JP5382616B2 - Superconducting critical current measuring device - Google Patents

Superconducting critical current measuring device Download PDF

Info

Publication number
JP5382616B2
JP5382616B2 JP2009257764A JP2009257764A JP5382616B2 JP 5382616 B2 JP5382616 B2 JP 5382616B2 JP 2009257764 A JP2009257764 A JP 2009257764A JP 2009257764 A JP2009257764 A JP 2009257764A JP 5382616 B2 JP5382616 B2 JP 5382616B2
Authority
JP
Japan
Prior art keywords
wire
electrode
measured
current
cradle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009257764A
Other languages
Japanese (ja)
Other versions
JP2011102752A (en
Inventor
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009257764A priority Critical patent/JP5382616B2/en
Publication of JP2011102752A publication Critical patent/JP2011102752A/en
Application granted granted Critical
Publication of JP5382616B2 publication Critical patent/JP5382616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、受け台により支持される被計測用線材と電流および電圧の測定用電極とを接触させて被計測用線材の臨界電流値を測定することができる超電導臨界電流測定装置に関する。   The present invention relates to a superconducting critical current measuring apparatus capable of measuring a critical current value of a wire to be measured by bringing a wire to be measured supported by a cradle into contact with electrodes for measuring current and voltage.

近年、液体窒素の温度で超電導性を有する超電導線において、薄膜超電導線が様々な分野において実用化されつつある。この薄膜超電導線は、通常の銅芯製やアルミ芯製の電線と異なり、テープ状の金属製基板上に配向層が形成され、その上に多結晶性物質からなる超電導層が形成され、さらにその上に銅を薄くメッキした保護層が形成されている。一方、超電導線については、品質管理の一環として、様々な位置における臨界電流の測定が行われている。   In recent years, thin film superconducting wires are being put into practical use in various fields as superconducting wires having superconductivity at the temperature of liquid nitrogen. This thin film superconducting wire is different from a normal copper core or aluminum core electric wire in that an orientation layer is formed on a tape-shaped metal substrate, and a superconducting layer made of a polycrystalline material is formed thereon, and A protective layer in which copper is thinly plated is formed thereon. On the other hand, for superconducting wires, critical current is measured at various positions as part of quality control.

薄膜超電導線(被計測用線材)における臨界電流の測定装置としては、通常、薄膜超電導線に電極を直接圧接して電流を流すことにより超電導臨界電流を測定する直接通電方式の超電導臨界電流測定装置が用いられる(例えば、特許文献1)。   A device for measuring critical current in thin film superconducting wires (wires to be measured) is usually a direct conduction type superconducting critical current measuring device that measures superconducting critical current by direct current contact with electrodes on thin film superconducting wires. Is used (for example, Patent Document 1).

ここで、従来の超電導臨界電流測定装置の構成につき説明する。図4は超電導臨界電流測定装置の構成図である。図4において、10はテープ状の薄膜超電導線であり、21は前記薄膜超電導線の送り出し機構であり、22は巻き取り機構である。そして、23は送り出し側の、24は巻取り側のプーリーである。また、60は液体窒素溜め、即ち容器であり、61は液体窒素溜め60に溜められた液体窒素である。   Here, the configuration of a conventional superconducting critical current measuring apparatus will be described. FIG. 4 is a block diagram of a superconducting critical current measuring apparatus. In FIG. 4, 10 is a tape-shaped thin film superconducting wire, 21 is a feeding mechanism for the thin film superconducting wire, and 22 is a winding mechanism. Reference numeral 23 denotes a delivery side pulley, and 24 denotes a take-up side pulley. 60 is a liquid nitrogen reservoir, that is, a container, and 61 is liquid nitrogen stored in the liquid nitrogen reservoir 60.

また、70、72は、薄膜超電導線10に電流を流すために電流源と接続して設けられた送り出し側および巻き取り側の電流電極であり、71、73は各々の電流電極に対応する受け台である。そして、74、76は、薄膜超電導線10の抵抗を測定するために電流計と接続して設けられた送り出し側および巻き取り側の電圧電極であり、75、77は各々の電圧電極に対応する受け台である。そして、送り出し機構21、巻き取り機構22、電流源および電圧計は、それぞれのI/F(インターフェース)を介してPC(パーソナルコンピュータ)と接続されている。   Reference numerals 70 and 72 denote current electrodes on the sending side and the winding side provided to be connected to a current source in order to pass a current through the thin film superconducting wire 10, and 71 and 73 are receiving electrodes corresponding to the respective current electrodes. It is a stand. Reference numerals 74 and 76 denote voltage electrodes on the sending side and the winding side provided in connection with an ammeter for measuring the resistance of the thin film superconducting wire 10, and 75 and 77 correspond to the respective voltage electrodes. It is a cradle. The feeding mechanism 21, the winding mechanism 22, the current source, and the voltmeter are connected to a PC (personal computer) via each I / F (interface).

以上のような構成の下、送り出し機構21から巻き出された薄膜超電導線10は、プーリー23を通って水平に液体窒素溜め60の液体窒素61に浸漬されて、そのまま電流電極70,72、電圧電極74、76と各々の受け台71、73、75、77との間を通り、プーリー24から垂直に立ち上がり、巻き取り機構22で巻き取られるようになっている。   Under the above configuration, the thin film superconducting wire 10 unwound from the delivery mechanism 21 is immersed in the liquid nitrogen 61 of the liquid nitrogen reservoir 60 horizontally through the pulley 23, and the current electrodes 70 and 72, the voltage as it is. It passes between the electrodes 74, 76 and the respective pedestals 71, 73, 75, 77, rises vertically from the pulley 24, and is taken up by the take-up mechanism 22.

次に、上記超電導臨界電流測定装置を用いた測定方法につき説明する。
まず、送り出し機構21、巻き取り機構22、さらには送り出し側のプーリー23、巻き取り側のプーリー24を所定量回転させて、薄膜超電導線10の測定対象箇所を、送り出し側の電流電極70、巻き取り側の電流電極72、送り出し側の電圧電極74、巻き取り側の電圧電極76の下方に位置させる。
Next, a measuring method using the superconducting critical current measuring device will be described.
First, the delivery mechanism 21, the take-up mechanism 22, and further, the delivery-side pulley 23 and the take-up pulley 24 are rotated by a predetermined amount, and the measurement target portion of the thin film superconducting wire 10 is moved to the delivery-side current electrode 70, the take-up side. It is located below the current electrode 72 on the take-up side, the voltage electrode 74 on the send-out side, and the voltage electrode 76 on the take-up side.

その後、これら4個の電極70、72、74、76を支持する圧力シリンダ(図示せず)を下降させ、対応する受け台71、73、75、77との間に、前記薄膜超電導線10を、保護層(図示せず)を上側(電極側)に、基板(図示せず)を下側(受け台側)にして挟み込む。   Thereafter, a pressure cylinder (not shown) that supports these four electrodes 70, 72, 74, 76 is lowered, and the thin film superconducting wire 10 is placed between the corresponding pedestals 71, 73, 75, 77. The protective layer (not shown) is sandwiched between the upper side (electrode side) and the substrate (not shown) on the lower side (cradle side).

この状態で、薄膜超電導線10と各電極70、74、76、72の間の導通を取り、その後、PCで電流源を制御しつつ、設定した電流値まで徐々に電流を上げていく。電圧電極74、76で発生する電圧をモニターし、PCにその値を取り込み、予め設定した閾値を超えたところで、電流を流すのを停止する。また、事前に定義した臨界電流における発生電圧から臨界電流値を求める。   In this state, conduction between the thin film superconducting wire 10 and each of the electrodes 70, 74, 76, 72 is taken, and then the current is gradually increased to the set current value while controlling the current source with the PC. The voltage generated at the voltage electrodes 74 and 76 is monitored, the value is taken into the PC, and when the preset threshold is exceeded, the flow of current is stopped. Also, the critical current value is obtained from the generated voltage at the critical current defined in advance.

そして、当該箇所の測定が終了すると、送り出し側のプーリー23、巻き取り側のプーリー24を所定量回転させて、薄膜超電導線10を送り出し、次の測定対象の箇所で、上記と同様の操作を繰り返して測定を行う。さらに、薄膜超電導線10の移動距離や測定回数等をPCに予め入力しておくことにより、測定を自動で行うことができる。   Then, when the measurement of the part is completed, the pulley 23 on the sending side and the pulley 24 on the take-up side are rotated by a predetermined amount, the thin film superconducting wire 10 is sent out, and the same operation as above is performed at the next measurement target part. Repeat the measurement. Furthermore, the measurement can be automatically performed by inputting the moving distance of the thin film superconducting wire 10 and the number of times of measurement into the PC in advance.

特願2008−309669Japanese Patent Application No. 2008-309669

上記装置を用いる場合において、薄膜超電導線は、前記のように液体窒素溜めの液体窒素に浸漬され、電流および電圧の測定用電極と各々の受け台との間を通過するが、液体窒素は極めて低温である。このため、図5に示すように、動いている薄膜超電導線には着氷しないものの、電極70と相対する受け台71において薄膜超電導線10の両側に氷Sが着氷し、計測時間の経過と共に積もって行く。その結果、この氷Sに電極70が当たり、本来接触すべき薄膜超電導線10と接触せずに浮いてしまい、電気接続が得られなくなり、測定不能になることがあった。   In the case of using the above apparatus, the thin film superconducting wire is immersed in the liquid nitrogen in the liquid nitrogen reservoir as described above and passes between the current and voltage measuring electrodes and the respective cradles. It is low temperature. For this reason, as shown in FIG. 5, although the moving thin film superconducting wire is not icing, ice S is icing on both sides of the thin film superconducting wire 10 at the cradle 71 facing the electrode 70, and the elapsed time of measurement is reached. I pile up with you. As a result, the electrode 70 hits the ice S and floats without coming into contact with the thin film superconducting wire 10 that should be in contact with the ice S, so that electrical connection cannot be obtained and measurement may be impossible.

このため、薄膜超電導線の超電導臨界電流を測定するに際して、着氷の発生に影響されず、安定して測定を行うことができる超電導臨界電流測定装置が望まれていた。   For this reason, when measuring the superconducting critical current of a thin film superconducting wire, there has been a demand for a superconducting critical current measuring apparatus capable of performing stable measurement without being affected by the occurrence of icing.

本発明は、以上の課題を解決することを目的としてなされたものである。以下、発明に関連する技術を説明する。 The present invention has been made for the purpose of solving the above problems. Hereinafter, techniques related to the present invention will be described.

本発明に関連する第1の技術は、
被計測用線材を支える受け台を有し、前記受け台上の前記被計測用線材に電流電極および電圧電極である測定用電極を直接圧接して電流を流すことにより超電導臨界電流を測定する直接通電方式の超電導臨界電流測定装置であって、
着氷により前記測定用電極と前記被計測用線材とが接触不能となることを回避する手段を備えることを特徴とする超電導臨界電流測定装置である。
The first technique related to the present invention is:
Directly measuring the superconducting critical current by having a cradle for supporting the wire to be measured, and flowing the current by directly pressing the measurement electrode which is a current electrode and a voltage electrode to the wire to be measured on the cradle. A current-carrying superconducting critical current measuring device,
A superconducting critical current measuring device comprising means for avoiding contact between the measuring electrode and the wire to be measured due to icing.

技術においては、着氷により測定用電極と被計測用線材とが接触不能となることを回避する手段を備えることより、着氷の影響を受けることがなくなり、超電導臨界電流を確実に測定することができる。 In this technology , by providing means to avoid contact between the measuring electrode and the wire to be measured due to icing, the superconducting critical current is reliably measured without being affected by icing. be able to.

本発明に関連する第2の技術は、
前記手段は、前記受け台のうち少なくとも前記被計測用線材との接触部の周辺部を難着氷材料で形成することにより構成されていることを特徴とする第1の技術に記載の超電導臨界電流測定装置である。
The second technique related to the present invention is:
The superconducting criticality according to the first technique , wherein the means is formed by forming at least a peripheral part of a contact part of the cradle with the wire to be measured with a non-icing material. This is a current measuring device.

上記のように前記受け台上において前記薄膜超電導線の両側に着氷が発生するため、本技術においては、回避する手段が、前記受け台のうち少なくとも前記被計測用線材との接触部の周辺部を難着氷材料で形成して構成されていることにより、受け台上において前記薄膜超電導線の両側に相当する部位に位置することになる難着氷材料の存在によって、受け台のうち少なくとも前記被計測用線材との接触部の周辺部への着氷を回避できる。その結果、測定電極と被計測用線材を確実に接触させることができ、正確な測定を行なうことができる。 As described above, since icing occurs on both sides of the thin film superconducting wire on the cradle, in the present technology , the means to avoid is at least the periphery of the contact portion of the cradle with the wire to be measured. Since the portion is formed of a hard-to-ice material, the presence of the hard-to-ice material that will be located on the cradle corresponding to both sides of the thin film superconducting wire, It is possible to avoid icing on the periphery of the contact portion with the wire to be measured. As a result, the measurement electrode and the wire to be measured can be reliably brought into contact with each other, and accurate measurement can be performed.

本発明に関連する第3の技術は、
前記手段は、前記受け台のうち、前記被計測用線材との接触部分の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定し、前記被計測用線材と接触しない部分の位置は前記接触部分よりも低くすることにより構成されていることを特徴とする第1の技術または第2の技術に記載の超電導臨界電流測定装置である。
The third technique related to the present invention is:
The means sets a width dimension of a contact portion with the wire to be measured in the cradle within a range of 50 to 100% of a width dimension of the wire to be measured, and does not contact the wire to be measured. The superconducting critical current measuring device according to the first technique or the second technique , wherein the position of the part is configured to be lower than the contact part.

技術においては、回避する手段が、前記受け台のうち前記被計測用線材との接触部分の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定することにより構成されているため、被計測用線材の両側は受け台と接触しないことになり、その結果、着氷が発生しても、測定電極と被計測用線材を確実に接触させることができる。 In the present technology , the avoiding means is configured by setting a width dimension of a contact portion of the cradle with the wire to be measured in a range of 50 to 100% of a width dimension of the wire to be measured. Therefore, both sides of the wire to be measured do not come into contact with the cradle. As a result, even if icing occurs, the measurement electrode and the wire to be measured can be reliably brought into contact with each other.

なお、50%未満では被計測用線材の端部が垂れたり狭い被計測用線材との接触が不十分となったり、正確な計測が困難になる。   If it is less than 50%, the end of the wire to be measured hangs down, contact with the narrow wire to be measured becomes insufficient, or accurate measurement becomes difficult.

なお、本技術第2の技術とを併用することにより、測定電極と被計測用線材とをより確実に接触させることができる。 In addition, by using this technique together with the second technique , the measurement electrode and the wire to be measured can be brought into contact with each other more reliably.

本発明に関連する第4の技術は、
前記手段は、前記測定用電極の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定することにより構成されていることを特徴とする第1の技術ないし第3の技術のいずれかに記載の超電導臨界電流測定装置である。
The fourth technique related to the present invention is:
Said means comprises a first technique to a third technique, characterized in that it is constituted by setting the width of the measuring electrodes 50 to 100% of the width of the object to be measured for wire The superconducting critical current measuring device according to any one of the above.

技術においては、回避する手段が、前記測定用電極の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定することにより構成されているため、被計測用線材の両側の受け台に着氷が発生しても、測定用電極は着氷部を回避して受け台上の被計測用線材に達することができ、その結果、測定電極と被計測用線材を確実に接触させることができる。 In the present technology , the avoiding means is configured by setting the width dimension of the measurement electrode in a range of 50 to 100% of the width dimension of the wire to be measured. Even if icing occurs on the cradle, the measurement electrode can reach the wire to be measured on the cradle by avoiding the icing part, and as a result, the measurement electrode and the wire to be measured can be securely connected. Can be contacted.

なお、50%未満では薄膜超電導線材との接触が不十分となり、正確な計測が困難になる。   If it is less than 50%, contact with the thin film superconducting wire becomes insufficient, and accurate measurement becomes difficult.

なお、本技術第2の技術第3の技術とを併用することにより、測定電極と被計測用線材とをより確実に接触させることができる。 In addition, by using this technique together with the second technique and the third technique , the measurement electrode and the wire to be measured can be more reliably brought into contact with each other.

本発明は、上記の技術に基づいたものであり、請求項1に記載の発明は、The present invention is based on the above technique, and the invention according to claim 1
被計測用線材を支える受け台を有し、前記受け台上の前記被計測用線材に電流電極および電圧電極である測定用電極を直接圧接して電流を流すことにより超電導臨界電流を測定する直接通電方式の超電導臨界電流測定装置であって、Directly measuring the superconducting critical current by having a cradle for supporting the wire to be measured, and flowing the current by directly pressing the measurement electrode which is a current electrode and a voltage electrode to the wire to be measured on the cradle. A current-carrying superconducting critical current measuring device,
着氷により前記測定用電極と前記被計測用線材とが接触不能となることを回避する手段を備え、  Means for avoiding that the measurement electrode and the wire to be measured cannot be contacted due to icing,
前記手段は、前記受け台のうち、前記被計測用線材との接触部分の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定し、前記被計測用線材と接触しない部分の位置は前記接触部分よりも低くすることにより構成されていることを特徴とする超電導臨界電流測定装置である。The means sets a width dimension of a contact portion with the wire to be measured in the cradle within a range of 50 to 100% of a width dimension of the wire to be measured, and does not contact the wire to be measured. The superconducting critical current measuring device is characterized in that the position of the portion is lower than the contact portion.

請求項2に記載の発明は、The invention described in claim 2
被計測用線材を支える受け台を有し、前記受け台上の前記被計測用線材に電流電極および電圧電極である測定用電極を直接圧接して電流を流すことにより超電導臨界電流を測定する直接通電方式の超電導臨界電流測定装置であって、Directly measuring the superconducting critical current by having a cradle for supporting the wire to be measured, and flowing the current by directly pressing the measurement electrode which is a current electrode and a voltage electrode to the wire to be measured on the cradle. A current-carrying superconducting critical current measuring device,
着氷により前記測定用電極と前記被計測用線材とが接触不能となることを回避する手段を備え、Means for avoiding that the measurement electrode and the wire to be measured cannot be contacted due to icing,
前記手段は、前記測定用電極の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定することにより構成されていることを特徴とする超電導臨界電流測定装置である。The means is a superconducting critical current measuring apparatus configured by setting the width dimension of the measurement electrode in a range of 50 to 100% of the width dimension of the wire to be measured.

請求項3に記載の発明は、The invention according to claim 3
前記手段は、前記受け台のうち少なくとも前記被計測用線材との接触部の周辺部を難着氷材料で形成することにより構成されていることを特徴とする請求項1または請求項2に記載の超電導臨界電流測定装置である。The said means is comprised by forming the peripheral part of the contact part with the said to-be-measured wire rod among the said cradles with a hard-to-ice material. Is a superconducting critical current measuring device.

本発明は、薄膜超電導線の超電導臨界電流を測定するに際して、着氷の発生に影響されず、安定して測定を行うことができる。   In the present invention, when measuring the superconducting critical current of a thin film superconducting wire, the measurement can be performed stably without being affected by the occurrence of icing.

本発明の第1の実施の形態の超電導臨界電流測定装置における薄膜超電導線材と測定用電極との接触不能を回避する手段の構造を模式的に示す図であって、(a)は薄膜超電導線材の進行方向に沿う断面図であり、(b)は薄膜超電導線材の進行方向に直交する方向の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the structure of the means which avoids the inability to contact the thin film superconducting wire and the electrode for a measurement in the superconducting critical current measuring apparatus of the 1st Embodiment of this invention, (a) is a thin film superconducting wire. (B) is sectional drawing of the direction orthogonal to the advancing direction of a thin film superconducting wire. 本発明の第2の実施の形態の超電導臨界電流測定装置における薄膜超電導線材と測定用電極との接触不能を回避する手段の構造を模式的に示す図であって、(a)は薄膜超電導線材の進行方向に沿う側面図であり、(b)は正面図である。It is a figure which shows typically the structure of the means which avoids the contact failure of the thin film superconducting wire and measurement electrode in the superconducting critical current measuring apparatus of the 2nd Embodiment of this invention, Comprising: (a) is a thin film superconducting wire. It is a side view in alignment with the advancing direction, (b) is a front view. 本発明の第3の実施の形態の超電導臨界電流測定装置における薄膜超電導線材と測定用電極との接触不能を回避する手段の構造を模式的に示す図であって、(a)は薄膜超電導線材の進行方向に沿う側面図であり、(b)は正面図である。It is a figure which shows typically the structure of the means which avoids the contact failure of the thin film superconducting wire and measuring electrode in the superconducting critical current measuring apparatus of the 3rd Embodiment of this invention, (a) is a thin film superconducting wire. It is a side view in alignment with the advancing direction, (b) is a front view. 超電導臨界電流測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of a superconducting critical current measuring apparatus. 従来技術の超電導臨界電流測定装置における薄膜超電導線材と測定用電極との接触不能状態を模式的に示す図である。It is a figure which shows typically the non-contact state of the thin film superconducting wire and measuring electrode in the superconducting critical current measuring apparatus of a prior art.

以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on embodiments. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(第1の実施の形態)
本実施の形態は、従来より用いられていた超電導臨界電流測定装置において、受け台に工夫を施すことにより、電極と線材との接触を確保するものである。具体的には、受け台で着氷しやすい部分、即ち、少なくとも線材の両側部に対応する箇所の周辺部を、着氷しにくい材料(難着氷材料)を用いて形成することにより、受け台上に着氷することを防止して、電極圧接時における電極と線材との接触不能を回避し、安定した測定を可能にするものである。
(First embodiment)
In the present embodiment, in the superconducting critical current measuring device conventionally used, the contact between the electrode and the wire is ensured by devising the cradle. Specifically, a portion that is likely to be iced by the cradle, that is, at least a peripheral portion corresponding to both sides of the wire is formed by using a material that is difficult to be iced (difficult icing material). It prevents icing on the table, avoids the inability to contact the electrode and the wire during electrode pressure contact, and enables stable measurement.

以下、図1を参照しつつ本実施の形態を説明する。なお、超電導臨界電流測定装置における各測定用電極とそれに対応する受け台との関係は、同じと見なすことができるため、以下の説明においては、電流電極70と受け台71を取り上げて説明する。また、図1においては、発明の理解を容易にするため、各部の寸法は適宜変更している。そして、これらは、図2、3についても同様である。   Hereinafter, the present embodiment will be described with reference to FIG. In addition, since the relationship between each measurement electrode and the corresponding cradle in the superconducting critical current measuring apparatus can be regarded as the same, in the following description, the current electrode 70 and the cradle 71 will be described. Moreover, in FIG. 1, in order to make an understanding of invention easy, the dimension of each part is changed suitably. These also apply to FIGS.

図1は本実施の形態の超電導臨界電流測定装置における薄膜超電導線材と測定用電極との接触不能を回避する手段の構造を模式的に示す図であって、(a)は薄膜超電導線材の進行方向に沿う断面図であり、(b)は薄膜超電導線材の進行方向に直交する方向の断面図である。   FIG. 1 is a diagram schematically showing a structure of a means for avoiding inability to contact a thin film superconducting wire and a measuring electrode in the superconducting critical current measuring apparatus according to the present embodiment, and (a) shows the progress of the thin film superconducting wire. It is sectional drawing which follows a direction, (b) is sectional drawing of the direction orthogonal to the advancing direction of a thin film superconducting wire.

電流電極70は、例えば15mm幅×45mm長×10mm厚の大きさであり、図1(a)に示すように、薄膜超電導線材10と対向する側では、薄膜超電導線材10の進行方向の前後端の角が面取りされて(Rが付けられて)、薄膜超電導線材10との接触部長さが40mmとなるように形成されている。   The current electrode 70 has a size of, for example, 15 mm width × 45 mm length × 10 mm thickness, and, as shown in FIG. 1A, on the side facing the thin film superconducting wire 10, front and rear ends in the traveling direction of the thin film superconducting wire 10 These corners are chamfered (R is attached), and the contact portion length with the thin film superconducting wire 10 is 40 mm.

受け台71は、例えば50mm角×15mm厚と、電流電極70の大きさに比べ充分大きく形成されており、薄膜超電導線材10が圧接される部分には、30mm幅×50mm長×1mm厚と、薄膜超電導線材10の幅より一回り大きな難着氷部71aが設けられている。   The cradle 71 is formed, for example, 50 mm square × 15 mm thick and sufficiently larger than the size of the current electrode 70, and the portion to which the thin film superconducting wire 10 is pressed is 30 mm wide × 50 mm long × 1 mm thick, An ice icing portion 71 a that is slightly larger than the width of the thin film superconducting wire 10 is provided.

難着氷部71aを構成する材料としては、電気絶縁性に優れ、圧接時に変形することがない材料が好ましく、具体的には、例えば、フッ素樹脂、陽極酸化アルミニウム表面にフッ化モノアルキルリン酸処理した部材、アルキルケテンダイマーを付与した材料等が好ましく用いられる。なお、この難着氷部71aは、薄膜超電導線材10が圧接される部分の周辺部で着氷が発生することを考慮すれば、周辺部にのみ1対形成すれば充分である。しかし、このような小さな難着氷部を1対設けることは、大きな難着氷部を1つ設けるよりもコスト的に不利であるため、図1においては、薄膜超電導線材10の幅より一回り大きな難着氷部71aを設けている。   As the material constituting the difficult-to-ice part 71a, a material that is excellent in electrical insulation and does not deform during pressure contact is preferable. Specifically, for example, fluorocarbon, monofluorinated phosphoric acid on the surface of anodized aluminum A treated member, a material provided with an alkyl ketene dimer, or the like is preferably used. In consideration of the occurrence of icing at the periphery of the portion where the thin film superconducting wire 10 is pressed, it is sufficient to form a pair of difficultly icing portions 71a only at the periphery. However, providing a pair of such small ice-free portions is more costly than providing one large ice-free portion, so in FIG. 1 it is slightly more than the width of the thin film superconducting wire 10. A large difficult icing portion 71a is provided.

なお、受け台71を構成する材料としては、電気絶縁性や機械的強度に優れる材料が好ましく、具体的には、例えば、ガラス繊維強化エポキシ樹脂等の繊維強化プラスチック(FRP)が好ましく用いられる。   In addition, as a material which comprises the receiving stand 71, the material excellent in electrical insulation and mechanical strength is preferable, and, specifically, fiber reinforced plastics (FRP), such as a glass fiber reinforced epoxy resin, is used preferably, for example.

難着氷部71aを設けることにより、受け台71上の線材10が圧接される部分の周辺部では着氷しにくくなるため、着氷による電流電極70と薄膜超電導線材10との接触不能を防止することができ、安定した測定を行うことができる。   Providing the difficult icing portion 71a makes it difficult for the peripheral portion of the portion where the wire 10 on the pedestal 71 is pressed to come into contact with the ice, so that the current electrode 70 and the thin film superconducting wire 10 due to icing are prevented from being inaccessible. And stable measurement can be performed.

(第2の実施の形態)
本実施の形態も、超電導臨界電流測定装置において、受け台の構造を工夫することにより、電極と線材との接触を確保するものである。具体的には、受け台で着氷しやすい部分、即ち、線材の両側部に対応する箇所の周辺部を切り欠いて、受け台本体としての大きさを線材幅以下とすることにより、受け台本体上に着氷することを防止して、電極圧接時における電極と線材との接触不能を回避し、安定した測定を可能にするものである。
(Second Embodiment)
This embodiment also ensures the contact between the electrode and the wire by devising the structure of the cradle in the superconducting critical current measuring device. Specifically, a portion that is likely to be iced by the cradle, that is, a peripheral portion of a portion corresponding to both sides of the wire is cut out, and the size of the cradle body is set to be equal to or smaller than the wire width. It prevents icing on the main body, avoids the inability to contact the electrode and the wire during electrode pressure welding, and enables stable measurement.

以下、図2を参照しつつ本実施の形態を説明する。図2は本実施の形態の超電導臨界電流測定装置における薄膜超電導線材と測定用電極との接触不能を回避する手段の構造を模式的に示す図であって、(a)は薄膜超電導線材の進行方向に沿う側面図であり、(b)は正面図である。   Hereinafter, the present embodiment will be described with reference to FIG. FIG. 2 is a diagram schematically showing a structure of means for avoiding inability to contact the thin film superconducting wire and the measurement electrode in the superconducting critical current measuring apparatus of the present embodiment, and (a) shows the progress of the thin film superconducting wire. It is a side view along a direction, and (b) is a front view.

図2に示すように、受け台71は、薄膜超電導線材10の幅以下の幅W0の受け台本体部81と段差71bにより下段に設けられた支持部82とで構成されている。ここで、段差71bの高さは、支持部82に生じた着氷が電流電極70と接触することがないように充分大きく設定されている。   As shown in FIG. 2, the cradle 71 includes a cradle body 81 having a width W0 that is equal to or smaller than the width of the thin film superconducting wire 10 and a support portion 82 provided at a lower stage by a step 71b. Here, the height of the step 71 b is set sufficiently large so that the icing generated on the support portion 82 does not come into contact with the current electrode 70.

受け台本体部81の幅を薄膜超電導線材10の幅以下としているため、受け台本体部81には着氷が生じる恐れがない。また、支持部82に生じた着氷は、段差71bが充分に設けられているため、電流電極70と接触することがない。このため、着氷による電流電極70と薄膜超電導線材10との接触不能を防止することができ、着氷の有無に関係なく、安定した測定を行うことができる。   Since the width of the cradle body 81 is set to be equal to or smaller than the width of the thin film superconducting wire 10, there is no possibility that the cradle body 81 is iced. Further, the icing generated on the support portion 82 is not in contact with the current electrode 70 because the step 71b is sufficiently provided. For this reason, it is possible to prevent contact between the current electrode 70 and the thin film superconducting wire 10 due to icing, and stable measurement can be performed regardless of the presence or absence of icing.

なお、受け台本体部81の幅W0が薄膜超電導線材10の幅に対して狭すぎると、薄膜超電導線材10と電流電極70を充分に接触させることができなく恐れがある。このため、受け台本体部81の幅W0は、薄膜超電導線材10の幅の50〜100%であることが好ましい。   If the width W0 of the cradle body 81 is too narrow with respect to the width of the thin film superconducting wire 10, the thin film superconducting wire 10 and the current electrode 70 may not be brought into sufficient contact. For this reason, the width W0 of the cradle body 81 is preferably 50 to 100% of the width of the thin film superconducting wire 10.

(第3の実施の形態)
本実施の形態は、超電導臨界電流測定装置において、電極の形状を工夫することにより、電極と線材との接触を確保するものである。具体的には、電極の大きさを線材幅以下とすることにより、受け台に発生した着氷に関係なく、電極圧接時における電極と線材との接触を確保し、安定した測定を可能にするものである。
(Third embodiment)
In the present embodiment, in the superconducting critical current measuring apparatus, the contact between the electrode and the wire is ensured by devising the shape of the electrode. Specifically, by making the size of the electrode equal to or less than the wire width, it ensures contact between the electrode and the wire during electrode pressure contact regardless of icing that has occurred on the cradle, enabling stable measurement. Is.

以下、図3を参照しつつ本実施の形態を説明する。図3は本実施の形態の超電導臨界電流測定装置における薄膜超電導線材と測定用電極との接触不能を回避する手段の構造を模式的に示す図であって、(a)は薄膜超電導線材の進行方向に沿う側面図であり、(b)は正面図である。   Hereinafter, the present embodiment will be described with reference to FIG. FIG. 3 is a diagram schematically showing a structure of means for avoiding inability to contact the thin film superconducting wire and the measurement electrode in the superconducting critical current measuring apparatus of the present embodiment. FIG. 3A shows the progress of the thin film superconducting wire. It is a side view along a direction, and (b) is a front view.

図3に示すように、電流電極70の幅W1は、薄膜超電導線材10の幅以下に設定されている。これにより、受け台71に着氷Sが生じた場合でも、電流電極70を薄膜超電導線材10に確実に圧接させることができる。このため、着氷による電流電極70と薄膜超電導線材10との接触不能を防止することができ、着氷の有無に関係なく、安定した測定を行うことができる。   As shown in FIG. 3, the width W <b> 1 of the current electrode 70 is set to be equal to or smaller than the width of the thin film superconducting wire 10. Thereby, even when the icing S occurs on the cradle 71, the current electrode 70 can be reliably brought into pressure contact with the thin film superconducting wire 10. For this reason, it is possible to prevent contact between the current electrode 70 and the thin film superconducting wire 10 due to icing, and stable measurement can be performed regardless of the presence or absence of icing.

なお、電流電極70の幅W1が薄膜超電導線材10の幅に対して狭すぎると、薄膜超電導線材10と電流電極70を充分に接触させることができなくなる恐れがある。このため、電流電極70の幅W1は、薄膜超電導線材10の幅の50〜100%であることが好ましい。   If the width W1 of the current electrode 70 is too narrow relative to the width of the thin film superconducting wire 10, there is a risk that the thin film superconducting wire 10 and the current electrode 70 cannot be brought into sufficient contact. For this reason, the width W1 of the current electrode 70 is preferably 50 to 100% of the width of the thin film superconducting wire 10.

10 薄膜超電導線材
21 送り出し機構
22 巻き取り機構
23、24 プーリー
60 液体窒素溜め
61 液体窒素
70、72 電流電極
71、73、75、77 受け台
71a 難着氷部
71b 段差
74、76 電圧電極
81 受け台本体部
82 支持部
S 着氷
DESCRIPTION OF SYMBOLS 10 Thin film superconducting wire 21 Sending mechanism 22 Winding mechanism 23, 24 Pulley 60 Liquid nitrogen reservoir 61 Liquid nitrogen 70, 72 Current electrodes 71, 73, 75, 77 Receiving base 71a Anti-icing part 71b Step 74, 76 Voltage electrode 81 Receiving Base unit 82 Support unit S Icing

Claims (3)

被計測用線材を支える受け台を有し、前記受け台上の前記被計測用線材に電流電極および電圧電極である測定用電極を直接圧接して電流を流すことにより超電導臨界電流を測定する直接通電方式の超電導臨界電流測定装置であって、
着氷により前記測定用電極と前記被計測用線材とが接触不能となることを回避する手段を備え
前記手段は、前記受け台のうち、前記被計測用線材との接触部分の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定し、前記被計測用線材と接触しない部分の位置は前記接触部分よりも低くすることにより構成されていることを特徴とする超電導臨界電流測定装置。
Directly measuring the superconducting critical current by having a cradle for supporting the wire to be measured, and flowing the current by directly pressing the measurement electrode which is a current electrode and a voltage electrode to the wire to be measured on the cradle. A current-carrying superconducting critical current measuring device,
Means for avoiding that the measurement electrode and the wire to be measured cannot be contacted due to icing ,
The means sets a width dimension of a contact portion with the wire to be measured in the cradle within a range of 50 to 100% of a width dimension of the wire to be measured, and does not contact the wire to be measured. superconducting critical current measurement apparatus position of the part, it characterized that you have been configured by less than the contact portion.
被計測用線材を支える受け台を有し、前記受け台上の前記被計測用線材に電流電極および電圧電極である測定用電極を直接圧接して電流を流すことにより超電導臨界電流を測定する直接通電方式の超電導臨界電流測定装置であって、Directly measuring the superconducting critical current by having a cradle for supporting the wire to be measured, and flowing the current by directly pressing the measurement electrode which is a current electrode and a voltage electrode to the wire to be measured on the cradle. A current-carrying superconducting critical current measuring device,
着氷により前記測定用電極と前記被計測用線材とが接触不能となることを回避する手段を備え、Means for avoiding that the measurement electrode and the wire to be measured cannot be contacted due to icing,
前記手段は、前記測定用電極の幅寸法を前記被計測用線材の幅寸法の50〜100%の範囲に設定することにより構成されていることを特徴とする超電導臨界電流測定装置。The said means is comprised by setting the width dimension of the said electrode for a measurement to the range of 50 to 100% of the width dimension of the said to-be-measured wire, The superconducting critical current measuring apparatus characterized by the above-mentioned.
前記手段は、前記受け台のうち少なくとも前記被計測用線材との接触部の周辺部を難着氷材料で形成することにより構成されていることを特徴とする請求項1または請求項2に記載の超電導臨界電流測定装置。 Said means, according to claim 1 or claim 2, characterized in that at least the peripheral portion of the contact portion between the measuring wire of said cradle is constituted by forming flame icing material Superconducting critical current measuring device.
JP2009257764A 2009-11-11 2009-11-11 Superconducting critical current measuring device Active JP5382616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257764A JP5382616B2 (en) 2009-11-11 2009-11-11 Superconducting critical current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257764A JP5382616B2 (en) 2009-11-11 2009-11-11 Superconducting critical current measuring device

Publications (2)

Publication Number Publication Date
JP2011102752A JP2011102752A (en) 2011-05-26
JP5382616B2 true JP5382616B2 (en) 2014-01-08

Family

ID=44193139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257764A Active JP5382616B2 (en) 2009-11-11 2009-11-11 Superconducting critical current measuring device

Country Status (1)

Country Link
JP (1) JP5382616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395102B2 (en) * 2014-07-24 2018-09-26 住友電気工業株式会社 Critical current measuring device for superconducting wire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235842A (en) * 1988-03-17 1989-09-20 Fujitsu Ltd Method and apparatus for inspecting defects of superconductor
JP3171131B2 (en) * 1997-02-25 2001-05-28 住友電気工業株式会社 Method and apparatus for measuring critical current value of superconducting wire
JP3781900B2 (en) * 1998-07-15 2006-05-31 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Water repellent coating
JP2007178340A (en) * 2005-12-28 2007-07-12 Sumitomo Electric Ind Ltd Method for measuring critical current value of superconductive wire rod

Also Published As

Publication number Publication date
JP2011102752A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP2016535431A (en) Magnet coil system including HTSL tape conductor and LTS wire forming joint
Shin et al. Comparison of the bending strain effect on transport property in lap-and butt-jointed coated conductor tapes
KR101215560B1 (en) Critical current measurement devices under strain and stress
JP5382616B2 (en) Superconducting critical current measuring device
KR20140069921A (en) Method and apparatus for measuring critical current according to push down pressure of superconducting tape
JP2010223883A (en) Damage detection method for electric motor coil
JP2011123046A (en) Continuous critical current measurement apparatus and method of measuring continuous critical current using the same
US20100073012A1 (en) Method for detecting water leakage of coil and water leakage detector applicable to this method
JP4223744B2 (en) Critical current measurement method for high temperature superconducting wire
US20080171663A1 (en) Refrigerant liquid level measuring device, refrigerant liquid level measuring method, and superconducting magnet device
KR20100032658A (en) Apparatus for both critical current and defects measurement of hts conductor
CN106052545A (en) Quick wiring device for strain gauge on steel surface and strain measurement method
JP2009262159A (en) Direct welding apparatus and welding method
JP5617179B2 (en) Dielectric breakdown test apparatus and dielectric breakdown test method for coated electric wire
JP6395102B2 (en) Critical current measuring device for superconducting wire
CN210401520U (en) DC resistance testing jig for surface mounted device
CN212568951U (en) Formation aluminum foil test conductivity meter
JP2020187999A (en) Joining method of high temperature oxide superconducting tape wire
CN109417277A (en) The manufacturing method of spark plug
Isozaki et al. Influence of repeated tensile stresses on current transfer characteristics of YBCO coated conductors with solder joints
JPH10332458A (en) Cryogenic refrigerant liquid level gage
KR101597028B1 (en) Estimation method and device of superconducting wire
JP2008096158A (en) Method and apparatus for specifying position of coil damage
JP5991094B2 (en) Measuring apparatus and measuring method, and element manufacturing method provided with the measuring method
CN219936030U (en) Metal-based printed board voltage withstand testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130922

R150 Certificate of patent or registration of utility model

Ref document number: 5382616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250