の設定方法を説明する図である。閾値を閾値
2に設定した場合と閾値1に設定した場合とでは、エッチングの終点判定に約3秒の時間
差が生じる。すなわち、閾値を閾値1に設定した場合には、終点の判定時期に3秒の遅れ
が発生する。この場合、ウエハ面内のある点ではエッチング終点を経過して、前記3秒の
間にエッチングを行いたくない面にダメージを与えることになる場合がある。
FIG. 6 is a diagram illustrating a threshold setting method for the waveform obtained in FIG. There is a time difference of about 3 seconds in the etching end point determination between the case where the threshold is set to the threshold 2 and the case where the threshold is set to 1. That is, when the threshold is set to threshold 1, a delay of 3 seconds occurs at the end point determination time. In this case, at a certain point in the wafer surface, the etching end point may pass and damage may be caused to the surface that is not desired to be etched during the 3 seconds.

図5で得られた波形は、回帰直線と各信号点間の距離の時間軸方向成分の波形である。   The waveform obtained in FIG. 5 is a waveform of the time-axis direction component of the distance between the regression line and each signal point.

前述のように、回帰直線と各信号点間の距離の時間軸方向成分は信号に対するノイズの影
響が少ないため閾値を閾値2に示すように低い値とすることができ、これにより、早期に
終点を判定することができる。
As described above, the time-axis direction component of the distance between the regression line and each signal point is less affected by noise on the signal, so the threshold value can be set to a low value as indicated by threshold value 2, thereby enabling the end point to be reached early. Can be determined.

なお、判定に使用する信号として、回帰直線と各信号点間の距離、すなわち各信号点か
ら回帰直線に向かって下ろした垂線の長さdを設定すると、前記距離を表す信号は強度成
分を含むことになり、判定に使用する闘値をさげることが困難である。
As a signal used for the determination, when a distance between the regression line and each signal point, that is, a length d of a perpendicular line drawn from each signal point toward the regression line is set, the signal representing the distance includes an intensity component. Therefore, it is difficult to reduce the threshold used for the determination.

図7は、回帰直線と各信号点間の距離の信号強度方向成分dyの波形である。図7に示
す波形は、回帰直線からの距離の時間軸方向成分dtを抽出した図5の波形に比して、信
号波形に含まれるノイズ量が多いことがわかる。また、波形立下り後にもうひとつの波形
の山が観測される。これは光信号波形が立ち下がったために観測されるものであり、発光
強度信号成分を使用した場合ではこの成分を取り除くことが不可能である。
FIG. 7 is a waveform of the signal intensity direction component dy of the distance between the regression line and each signal point. It can be seen that the waveform shown in FIG. 7 includes a larger amount of noise in the signal waveform than the waveform of FIG. 5 in which the time-axis direction component dt of the distance from the regression line is extracted. In addition, another waveform peak is observed after the waveform falls. This is observed because the optical signal waveform has fallen, and when a light emission intensity signal component is used, this component cannot be removed.

終点を検出するに当たって、例えば波形の立下り部分を使用する遅めの判定を行う場合
がある。例えば、エッチングにおいて終点を検出する工程において、残渣等が残った状態
であってもエッチングを継続的に行いたい場合などは遅めでの終点判定が有効である。こ
のような場合には、前記波形立ち下がり後の信号成分のため誤判定を招く恐れがある。こ
れに対して、時間軸方向成分のみを使用する場合は、波形が立ち下がった後にノイズ成分
はほとんど含まれず誤判定を抑制することができる。
In detecting the end point, for example, a late determination using the falling portion of the waveform may be performed. For example, in the step of detecting the end point in etching, when it is desired to continue etching even if a residue or the like remains, it is effective to determine the end point later. In such a case, there is a risk of erroneous determination due to the signal component after the fall of the waveform. On the other hand, when only the time axis direction component is used, the noise component is hardly included after the waveform falls, and erroneous determination can be suppressed.

図8は、第2の実施形態を説明する図である。図8において、ステップS200ないし
208の処理は図2に示すステップS200ないし208の処理と同じであるので同一番
号を付して詳細な説明を省略する。
FIG. 8 is a diagram for explaining the second embodiment. In FIG. 8, the processes in steps S200 to S208 are the same as the processes in steps S200 to S208 shown in FIG.

図8に示すように、全ての信号点において回帰直線からの距離dを算出し、次いで算出
された回帰直線との距離dにおける時間軸方向成分dtの最大値(距離最大値)を算出し
た(ステップS206,207,208)後、算出された距離の時間軸方向成分dtと回
帰直線の傾きを乗算する(ステップS212)。乗算された結果を予め設定した閾値と比
較し、閾値を超えた場合、終点判定検出信号を出力する(ステップS210,211)。
As shown in FIG. 8, the distance d from the regression line is calculated at all signal points, and then the maximum value (maximum distance value) of the time-axis direction component dt at the distance d from the calculated regression line is calculated ( After steps S206, 207, and 208), the time-distance component dt of the calculated distance is multiplied by the slope of the regression line (step S212). The multiplied result is compared with a preset threshold value, and if the threshold value is exceeded, an end point determination detection signal is output (steps S210 and 211).

図9は、距離の時間軸方向成分の最大値と回帰直線の傾きの乗算結果を示す図である。   FIG. 9 is a diagram illustrating a multiplication result of the maximum value of the time-axis direction component of the distance and the slope of the regression line.

この場合においても時間軸方向成分のみを抽出しているため、信号に含まれるノイズ成分
は少ないことがわかる。つまりこの波形においても判定を行う上で閾値1を設定するだけ
でなく閾値2のように閾値を下げることで、より早い段階で判定を行うことが可能となる
。また、閾値を下げない場合には、判定における判定信号に対するノイズの影響を減らす
ことが可能となり、より安定した判定を行うことが可能となる。
Even in this case, since only the time-axis direction component is extracted, it is understood that the noise component included in the signal is small. That is, it is possible not only to set the threshold value 1 but also to lower the threshold value as the threshold value 2 in making the determination in this waveform, so that the determination can be performed at an earlier stage. Further, when the threshold value is not lowered, it is possible to reduce the influence of noise on the determination signal in determination, and it is possible to perform more stable determination.

図10は、第3の実施形態を説明する図である。図10において、ステップS201か
ら204までは第1の実施形態と同じである。プラズマ発光信号から回帰直線を算出し、
得られた回帰直線と取得信号による波形に囲まれた面積において回帰直線の上側に現れる
面積と、回帰直線の下側に現れる面積をそれぞれ算出する(ステップS212)。またこ
のとき得られた面積値の最大値を記憶しておく(ステップS213)。その後得られた面
積について回帰直線の上側に作られた面積と下側に作られた面積の比を求める。ここでは
上側に作られた面積と下側に作られた面積の値が大きく異なることを特徴として検出して
いるため比だけでなく差であってもよい。例えば面積を減算することにより演算値を算出
することができる(ステップS214)。また、このとき回帰直線により囲まれた面積の
最大値を使用し、得られた演算値と乗算することで最終的な判定信号を得て終点判定を行
う(ステップS215)。そこで得られた最終的な演算値を終点判定信号としてエッチン
グの終点を判定する。
FIG. 10 is a diagram for explaining the third embodiment. In FIG. 10, steps S201 to S204 are the same as those in the first embodiment. Calculate a regression line from the plasma emission signal,
The area that appears above the regression line and the area that appears below the regression line in the area surrounded by the obtained regression line and the waveform of the acquired signal are calculated (step S212). The maximum area value obtained at this time is stored (step S213). Then, the ratio of the area created above the regression line to the area created below is calculated for the area obtained. Here, since it is detected as a characteristic that the value of the area created on the upper side and the area created on the lower side are greatly different, not only the ratio but also the difference may be used. For example, the calculated value can be calculated by subtracting the area (step S214). At this time, the maximum value of the area surrounded by the regression line is used and multiplied by the obtained calculation value to obtain a final determination signal to determine the end point (step S215). The final calculation value thus obtained is used as an end point determination signal to determine the etching end point.

図11は、回帰直線の上下に作られた面積の差と回帰直線により囲まれた面積の最大値
との積の演算結果を示す図である。この演算結果を用いて判定を行うと、演算値はたとえ
ば負から正に変化するため、波形は負の向きで一つの山1101、正の方向で一つの山1
102が得られる。そのため、例えば遅め判定を行うときには波形の変曲点が負から正へ
の信号の変化として得られるため、閾値の設定において例えばある閾値1を超えた後閾値
2を越える場合を判定とする場合などにおいて符号が反転するため、ノイズの影響を受け
にくく安定した判定を行うことが可能となる。また、このとき第1の実施形態、第2の実
施形態と同様に信号に対するノイズの影響が少ないため早め判定においても高精度に判定
を行うことが可能である。
FIG. 11 is a diagram illustrating a calculation result of the product of the difference between the areas created above and below the regression line and the maximum value of the area surrounded by the regression line. When a determination is made using this calculation result, the calculation value changes from negative to positive, for example, so that the waveform has one peak 1101 in the negative direction and one peak 1 in the positive direction.
102 is obtained. Therefore, for example, when performing a late determination, the inflection point of the waveform is obtained as a change in the signal from negative to positive. Therefore, when the threshold value is set, for example, when the threshold value 2 is exceeded and then the threshold value 2 is exceeded. Since the sign is inverted at the time, it is possible to make a stable determination that is not easily affected by noise. At this time, as in the first embodiment and the second embodiment, since the influence of noise on the signal is small, the determination can be performed with high accuracy even in the early determination.

以上、説明したように、本発明の実施形態によれば、回帰直線と各信号点間の距離の時
間軸方向成分を利用して終点を判定する。このため、エッチング処理に伴うプラズマから
の信号にノイズ成分が含まれていても、このノイズ成分は縦軸の信号強度成分として現れ
るため、前記ノイズ成分による影響を低減させることができる。したがって、プラズマか
らの発光強度変化が微小なものであっても、エッチング終点付近の微小な発光強度変化を
確実にかつ早い段階で検出して、エッチングの終点を迅速且つ確実に判定することができ
る。また、信号波形において急峻に波形が変化する場合には傾きが大きくなるために、実
施形態2での判定を行うことでノイズ成分の少ない判定波形を得ることができる。また、
遅めの判定を行いたい場合であれば、実施形態3を使用することで変曲点を捉えやすく安
定した判定を行うことができる。このように、それぞれの判定方法は適切に選ぶことがで
きる。また、回帰直線に使用するデータ点数や、距離を算出するためのデータ点数を最適
化することでも判定精度は大きく異なり、すべての判定において適切な値を使用すること
で判定精度は大幅に向上する。
As described above, according to the embodiment of the present invention, the end point is determined using the time axis direction component of the distance between the regression line and each signal point. For this reason, even if a noise component is included in the signal from the plasma accompanying the etching process, the noise component appears as a signal intensity component on the vertical axis, so that the influence of the noise component can be reduced. Therefore, even if the emission intensity change from the plasma is minute, the minute emission intensity change near the etching end point can be detected reliably and at an early stage, and the etching end point can be determined quickly and reliably. . In addition, when the waveform changes steeply in the signal waveform, the inclination becomes large. Therefore, a determination waveform with less noise component can be obtained by performing the determination in the second embodiment. Also,
If it is desired to make a later determination, it is possible to easily detect an inflection point and perform a stable determination by using the third embodiment. Thus, each determination method can be selected appropriately. In addition, the accuracy of judgment differs greatly by optimizing the number of data points used for the regression line and the number of data points for calculating the distance, and the judgment accuracy is greatly improved by using appropriate values for all judgments. .

101 エッチング装置
102 真空容器
103 光ファイバ
104 分光器
105 演算部
106 回帰直線演算器
107 距離演算器
108 直線傾き保持器
109 距離演算器
110 終点判定器
111 表示器
DESCRIPTION OF SYMBOLS 101 Etching apparatus 102 Vacuum container 103 Optical fiber 104 Spectrometer 105 Calculation part 106 Regression linear calculation unit 107 Distance calculation unit 108 Linear inclination holder 109 Distance calculation unit 110 End point determination unit 111 Display

Claims (3)

被処理体にプラズマ処理を行う真空処理室と、
前記真空処理室にエッチングガスを導入するガス導入手段と、
前記真空処理室内に前記プラズマを生成するための高周波電力を供給する高周波供給手段と、
前記プラズマの特定波長の発光を分光する分光器と、
前記被処理体のエッチングの終点を判定する演算部とを備え、
前記演算部は、前記分光器により抽出された特定波長の発光強度の時系列データをもとに回帰直線を演算する回帰直線演算部と、前記時系列データから前記回帰直線への距離を演算する距離演算器と、前記距離演算器により演算された前記時系列データから前記回帰直線への距離と前記回帰直線の傾きとを演算することによって時間軸方向の距離を算出する演算器と、前記演算器により演算された時間軸方向の距離をもとに終点判定信号を出力する終点判定器とを具備することを特徴とするプラズマエッチング装置。
A vacuum processing chamber for performing plasma processing on an object to be processed;
Gas introduction means for introducing an etching gas into the vacuum processing chamber;
High-frequency supply means for supplying high-frequency power for generating the plasma in the vacuum processing chamber;
A spectroscope for spectroscopically analyzing emission of a specific wavelength of the plasma;
A calculation unit for determining an end point of etching of the object to be processed,
The calculation unit calculates a regression line based on time series data of emission intensity of a specific wavelength extracted by the spectrometer, and calculates a distance from the time series data to the regression line. A distance calculator, a calculator for calculating a distance in the time axis direction by calculating a distance from the time series data calculated by the distance calculator to the regression line and a slope of the regression line, and the calculation A plasma etching apparatus comprising: an end point determination unit that outputs an end point determination signal based on a distance in a time axis direction calculated by the chamber.
被処理体にプラズマ処理を行う真空処理室と、
前記真空処理室にエッチングガスを導入するガス導入手段と、
前記真空処理室内に前記プラズマを生成するための高周波電力を供給する高周波供給手段と、
前記プラズマの特定波長の発光を分光する分光器と、
前記被処理体のエッチングの終点を判定する演算部とを備え、
前記演算部は、前記分光器により抽出された特定波長の発光強度の時系列データをもとに回帰直線を演算する回帰直線演算部と、前記時系列データから前記回帰直線への距離を演算する距離演算器と、前記距離演算器により演算された前記時系列データから前記回帰直線への距離と前記回帰直線の傾きとを演算することによって時間軸方向の距離を算出する演算器と、前記演算器により演算された時間軸方向の距離の中での最大値と前記回帰曲線の傾きとの積をもとに終点判定信号を出力する終点判定器とを具備することを特徴とするプラズマエッチング装置。
A vacuum processing chamber for performing plasma processing on an object to be processed;
Gas introduction means for introducing an etching gas into the vacuum processing chamber;
High-frequency supply means for supplying high-frequency power for generating the plasma in the vacuum processing chamber;
A spectroscope for spectroscopically analyzing emission of a specific wavelength of the plasma;
A calculation unit for determining an end point of etching of the object to be processed,
The calculation unit calculates a regression line based on time series data of emission intensity of a specific wavelength extracted by the spectrometer, and calculates a distance from the time series data to the regression line. A distance calculator, a calculator for calculating a distance in the time axis direction by calculating a distance from the time series data calculated by the distance calculator to the regression line and a slope of the regression line, and the calculation A plasma etching apparatus comprising: an end point determination device that outputs an end point determination signal based on a product of a maximum value in a time axis direction distance calculated by a container and a slope of the regression curve .
被処理体にプラズマ処理を行う真空処理室と、
前記真空処理室にエッチングガスを導入するガス導入手段と、
前記真空処理室内に前記プラズマを生成するための高周波電力を供給する高周波供給手段と、
前記プラズマの特定波長の発光を分光する分光器と、
前記被処理体のエッチングの終点を判定する演算部とを備え、
前記演算部は、前記分光器により抽出された特定波長の発光強度の時系列データをもとに回帰直線を演算する回帰直線演算部と、
前記回帰直線と前記時系列データとにより発光強度軸の高強度側または低強度側に囲まれた面積の中の最大値と、前記発光強度軸の高強度側に囲まれた面積と前記発光強度軸の低強度側に囲まれた面積との差と、の積をもとに終点判定信号を出力する終点判定器とを具備することを特徴とするプラズマエッチング装置。
A vacuum processing chamber for performing plasma processing on an object to be processed;
Gas introduction means for introducing an etching gas into the vacuum processing chamber;
High-frequency supply means for supplying high-frequency power for generating the plasma in the vacuum processing chamber;
A spectroscope for spectroscopically analyzing emission of a specific wavelength of the plasma;
A calculation unit for determining an end point of etching of the object to be processed,
The calculation unit is a regression line calculation unit that calculates a regression line based on time-series data of emission intensity of a specific wavelength extracted by the spectroscope,
The maximum value among the areas surrounded on the high intensity side or the low intensity side of the emission intensity axis by the regression line and the time series data, the area surrounded on the high intensity side of the emission intensity axis, and the emission intensity A plasma etching apparatus comprising: an end point determination device that outputs an end point determination signal based on a product of a difference between an area surrounded by a low intensity side of the shaft and an area.
JP2013016875A 2013-01-31 2013-01-31 Plasma etching equipment Active JP5384758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016875A JP5384758B2 (en) 2013-01-31 2013-01-31 Plasma etching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016875A JP5384758B2 (en) 2013-01-31 2013-01-31 Plasma etching equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008046533A Division JP5192850B2 (en) 2008-02-27 2008-02-27 Etching end point judgment method

Publications (2)

Publication Number Publication Date
JP2013102215A JP2013102215A (en) 2013-05-23
JP5384758B2 true JP5384758B2 (en) 2014-01-08

Family

ID=48622475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016875A Active JP5384758B2 (en) 2013-01-31 2013-01-31 Plasma etching equipment

Country Status (1)

Country Link
JP (1) JP5384758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859103B2 (en) 2015-01-20 2018-01-02 Toshiba Memory Corporation Process control device, recording medium, and process control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640371B2 (en) * 2014-10-20 2017-05-02 Lam Research Corporation System and method for detecting a process point in multi-mode pulse processes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268435U (en) * 1988-11-11 1990-05-24
JPH03181129A (en) * 1989-12-11 1991-08-07 Sumitomo Metal Ind Ltd Method of detecting termination of etching
JP2004253813A (en) * 1996-11-11 2004-09-09 Tokyo Electron Ltd Detection method of end point of plasma processing and its apparatus
JP4227301B2 (en) * 1998-02-03 2009-02-18 東京エレクトロンAt株式会社 End point detection method in semiconductor plasma processing
JP2005531927A (en) * 2002-06-28 2005-10-20 東京エレクトロン株式会社 Method and system for predicting processing performance using material processing tools and sensor data
JP2004079727A (en) * 2002-08-15 2004-03-11 Fujitsu Ltd Method and system for detecting etching end point, etching device and etching end point detection program
JP2008021732A (en) * 2006-07-11 2008-01-31 Tokyo Electron Ltd Method and system for identifying cause of abnormality in pressure, vacuum processing device, and recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859103B2 (en) 2015-01-20 2018-01-02 Toshiba Memory Corporation Process control device, recording medium, and process control method

Also Published As

Publication number Publication date
JP2013102215A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5192850B2 (en) Etching end point judgment method
US5160402A (en) Multi-channel plasma discharge endpoint detection method
US8751196B2 (en) Abnormality detection system, abnormality detection method, recording medium, and substrate processing apparatus
JP2006518913A (en) Endpoint detection in a time-division multiplexed etch process.
KR101656745B1 (en) Plasma processing apparatus and driving method of plasma processing apparatus
TW200952054A (en) Method and apparatus for detecting plasma unconfinement
JP5384758B2 (en) Plasma etching equipment
KR20140011996A (en) Analysis method, analysis apparatus and etching process system
JP6220319B2 (en) Data analysis method, plasma etching method, and plasma processing apparatus
JP2019033165A (en) Plasma processing apparatus and plasma processing system
CN101207004A (en) Method for controlling semiconductor silicon dies etching technique
KR101495621B1 (en) Plasma apparatus and analyzing apparatus
JP2017112238A5 (en)
JPWO2020166232A1 (en) Water vapor observation meter and water vapor observation method
JP7162740B2 (en) Vibration detection device, abnormality determination method, and abnormality determination system
US8014891B2 (en) Etching amount calculating method, storage medium, and etching amount calculating apparatus
TWI584376B (en) Plasma processing device
JP6166120B2 (en) Data processing apparatus, measuring apparatus, sorting apparatus, data processing method and program
JP6643202B2 (en) Plasma processing apparatus and analysis method for analyzing plasma processing data
CN105097589B (en) A kind of detection method of metal hardmask integration etching through hole over etching amount
JP3117355B2 (en) End point detection method for plasma processing
JP2006018681A (en) Process control method
EP3486641A1 (en) Data processing apparatus and data processing method
KR101843443B1 (en) plasma equipment and maintenance method of the same
JP2004253813A (en) Detection method of end point of plasma processing and its apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350