JP5381781B2 - Cleaning method of ultrapure water production system - Google Patents

Cleaning method of ultrapure water production system Download PDF

Info

Publication number
JP5381781B2
JP5381781B2 JP2010030286A JP2010030286A JP5381781B2 JP 5381781 B2 JP5381781 B2 JP 5381781B2 JP 2010030286 A JP2010030286 A JP 2010030286A JP 2010030286 A JP2010030286 A JP 2010030286A JP 5381781 B2 JP5381781 B2 JP 5381781B2
Authority
JP
Japan
Prior art keywords
acid
cleaning
ultrapure water
subsystem
production system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010030286A
Other languages
Japanese (ja)
Other versions
JP2011161418A (en
Inventor
長雄 福井
博志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010030286A priority Critical patent/JP5381781B2/en
Publication of JP2011161418A publication Critical patent/JP2011161418A/en
Application granted granted Critical
Publication of JP5381781B2 publication Critical patent/JP5381781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、半導体製造プロセス等で用いられる超純水製造システムを洗浄する方法に係り、特に洗浄後に超純水中の金属濃度を早期に低下させることができる超純水製造システムの洗浄方法に関する。   The present invention relates to a method for cleaning an ultrapure water manufacturing system used in a semiconductor manufacturing process or the like, and more particularly, to a cleaning method for an ultrapure water manufacturing system capable of quickly reducing the metal concentration in ultrapure water after cleaning. .

半導体製造等の分野における洗浄工程では、洗浄水として超純水が用いられている。この超純水としては、洗浄トラブルの原因となる微粒子、有機物や無機物を含まないことが要求され、例えば抵抗率:18.2MΩ・cm以上、直径0.05μmの微粒子:1個/mL以下、生菌:1個/L以下、TOC (Total Organic Carbon)
:1μg/L以下、金属類:1ng/L以下、イオン類:1ng/L以下であることが要求水質となっている。
In a cleaning process in the field of semiconductor manufacturing or the like, ultrapure water is used as cleaning water. The ultrapure water is required not to contain fine particles that cause cleaning trouble, organic matter, and inorganic matter, for example, resistivity: 18.2 MΩ · cm or more, 0.05 μm diameter fine particles: 1 piece / mL or less, Live bacteria: 1 / L or less, TOC (Total Organic Carbon)
The required water quality is 1 μg / L or less, metals: 1 ng / L or less, and ions: 1 ng / L or less.

超純水の使用場所(ユースポイント)は、超純水製造装置と配管(流路)で接続され、このユースポイントで使用されなかった残余の超純水は別の流路を介して前記超純水製造装置に戻されることにより循環系が形成され、全体として超純水製造システムが構成されている。   The use location (use point) of ultrapure water is connected to the ultrapure water production equipment by piping (flow path), and the remaining ultra pure water not used at this use point passes through the other flow path. By returning to the pure water production apparatus, a circulation system is formed, and an ultrapure water production system is configured as a whole.

超純水製造システムを新規に建設したり長期間休止させた場合には、システム内に不純物が混入して超純水の水質が低下するので、適宜洗浄を行うことが必要となる。   When an ultrapure water production system is newly constructed or suspended for a long period of time, impurities are mixed into the system and the quality of the ultrapure water is deteriorated. Therefore, it is necessary to perform appropriate cleaning.

特に、工場の建設に伴って上記システムを新設する場合、その施工時に微粒子や汚れ(有機物や金属など)がシステムの内部に混入することから、これを除去するための洗浄作業が長期化し(例えば1カ月)、工場の稼動率が低下する。   In particular, when the above system is newly installed in connection with the construction of a factory, fine particles and dirt (organic matter, metal, etc.) are mixed into the system during the construction, and therefore the cleaning work for removing this is prolonged (for example, 1 month), the factory utilization rate will drop.

このようなことから、超純水製造システムを洗浄してから所定の要求水質を満たす超純水が得られるまでの時間を短縮すること(超純水製造システムの垂直立上げ)が要望されており、洗浄効率を高めるために、例えば洗浄水として、テトラメチルアンモニウムヒドロキサイド(TMAH)等の塩基性洗浄液や過酸化水素水を用いることが行われている(特開2000−317413号公報、特開2004−122020号公報、特開2007−260211号公報)。また、特開平7−195073号公報には、洗浄力の大きいアルコールを用いた洗浄方法が提案されている。   For this reason, there is a demand for shortening the time from cleaning the ultrapure water production system to obtaining ultrapure water that satisfies the required water quality (vertical startup of the ultrapure water production system). In order to improve the cleaning efficiency, for example, a basic cleaning solution such as tetramethylammonium hydroxide (TMAH) or hydrogen peroxide water is used as the cleaning water (Japanese Patent Laid-Open No. 2000-317413, specially disclosed). JP 2004-122020, JP 2007-260211). Japanese Patent Application Laid-Open No. 7-195073 proposes a cleaning method using alcohol having a large cleaning power.

しかしながら、これらの洗浄方法は、金属を十分に除去するには適していない。   However, these cleaning methods are not suitable for sufficiently removing the metal.

上記特開2004−122020号公報の0043、0045段落には、超純水製造システムの洗浄液としてpH4以下の塩酸、硫酸、硝酸等の酸の水溶液を用いることが記載されている。また、同号公報には、塩基性洗浄液や酸洗浄液による洗浄時に、洗浄液がイオン交換装置をバイパスするように通液することが記載されている。これは、塩基や酸がイオン交換樹脂でイオン交換処理されることを防止するためである(同号公報0050段落)。   In paragraphs 0043 and 0045 of the above Japanese Patent Application Laid-Open No. 2004-122020, it is described that an aqueous solution of an acid such as hydrochloric acid, sulfuric acid, nitric acid or the like having a pH of 4 or less is used as a cleaning liquid for an ultrapure water production system. In the publication, it is described that the cleaning liquid passes through the ion exchange apparatus so as to bypass the ion exchange apparatus at the time of cleaning with the basic cleaning liquid or the acid cleaning liquid. This is to prevent the base or acid from being ion-exchanged with the ion-exchange resin (paragraph 0050 of the same publication).

特開平7−195073号公報JP-A-7-195073 特開2000−317413号公報JP 2000-317413 A 特開2004−122020号公報Japanese Patent Laid-Open No. 2004-122020 特開2007−260211号公報JP 2007-260211 A

上記の通り、過酸化水素や塩基性洗浄液、アルコールによる洗浄は、超純水製造システムから金属不純物を除去するのに適していない。   As described above, cleaning with hydrogen peroxide, a basic cleaning solution, or alcohol is not suitable for removing metal impurities from an ultrapure water production system.

上記特開2004−122020号公報のように酸水溶液を用いると、超純水製造システムから金属を効率よく除去することができる。しかしながら、後述の実施例の欄における試験例に見られる通り、限外濾過膜装置(UF装置)などの除濁膜装置は、酸洗浄後にリンス(純水による押し出し洗浄)を行っても、酸が抜けにくく、酸を完全に洗い出すには極めて長い日時がかかり、トータルの洗浄時間が著しく長くなってしまう。   When an acid aqueous solution is used as in JP-A-2004-122020, the metal can be efficiently removed from the ultrapure water production system. However, as can be seen in the test examples in the Examples section described later, the turbidity membrane device such as an ultrafiltration membrane device (UF device) can be subjected to rinsing (extrusion cleaning with pure water) after acid cleaning. Is difficult to remove, and it takes a very long time to completely wash out the acid, and the total cleaning time becomes extremely long.

本発明は、このような問題点を解決し、超純水製造システムから金属不純物を効率よく除去でき、しかもリンスを含めたトータルの洗浄時間も短くて済む超純水製造システムの洗浄方法を提供することを目的とする。   The present invention solves such problems and provides a cleaning method for an ultrapure water production system that can efficiently remove metal impurities from the ultrapure water production system and that requires a short total cleaning time including rinsing. The purpose is to do.

本発明(請求項1)の超純水製造システムの洗浄方法は、一次純水を処理して超純水を製造するサブシステムと、ユースポイントと、該サブシステムとユースポイントを接続する流路とを備えた超純水製造システムを洗浄する方法であって、該サブシステムは除濁膜濾過装置とイオン交換装置を備えている超純水製造システムの洗浄方法において、該サブシステムを鉱酸含有液で洗浄するサブシステム酸洗浄工程を有しており、該サブシステム酸洗浄工程では、鉱酸含有液を該除濁膜濾過装置をバイパスさせて通液することを特徴とするものである。 A cleaning method for an ultrapure water production system of the present invention (claim 1) includes a subsystem for processing primary pure water to produce ultrapure water, a use point, and a flow path connecting the subsystem and the use point. The sub-system is a method for cleaning an ultra-pure water production system comprising a turbidity-filtering device and an ion exchange device. A sub-system acid cleaning step for cleaning with the contained liquid, wherein the sub-system acid cleaning step passes the mineral acid-containing liquid through the turbidity membrane filtration device. .

請求項2の超純水製造システムの洗浄方法は、請求項1において、前記サブシステム酸洗浄工程では、鉱酸含有液を前記除濁膜濾過装置及び前記イオン交換装置をバイパスさせて通液することを特徴とするものである。 The method of cleaning an ultrapure water production system according to claim 2, in claim 1, in the previous SL subsystem acid washing step, passing liquid a mineral acid-containing solution to bypass the removal Nigomaku filtration device and said ion exchange device It is characterized by doing.

請求項3の超純水製造システムの洗浄方法は、請求項2において、前記サブシステムは脱ガス装置を備えており、前記サブシステム酸洗浄工程では、鉱酸含有液を前記除濁膜濾過装置、前記イオン交換装置及び該脱ガス装置をバイパスさせて通液することを特徴とするものである。   The method for cleaning an ultrapure water production system according to claim 3 is the method according to claim 2, wherein the subsystem includes a degassing device, and in the subsystem acid cleaning step, the mineral acid-containing liquid is removed from the turbidity membrane filtration device. The ion exchange device and the degassing device are bypassed to pass through the liquid.

請求項4の超純水製造システムの洗浄方法は、請求項1ないし3のいずれか1項において、更に、前記ユースポイント及び前記流路の少なくとも一方を酸洗浄することを特徴とするものである。   The method of cleaning an ultrapure water production system according to claim 4 is characterized in that in any one of claims 1 to 3, at least one of the use point and the flow path is further subjected to acid cleaning. .

請求項5の超純水製造システムの洗浄方法は、請求項4において、前記サブシステム酸洗浄工程において鉱酸含有液をサブシステムの通水方向に通液し、サブシステムから流出する鉱酸含有液を該ユースポイント及び該流路に循環通液することを特徴とするものである。   The ultrapure water production system cleaning method according to claim 5 is the method for cleaning ultrapure water according to claim 4, wherein the mineral acid-containing liquid is passed through the subsystem in the subsystem acid cleaning step and flows out of the subsystem. The liquid is circulated through the use point and the flow path.

請求項6の超純水製造システムの洗浄方法は、請求項1ないし5のいずれか1項において、鉱酸が塩酸であり、その濃度が0.0001〜10wt%であることを特徴とするものである。   The method for cleaning an ultrapure water production system according to claim 6 is characterized in that, in any one of claims 1 to 5, the mineral acid is hydrochloric acid and the concentration thereof is 0.0001 to 10 wt%. It is.

本発明の超純水製造システムの洗浄方法では、サブシステムを鉱酸含有液で洗浄するので、サブシステムから金属不純物を効率よく除去することができる。本発明では、このサブシステム酸洗浄工程において鉱酸含有液を除濁膜濾過装置に通液しないので、鉱酸洗浄後の鉱酸含有液の押し出し洗浄時間が短くて済み、トータルの洗浄時間が短時間で足りる。また、除濁膜濾過装置の膜が酸で劣化することも防止される。   In the cleaning method of the ultrapure water production system of the present invention, the subsystem is cleaned with the mineral acid-containing liquid, so that metal impurities can be efficiently removed from the subsystem. In the present invention, since the mineral acid-containing liquid is not passed through the turbidity membrane filtration device in this subsystem acid cleaning step, the extrusion cleaning time of the mineral acid-containing liquid after the mineral acid cleaning is short, and the total cleaning time is reduced. It is enough in a short time. Further, it is possible to prevent the membrane of the turbidity membrane filtration device from being deteriorated by acid.

本発明では、サブシステム酸洗浄工程において、鉱酸含有液をイオン交換装置又はイオン交換装置と脱ガス装置をバイパスさせてもよい。鉱酸含有液がイオン交換装置をバイパスすることにより、鉱酸がイオン交換されることが防止される。また、鉱酸含有液が脱ガス装置をバイパスすることにより、脱ガス装置内での鉱酸含有液の滞留をなくし、鉱酸含有液の押出し洗浄時間が短くて済み、トータルの洗浄時間が短時間で足りる。また、脱ガス装置が酸で劣化することも防止される。   In the present invention, the mineral acid-containing liquid may be bypassed between the ion exchange device or the ion exchange device and the degassing device in the subsystem acid cleaning step. By the mineral acid-containing liquid bypassing the ion exchange device, the mineral acid is prevented from being ion-exchanged. In addition, the mineral acid-containing liquid bypasses the degassing device, thereby eliminating the retention of the mineral acid-containing liquid in the degassing device, reducing the extrusion cleaning time of the mineral acid-containing liquid, and reducing the total cleaning time. Time is enough. Further, the degassing device is prevented from being deteriorated by acid.

本発明では、サブシステム酸洗浄工程において、鉱酸含有液をサブシステム通水方向に通液し、サブシステムから流出する鉱酸含有液をユースポイント及びユースポイントとの接続流路に循環通液することが好ましい。これにより、該ユースポイント及び流路の金属不純物も効率よく除去される。   In the present invention, in the subsystem acid cleaning step, the mineral acid-containing liquid is passed in the direction of passing the subsystem, and the mineral acid-containing liquid flowing out from the subsystem is circulated through the use channel and the connection channel with the use point. It is preferable to do. Thereby, the metal impurities in the use point and the channel are also efficiently removed.

本発明の超純水製造システムの洗浄方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the washing | cleaning method of the ultrapure water manufacturing system of this invention. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example. 試験例の結果を示すグラフである。It is a graph which shows the result of a test example.

以下に図面を参照して、本発明の超純水製造システムの洗浄方法の実施の形態を説明する。なお、この実施の形態では、ファイナルフィルタとしての除濁膜装置に限外濾過膜装置が用いられているが、精密濾過膜装置などを用いてもよい。   Embodiments of a cleaning method for an ultrapure water production system according to the present invention will be described below with reference to the drawings. In this embodiment, an ultrafiltration membrane device is used as a turbidity membrane device as a final filter, but a microfiltration membrane device or the like may be used.

第1図は、本発明による超純水製造システムの洗浄方法の実施の形態を示す系統図である。この超純水製造システム1は、サブシステム2、超純水のユースポイント4、及びこれらを接続する超純水の流路6a,6bから成っている。そして、サブシステム2で製造された超純水は流路6aを介してユースポイント4へ送られて該ユースポイント4でその一部が使用され、未使用の超純水は流路6bを経てサブシステム2に戻る。   FIG. 1 is a system diagram showing an embodiment of a cleaning method for an ultrapure water production system according to the present invention. The ultrapure water production system 1 includes a subsystem 2, a use point 4 of ultrapure water, and ultrapure water channels 6a and 6b connecting them. Then, the ultrapure water produced by the subsystem 2 is sent to the use point 4 through the flow path 6a and a part thereof is used at the use point 4, and the unused ultrapure water passes through the flow path 6b. Return to subsystem 2.

サブシステム(2次純水装置)2は、1次純水タンク21、ポンプ22、熱交換器23、紫外線酸化装置24、脱ガス装置25、イオン交換装置26及び限外濾過膜装置27並びにこれらの間の接続ライン(配管等)を備えており、1次純水タンク21からの1次純水をポンプ22で送り出し、熱交換器23で加温した後、紫外線酸化装置24で紫外線照射処理して有機物を有機酸に分解し、脱ガス装置25で脱ガス処理し、イオン交換装置(この実施の形態ではイオン交換樹脂塔)26で脱イオン処理した後、限外濾過膜装置(UF装置)27で微粒子を除去することにより、例えば前述の要求水質を満たす超純水を製造するものである。脱ガス装置25としては、真空脱気装置、膜脱気装置、窒素脱気装置などを用いることができる。   The subsystem (secondary pure water device) 2 includes a primary pure water tank 21, a pump 22, a heat exchanger 23, an ultraviolet oxidation device 24, a degassing device 25, an ion exchange device 26, an ultrafiltration membrane device 27, and these. The primary pure water from the primary pure water tank 21 is pumped out by a pump 22, heated by a heat exchanger 23, and then subjected to an ultraviolet irradiation treatment by an ultraviolet oxidation device 24. Then, the organic substance is decomposed into an organic acid, degassed by the degassing device 25, deionized by the ion exchange device (ion exchange resin tower in this embodiment) 26, and then subjected to an ultrafiltration membrane device (UF device). 27), for example, ultrapure water that satisfies the above-mentioned required water quality is produced by removing the fine particles. As the degassing device 25, a vacuum degassing device, a membrane degassing device, a nitrogen degassing device, or the like can be used.

タンク21へ供給される1次純水10は、原水を例えば逆浸透膜で処理した後、アニオン性及びカチオン性のイオン交換樹脂による処理を順に行い、さらに逆浸透膜処理することにより得られる。ただし、1次純水の製造方法はこれに限定されるものではない。例えば、真空脱気処理が行われてもよく、逆浸透膜処理は1回でもよい。   The primary pure water 10 supplied to the tank 21 is obtained by treating raw water with, for example, a reverse osmosis membrane, sequentially performing treatment with an anionic and cationic ion exchange resin, and further performing a reverse osmosis membrane treatment. However, the manufacturing method of primary pure water is not limited to this. For example, vacuum degassing treatment may be performed, and the reverse osmosis membrane treatment may be performed once.

この実施の形態においては、サブシステム2の入口側に1次純水タンク21が設けられており、1次純水10及びユースポイント4から戻された未使用の超純水を収容する。このタンク21に収容された純水はポンプ22を介して熱交換器23へ送り出され、上記の一連の処理が行われる。なお、逆浸透膜、その他の膜処理装置がサブシステム2に組み込まれる場合もある。   In this embodiment, a primary pure water tank 21 is provided on the inlet side of the subsystem 2 and accommodates the primary pure water 10 and unused ultrapure water returned from the use point 4. The pure water stored in the tank 21 is sent to the heat exchanger 23 via the pump 22 and the above-described series of processing is performed. In some cases, a reverse osmosis membrane or other membrane processing apparatus is incorporated in the subsystem 2.

ユースポイント4は超純水の使用場所を示し、対象物(例えば半導体)を洗浄するための洗浄装置(洗浄槽)4aの他、適宜配管やノズル類等を含んでもよい。なお、ユースポイント4で使用された超純水は、適宜排水として回収される。   The use point 4 indicates a place where ultrapure water is used, and may include pipes, nozzles, and the like as appropriate in addition to a cleaning device (cleaning tank) 4a for cleaning an object (for example, a semiconductor). Note that the ultrapure water used at the use point 4 is appropriately collected as drainage.

サブシステム2とユースポイント4とを接続する超純水の流路6a,6bは基本的には配管やチューブで構成されるが、本発明では流路の途中に適宜タンク、ポンプ、継手、及び弁、その他の設備を配置したものも含めて流路と称する。流路6a,6bに用いる材料としては、超純水中にその成分が溶出するものでなければよく、例えば、PVC(ポリ塩化ビニル)、PPS(ポリフェニレンサルファイド)、PVDF(ポリビニルジフロライド)、FRP(繊維強化プラスチック)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、ステンレス等を用いることができる。   The ultrapure water flow paths 6a and 6b connecting the subsystem 2 and the use point 4 are basically composed of pipes or tubes. In the present invention, tanks, pumps, joints, and The term “flow path” includes valves and other equipment. The material used for the channels 6a and 6b may be any material that does not elute into ultrapure water. For example, PVC (polyvinyl chloride), PPS (polyphenylene sulfide), PVDF (polyvinyl difluoride), FRP (fiber reinforced plastic), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), stainless steel and the like can be used.

この実施の形態では、サブシステム2の酸洗浄時に通水されるバイパスラインとして、脱ガス装置25を迂回するバイパスライン30、イオン交換樹脂塔26を迂回するバイパスライン31及びUF装置27を迂回するバイパスライン32が設けられている。図示はしないが、液をバイパスラインに流通させる流路選択と、バイパスラインを通過せずに機器及びその接続ラインを流れる流路選択とを切り替えるための弁が各バイパスライン及び接続ラインに設けられている。   In this embodiment, the bypass line 30 that bypasses the degassing device 25, the bypass line 31 that bypasses the ion exchange resin tower 26, and the UF device 27 are bypassed as bypass lines that pass water during the acid cleaning of the subsystem 2. A bypass line 32 is provided. Although not shown, each bypass line and connection line are provided with a valve for switching between the flow path selection for flowing the liquid through the bypass line and the flow path selection through the device and its connection line without passing through the bypass line. ing.

超純水製造システムの酸洗浄を行うときには、好ましくはタンク21に酸を添加し、所定のpHとする。この酸としては、塩酸、硫酸、硝酸などの鉱酸、好ましくは塩酸又は硫酸特に好ましくは塩酸が用いられ、タンク21内のpHが5以下、例えば5〜1となるように添加される。塩酸の場合、タンク21内の濃度が0.0001〜10wt%特に0.01〜1wt%となるように添加されるのが好ましい。   When acid cleaning of the ultrapure water production system is performed, an acid is preferably added to the tank 21 to obtain a predetermined pH. As the acid, a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, preferably hydrochloric acid or sulfuric acid, particularly preferably hydrochloric acid is used, and is added so that the pH in the tank 21 is 5 or less, for example, 5-1. In the case of hydrochloric acid, it is preferably added so that the concentration in the tank 21 is 0.0001 to 10 wt%, particularly 0.01 to 1 wt%.

なお、酸以外に界面活性剤等をさらに添加してもよい。この界面活性剤としては、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤及び非イオン性界面活性剤のいずれもが使用できるが、陰イオン界面活性剤、殊に、アルキル硫酸塩系で炭素数が10〜14のもの、特に炭素数12のもの(ドデシル硫酸ナトリウム(SDS))や、コール酸ナトリウム(SC)などが好ましい。これらの界面活性剤は、混合して使用することができ、また、他の界面活性剤と併用することもできる。併用される界面活性剤は、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤の他、高分子ポリマー、DNA、タンパク質などの分散剤でもよい。   In addition to the acid, a surfactant or the like may be further added. As the surfactant, any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant can be used. Anionic surfactants, particularly alkyl sulfates, can be used. Among these, those having 10 to 14 carbon atoms, particularly those having 12 carbon atoms (sodium dodecyl sulfate (SDS)), sodium cholate (SC) and the like are preferable. These surfactants can be used by mixing them, and can also be used in combination with other surfactants. The surfactant used in combination may be an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or a dispersing agent such as a polymer, DNA or protein.

このタンク21内の酸含有液をポンプ22を用いて超純水製造時と同様に熱交換器23に向って送り出し、超純水洗浄システム1の酸洗浄工程を行う。   The acid-containing liquid in the tank 21 is sent out toward the heat exchanger 23 using the pump 22 in the same manner as in the production of ultrapure water, and the acid cleaning process of the ultrapure water cleaning system 1 is performed.

この酸洗浄工程においては、少なくともイオン交換樹脂塔26とUF装置27をバイパスライン31,32によってバイパスするように酸含有液を通液する。これにより、酸がイオン交換されることが防止される。また、UF装置の限外濾過膜が酸と接触することがないので、システム全体の洗浄時間(特に酸洗浄後の押し出し洗浄時間)が短くて済むようになる。また、この実施の形態では、この酸洗浄に際し脱ガス装置25もバイパスライン30によってバイパスさせているので、UFと同様に洗浄時間の短縮という効果が得られる。ただし、酸洗浄工程においては、脱気装置25に酸含有液を通液してもよく、この場合には、後の押し出し洗浄工程において脱気装置25にも純水を通水する。   In this acid cleaning step, an acid-containing liquid is passed so that at least the ion exchange resin tower 26 and the UF device 27 are bypassed by the bypass lines 31 and 32. This prevents the acid from being ion exchanged. Further, since the ultrafiltration membrane of the UF apparatus does not come into contact with the acid, the cleaning time of the entire system (particularly, the extrusion cleaning time after the acid cleaning) can be shortened. Further, in this embodiment, since the degassing device 25 is also bypassed by the bypass line 30 at the time of this acid cleaning, the effect of shortening the cleaning time can be obtained as in the case of UF. However, in the acid cleaning step, an acid-containing liquid may be passed through the degassing device 25. In this case, pure water is also passed through the degassing device 25 in the subsequent extrusion cleaning step.

酸洗浄工程では、熱交換器23によって、超純水製造システムを構成する部材や配管の耐熱温度を超えない範囲でなるべく高い温度となるように酸含有液を加温するのが洗浄力を高くする点で好ましく、具体的には20〜100℃に加温するのがよい。例えば、耐熱温度が約45℃であるPVCを構成材料とする場合は酸含有液の温度を40℃程度とし、耐熱温度が約80℃であるPVDFの場合は酸含有液の温度を75〜80℃とすればよい。また、ステンレスを構成材料とする場合は100℃程度の温度の酸含有液で酸洗浄することができる。   In the acid cleaning step, it is possible to increase the cleaning power by heating the acid-containing liquid by the heat exchanger 23 so that the temperature becomes as high as possible without exceeding the heat resistance temperature of the members and pipes constituting the ultrapure water production system. It is preferable at the point which carries out, and it is good to heat to 20-100 degreeC specifically ,. For example, when PVC having a heat-resistant temperature of about 45 ° C. is used as a constituent material, the temperature of the acid-containing liquid is about 40 ° C., and in the case of PVDF having a heat-resistant temperature of about 80 ° C., the temperature of the acid-containing liquid is 75-80. It may be set to ° C. Further, when stainless steel is used as the constituent material, it can be cleaned with an acid-containing liquid having a temperature of about 100 ° C.

酸洗浄工程では、タンク21内の酸含有液をポンプ22によって送り出し、サブシステム2、ユースポイント4及び流路6a,6bを循環させ、これらに存在する液が酸含有液に置換された後、ポンプ22を停止し、所定時間(例えば1〜24時間特に3〜6時間程度)接液部分が酸含有液と接触したままとなる浸漬状態とするのが好ましい。なお、洗浄開始当初には、タンク21から酸含有液を送り出し、流路6bから超純水がタンク21に流入することにより、タンク21内の酸含有液が希釈されることになるが、タンク21に酸を添加してタンク21内の酸含有液を上記範囲のpH又は酸濃度に保つのが好ましい。   In the acid cleaning step, the acid-containing liquid in the tank 21 is sent out by the pump 22 and circulated through the subsystem 2, the use point 4 and the flow paths 6a and 6b. After the liquid existing in these is replaced with the acid-containing liquid, It is preferable that the pump 22 is stopped and the wetted part is kept in contact with the acid-containing liquid for a predetermined time (for example, about 1 to 24 hours, particularly about 3 to 6 hours). At the beginning of cleaning, the acid-containing liquid is sent out from the tank 21 and ultrapure water flows into the tank 21 from the flow path 6b, so that the acid-containing liquid in the tank 21 is diluted. It is preferable to add an acid to 21 to keep the acid-containing liquid in the tank 21 at a pH or acid concentration within the above range.

その後、超純水製造システム内の残留液を1次純水又は超純水で押し出し洗浄する。具体的には、好ましくは、タンク21内の酸含有液を排出し、タンク21内を1次純水で洗浄してタンク21内に1次純水を貯留した後、この1次純水をポンプ22で熱交換器23へ送り出し、サブシステム2、ユースポイント4及び流路6a,6bを押し出し洗浄する。この際も、1次純水はバイパスライン30,31,32を通過する。流路6bからの押し出し洗浄排水は、図示しないイオン交換樹脂と接触させた後、放流するのが好ましい。押し出し洗浄は、押し出し洗浄排水中の酸が検出限界以下となるか、又は規定濃度以下となるまで十分に行う。   Thereafter, the residual liquid in the ultrapure water production system is extruded and washed with primary pure water or ultrapure water. Specifically, preferably, the acid-containing liquid in the tank 21 is discharged, the tank 21 is washed with primary pure water, the primary pure water is stored in the tank 21, and then the primary pure water is removed. The pump 22 sends the heat to the heat exchanger 23, and the subsystem 2, the use point 4, and the flow paths 6a and 6b are pushed and washed. Also at this time, the primary pure water passes through the bypass lines 30, 31 and 32. The extruded cleaning waste water from the flow path 6b is preferably discharged after being brought into contact with an ion exchange resin (not shown). Extrusion cleaning is performed sufficiently until the acid in the extrusion cleaning wastewater falls below the detection limit or below the specified concentration.

このように超純水製造システムを酸洗浄することにより、該システムの流路内の金属(例えば、Ca、Al、Fe、Ni、Zn)、有機物、微粒子、生菌が除去される。本発明では、洗浄液を酸含有液としているので、該流路内の金属不純物を効率よく除去することができる。   As described above, by acid cleaning the ultrapure water production system, metals (for example, Ca, Al, Fe, Ni, Zn), organic substances, fine particles, and viable bacteria in the flow path of the system are removed. In the present invention, since the cleaning liquid is an acid-containing liquid, metal impurities in the flow path can be efficiently removed.

上記説明では、サブシステム2、流路6a,6b及びユースポイント4のすべてを酸洗浄しているが、サブシステム2のみを酸洗浄してもよく、サブシステム2と流路6aのみを酸洗浄してもよく、サブシステム2とユースポイント4のみを酸洗浄してもよく、サブシステム2と流路6a,6bのみを酸洗浄してもよく、サブシステム2と流路6aとユースポイント4のみを酸洗浄してもよい。ただし、この実施の形態の通り、サブシステム2、流路6a,6b及びユースポイント4を酸洗浄するのが好ましい。   In the above description, the subsystem 2, the flow paths 6a and 6b, and the use point 4 are all cleaned with acid, but only the subsystem 2 may be cleaned with acid, and only the subsystem 2 and the flow path 6a are cleaned with acid. Alternatively, only the subsystem 2 and the use point 4 may be acid-washed, or only the subsystem 2 and the flow paths 6a and 6b may be acid-washed. The subsystem 2, the flow path 6a, and the use point 4 may be used. Only the acid may be washed. However, as in this embodiment, it is preferable that the subsystem 2, the flow paths 6a and 6b, and the use point 4 are acid cleaned.

上記の説明ではタンク21内に酸を添加しているが、その他の箇所で酸を添加してもよい。   In the above description, the acid is added to the tank 21, but the acid may be added at other locations.

なお、本発明では、上記の押し出し洗浄中に、或いは、押し出し洗浄前に系内に過酸化水素やオゾンを注入してシステム内に液を循環させ、殺菌洗浄を行ってもよい。   In the present invention, sterilization cleaning may be performed during the above-described extrusion cleaning or before the extrusion cleaning, by injecting hydrogen peroxide or ozone into the system and circulating the liquid in the system.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。なお、以下の実施例及び比較例では、脱ガス装置としては真空脱気装置を用いた。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following examples and comparative examples, a vacuum degassing apparatus was used as the degassing apparatus.

実施例1
次のようにして図1に示す超純水製造システムの洗浄を行った。
Example 1
The ultrapure water production system shown in FIG. 1 was cleaned as follows.

まず、サブシステム2のタンク21に塩酸を1000mg/L含むpH3.5の酸含有液(塩酸水溶液)を収容し、ポンプ22で熱交換器23、紫外線酸化装置24、バイパスライン30,31,32、流路6a、ユースポイント4及び流路6b、タンク21の順に1Hr循環通水した。熱交換器23による加温後の温度は25℃であった。この酸洗浄工程では、酸含有液をバイパスライン30,31,32に通液し、脱ガス装置25、イオン交換塔26、UF装置27には通液しなかった。その後、ポンプ22を停止して12Hr浸漬を行い、このシステムを塩酸で洗浄した(循環:1Hr、浸漬12Hr)。   First, an acid-containing liquid (hydrochloric acid aqueous solution) having a pH of 3.5 containing 1000 mg / L of hydrochloric acid is accommodated in the tank 21 of the subsystem 2, and the heat exchanger 23, the ultraviolet oxidizer 24, the bypass lines 30, 31, 32 are pumped by the pump 22. Then, 1 Hr circulation water was passed in the order of the flow path 6 a, the use point 4, the flow path 6 b, and the tank 21. The temperature after heating by the heat exchanger 23 was 25 ° C. In this acid cleaning step, the acid-containing liquid was passed through the bypass lines 30, 31, and 32, and was not passed through the degassing device 25, the ion exchange tower 26, and the UF device 27. Thereafter, the pump 22 was stopped and immersion was performed for 12 hours, and the system was washed with hydrochloric acid (circulation: 1 hour, immersion 12 hours).

次いで、タンク21に1次純水を収容し、この1次純水をポンプ22によって上記と同様に熱交換器23、紫外線酸化装置24、バイパスライン30,31,32、流路6a、ユースポイント4及び流路6bの順に6Hr通水して酸含有液を押し出した。洗浄排水は6bの末端から系外に排出し、強塩基性のアニオン交換樹脂に通液して吸着処理後、放流した。   Next, primary pure water is accommodated in the tank 21, and this primary pure water is pumped by the heat exchanger 23, the ultraviolet oxidizer 24, the bypass lines 30, 31, 32, the flow path 6a, the use point in the same manner as described above. 4 and the flow path 6b were passed through 6Hr in order to extrude the acid-containing liquid. The washing waste water was discharged out of the system from the end of 6b, passed through a strongly basic anion exchange resin, and discharged after adsorption treatment.

上記洗浄が終了した後、通常の運転を行い、ユースポイント11における超純水中のCa濃度を測定し、その経時変化を第2図に示した。   After the cleaning was completed, normal operation was performed, and the Ca concentration in the ultrapure water at the use point 11 was measured. The change with time is shown in FIG.

実施例2
サブシステム2のタンク21に塩酸を10mg/L含むpH=5.5の酸含有液(塩酸水溶液)を収容し、ポンプ22で熱交換器23、紫外線酸化装置24、バイパスライン30,31,32、流路6a、ユースポイント4及び流路6b、タンク21の順に1Hr循環通水した。熱交換器23による加温後の温度は25℃であった。この酸洗浄工程では、酸含有液をバイパスライン30,31,32に通液し、脱ガス装置25、イオン交換塔26、UF装置27には通液しなかった。その後、ポンプ22を停止して12Hr浸漬を行い、このシステムを塩酸で洗浄した(循環:1Hr、浸漬:12Hr)。
Example 2
The tank 21 of the subsystem 2 contains an acid-containing liquid (hydrochloric acid aqueous solution) containing hydrochloric acid at 10 mg / L and having a pH of 5.5, and the pump 22 heats the heat exchanger 23, ultraviolet oxidizer 24, bypass lines 30, 31, 32. Then, 1 Hr circulation water was passed in the order of the flow path 6 a, the use point 4, the flow path 6 b, and the tank 21. The temperature after heating by the heat exchanger 23 was 25 ° C. In this acid cleaning step, the acid-containing liquid was passed through the bypass lines 30, 31, and 32, and was not passed through the degassing device 25, the ion exchange tower 26, and the UF device 27. Thereafter, the pump 22 was stopped and immersion was performed for 12 hours, and the system was washed with hydrochloric acid (circulation: 1 hour, immersion: 12 hours).

実施例3
実施例1と同様の条件で塩酸の代わりに硝酸を用いて超純水製造装置を洗浄した(循環:1Hr、浸漬12Hr)。
Example 3
The ultrapure water production apparatus was cleaned using nitric acid instead of hydrochloric acid under the same conditions as in Example 1 (circulation: 1 Hr, immersion 12 Hr).

比較例1
実施例1において、塩酸水溶液の代わりに炭酸ガス溶解液を用いてシステムを洗浄した。即ち、タンク21に塩酸を添加せず、1次純水を貯留したままとし、代わりに、ポンプ22を作動させた状態で脱ガス装置25の真空側に炭酸ガスを供給し、炭酸濃度100mg/Lの炭酸水溶液をバイパスライン31,32、流路6a、ユースポイント4、流路6b、タンク21、ポンプ22、熱交換器23、紫外線酸化装置24、脱ガス装置25の順に1Hr循環させ、次いでポンプ22及び炭酸ガス供給を停止し、12Hr浸漬を行い、このシステムを洗浄した(循環:1Hr、浸漬12Hr)。このように、この比較例1では、炭酸溶液を、イオン交換樹脂塔26及びUF装置27をそれぞれバイパスライン31,32によってバイパスさせた。
Comparative Example 1
In Example 1, the system was washed using a carbon dioxide gas solution instead of the hydrochloric acid aqueous solution. That is, hydrochloric acid is not added to the tank 21 and primary pure water is kept stored. Instead, carbon dioxide gas is supplied to the vacuum side of the degassing device 25 with the pump 22 operated, and the carbon dioxide concentration is 100 mg / day. The carbon dioxide aqueous solution of L is circulated for 1 hour in the order of the bypass lines 31 and 32, the flow path 6a, the use point 4, the flow path 6b, the tank 21, the pump 22, the heat exchanger 23, the ultraviolet oxidation device 24, and the degassing device 25. The pump 22 and the carbon dioxide gas supply were stopped, immersion was performed for 12 hours, and the system was cleaned (circulation: 1 hour, immersion 12 hours). Thus, in Comparative Example 1, the carbonic acid solution was bypassed by the bypass lines 31 and 32 through the ion exchange resin tower 26 and the UF device 27, respectively.

次に実施例1と同様にして炭酸溶液の押し出しを行った。なお、システム内部からの炭酸含有排水は、強塩基性のアニオン交換樹脂に通液して吸着処理した後、放流した。   Next, the carbonic acid solution was extruded in the same manner as in Example 1. The carbonic acid-containing wastewater from the inside of the system was discharged after passing through a strongly basic anion exchange resin to perform an adsorption treatment.

上記洗浄が終了した後、通常の運転を行い、ユースポイント11における超純水中のCa濃度を測定し、その経時変化を第2図に示した。   After the cleaning was completed, normal operation was performed, and the Ca concentration in the ultrapure water at the use point 11 was measured. The change with time is shown in FIG.

比較例2,3
洗浄液を25℃(比較例2)又は40℃(比較例3)の1次純水に代え、超純水製造システムの洗浄を行った。この場合、1次純水を、タンク21、ポンプ22、熱交換器23、紫外線酸化装置24、バイパスライン30,31,32、流路6a、ユースポイント4及び流路6bの順に通水し、流路6bの末端から排出した。1次純水は、熱交換器23によって上記温度となるように加温した。
Comparative Examples 2 and 3
The cleaning liquid was replaced with primary pure water at 25 ° C. (Comparative Example 2) or 40 ° C. (Comparative Example 3), and the ultrapure water production system was cleaned. In this case, the primary pure water is passed through the tank 21, the pump 22, the heat exchanger 23, the ultraviolet oxidation device 24, the bypass lines 30, 31, 32, the flow path 6a, the use point 4 and the flow path 6b in this order. It discharged | emitted from the terminal of the flow path 6b. The primary pure water was heated by the heat exchanger 23 so as to reach the above temperature.

上記洗浄が終了した後、通常の運転を行い、ユースポイント11における超純水中のCa濃度を測定し、その経時変化を第2図に示した。   After the cleaning was completed, normal operation was performed, and the Ca concentration in the ultrapure water at the use point 11 was measured. The change with time is shown in FIG.

比較例4
サブシステム2のタンク21にTMAHを500mg/L含むpH=11の液を収容し、ポンプ22で熱交換器23、紫外線酸化装置24、バイパスライン30、31、32、流路6a、ユースポイント4及び流路6b、タンク21の順に1Hr循環通水した。熱交換器23による加温後の温度は25℃であった。このアルカリ洗浄工程では、TMAH含有液をバイパスライン30,31,32に通液し、脱ガス装置25、イオン交換塔26、UF装置27には通液しなかった。その後、ポンプ22を停止して1Hr浸漬を行った。その後TMAHの押出し洗浄を3Hr(pH<9を確認)後、サブシステム2のタンク21に過酸化水素を0.1wt%含む溶液を収容し、ポンプ22で熱交換器23、紫外線酸化装置24、バイパスライン30,31,32、流路6a、ユースポイント4及び流路6b、タンク21の順に1Hr循環通水した。熱交換器23による加温後の温度は25℃であった。この過酸化水素洗浄工程では、過酸化水素含有液をパイプライン30、31、32に通液し、脱ガス装置25、イオン交換塔26、UF装置27には通液しなかった。その後、ポンプ22を停止して12Hr浸漬を行った。
Comparative Example 4
The tank 21 of the subsystem 2 contains a liquid of pH = 11 containing 500 mg / L of TMAH, and the heat exchanger 23, the ultraviolet oxidizer 24, the bypass lines 30, 31, 32, the flow path 6a, the use point 4 by the pump 22 And 1Hr circulation water flow was carried out in order of channel 6b and tank 21. The temperature after heating by the heat exchanger 23 was 25 ° C. In this alkali cleaning step, the TMAH-containing liquid was passed through the bypass lines 30, 31, and 32, and was not passed through the degassing device 25, the ion exchange tower 26, and the UF device 27. Then, the pump 22 was stopped and 1Hr immersion was performed. Thereafter, the extrusion cleaning of TMAH was performed for 3 hours (pH <9 was confirmed), and a solution containing 0.1 wt% of hydrogen peroxide was stored in the tank 21 of the subsystem 2, and the heat exchanger 23, the ultraviolet oxidizer 24, The bypass lines 30, 31, 32, the flow path 6 a, the use point 4, the flow path 6 b, and the tank 21 were circulated through 1 Hr in order. The temperature after heating by the heat exchanger 23 was 25 ° C. In this hydrogen peroxide cleaning step, the hydrogen peroxide-containing liquid was passed through the pipelines 30, 31, and 32, and was not passed through the degassing device 25, the ion exchange tower 26, and the UF device 27. Then, the pump 22 was stopped and 12Hr immersion was performed.

第2図の通り、ユースポイント4における超純水中のCa濃度は、実施例1では検出限界(0.1ng/L)以下にまで低下するのは約1日であるが、比較例1では2日、比較例2では8日、比較例3では5日と長い日時を要する。   As shown in FIG. 2, the Ca concentration in the ultrapure water at the use point 4 decreases to below the detection limit (0.1 ng / L) in Example 1 in about one day. 2 days, 8 days for Comparative Example 2 and 5 days for Comparative Example 3 are required.

[試験例(UF膜の塩酸洗浄後のClイオンの除去テスト)]
UF装置に塩酸を通液した後、超純水を通水し、透過水中のClイオン濃度の経時変化を測定した。使用したUF装置は旭化成製OLT−6036であり、塩酸濃度は5wt%、1wt%又は0.1wt%とし、通液時間は3時間、通液速度は15m/Hr/本とした。超純水の通水速度は15m/Hr/本とした。その結果を第3図に示す。
[Test example (Cl - ion removal test after hydrochloric acid cleaning of UF membrane)]
After passing hydrochloric acid through the UF device, ultrapure water was passed through, and the change over time in the Cl ion concentration in the permeated water was measured. The UF apparatus used was OLT-6036 manufactured by Asahi Kasei, the hydrochloric acid concentration was 5 wt%, 1 wt% or 0.1 wt%, the liquid passing time was 3 hours, and the liquid passing speed was 15 m 3 / Hr / book. The flow rate of ultrapure water was 15 m 3 / Hr / tube. The results are shown in FIG.

第3図の通り、UF装置を塩酸で洗浄すると、塩酸濃度が0.1wt%の場合であっても、完全にClイオンが抜け切るには約20日と長時間を要することが認められる。なお、塩酸の代わりに硫酸を用いた場合も同様であった。 As shown in FIG. 3, when the UF apparatus is washed with hydrochloric acid, it takes about 20 days to completely remove Cl ions even when the hydrochloric acid concentration is 0.1 wt%. . The same was true when sulfuric acid was used instead of hydrochloric acid.

1 超純水製造システム
2 サブシステム
4 ユースポイント
6a,6b 流路
21 タンク
22 ポンプ
23 熱交換器
24 紫外線酸化装置
25 脱ガス装置
26 イオン交換樹脂塔
27 限外濾過膜分離装置(UF装置)
30,31,32 バイパスライン
DESCRIPTION OF SYMBOLS 1 Ultrapure water production system 2 Subsystem 4 Use point 6a, 6b Flow path 21 Tank 22 Pump 23 Heat exchanger 24 Ultraviolet oxidation apparatus 25 Degassing apparatus 26 Ion exchange resin tower 27 Ultrafiltration membrane separation apparatus (UF apparatus)
30, 31, 32 Bypass line

Claims (6)

一次純水を処理して超純水を製造するサブシステムと、ユースポイントと、該サブシステムとユースポイントを接続する流路とを備えた超純水製造システムを洗浄する方法であって、該サブシステムは除濁膜濾過装置とイオン交換装置を備えている超純水製造システムの洗浄方法において、
該サブシステムを鉱酸含有液で洗浄するサブシステム酸洗浄工程を有しており、
該サブシステム酸洗浄工程では、鉱酸含有液を該除濁膜濾過装置をバイパスさせて通液することを特徴とする超純水製造システムの洗浄方法。
A method of cleaning an ultrapure water production system comprising a subsystem for treating primary pure water to produce ultrapure water, a use point, and a flow path connecting the subsystem and the use point, In the cleaning method of the ultrapure water production system, the subsystem is equipped with a turbidity membrane filtration device and an ion exchange device .
A subsystem acid cleaning step for cleaning the subsystem with a mineral acid-containing liquid;
In the sub-system acid cleaning step, the mineral acid-containing liquid is passed through the turbidation membrane filtration device and passed through the ultrapure water production system.
請求項1において、前記サブシステム酸洗浄工程では、鉱酸含有液を前記除濁膜濾過装置及び前記イオン交換装置をバイパスさせて通液することを特徴とする超純水製造システムの洗浄方法。 According to claim 1, in the previous SL subsystem acid washing step, the cleaning method of the ultrapure water production system, which comprises passing liquid mineral acids-containing liquid to bypass the removal Nigomaku filtration device and said ion exchange device . 請求項2において、前記サブシステムは脱ガス装置を備えており、
前記サブシステム酸洗浄工程では、鉱酸含有液を前記除濁膜濾過装置、前記イオン交換装置及び該脱ガス装置をバイパスさせて通液することを特徴とする超純水製造システムの洗浄方法。
The sub-system according to claim 2, wherein the sub-system includes a degassing device,
In the sub-system acid cleaning step, a mineral acid-containing liquid is passed through the turbidity membrane filtration device, the ion exchange device, and the degassing device, and passed through the ultrapure water production system.
請求項1ないし3のいずれか1項において、更に、前記ユースポイント及び前記流路の少なくとも一方を酸洗浄することを特徴とする超純水製造システムの洗浄方法。   4. The method for cleaning an ultrapure water production system according to claim 1, further comprising acid cleaning at least one of the use point and the flow path. 5. 請求項4において、前記サブシステム酸洗浄工程において鉱酸含有液をサブシステムの通水方向に通液し、サブシステムから流出する鉱酸含有液を該ユースポイント及び該流路に循環通液することを特徴とする超純水製造システムの洗浄方法。   5. The mineral acid-containing liquid is passed through the subsystem in the subsystem acid cleaning step in the subsystem flow direction, and the mineral acid-containing liquid flowing out from the subsystem is circulated through the use point and the flow path. A method for cleaning an ultrapure water production system. 請求項1ないし5のいずれか1項において、鉱酸が塩酸であり、その濃度が0.0001〜10wt%であることを特徴とする超純水製造システムの洗浄方法。   6. The method for cleaning an ultrapure water production system according to any one of claims 1 to 5, wherein the mineral acid is hydrochloric acid and the concentration thereof is 0.0001 to 10 wt%.
JP2010030286A 2010-02-15 2010-02-15 Cleaning method of ultrapure water production system Active JP5381781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030286A JP5381781B2 (en) 2010-02-15 2010-02-15 Cleaning method of ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030286A JP5381781B2 (en) 2010-02-15 2010-02-15 Cleaning method of ultrapure water production system

Publications (2)

Publication Number Publication Date
JP2011161418A JP2011161418A (en) 2011-08-25
JP5381781B2 true JP5381781B2 (en) 2014-01-08

Family

ID=44592742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030286A Active JP5381781B2 (en) 2010-02-15 2010-02-15 Cleaning method of ultrapure water production system

Country Status (1)

Country Link
JP (1) JP5381781B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204956A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Operation method for pure water cooling device
JP2014000548A (en) * 2012-06-20 2014-01-09 Nomura Micro Sci Co Ltd Cleaning method when uplifting ultrapure water production system
JP6101044B2 (en) * 2012-10-29 2017-03-22 株式会社日立製作所 Piping cleaning method and piping cleaning system
JP5733482B1 (en) * 2013-07-24 2015-06-10 栗田工業株式会社 Ultrapure water production and supply system and cleaning method thereof
CN106536069A (en) * 2014-07-28 2017-03-22 通用电气公司 Rapid cleaning method for ultrapure water piping system
TWI724923B (en) * 2020-06-16 2021-04-11 國立虎尾科技大學 Shockwave pipeline cleaning system
TWI850013B (en) * 2023-07-06 2024-07-21 正修學校財團法人正修科技大學 Modular combined multifunctional tubeline working robot

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261594A (en) * 1989-03-31 1990-10-24 Japan Organo Co Ltd Device for producing ultra pure water
JPH0832326B2 (en) * 1990-03-23 1996-03-29 日立プラント建設株式会社 Ultrapure water recycling system
JP4810757B2 (en) * 2001-06-05 2011-11-09 栗田工業株式会社 Ultrafiltration membrane for ultrapure water production and its pre-cleaning method
JP4480061B2 (en) * 2002-10-03 2010-06-16 オルガノ株式会社 Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
JP5245605B2 (en) * 2008-07-18 2013-07-24 栗田工業株式会社 Filtration membrane cleaning method and ultrapure water production filtration membrane

Also Published As

Publication number Publication date
JP2011161418A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5381781B2 (en) Cleaning method of ultrapure water production system
Lee et al. Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis (RO)
KR101407831B1 (en) Method of washing and sterilizing ultrapure water production system
JP5733482B1 (en) Ultrapure water production and supply system and cleaning method thereof
JPH08126886A (en) Production of ultrapure water and device therefor
WO2017191829A1 (en) Method for starting ultrapure water production apparatus
JP2017113729A (en) Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
JP6458302B2 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning device
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2002151459A (en) Cleaning method
JP2002052322A (en) Washing method
TWI699245B (en) Cleaning method of ultrapure water production system
JP3620577B2 (en) Cleaning method for ultrapure water production system
JP2009240943A (en) Conditioning method of ion-exchange resin
JP7246399B2 (en) Pure water production system and pure water production method
JP2018058018A (en) Regeneration method for reverse osmosis membrane
JPH10216749A (en) Ultrapure water making apparatus
JP2002192162A (en) Washing and sterilizing method for extrapure water manufacturing system
JP6337933B2 (en) Water quality management system and operation method of water quality management system
WO2019188964A1 (en) Ultrapure water production system and ultrapure water production method
JP2023035084A (en) Start-up method of water treatment apparatus
JP2004026987A (en) Washing method for ultra-pure water making system
JP2002052324A (en) Method for washing ultrapure water production system
TW202313485A (en) Ion exchange device for ultrapure water production, ultrapure water production system, and ultrapure water production method
JP2010234297A (en) Method of regenerating ion exchange resin and ultrapure water producing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250