JP5381229B2 - Capacitor deterioration detection circuit and electronic device equipped with the same - Google Patents

Capacitor deterioration detection circuit and electronic device equipped with the same Download PDF

Info

Publication number
JP5381229B2
JP5381229B2 JP2009081188A JP2009081188A JP5381229B2 JP 5381229 B2 JP5381229 B2 JP 5381229B2 JP 2009081188 A JP2009081188 A JP 2009081188A JP 2009081188 A JP2009081188 A JP 2009081188A JP 5381229 B2 JP5381229 B2 JP 5381229B2
Authority
JP
Japan
Prior art keywords
voltage
input current
capacitor
current peak
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009081188A
Other languages
Japanese (ja)
Other versions
JP2010233425A (en
Inventor
理恵 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2009081188A priority Critical patent/JP5381229B2/en
Publication of JP2010233425A publication Critical patent/JP2010233425A/en
Application granted granted Critical
Publication of JP5381229B2 publication Critical patent/JP5381229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、倍電圧コンデンサと平滑コンデンサを具備した倍電圧整流回路において、長期間使用によるコンデンサの劣化により容量減少が生じたときに倍電圧コンデンサ及び/又は平滑コンデンサの劣化を検出するコンデンサの劣化検出回路及びこれを備えた電子機器に関するものである。   The present invention relates to a voltage doubler rectifier circuit including a voltage doubler capacitor and a smoothing capacitor, and a capacitor deterioration detecting a deterioration of the voltage doubler capacitor and / or the smoothing capacitor when a capacity reduction occurs due to the capacitor deterioration due to long-term use. The present invention relates to a detection circuit and an electronic apparatus including the detection circuit.

インバータ回路等に使用される倍電圧整流回路には、直流電圧を昇圧するための倍電圧コンデンサと、リップルを平滑化するための平滑コンデンサが使用される。これらのコンデンサは、寿命部品であることから、動作電圧、動作温度などの製品としての使用条件を想定した上でコンデンサの部品選定が行われている。しかしながら、コンデンサは使用とともに容量減少などの性能劣化がおこり、最悪の場合、倍電圧コンデンサ及び/又は平滑コンデンサの防爆弁が破裂し、これらのコンデンサを搭載している基板の破壊を招く可能性がある。
このような危険は、未然に回避しなければならず、製品が廃棄されるまで安全性を保障しなければならない。
In a voltage doubler rectifier circuit used for an inverter circuit or the like, a voltage doubler capacitor for boosting a DC voltage and a smoothing capacitor for smoothing a ripple are used. Since these capacitors are long-lived components, capacitor components are selected on the assumption of the usage conditions of the product such as operating voltage and operating temperature. However, performance degradation such as capacity reduction occurs with use of capacitors, and in the worst case, explosion-proof valves of voltage doubler capacitors and / or smoothing capacitors may rupture, which may cause destruction of the board on which these capacitors are mounted. is there.
Such danger must be avoided in advance, and safety must be ensured until the product is discarded.

そこで、従来技術では、平滑コンデンサの寿命を事前に検知する為の劣化検出回路が提案されている(特許文献1)。
この従来技術を示す図8において、交流電源11を整流部12で整流し、平滑コンデンサ13で平滑化した後、負荷電流検出部15で検出した負荷電流を、また、リップル電圧検出部14で検出した平滑コンデンサ13の両端の直流電圧をそれぞれ制御部19へ送る。この制御部19では、リップル電圧値を算出すると共に予め設定された警告用の所定リップル値と比較し、それを超えると3相モータ17の回転数を降下させるなどの負荷電流に制限を与える信号を、モータ駆動部18を介して変換部16へ送り保護制御を行う。また算出したリップル電圧値と予め設定されて記憶部20に記憶された異常判別用の所定リップル値を比較し異常と判断されたとき、システムを異常停止させる信号を、モータ駆動部18を介して変換部16へ送り保護制御を行う。その他に、異常と判断する要因として負荷電流に対応する警告/異常判別用のリップル電圧を設定し、検出した負荷電流に対応させた保護制御を行っていた。
Therefore, in the prior art, a deterioration detection circuit for detecting the life of the smoothing capacitor in advance has been proposed (Patent Document 1).
In FIG. 8 showing this prior art, after the AC power supply 11 is rectified by the rectifier 12 and smoothed by the smoothing capacitor 13, the load current detected by the load current detector 15 is also detected by the ripple voltage detector 14. The DC voltage across the smoothing capacitor 13 is sent to the control unit 19. The control unit 19 calculates a ripple voltage value and compares it with a preset predetermined ripple value for warning. If the ripple voltage value is exceeded, a signal that limits the load current, such as reducing the rotational speed of the three-phase motor 17. Is sent to the conversion unit 16 via the motor drive unit 18 to perform protection control. Further, when the calculated ripple voltage value is compared with a predetermined ripple value for abnormality determination that is set in advance and stored in the storage unit 20 and is determined to be abnormal, a signal for abnormally stopping the system is sent via the motor drive unit 18. Send protection control to the conversion unit 16. In addition, a ripple voltage for warning / abnormality determination corresponding to the load current is set as a factor for determining an abnormality, and protection control corresponding to the detected load current is performed.

特開2007−240450号公報。JP2007-240450A.

平滑コンデンサだけを具備した回路において、劣化を検出する発明は、従来から種々提案されてきた。
しかし、従来は、倍電圧コンデンサと平滑コンデンサを具備した倍電圧整流回路においても、どのコンデンサの寿命であろうが、異常と判断する要因は共通とし、また異常時の所定値、保護制御も共通の制御を行っていたため、平滑コンデンサ劣化時と倍電圧コンデンサ劣化時とで、異常時に表れる相違が考慮されていなかった。
Various inventions for detecting deterioration in a circuit having only a smoothing capacitor have been proposed.
However, in the past, even in a voltage doubler rectifier circuit equipped with a voltage doubler capacitor and a smoothing capacitor, regardless of the capacitor's lifetime, the factor for determining an abnormality is common, and the specified value and protection control in the event of abnormality are also common Therefore, the difference that appears at the time of abnormality was not considered between when the smoothing capacitor deteriorated and when the voltage doubler capacitor deteriorated.

本発明は、倍電圧コンデンサと平滑コンデンサを具備した倍電圧整流回路において、これら2種類のコンデンサの劣化を検出することを可能にしたコンデンサの劣化検出回路及びこれを備えた電子機器を提供することを目的とする。
また、本発明は、検出制御が簡単でかつ劣化したコンデンサが倍電圧コンデンサと平滑コンデンサのいずれであるかを検出することができ、より詳細にコンデンサの劣化を検出するコンデンサの劣化検出回路及びこれを備えた電子機器を実現することを目的とする。
The present invention provides a capacitor degradation detection circuit capable of detecting degradation of these two types of capacitors in a voltage doubler rectifier circuit including a voltage doubler capacitor and a smoothing capacitor, and an electronic device including the same. With the goal.
In addition, the present invention provides a capacitor deterioration detection circuit that can detect whether the capacitor having a simple detection control and the deteriorated capacitor is a voltage doubler capacitor or a smoothing capacitor, and detects the deterioration of the capacitor in more detail. It aims at realizing the electronic device provided with.

本発明者は、倍電圧コンデンサと平滑コンデンサを具備した倍電圧整流回路において、実験及び研究の結果、平滑コンデンサの劣化特性と倍電圧コンデンサの劣化特性に次のような違いがあることを知見した。
倍電圧コンデンサが使用により劣化して容量が減少すると、この倍電圧コンデンサは、充電量が減る。このとき負荷が接続されている状態では、充電量より放電量が大きくなるから、充電より放電が速くなり、倍電圧コンデンサの両端の電圧降下が生じる。入力電圧と倍電圧コンデンサの両端の電圧との電圧差により入力電流が流れるので、電圧降下が生じるほど入力電流ピークの位相が進み(入力電流が電源電圧の上昇に対して早く流れる)、力率が悪くなる。しかし、正常な平滑コンデンサにより平滑化されるので、リップル電圧としての影響は小さい。
一方、平滑コンデンサが使用により劣化して容量が減少すると、倍電圧コンデンサが正常であれば、充電量が十分なので充放電がバランスよく行われる。このとき負荷が接続されていても充放電がバランスよく行われているため、充電に対し放電過多にならず、電圧降下が生じない。よって、電圧降下が生じないので、入力電流ピークの位相は変わらない。しかし、平滑コンデンサは容量減少により充電しにくくなり、リップルを含む直流電圧は平滑化されずにリップルとしての影響が大きくなる。
本発明は、以上の知見に基づきなされたもので、次のような構成からなることを特徴とする。
As a result of experiments and research, the present inventors have found that there are the following differences between the deterioration characteristics of the smoothing capacitor and the deterioration characteristics of the voltage doubler capacitor in the voltage doubler rectifier circuit including the voltage doubler capacitor and the smoothing capacitor. .
When the voltage doubler capacitor deteriorates due to use and the capacity is reduced, the charge amount of the voltage doubler capacitor is reduced. At this time, when the load is connected, the discharge amount is larger than the charge amount, so that the discharge is faster than the charge and a voltage drop occurs across the voltage doubler capacitor. Since the input current flows due to the voltage difference between the input voltage and the voltage across the voltage doubler capacitor, the phase of the input current peak advances as the voltage drop occurs (the input current flows faster than the power supply voltage increases), and the power factor Becomes worse. However, since it is smoothed by a normal smoothing capacitor, the influence as a ripple voltage is small.
On the other hand, when the smoothing capacitor is deteriorated by use and the capacity is reduced, if the voltage doubler capacitor is normal, the charge amount is sufficient and charging / discharging is performed in a well-balanced manner. At this time, even if a load is connected, charging and discharging are performed in a well-balanced manner, so there is no excessive discharge for charging and no voltage drop occurs. Therefore, since no voltage drop occurs, the phase of the input current peak does not change. However, the smoothing capacitor is difficult to be charged due to a decrease in capacitance, and the DC voltage including ripple is not smoothed, and the influence as ripple increases.
The present invention has been made based on the above findings, and is characterized by having the following configuration.

(1)本発明は、倍電圧コンデンサと平滑コンデンサを具備した倍電圧整流回路において、平滑コンデンサ両端の直流電圧を検出する電圧検出部と、入力電流を検出する入力電流検出部を備え、制御部は、直流電圧からリップル電圧値と平均電圧値を算出し、入力電流から入力電流ピーク位相と基準入力電流ピーク位相を算出する。
平滑コンデンサの劣化は、リップル電圧値と記憶部に記憶した比較リップル電圧値を比較し、また平均電圧と記憶部に記憶した比較平均電圧を比較して判定する。
倍電圧コンデンサの劣化は、入力電流ピーク値と記憶部に記憶した基準入力電流ピーク値の位相差と記憶部に記憶した比較入力電流ピーク位相と基準入力電流ピーク位相の位相差(比較入力電流位相差)とを比較し、また、平均電圧と記憶部に記憶した比較平均電圧と比較して判定する。
制御部には、その他に負荷として接続したモータの駆動回転数を検出し記憶部に記憶する。
(1) The present invention provides a voltage doubler rectifier circuit having a voltage doubler capacitor and a smoothing capacitor, comprising a voltage detection unit for detecting a DC voltage across the smoothing capacitor, an input current detection unit for detecting an input current, and a control unit Calculates a ripple voltage value and an average voltage value from the DC voltage, and calculates an input current peak phase and a reference input current peak phase from the input current.
The deterioration of the smoothing capacitor is determined by comparing the ripple voltage value with the comparison ripple voltage value stored in the storage unit, and comparing the average voltage with the comparison average voltage stored in the storage unit.
The degradation of the voltage doubler capacitor is caused by the phase difference between the input current peak value and the reference input current peak value stored in the storage unit, and the phase difference between the comparison input current peak phase stored in the storage unit and the reference input current peak phase (comparison input current level). (Phase difference), and the comparison is made by comparing the average voltage with the comparison average voltage stored in the storage unit.
In addition, the control unit detects the drive rotation speed of a motor connected as a load and stores it in the storage unit.

(2)前記(1)項の比較リップル電圧値は、平滑コンデンサの劣化度合いが注意を要する特性であることを示す警告リップル電圧値と、劣化度合いが故障と判断される特性であることを示す異常リップル電圧値とからなる構成にする。 (2) The comparison ripple voltage value in the item (1) indicates a warning ripple voltage value indicating that the deterioration degree of the smoothing capacitor is a characteristic requiring attention, and a characteristic in which the deterioration degree is determined to be a failure. It is composed of abnormal ripple voltage values.

(3)前記(1)項の比較平均電圧値は、平滑コンデンサと倍電圧コンデンサの劣化度合いが注意を要する特性であることを示す警告平均電圧値と、劣化度合いが故障と判断される特性であることを示す異常平均電圧値とからなる構成にする。 (3) The comparison average voltage value in the item (1) is a warning average voltage value indicating that the deterioration degree of the smoothing capacitor and the voltage doubler capacitor is a characteristic that requires attention, and a characteristic in which the deterioration degree is determined to be a failure. It is constituted by an abnormal average voltage value indicating that there is.

(4)前記(1)項の基準入力電流ピーク位相は、倍電圧コンデンサが正常時の値であり、負荷として接続したモータの駆動回転数パターンや入力電流パターンにより数パターンからなる。これらのパターンは上記(1)で検出した値と対応付けて記憶部に記憶させる。 (4) The reference input current peak phase of the item (1) is a value when the voltage doubler capacitor is normal, and consists of several patterns depending on the drive rotation speed pattern and input current pattern of the motor connected as a load. These patterns are stored in the storage unit in association with the values detected in (1) above.

(5)前記(1)項の比較入力電流ピーク位相は、倍電圧コンデンサの劣化度合いが注意を要する特性であることを示す警告入力電流ピーク位相と、劣化度合いが故障と判断される特性であることを示す異常入力電流ピーク位相とからなる構成にする。 (5) The comparison input current peak phase in the item (1) is a warning input current peak phase indicating that the deterioration degree of the voltage doubler capacitor is a characteristic that requires attention, and a characteristic in which the deterioration degree is determined to be a failure. And an abnormal input current peak phase.

請求項1記載の発明によれば、整流部で整流した交流電源を倍電圧コンデンサで昇圧し平滑コンデンサで平滑して負荷に供給する倍電圧整流回路に、前記倍電圧整流回路の入力電流を検出する入力電流検出部と、前記入力電流検出部で検出した入力電流から前記倍電圧コンデンサの正常時の入力電流ピークの位相と前記倍電圧コンデンサの劣化判別時の入力電流ピークの位相との位相差である入力電流ピーク位相差を算出する入力電流ピーク位相算出部とを備え、前記位相差と予め設定した比較入力電流ピーク位相差との差に基づいて前記倍電圧コンデンサの劣化を判別するようにしたので、平滑コンデンサが劣化した場合に表れる現象とは異なり、倍電圧コンデンサが劣化した場合に表れる入力電流ピークの位相ずれ(位相差)から劣化状態を検知し、どのコンデンサが劣化したかを検知することができる。
According to the first aspect of the present invention, the input current of the voltage doubler rectifier circuit is detected in the voltage doubler rectifier circuit that boosts the AC power source rectified by the rectifier unit with the voltage doubler capacitor, smoothes it with the smoothing capacitor, and supplies the load to the load. The phase difference between the phase of the input current peak when the voltage doubler capacitor is normal and the phase of the input current peak when determining the deterioration of the voltage doubler capacitor from the input current detected by the input current detector. An input current peak phase calculation unit for calculating the input current peak phase difference, and determining deterioration of the voltage doubler capacitor based on a difference between the phase difference and a preset comparison input current peak phase difference. Therefore, unlike the phenomenon that appears when the smoothing capacitor deteriorates, the deterioration is caused by the phase shift (phase difference) of the input current peak that appears when the voltage doubler capacitor deteriorates. It detects, it is possible to detect which capacitor has degraded.

請求項2記載の発明によれば、前記入力電流ピーク位相算出部は、所定時間毎の入力電流値を少なくとも電源周期間測定し、その中の最大値を入力電流ピークとし、電源周期毎に発生する割り込みから前記入力電流ピークまでの位相を前記入力電流ピークの位相として算出するものからなるので、倍電圧コンデンサが劣化した場合に表れる入力電流ピークの位相ずれ(位相差)を正確に検出することができる。 According to a second aspect of the present invention, the input current peak phase calculation unit measures an input current value at predetermined time intervals for at least a power supply cycle, sets the maximum value among them as an input current peak, and is generated for each power supply cycle. Since the phase from the interrupt to the input current peak is calculated as the phase of the input current peak, the input current peak phase shift (phase difference) that appears when the voltage doubler capacitor deteriorates can be accurately detected Can do.

請求項3記載の発明によれば、整流部で整流した交流電源を倍電圧コンデンサで昇圧し平滑コンデンサで平滑して負荷に供給する倍電圧整流回路に、前記倍電圧整流回路の入力電流を検出する入力電流検出部と、前記平滑コンデンサの両端の電圧を検出する電圧検出部と、前記入力電流検出部で検出した入力電流から前記倍電圧コンデンサの正常時の入力電流ピークの位相と前記倍電圧コンデンサの劣化判別時の入力電流ピークの位相との位相差である入力電流ピーク位相差を算出する入力電流ピーク位相算出部と、前記電圧検出部で検出した前記平滑コンデンサの両端の電圧からリップル電圧を算出するリップル電圧算出部とを備え、前記入力電流ピーク位相差と予め設定した比較入力電流ピーク位相差との差に基づいて前記倍電圧コンデンサの劣化を判別するとともに、前記リップル電圧と予め設定した比較リップル電圧との差に基づいて前記平滑コンデンサの劣化を判別するようにしたので、劣化しているコンデンサの種類を正確に検出することができる。
According to the third aspect of the present invention, the input current of the voltage doubler rectifier circuit is detected in the voltage doubler rectifier circuit that boosts the AC power source rectified by the rectifier unit with the voltage doubler capacitor, smoothes it with the smoothing capacitor, and supplies the load to the load. An input current detection unit, a voltage detection unit for detecting a voltage at both ends of the smoothing capacitor, a phase of the input voltage peak when the voltage doubler capacitor is normal from the input current detected by the input current detection unit, and the voltage doubler An input current peak phase calculation unit for calculating an input current peak phase difference that is a phase difference from an input current peak phase at the time of capacitor deterioration determination, and a ripple voltage from a voltage at both ends of the smoothing capacitor detected by the voltage detection unit And a ripple voltage calculator for calculating the voltage doubler voltage based on a difference between the input current peak phase difference and a preset comparison input current peak phase difference. Since the deterioration of the smoothing capacitor is determined based on the difference between the ripple voltage and a preset comparison ripple voltage, it is possible to accurately detect the type of the deteriorated capacitor. Can do.

請求項4記載の発明によれば、前記入力電流ピーク位相算出部は、所定時間毎の入力電流値を少なくとも電源周期間測定し、その中の最大値を入力電流ピークとし、電源周期毎に発生する割り込みから前記入力電流ピークまでの位相を前記入力電流ピークの位相として算出し、前記リップル電圧算出部は、所定時間毎の前記平滑コンデンサの両端の電圧を少なくとも電源周期間測定し、その最大値と最小値の差をリップル電圧として検出するものからなるので、入力電流ピーク値の位相ずれ(位相差)とリップル電圧を正確に検出することができる。   According to a fourth aspect of the present invention, the input current peak phase calculation unit measures an input current value at predetermined time intervals for at least a power supply cycle, sets the maximum value among them as an input current peak, and is generated every power supply cycle. The phase from the interruption to the input current peak is calculated as the phase of the input current peak, and the ripple voltage calculation unit measures the voltage across the smoothing capacitor every predetermined time for at least the power cycle, and the maximum value Therefore, the phase shift (phase difference) of the input current peak value and the ripple voltage can be accurately detected.

請求項5記載の発明によれば、整流部で整流した交流電源を倍電圧コンデンサで昇圧し平滑コンデンサで平滑して負荷に供給する倍電圧整流回路に、前記倍電圧整流回路の入力電流を検出する入力電流検出部と、前記平滑コンデンサの両端の電圧を検出する電圧検出部と、前記入力電流検出部で検出した入力電流から前記倍電圧コンデンサの正常時の入力電流ピークの位相と前記倍電圧コンデンサの劣化判別時の入力電流ピークの位相との位相差である入力電流ピーク位相差を算出する入力電流ピーク位相算出部と、前記電圧検出部で検出した前記平滑コンデンサの両端の電圧から平均電圧を算出する平均電圧算出部と、前記電圧検出部で検出した前記平滑コンデンサの両端の電圧からリップル電圧を算出するリップル電圧算出部とを備え、前記倍電圧コンデンサの劣化を、前記入力電流ピーク位相差と予め設定した比較入力電流ピーク位相差との差のみで又はこの入力電流ピーク位相差と予め設定した比較入力電流ピーク位相差との差および前記平均電圧と予め設定した比較平均電圧との差の組み合わせに基づいて判別するとともに、前記平滑コンデンサの劣化を、前記リップル電圧と予め設定した比較リップル電圧との差のみで又はこのリップル電圧と予め設定した比較リップル電圧との差および平均電圧と予め設定した比較平均電圧との差の組み合わせに基づいて判別するようにしたので、倍電圧コンデンサの劣化は、電流ピークの位相のずれ(位相差)のみならず、平均電圧に基づき判別し、また、平滑コンデンサの劣化は、リップル電圧値のみならず、平均電圧に基づき判別することにより、劣化しているコンデンサの種類とコンデンサの劣化状態をより正確に検出することができる。また、測定したリップル電圧値と所定の比較リップル電圧値および測定した平均電圧値と所定の比較平均電圧値をそれぞれ比較して平滑コンデンサの劣化を判定する為、負荷が軽い場合でも正確に平滑コンデンサの劣化を判定することができ、リップル電圧だけでは検知できない劣化状態をも判定できる。
According to the fifth aspect of the present invention, the input current of the voltage doubler rectifier circuit is detected in the voltage doubler rectifier circuit that boosts the AC power source rectified by the rectifier unit with the voltage doubler capacitor, smoothes it with the smoothing capacitor, and supplies the load to the load. An input current detection unit, a voltage detection unit for detecting a voltage at both ends of the smoothing capacitor, a phase of the input voltage peak when the voltage doubler capacitor is normal from the input current detected by the input current detection unit, and the voltage doubler An input current peak phase calculation unit for calculating an input current peak phase difference that is a phase difference from an input current peak phase at the time of capacitor deterioration determination, and an average voltage from voltages at both ends of the smoothing capacitor detected by the voltage detection unit An average voltage calculation unit that calculates the ripple voltage calculation unit that calculates a ripple voltage from the voltage across the smoothing capacitor detected by the voltage detection unit, Degradation of the voltage doubler capacitor is determined only by the difference between the input current peak phase difference and the preset comparison input current peak phase difference, or the difference between the input current peak phase difference and the preset comparison input current peak phase difference, and A determination is made based on a combination of a difference between the average voltage and a preset comparison average voltage, and deterioration of the smoothing capacitor is determined only by a difference between the ripple voltage and a preset comparison ripple voltage, or the ripple voltage and the preset voltage. Since the discrimination is based on the difference between the set comparison ripple voltage and the difference between the average voltage and the preset comparison average voltage, deterioration of the voltage doubler capacitor is caused by a current peak phase shift (phase difference). Not only based on the average voltage, but also the smoothing capacitor deterioration is based not only on the ripple voltage value but also on the average voltage. By another, it is possible to detect the deterioration state type and a capacitor of the capacitor are degraded more accurately. In addition, since the measured ripple voltage value is compared with the predetermined comparison ripple voltage value and the measured average voltage value is compared with the predetermined comparison average voltage value to determine the deterioration of the smoothing capacitor, the smoothing capacitor is accurately measured even when the load is light. Degradation can be determined, and a degradation state that cannot be detected only by the ripple voltage can also be determined.

請求項6記載の発明によれば、前記入力電流ピーク位相算出部は、所定時間毎の入力電流値を少なくとも電源周期間測定し、その中の最大値を入力電流ピークとし、電源周期毎に発生する割り込みから前記入力電流ピークまでの位相を前記入力電流ピークの位相として算出し、前記平均電圧算出部は、所定時間毎の前記平滑コンデンサの両端の電圧を少なくとも電源周期間測定し、その平均値を平均電圧として算出し、前記リップル電圧算出部は、所定時間毎の前記平滑コンデンサの両端の電圧を少なくとも電源周期間測定し、その最大値と最小値の差をリップル電圧として検出するものからなるので、入力電流ピークの位相のずれ(位相差)と平均入力電圧とリップル電圧を正確に検出することができる。 According to a sixth aspect of the present invention, the input current peak phase calculation unit measures an input current value at predetermined time intervals for at least a power supply cycle, sets the maximum value among them as an input current peak, and is generated for each power supply cycle. The phase from the interruption to the input current peak is calculated as the phase of the input current peak, and the average voltage calculation unit measures the voltage at both ends of the smoothing capacitor every predetermined time for at least the power cycle, and the average value thereof The ripple voltage calculation unit is configured to measure a voltage at both ends of the smoothing capacitor every predetermined time for at least a power cycle and detect a difference between the maximum value and the minimum value as a ripple voltage. Therefore, it is possible to accurately detect the phase shift (phase difference) of the input current peak, the average input voltage, and the ripple voltage.

請求項7記載の発明によれば、入力電流ピークの位相差の判別レベルは、比較入力電流ピーク位相設定部で、リップル電圧の判別レベルは、比較リップル電圧値設定部で、平均電圧の判別レベルは、比較平均電圧値設定部でそれぞれ劣化度合いが注意を要すると判断することを示す警告値と劣化度合いが故障と判断することを示す異常値とに設定したので、平滑コンデンサと倍電圧コンデンサの劣化状態を正常、警告、異常の3つの状態に区分でき、それぞれの状態に応じて適切な処理を行うことができる。 According to the seventh aspect of the present invention, the input current peak phase difference determination level is the comparison input current peak phase setting unit, and the ripple voltage determination level is the comparison ripple voltage value setting unit, and the average voltage determination level is Is set to a warning value indicating that the degree of deterioration is determined to require attention and an abnormal value indicating that the degree of deterioration is determined to be a failure in the comparative average voltage value setting unit. The deterioration state can be classified into three states, normal, warning, and abnormal, and appropriate processing can be performed according to each state.

請求項8記載の発明によれば、本発明のコンデンサの劣化検出回路を例えばエアコンの室外機に搭載することにより、負荷変動が激しい場合でも正確に平滑コンデンサ、倍電圧コンデンサの劣化検出を行うことができ、また劣化の度合いに対応してエアコンの運転を制限することができ、コンデンサの劣化に伴う故障を未然に防止して安全な運転を行うことができる。 According to the eighth aspect of the present invention, the deterioration detection circuit of the capacitor of the present invention is mounted in, for example, an outdoor unit of an air conditioner, so that the deterioration of the smoothing capacitor and the voltage doubler capacitor can be accurately detected even when the load fluctuation is severe. In addition, the operation of the air conditioner can be restricted according to the degree of deterioration, and a safe operation can be performed by preventing a failure due to deterioration of the capacitor.

本発明によるコンデンサの劣化検出回路の一実施例を示す電気回路図である。It is an electric circuit diagram showing an embodiment of a capacitor deterioration detection circuit according to the present invention. 本発明によるコンデンサの劣化検出回路の動作を説明するためのフローチャートである。6 is a flowchart for explaining the operation of the capacitor deterioration detection circuit according to the present invention. 平滑コンデンサの正常時と劣化時の特性を示すもので、(a)は、リップル電圧の特性図、(b)は、平均電圧の特性図、(c)は、入力電流ピーク位相の特性図である。The characteristics of the smoothing capacitor when it is normal and deteriorated are shown. (A) is a ripple voltage characteristic chart, (b) is an average voltage characteristic chart, and (c) is an input current peak phase characteristic chart. is there. コンデンサの容量の経年変化を示すもので、(a)は、従来のコンデンサの劣化検出回路の特性図、(b)本発明のコンデンサの劣化検出回路の特性図である。FIG. 6A shows changes over time in the capacitance of a capacitor. FIG. 5A is a characteristic diagram of a conventional capacitor deterioration detection circuit, and FIG. 5B is a characteristic diagram of a capacitor deterioration detection circuit of the present invention. (a)は、平滑コンデンサ破裂時のリップル電圧の経年変化の特性図、(b)は、平均電圧の経年変化の特性図、(c)は倍電圧コンデンサ破裂時の入力電流ピーク位相ずれの経年変化の特性図である。(A) is a characteristic diagram of the aging of the ripple voltage when the smoothing capacitor ruptures, (b) is a characteristic diagram of the aging of the average voltage, and (c) is the aging of the input current peak phase shift when the voltage doubler capacitor is ruptured. It is a characteristic view of a change. 警告処理時のモータ回転数の特性図である。It is a characteristic figure of the motor rotation speed at the time of warning processing. 本発明のコンデンサの劣化検出回路の他の実施例を示す電気回路図である。It is an electric circuit diagram which shows the other Example of the deterioration detection circuit of the capacitor | condenser of this invention. 従来のコンデンサの劣化検出回路の電気回路図である。It is an electric circuit diagram of a conventional capacitor deterioration detection circuit.

本発明によるコンデンサの劣化検出回路は、整流部で整流した交流電源を倍電圧コンデンサで昇圧し平滑コンデンサで平滑して負荷に供給する倍電圧整流回路に、前記倍電圧整流回路の入力電流を検出する入力電流検出部と、前記入力電流検出部で検出した入力電流から前記コンデンサの正常時の入力電流ピークの位相と前記コンデンサの劣化判別時の入力電流ピークの位相との位相差である入力電流ピーク位相差を算出する入力電流ピーク位相算出部とを備え、前記位相差と予め設定した比較入力電流ピーク位相差との差に基づいて前記倍電圧コンデンサの劣化を判別することを特徴とする。   The capacitor deterioration detection circuit according to the present invention detects the input current of the voltage doubler rectifier circuit to the voltage doubler rectifier circuit that boosts the AC power source rectified by the rectifier unit with a voltage doubler capacitor, smoothes it with a smoothing capacitor, and supplies it to the load. And an input current that is a phase difference between the phase of the input current peak when the capacitor is normal and the phase of the input current peak when determining deterioration of the capacitor from the input current detected by the input current detection unit An input current peak phase calculation unit that calculates a peak phase difference is provided, and deterioration of the voltage doubler capacitor is determined based on a difference between the phase difference and a preset comparison input current peak phase difference.

倍電圧コンデンサの劣化は、入力電流ピーク位相差と予め設定した比較入力電流ピーク位相差との差に基づいて判別するとともに、リップル電圧と予め設定した比較リップル電圧との差に基づいて判別することを特徴とする。 Degradation of the voltage doubler capacitor is determined based on the difference between the input current peak phase difference and the preset comparison input current peak phase difference, and is determined based on the difference between the ripple voltage and the preset comparison ripple voltage. It is characterized by.

倍電圧コンデンサの劣化の判別に加えて、リップル電圧及び平均電圧に基づき平滑コンデンサの劣化を判別することを特徴とする。   In addition to determining the deterioration of the voltage doubler capacitor, the deterioration of the smoothing capacitor is determined based on the ripple voltage and the average voltage.

入力電流ピーク位相の位相差の判別レベルは、比較入力電流ピーク位相設定部で、リップル電圧の判別レベルは、比較リップル電圧設定部で、平均電圧の判別レベルは、比較平均電圧設定部でそれぞれ劣化度合いが注意を要すると判断することを示す警告値と劣化度合いが故障と判断することを示す異常値を設定してなることを特徴とする。   The input current peak phase phase difference judgment level is the comparison input current peak phase setting unit, the ripple voltage judgment level is the comparison ripple voltage setting unit, and the average voltage judgment level is degraded by the comparison average voltage setting unit. A warning value indicating that the degree is determined to require attention and an abnormal value indicating that the degree of deterioration is determined to be a failure are set.

本発明によるコンデンサの劣化検出回路の実施例1を図1に基づき説明する。
負荷(例えば3相モータ)28を駆動する電源回路は、交流電源21の整流部22、2個の直列接続した昇圧用のコンデンサ23a、23bからなる倍電圧コンデンサ23、リップルを平滑化する平滑コンデンサ24からなる倍電圧整流回路と、コイル25aと抵抗25bを具備した入力電流検出部25と、2個の抵抗26a、26bを具備した電圧検出部26と、6個のトランジスタ27a〜27fからなる3相交流への変換部(インバータ)27と、この変換部(インバータ)27を駆動するインバータ駆動回路29と、モータの回転数検出回路30と、インバータ駆動回路29を制御する制御部31で構成されている。
A capacitor deterioration detection circuit according to a first embodiment of the present invention will be described with reference to FIG.
A power supply circuit for driving a load (for example, a three-phase motor) 28 includes a rectifying unit 22 of an AC power supply 21, a voltage doubler capacitor 23 including two boosting capacitors 23 a and 23 b connected in series, and a smoothing capacitor for smoothing ripples 24, a voltage doubler rectifier circuit, an input current detector 25 having a coil 25a and a resistor 25b, a voltage detector 26 having two resistors 26a and 26b, and three transistors 6a to 27f. A phase AC converter 27 (inverter), an inverter drive circuit 29 that drives the converter 27, a motor rotation speed detection circuit 30, and a controller 31 that controls the inverter drive circuit 29. ing.

この電源回路における前記倍電圧整流回路部分には、本発明によるコンデンサの劣化検出部(コンデンサの劣化検出回路)が接続される。このコンデンサの劣化検出部は、主に前記制御部31で構成されている。
前記制御部31は、制御部31全体をコントロールする図示しないCPU部と、演算部とデータの記憶部35を主体として構成されている。
A capacitor deterioration detecting unit (capacitor deterioration detecting circuit) according to the present invention is connected to the voltage doubler rectifier circuit portion of the power supply circuit. The capacitor deterioration detection unit is mainly composed of the control unit 31.
The control unit 31 is mainly configured by a CPU unit (not shown) that controls the entire control unit 31, a calculation unit, and a data storage unit 35.

前記演算部は、CPUによるコントロールのもと各種の演算、設定、判別等を行うもので、入力電流のA/D変換部32、モータ回転数のA/D変換部33、入力電圧のA/D変換部34、入力電流測定部36、入力電流ピーク位相算出部37、電圧測定部39、リップル電圧算出部40、平均電圧算出部41、比較リップル電圧設定部42、比較平均電圧設定部43、比較入力電流ピーク位相設定部44、平滑コンデンサの劣化判別部45、倍電圧コンデンサの劣化判別部46、モータ回転数制御部47、警告表示制御部48、システム停止制御部49及びインバータ制御部50を具備している。
このインバータ制御部50は、前記インバータ駆動回路29を制御する。
前記入力電流ピーク位相算出部37、電圧測定部39、リップル電圧算出部40、平均電圧算出部41は、それぞれ運転開始直後の初期値(基準値)と時間とともに変化するデータに基づく値を算出する。
前記比較リップル電圧設定部42、比較平均電圧設定部43、比較入力電流ピーク位相設定部44には、入力回路52が接続され、それぞれ警告値と異常値が設定される。
前記警告表示制御部48には、表示部51が接続されている。
The calculation unit performs various calculations, settings, discrimination, and the like under the control of the CPU. The input current A / D conversion unit 32, the motor rotation number A / D conversion unit 33, the input voltage A / D D converter 34, input current measuring unit 36, input current peak phase calculating unit 37, voltage measuring unit 39, ripple voltage calculating unit 40, average voltage calculating unit 41, comparative ripple voltage setting unit 42, comparative average voltage setting unit 43, A comparison input current peak phase setting unit 44, a smoothing capacitor deterioration determining unit 45, a voltage doubler capacitor deterioration determining unit 46, a motor rotation speed control unit 47, a warning display control unit 48, a system stop control unit 49, and an inverter control unit 50 It has.
The inverter control unit 50 controls the inverter drive circuit 29.
The input current peak phase calculation unit 37, the voltage measurement unit 39, the ripple voltage calculation unit 40, and the average voltage calculation unit 41 calculate an initial value (reference value) immediately after the start of operation and a value based on data that changes with time, respectively. .
An input circuit 52 is connected to the comparison ripple voltage setting unit 42, the comparison average voltage setting unit 43, and the comparison input current peak phase setting unit 44, and a warning value and an abnormal value are set, respectively.
A display unit 51 is connected to the warning display control unit 48.

さらに詳しく説明する。なお、以下の説明において、
リップル電圧Erは、測定値Erx、基準値Er0、警告値Er1、異常値Er2とし、
入力平均電圧Eaは、測定値Eax、基準値Ea0、警告値Ea1、異常値Ea2とし、
入力電流Iは、測定値Ix、基準値I0、警告値I1、異常値I2とし、
入力電流ピーク位相θは、測定値θx、基準値θ0、警告値θ1、異常値θ2とする。
This will be described in more detail. In the following explanation,
The ripple voltage Er is a measured value Erx, a reference value Er0, a warning value Er1, and an abnormal value Er2.
The input average voltage Ea is measured value Eax, reference value Ea0, warning value Ea1, abnormal value Ea2,
Input current I is measured value Ix, reference value I0, warning value I1, abnormal value I2,
The input current peak phase θ is a measured value θx, a reference value θ0, a warning value θ1, and an abnormal value θ2.

(1)電圧検出部26による直流電圧の検出信号は、A/D変換部34にてA/D変換されて電圧測定部39へ送られ、この電圧測定部39で、例えば、1msec毎に少なくとも電源周期間、例えば100msec間の直流電圧を測定する。そのデータは、記憶部35に記憶される。
リップル電圧算出部40は、記憶部35に記憶した100msec間の測定結果の中から最大値と最小値を検索し、この間の電圧差から図3(a)に示すリップル電圧Erを算出する。そのデータは、記憶部35に記憶する。このリップル電圧Erの検出は、運転開始から所定の時間間隔で連続的に行う。
またリップル電圧算出部40は、運転開始直後(例えば電源回路に初めて交流電源21を印加した直後)のコンデンサが正常状態(初期状態)の時に、直流電圧測定部39で測定した1msec毎の電源周期間の入力電圧に基づき、図3(a)に示す基準リップル電圧Er0を算出する。そのデータは、記憶部35に記憶する。
(1) The DC voltage detection signal from the voltage detection unit 26 is A / D converted by the A / D conversion unit 34 and sent to the voltage measurement unit 39. At this voltage measurement unit 39, for example, at least every 1 msec. The DC voltage is measured during the power cycle, for example, 100 msec. The data is stored in the storage unit 35.
The ripple voltage calculation unit 40 searches for the maximum value and the minimum value from the measurement results for 100 msec stored in the storage unit 35, and calculates the ripple voltage Er shown in FIG. The data is stored in the storage unit 35. The detection of the ripple voltage Er is continuously performed at a predetermined time interval from the start of operation.
Further, the ripple voltage calculation unit 40 has a power supply frequency measured every 1 msec measured by the DC voltage measurement unit 39 when the capacitor immediately after the start of operation (for example, immediately after the AC power supply 21 is first applied to the power supply circuit) is in a normal state (initial state). Based on the input voltage during the period, the reference ripple voltage Er0 shown in FIG. The data is stored in the storage unit 35.

(2)平均電圧算出部41は、前記電圧測定部39で測定し、前記記憶部35に記憶されている例えば100msec間の直流電圧の測定結果に基づき平均化を行い、図3(b)に示す入力直流電圧の平均電圧値Eaxを算出する。この平均電圧値Eaxの算出は、運転開始から所定の時間間隔で連続的に行う。
また平均電圧算出部41は、運転開始直後(例えば電源回路に初めて交流電源21を印加した直後)のコンデンサが正常状態(初期状態)の時に、直流電圧測定部39で測定した1msec毎の電源周期間の入力電圧に基づき、基準平均電圧値Ea0を算出する。そのデータは、記憶部35に記憶する。
(3)回転数検出回路30は、モータ28の回転数を運転開始から連続的に検出し、そのデータをA/D変換部33でA/D変換し、記憶部35に記憶する。
(2) The average voltage calculation unit 41 performs measurement based on the measurement result of the DC voltage for, for example, 100 msec stored in the storage unit 35, measured by the voltage measurement unit 39, and the result shown in FIG. An average voltage value Eax of the input DC voltage shown is calculated. The average voltage value Eax is calculated continuously at a predetermined time interval from the start of operation.
Further, the average voltage calculation unit 41 has a power supply frequency measured every 1 msec measured by the DC voltage measurement unit 39 when the capacitor immediately after the start of operation (for example, immediately after the AC power supply 21 is first applied to the power supply circuit) is in a normal state (initial state). A reference average voltage value Ea0 is calculated based on the input voltage of the period. The data is stored in the storage unit 35.
(3) The rotation speed detection circuit 30 continuously detects the rotation speed of the motor 28 from the start of operation, A / D-converts the data by the A / D conversion unit 33, and stores the data in the storage unit 35.

(4)入力電流検出部25による直流電流の検出信号は、A/D変換部32にてA/D変換されて入力電流測定部36に送られ、この入力電流測定部36で、例えば、1msec毎に少なくとも電源周期間の入力電流を測定する。そのデータは、記憶部35に記憶する。
入力電流ピーク位相算出部37は、記憶した電源周期間の測定結果の中から図3(c)に示す最大値Ixを検索し、これを入力電流ピーク値とする(Ixは位相情報θxも含んでもよい。)。そのデータは、記憶部35に記憶する。この入力電流ピーク値Ixの検出は、運転開始から所定の時間間隔で連続的に行う。
(5)また入力電流ピーク位相算出部37は、運転開始直後(例えば電源回路に初めて交流電源21を印加した直後)のコンデンサが正常状態(初期状態)の時に、入力電流測定部36で測定した1msec毎の電源周期間の入力電流に基づき、図3(c)に示す基準入力電流ピーク値I0を算出する(I0は位相情報θ0も含んでもよい。)。そのデータは、記憶部35に記憶する。
(6)さらに、入力電流ピーク算出部37は、上記(4)、(5)において、図3(c)に示すような経年変化する入力電流ピーク値Ixと基準入力電流ピーク値I0の電源周期毎に発生する電源割込みからの時間として入力電流ピーク位相θxと基準入力電流ピーク位相θ0を算出し、入力電流ピーク位相差θ=θ0−θxを算出する。これらの入力電流ピーク値の位相θ0、θx及び位相差θを記憶部35に記憶する。更に、その際のモータ28の回転数も合わせて検出して記憶部35に記憶する。ここで電源周期毎に発生する電源割り込みとは、交流電源のゼロクロス点(例えば電源の極性が負から正に変わる点)のタイミングを検出して制御部31に入力されるタイミング信号である。
(4) A DC current detection signal from the input current detection unit 25 is A / D converted by the A / D conversion unit 32 and sent to the input current measurement unit 36. The input current measurement unit 36, for example, 1 msec. Measure the input current at least during each power cycle. The data is stored in the storage unit 35.
The input current peak phase calculation unit 37 searches for the maximum value Ix shown in FIG. 3C from the stored measurement results during the power cycle, and uses this as the input current peak value (Ix includes phase information θx). May be.) The data is stored in the storage unit 35. The detection of the input current peak value Ix is continuously performed at a predetermined time interval from the start of operation.
(5) The input current peak phase calculation unit 37 is measured by the input current measurement unit 36 when the capacitor immediately after the start of operation (for example, immediately after the AC power supply 21 is first applied to the power supply circuit) is in a normal state (initial state). A reference input current peak value I0 shown in FIG. 3C is calculated based on the input current during the power supply cycle every 1 msec (I0 may include phase information θ0). The data is stored in the storage unit 35.
(6) Further, the input current peak calculation unit 37, in the above (4) and (5), the power supply cycle of the input current peak value Ix and the reference input current peak value I0 that change over time as shown in FIG. The input current peak phase θx and the reference input current peak phase θ0 are calculated as the time from the power interruption that occurs every time, and the input current peak phase difference θ = θ0−θx is calculated. The phases θ0 and θx and the phase difference θ of these input current peak values are stored in the storage unit 35. Further, the rotational speed of the motor 28 at that time is also detected and stored in the storage unit 35. Here, the power interruption that occurs every power cycle is a timing signal that is input to the control unit 31 by detecting the timing of the zero cross point of the AC power source (for example, the point at which the polarity of the power source changes from negative to positive).

(7)比較リップル電圧設定部42は、前記リップル電圧算出部40で算出した運転開始直後の図3(a)に実線で示すような基準リップル電圧Er0を参照して入力回路52からの指令により例えばEr0に所定のリップル係数を乗算して、比較すべき警告リップル電圧Er1(例えばEr0×1.2)と異常リップル電圧Er2(例えばEr0×1.5)とを設定する。警告値Er1は、これ以上のリップル電圧を検出した場合、直ぐには故障とはならないが場合によっては故障となる可能性があるリップル電圧であることを示す。異常値Er2は、これ以上のリップル電圧を検出した場合、故障の可能性があるリップル電圧であることを示す。なお、警告値Er1と異常値Er2、又はそれぞれの所定のリップル係数は予め記憶部35に設定しておいてもよい。 (7) The comparison ripple voltage setting unit 42 refers to a reference ripple voltage Er0 as indicated by a solid line in FIG. 3A immediately after the start of operation calculated by the ripple voltage calculation unit 40, according to a command from the input circuit 52. For example, Er0 is multiplied by a predetermined ripple coefficient to set a warning ripple voltage Er1 (for example Er0 × 1.2) and an abnormal ripple voltage Er2 (for example Er0 × 1.5) to be compared. The warning value Er1 indicates that if a ripple voltage higher than this is detected, it is a ripple voltage that does not cause a failure immediately but may cause a failure in some cases. The abnormal value Er2 indicates that there is a possibility of failure when a ripple voltage higher than this is detected. The warning value Er1 and the abnormal value Er2, or the respective predetermined ripple coefficients may be set in the storage unit 35 in advance.

(8)比較平均電圧設定部43は、前記平均電圧算出部41で算出した運転開始直後の図3(b)に実線で示すような平均電圧Ea0を参照して入力回路52からの指令により例えばEa0に所定の平均電圧係数を乗算して警告平均電圧Ea1(例えばEa0×0.9)と異常平均電圧Ea2(例えばEa0×0.7)とを設定する。警告値Ea1は、これ以下の平均電圧を検出した場合、直ぐには故障とはならないが場合によっては故障となる可能性がある平均電圧であることを示す。異常値Ea2は、これ以下の平均電圧を検出した場合、故障の可能性がある平均電圧であることを示す。なお、警告値Ea1と異常値Ea2、又はそれぞれの所定の平均電圧係数は予め記憶部35に設定しておいてもよい。 (8) The comparative average voltage setting unit 43 refers to the average voltage Ea0 as indicated by a solid line in FIG. 3B immediately after the start of operation calculated by the average voltage calculation unit 41, for example, according to a command from the input circuit 52 A warning average voltage Ea1 (for example, Ea0 × 0.9) and an abnormal average voltage Ea2 (for example, Ea0 × 0.7) are set by multiplying Ea0 by a predetermined average voltage coefficient. The warning value Ea1 indicates that when an average voltage equal to or lower than this is detected, it is an average voltage that does not cause a failure immediately but may possibly cause a failure. The abnormal value Ea2 indicates that the average voltage having a possibility of failure is detected when an average voltage lower than this is detected. The warning value Ea1 and the abnormal value Ea2 or the respective predetermined average voltage coefficients may be set in the storage unit 35 in advance.

(9)比較入力電流ピーク位相設定部44は、コンデンサが正常時に前記入力電流ピーク算出部37で算出した図3(c)に示すような基準入力電流ピーク位相θ0を参照して入力部52からの指令により例えばθ0から所定の位相を減算して警告入力電流ピーク位相θ1(例えばθ0−20度)と異常入力電流ピーク位相θ2(例えばθ0−40度)とを設定する。警告値θ1は、これ以上の入力電流ピーク位相のずれが生じた場合、直ぐには故障とはならないが場合によっては故障となる可能性がある入力電流ピーク位相であることを示す。異常値θ2は、これ以上入力の入力電流ピーク位相のずれが生じた場合、故障の可能性がある入力電流ピーク位相であることを示す。なお、警告値θ1と異常値θ2、又は基準値θ0から減算するそれぞれの所定の位相は予め記憶部35に設定しておいてもよい。 (9) The comparison input current peak phase setting unit 44 refers to the reference input current peak phase θ0 as shown in FIG. 3C calculated by the input current peak calculation unit 37 when the capacitor is normal. For example, the warning input current peak phase θ1 (for example, θ0-20 degrees) and the abnormal input current peak phase θ2 (for example, θ0-40 degrees) are set by subtracting a predetermined phase from θ0, for example. The warning value θ1 indicates an input current peak phase that does not cause a failure immediately but may possibly fail if a further shift in the input current peak phase occurs. The abnormal value θ2 indicates that the input current peak phase has a possibility of failure when the input input current peak phase shifts further. Each predetermined phase to be subtracted from the warning value θ1 and the abnormal value θ2 or the reference value θ0 may be set in the storage unit 35 in advance.

(10)コンデンサの寿命は、コンデンサの容量が装置の運転にともなう経年劣化により徐々に減少し、当初の容量よりも所定の割合まで減少した場合を言うものとする。上記(7)、(8)及び(9)でいう予め定めた比較リップル電圧Er0、比較平均電圧Ea0、比較入力電流ピーク位相θ1、θ2(または基準入力電流位相から減算するそれぞれの所定の位相)は、コンデンサに印加する電圧や負荷によっても異なる為、コンデンサを使用する機器の設計時に、最大負荷を考慮して決定する。また、コンデンサ自体の初期のバラツキにより容量が減少していることがあるためマージンを考慮して決定する。 (10) The life of the capacitor refers to a case where the capacity of the capacitor gradually decreases due to aging due to the operation of the apparatus and decreases to a predetermined ratio from the initial capacity. The predetermined comparison ripple voltage Er0, comparison average voltage Ea0, comparison input current peak phase θ1, θ2 (or respective predetermined phases subtracted from the reference input current phase) as described in (7), (8) and (9) above. Depends on the voltage applied to the capacitor and the load, and therefore is determined in consideration of the maximum load when designing a device using the capacitor. Further, since the capacitance may be reduced due to the initial variation of the capacitor itself, it is determined in consideration of the margin.

(11)平滑コンデンサ24の容量の減少は、図3(a)に示すリップル電圧の増加と図3(b)に示す平均電圧の減少として表れる。容量が大きい場合は、リップル電圧が小さく、平均電圧の降下も小さい。容量が小さい場合は、リップル電圧が大きく、平均電圧の降下も大きい。
(12)倍電圧コンデンサ23の容量の減少は、図3(c)に示す入力電流ピーク位相のずれ(位相差)として表れる。容量が小さい場合は、容量が大きい場合と比較して、位相が進む方向にピーク位相が移動する。また、図3(b)に示す平均電圧の減少として表れる。
(11) The decrease in the capacitance of the smoothing capacitor 24 appears as an increase in the ripple voltage shown in FIG. 3A and a decrease in the average voltage shown in FIG. When the capacitance is large, the ripple voltage is small and the average voltage drop is also small. When the capacitance is small, the ripple voltage is large and the average voltage drop is also large.
(12) The decrease in the capacity of the voltage doubler capacitor 23 appears as a shift (phase difference) in the input current peak phase shown in FIG. When the capacity is small, the peak phase moves in the direction in which the phase advances compared to when the capacity is large. Moreover, it appears as a decrease in the average voltage shown in FIG.

(13)リップル電圧算出部40で算出したリップル電圧の測定値Erxと比較リップル電圧設定部42で設定したリップル電圧の警告値Er1とを比較し、測定値Erxが警告値Er1以上、又は平均電圧算出部41で算出した平均電圧の測定値Eaxが比較平均電圧設定部43で設定した平均電圧の警告値Ea1以下となった場合には、平滑コンデンサの劣化判別部45で平滑コンデンサ24の劣化(警告)と判定する。この場合にはモータ回転数制御部47、インバータ制御部50を経て、さらにインバータ駆動部29、変換部(インバータ)27で、モータ28の回転数を降下させる警告処理を行う。なお、警告処理には同時に警告表示制御部48を介して表示部51に警告を表示する処理を含めてもよい。
リップル電圧算出部40で算出したリップル電圧の測定値Erxと比較リップル電圧設定部42で設定したリップル電圧の異常値Er2とを比較し、測定値Erxが異常値Er2以上、又は平均電圧算出部41で算出した平均電圧の測定値Eaxが平均電圧の異常値Er2以下となった場合には、平滑コンデンサの劣化判別部45で平滑コンデンサ24の劣化(異常)と判定し、この場合にはシステム停止制御部49、インバータ制御部50を経てシステムを停止する異常処理を行う。なお、図示はしないが同時に表示部51に警告を表示する処理を含めてもよい。
(13) The measured value Erx of the ripple voltage calculated by the ripple voltage calculation unit 40 is compared with the warning value Er1 of the ripple voltage set by the comparison ripple voltage setting unit 42, and the measured value Erx is equal to or higher than the warning value Er1 or the average voltage When the measured value Eax of the average voltage calculated by the calculation unit 41 is equal to or less than the warning value Ea1 of the average voltage set by the comparison average voltage setting unit 43, the deterioration determination unit 45 of the smoothing capacitor deteriorates the smoothing capacitor 24 ( Warning). In this case, a warning process for lowering the rotation speed of the motor 28 is performed by the inverter drive section 29 and the conversion section (inverter) 27 through the motor rotation speed control section 47 and the inverter control section 50. The warning process may include a process of displaying a warning on the display unit 51 via the warning display control unit 48 at the same time.
The measured value Erx of the ripple voltage calculated by the ripple voltage calculating unit 40 is compared with the abnormal value Er2 of the ripple voltage set by the comparative ripple voltage setting unit 42, and the measured value Erx is equal to or higher than the abnormal value Er2, or the average voltage calculating unit 41 When the measured value Eax of the average voltage calculated in step S1 becomes equal to or less than the abnormal value Er2 of the average voltage, the smoothing capacitor deterioration determining unit 45 determines that the smoothing capacitor 24 is deteriorated (abnormal). In this case, the system is stopped. Abnormal processing for stopping the system is performed via the control unit 49 and the inverter control unit 50. Although not shown, a process for displaying a warning on the display unit 51 at the same time may be included.

(14)入力電流ピーク位相算出部37で算出した入力電流ピーク位相の測定値θxと入力電流ピーク位相の基準値θ0との位相差θが比較入力電流ピーク位相設定部44で設定した入力電流ピークの警告値θ1(=θ0−20°)と入力電流ピークの基準値θ0との位相差(比較入力電流ピーク位相差)θ01以上で、かつ、平均電圧算出部41で算出した平均電圧の測定値Eaxが比較平均電圧設定部43で設定した平均電圧の警告値Ea1(=Ea0×0.9)以下となった場合には、倍電圧コンデンサ23の劣化(警告)と判定し、この場合にはモータ回転数制御部47、インバータ制御部50を経てモータ28の回転数を降下させる警告処理を行う。なお、警告処理には同時に警告表示制御部48を介して表示部51に警告を表示する処理を含めてもよい。
入力電流ピーク位相算出部37で算出した入力電流ピーク位相の測定値θxと入力電流ピーク位相の基準値θ0との位相差θが比較入力電流ピーク位相設定部44で設定した入力電流ピーク位相の異常値θ2(=θ0−40°)と入力電流ピーク位相の基準値θ0との位相差(比較入力電流ピーク位相差)θ02以上で、かつ、平均電圧算出部41で算出した平均電圧の測定値Eaxが平均電圧の異常値Ea0×0.7以下となった場合には、システム停止制御部49で倍電圧コンデンサの劣化(異常)と判定し、システム停止制御部49、インバータ制御部50を経てシステムを停止する異常処理を行う。なお、図示はしないが同時に表示部51に警告を表示する処理を含めてもよい。
(14) The phase difference θ between the measured value θx of the input current peak phase calculated by the input current peak phase calculation unit 37 and the reference value θ0 of the input current peak phase is the input current peak set by the comparison input current peak phase setting unit 44 The measured value of the average voltage calculated by the average voltage calculation unit 41 is equal to or greater than the phase difference (comparison input current peak phase difference) θ01 between the warning value θ1 (= θ0−20 °) and the reference value θ0 of the input current peak When Eax is equal to or lower than the warning value Ea1 (= Ea0 × 0.9) of the average voltage set by the comparison average voltage setting unit 43, it is determined that the voltage doubler capacitor 23 is deteriorated (warning). A warning process for decreasing the number of revolutions of the motor 28 through the motor revolution number control unit 47 and the inverter control unit 50 is performed. The warning process may include a process of displaying a warning on the display unit 51 via the warning display control unit 48 at the same time.
The phase difference θ between the measured value θx of the input current peak phase calculated by the input current peak phase calculation unit 37 and the reference value θ0 of the input current peak phase is an abnormality in the input current peak phase set by the comparison input current peak phase setting unit 44. A phase difference (comparison input current peak phase difference) θ02 between the value θ2 (= θ0−40 °) and the reference value θ0 of the input current peak phase, and a measured value Eax of the average voltage calculated by the average voltage calculation unit 41 Is equal to or less than the abnormal value Ea0 × 0.7 of the average voltage, the system stop control unit 49 determines that the voltage doubler capacitor is deteriorated (abnormal), and passes through the system stop control unit 49 and the inverter control unit 50. Abnormal processing to stop. Although not shown, a process for displaying a warning on the display unit 51 at the same time may be included.

以上のように構成された本発明によるコンデンサの劣化検出回路の動作を図2に示すフローチャートに基づき説明する。
(A)電源回路に初めて交流電源21を印加した直後に、各種の初期値を算出して記憶部35に記憶しておく。具体的には、コンデンサが正常状態(初期状態)時の初期値として基準リップル電圧Er0、基準入力平均電圧Ea0、基準入力電流位相θ0がそれぞれ検出・算出されて記憶部35に記憶される。また、比較リップル電圧設定部42で比較リップル電圧(警告値Er1/異常値Er2)、比較平均電圧設定部43で比較平均電圧(警告値Ea1/異常値Ea2)、比較入力電流ピーク位相設定部44で比較入力電流ピーク位相(警告値θ1/異常値θ2)がそれぞれ設定されて記憶部35に記憶される。
The operation of the capacitor deterioration detection circuit configured as described above according to the present invention will be described with reference to the flowchart shown in FIG.
(A) Immediately after the AC power supply 21 is first applied to the power supply circuit, various initial values are calculated and stored in the storage unit 35. Specifically, the reference ripple voltage Er0, the reference input average voltage Ea0, and the reference input current phase θ0 are detected and calculated as initial values when the capacitor is in a normal state (initial state), and stored in the storage unit 35. The comparison ripple voltage setting unit 42 compares the ripple voltage (warning value Er1 / abnormal value Er2), the comparative average voltage setting unit 43 compares the average voltage (warning value Ea1 / abnormal value Ea2), and the comparison input current peak phase setting unit 44. The comparison input current peak phase (warning value θ1 / abnormal value θ2) is set and stored in the storage unit 35.

(B)交流電源21が整流部22で全波整流されて倍電圧コンデンサ23で倍電圧に昇圧され、平滑コンデンサ24で平滑化される。この直流電圧は変換部(インバータ)27に供給され、制御部31のインバータ制御部50からインバータ駆動部29へ制御信号が出力され、このインバータ駆動部29から出力されるスイッチング信号により変換部(インバータ)27の各トランジスタ27a〜27fがスイッチングされることで3相交流に変換されモータ28に供給される。そして、モータ28の運転が長期年数経過したものとする。 (B) The AC power supply 21 is full-wave rectified by the rectifier 22, boosted to a double voltage by the voltage doubler capacitor 23, and smoothed by the smoothing capacitor 24. This DC voltage is supplied to the conversion unit (inverter) 27, a control signal is output from the inverter control unit 50 of the control unit 31 to the inverter drive unit 29, and the conversion unit (inverter) is output by the switching signal output from the inverter drive unit 29. ) 27 transistors 27 a to 27 f are switched to be converted into a three-phase alternating current and supplied to the motor 28. It is assumed that the motor 28 has been operated for a long time.

(C)モータ28を継続運転し、所定の時間毎(コンデンサの劣化判定時)にリップル電圧Erx、平均電圧Eax、入力電流位相θxの検出・算出を繰り返す。
モータ28の運転を長期間継続すると図4(a)(b)の(p1)に示すように、コンデンサの容量が減少し、インバータの寿命に近づく。さらにモータ28の運転を継続するとコンデンサは発熱や弁破裂をおこし、容量の急激な減少および寿命を迎える。
(C) The motor 28 is continuously operated, and the detection and calculation of the ripple voltage Erx, the average voltage Eax, and the input current phase θx are repeated every predetermined time (when determining deterioration of the capacitor).
When the operation of the motor 28 is continued for a long period of time, as shown in (p1) of FIGS. 4 (a) and 4 (b), the capacity of the capacitor is reduced and the life of the inverter is approached. When the motor 28 continues to operate, the capacitor generates heat and ruptures the valve, resulting in a sudden decrease in capacity and a life span.

図5(c)のs1時に寿命を迎え、弁破裂をおこした後も倍電圧コンデンサ23はすぐに破壊とはならない。そのまま運転を継続させた場合、倍電圧コンデンサ23は、急激に容量が減少し、この容量減少により充電しにくくなる。モータ28が接続されているため、充電量より放電量が大きくなり、充電より放電が速くなって倍電圧コンデンサ23の両端の電圧降下が生じる。入力電圧との電圧差により入力電流が流れるので、電圧降下が生じるほど図3(c)に示すように入力電流ピークの位相(位置)が進みやすくなる。すなわち、倍電圧コンデンサ23のみが劣化した場合には、リップル電圧Erには大きな影響が表れず、入力電流ピーク位相θxの倍電圧コンデンサ正常時θ0からのずれθが大きくなる。また図5(b)のs1のように平均電圧Eaが小さくなる。
なお、図5(c)のように平滑コンデンサ24が略正常の状態では、平滑コンデンサ24により平滑化されるので、リップル電圧に現れる影響は小さい。
Even after s1 in FIG. 5C reaches the end of life and the valve ruptures, the voltage doubler capacitor 23 is not immediately destroyed. When the operation is continued as it is, the voltage of the voltage doubler capacitor 23 is abruptly decreased, and it becomes difficult to charge due to the decrease in the capacity. Since the motor 28 is connected, the amount of discharge is larger than the amount of charge, and the discharge is faster than the charge, resulting in a voltage drop across the voltage doubler capacitor 23. Since the input current flows due to the voltage difference from the input voltage, the phase (position) of the input current peak is more likely to advance as the voltage drop occurs as shown in FIG. That is, when only the voltage doubler capacitor 23 is deteriorated, the ripple voltage Er is not greatly affected, and the deviation θ of the input current peak phase θx from the normal voltage doubler capacitor θ0 becomes large. Further, the average voltage Ea is reduced as shown by s1 in FIG.
Note that, when the smoothing capacitor 24 is in a substantially normal state as shown in FIG. 5C, the smoothing capacitor 24 smoothes the surface, so that the influence on the ripple voltage is small.

図5(a)のq1時に寿命を迎え弁破裂した後も平滑コンデンサ24はすぐに破壊とはならない。そのまま運転を継続させた場合、平滑コンデンサ24は、急激に容量が減少し、この容量減少によりリップル電圧Erが増加する。しかし、図5(a)の点線特性のように、倍電圧コンデンサ23が略正常であれば、この倍電圧コンデンサ23の充電量が十分であり、充放電がバランスよく行われる。モータ28が接続されていても充放電がバランスよく行われているため、充電に対する放電過多にならず、電圧降下が生じない。すなわち、平滑コンデンサ24が劣化した場合には、リップル電圧Erが大きくなるか又は図5(b)のq1のように平均電圧Eaが小さくなる。 The smoothing capacitor 24 does not break immediately even after the lifetime is reached at q1 in FIG. When the operation is continued as it is, the smoothing capacitor 24 rapidly decreases in capacity, and the ripple voltage Er increases due to the decrease in capacity. However, as shown by the dotted line characteristic in FIG. 5A, if the voltage doubler capacitor 23 is substantially normal, the charge amount of the voltage doubler capacitor 23 is sufficient, and charge / discharge is performed in a well-balanced manner. Even when the motor 28 is connected, charging and discharging are performed in a well-balanced manner, so there is no excessive discharge for charging and no voltage drop occurs. That is, when the smoothing capacitor 24 deteriorates, the ripple voltage Er increases or the average voltage Ea decreases as indicated by q1 in FIG.

(D)リップル電圧Erx、平均電圧Eax、入力電流位相θxの検出・算出を繰り返えしつつ、継続運転する。
(E−1)継続運転後、入力電流ピーク位相算出部37で入力電流位相θxを算出し、同測定値θxとすでに(A)で算出した基準値θ0との位相差θ(=θx−θ0)を算出する。また比較入力電流ピーク位相設定部44で設定した警告値θ1と基準値θ0との位相差θ01(=θ1−θ0)を算出する。さらに平均電圧算出部41で平均電圧Eaxを算出する。そして(θx−θ0)と(θ1−θ0)を比較しθがθ01以上か、かつEaxが比較平均電圧設定部43で設定した警告平均電圧Ea1以下か、が判定される。条件を満たさないときはNOとなり、(H−2)に進む。
(E−2)継続運転後、リップル電圧算出部40で算出した測定値Erxと比較リップル電圧値設定部42で設定した警告値Er1とを比較し、測定値Erxが警告値Er1以上か、又は測定値Erxが比較平均電圧値設定部43で設定した警告値Er1以下か、が判定される。条件を満たさないときはNOとなる。倍電圧コンデンサ23及び/又は平滑コンデンサ24の容量が減少しても前記(E−1)と(E−2)がともにNOであれば、(D)に戻ってモータ28の運転は継続する。
(D) Continue operation while repeating detection and calculation of ripple voltage Erx, average voltage Eax, and input current phase θx.
(E-1) After the continuous operation, the input current peak phase calculation unit 37 calculates the input current phase θx, and the phase difference θ (= θx−θ0) between the measured value θx and the reference value θ0 already calculated in (A). ) Is calculated. Further, the phase difference θ01 (= θ1−θ0) between the warning value θ1 set by the comparison input current peak phase setting unit 44 and the reference value θ0 is calculated. Further, the average voltage calculation unit 41 calculates the average voltage Eax. Then, (θx−θ0) and (θ1−θ0) are compared to determine whether θ is equal to or greater than θ01 and whether Eax is equal to or less than the warning average voltage Ea1 set by the comparison average voltage setting unit 43. If the condition is not satisfied, NO is determined and the process proceeds to (H-2).
(E-2) After the continuous operation, the measured value Erx calculated by the ripple voltage calculating unit 40 is compared with the warning value Er1 set by the comparative ripple voltage value setting unit 42, and the measured value Erx is equal to or higher than the warning value Er1. It is determined whether the measured value Erx is equal to or less than the warning value Er1 set by the comparative average voltage value setting unit 43. When the condition is not satisfied, it becomes NO. Even if the capacity of the voltage doubler capacitor 23 and / or the smoothing capacitor 24 decreases, if both (E-1) and (E-2) are NO, the process returns to (D) and the operation of the motor 28 continues.

(F)前記(E−1)において、図5(c)のs2時に位相差θがθ1以上か、図5(b)のr1時に平均電圧Eaが警告値Ea1以下となるか、(E−2)において、図5(a)のq2時にリップル電圧Erが警告値Er1以上か、図5(b)のr1時に平均電圧Eaが警告値Ea1以下となるか、少なくともいずれか一方がYESとなると、モータ回転数制御部47からの指令によりインバータ制御部50を経てインバータ駆動回路29を制御し、図6のt1時にモータ28の回転数を降下させる。同時に、警告表示制御部48を介して表示部51に異常メッセージその他の警告の表示を行う。
(G)前記(E−1)又は(E−2)がYESになると、モータ28の回転数を降下させてモータ28の運転を継続する。
(F) In (E-1), whether the phase difference θ is greater than or equal to θ1 at s2 in FIG. 5C, or the average voltage Ea is less than or equal to the warning value Ea1 at r1 in FIG. 2), when the ripple voltage Er is equal to or higher than the warning value Er1 at q2 in FIG. 5A, or the average voltage Ea is equal to or lower than the warning value Ea1 at r1 in FIG. 5B, at least one of them becomes YES. Then, the inverter drive circuit 29 is controlled via the inverter control unit 50 according to a command from the motor rotation number control unit 47, and the rotation number of the motor 28 is decreased at t1 in FIG. At the same time, an abnormal message and other warnings are displayed on the display unit 51 via the warning display control unit 48.
(G) When (E-1) or (E-2) becomes YES, the rotational speed of the motor 28 is decreased and the operation of the motor 28 is continued.

(H−1)モータ28の回転数を降下してさらに継続運転しつつ入力電流ピーク位相算出部37で算出した入力電流ピーク位相θxと基準値θ0との位相差θ(=θx−θ0)が比較入力電流ピーク位相設定部44で設定した異常値θ2と基準値θ0との位相差θ02(=θ2−θ0)以上か、かつ平均電圧Eaxが比較平均電圧設定部43で設定した異常値Ea2以下か、が判定される。条件を満たさないときはNOとなり、(H−2)に進む。
(H−2)モータ28の回転数を降下してさらに継続運転しつつ、リップル電圧算出部40で算出したリップル電圧Erxが比較リップル電圧設定部42で設定した異常値Er2以上か、又は平均電圧Eaxが比較平均電圧設定部43で設定した異常値Ea2以下か、が判定される。条件を満たさないときはNOとなり、継続運転(G)に戻る。
(H-1) The phase difference θ (= θx−θ0) between the input current peak phase θx calculated by the input current peak phase calculation unit 37 and the reference value θ0 while continuing the operation by lowering the rotational speed of the motor 28 is obtained. The phase difference θ02 (= θ2−θ0) between the abnormal value θ2 set by the comparative input current peak phase setting unit 44 and the reference value θ0 is equal to or larger than the abnormal value Ea2 set by the comparative average voltage setting unit 43. Is determined. If the condition is not satisfied, NO is determined and the process proceeds to (H-2).
(H-2) The ripple voltage Erx calculated by the ripple voltage calculation unit 40 is equal to or higher than the abnormal value Er2 set by the comparison ripple voltage setting unit 42 or the average voltage while lowering the rotation speed of the motor 28 and continuing the operation. It is determined whether Eax is equal to or less than the abnormal value Ea2 set by the comparative average voltage setting unit 43. If the condition is not satisfied, NO is returned and the operation returns to the continuous operation (G).

(I)前記(H−1)において、図5(c)のs3時に位相差θがθ2以上か、図5(b)のr2時に平均電圧Eaxが異常値Ea2以下となるか、(H−2)において、図5(a)のq3時にリップル電圧Erxが異常値Er2以上か、図5(b)のr2時に平均電圧Eaxが異常値Ea2以下となるか、少なくともいずれか一方がYESとなると、システム停止制御部49からの指令によりインバータ制御部50を経てインバータ駆動部29を制御し、図5(b)のr2時に電源を遮断するとともに、図6のt3時にモータ28の運転を停止させる。
(J)図4(b)のp3のように異常停止をして終了する。ちなみに、従来は、図4(a)のp3を過ぎても装置が駆動し続けて発煙、発火などの予測不能な状態に陥るおそれがあった。
(I) In (H-1), the phase difference θ is greater than or equal to θ2 at s3 in FIG. 5C, or the average voltage Eax is less than or equal to the abnormal value Ea2 at r2 in FIG. 2), when q3 in FIG. 5A, the ripple voltage Erx is equal to or higher than the abnormal value Er2, or the average voltage Eax is equal to or lower than the abnormal value Ea2 at r2 in FIG. 5B, or at least one of them is YES. In response to a command from the system stop control unit 49, the inverter drive unit 29 is controlled via the inverter control unit 50, and the power is shut off at r2 in FIG. 5B and the operation of the motor 28 is stopped at t3 in FIG. .
(J) Stops abnormally as shown by p3 in FIG. Incidentally, in the past, there was a risk that the apparatus would continue to drive even after passing p3 in FIG. 4 (a), resulting in an unpredictable state such as smoke or fire.

負荷電流が小さいときはリップル電圧も小さくなる傾向があるため、本発明では軽負荷時のコンデンサの劣化を正確に検出するために平均電圧の大きさも判別条件に加えており、リップル電圧値が警告値または故障値未満でも平均電圧が警告値または故障値以下であれば警告または故障と判別している。一方で、本発明に比較リップル電圧値Er0を入力電流Iに応じて可変する構成を追加しても良い。例えば、負荷電流が大きいときリップル電圧も大きくなるようにリップル電圧は負荷電流によって変わる傾向があるため、検出した入力電流Ixに応じて、例えば入力電流Iが大きい(負荷電流が増えると入力電流も増える)とき比較リップル電圧Er0も大きく可変するようにすれば、負荷電流の変動によるコンデンサ故障の誤検出を防ぐことができる。入力電流Iに対応させた比較リップル電圧Er0は予め記憶部35に記憶させておけばよい。 Since the ripple voltage tends to decrease when the load current is small, in the present invention, the magnitude of the average voltage is added to the determination condition in order to accurately detect the deterioration of the capacitor at light load, and the ripple voltage value is a warning. If the average voltage is less than the warning value or failure value even if it is less than the value or failure value, it is determined as a warning or failure. On the other hand, you may add the structure which changes the comparison ripple voltage value Er0 according to the input current I to this invention. For example, since the ripple voltage tends to change depending on the load current so that the ripple voltage increases when the load current is large, for example, the input current I is large according to the detected input current Ix (the input current increases as the load current increases). If the comparison ripple voltage Er0 is also made to vary greatly, it is possible to prevent erroneous detection of a capacitor failure due to load current fluctuation. The comparison ripple voltage Er0 corresponding to the input current I may be stored in the storage unit 35 in advance.

なお、実施例1ではコンデンサの劣化検出に入力電流ピーク位相差、リップル電圧、平均電圧のすべてを用いた場合について説明しているが、これらの組合せは検出精度、負荷や使用条件、制御部の能力などに合わせて適宜選択が可能であり、例えば倍電圧コンデンサの劣化検出には入力電流ピーク位相差のみを、平滑コンデンサの劣化検出にはリップル電圧のみを用いてもよいし、平滑コンデンサの劣化検出にリップル電圧と平均電圧を用いてもよい。また、劣化検出の対象は倍電圧コンデンサのみとしてもよい。 In the first embodiment, the case where the input current peak phase difference, the ripple voltage, and the average voltage are all used for detecting the deterioration of the capacitor has been described. For example, only the input current peak phase difference may be used for detecting the deterioration of the voltage doubler capacitor, and only the ripple voltage may be used for detecting the deterioration of the smoothing capacitor. A ripple voltage and an average voltage may be used for detection. Further, only the voltage doubler capacitor may be subject to deterioration detection.

また、実施例1では倍電圧コンデンサの劣化検出のために、入力電流ピーク位相算出部37において入力電流ピーク位相の測定値θxと入力電流ピーク位相の基準値θ0との位相差θと、比較入力電流ピーク位相設定部44で設定した、例えば、入力電流ピークの警告値θ1(=θ0−20°)と入力電流ピークの基準値θ0との位相差(比較入力電流ピーク位相差)θ01との差を算出しているが、θ01は予め比較入力電流ピーク位相設定部44に入力された所定の位相(20°=θ0−θ1)に等しいため、これを比較入力電流ピーク位相差として、入力電流ピーク位相の測定値θxと入力電流ピーク位相の基準値θ0との位相差θと直接比較してもよい。 In the first embodiment, in order to detect the deterioration of the voltage doubler capacitor, the input current peak phase calculation unit 37 compares the phase difference θ between the measured value θx of the input current peak phase and the reference value θ0 of the input current peak phase, and the comparison input. For example, the difference between the input current peak warning value θ1 (= θ0−20 °) and the reference value θ0 of the input current peak (comparison input current peak phase difference) θ01 set by the current peak phase setting unit 44 However, since θ01 is equal to a predetermined phase (20 ° = θ0−θ1) input in advance to the comparison input current peak phase setting unit 44, this is regarded as a comparison input current peak phase difference, and the input current peak The phase difference θ between the measured value θx of the phase and the reference value θ0 of the input current peak phase may be directly compared.

実施例1では、倍電圧コンデンサ23として、2個のコンデンサ23a、23bを用いた2倍電圧整流回路の場合を説明したが、本発明は、これに限られるものではない。
いわゆるコッククロフト・ウォルトン回路を用いれば、n倍電圧整流回路(nは、3以上の正の整数)であってもよい。また、図7は、4個のコンデンサ23a、23b、23c、23dと、4個の整流ダイオード22a、22b、22c、22dと、平滑コンデンサ24を用いた両波4倍圧整流回路を示しており、コンデンサ23cには、コンデンサ23aの電荷が加算され、コンデンサ23dには、コンデンサ23bの電荷が加算され、コンデンサ23c+23dが4倍電圧となる。3倍、5倍以上も同様にして構成できる。
このような倍電圧整流回路においても実施例1と同様にして倍電圧コンデンサ23と平滑コンデンサ24の劣化を検出することができる。
In the first embodiment, the case of the double voltage rectifier circuit using the two capacitors 23a and 23b as the voltage doubler capacitor 23 has been described, but the present invention is not limited to this.
If a so-called Cockcroft-Walton circuit is used, an n-fold voltage rectifier circuit (n is a positive integer of 3 or more) may be used. FIG. 7 shows a double wave quadruple voltage rectifier circuit using four capacitors 23a, 23b, 23c, and 23d, four rectifier diodes 22a, 22b, 22c, and 22d, and a smoothing capacitor 24. The capacitor 23c is added with the charge of the capacitor 23a, the capacitor 23d is added with the charge of the capacitor 23b, and the capacitor 23c + 23d becomes a quadruple voltage. Three times, five times or more can be similarly configured.
In such a voltage doubler rectifier circuit, the deterioration of voltage doubler capacitor 23 and smoothing capacitor 24 can be detected in the same manner as in the first embodiment.

本発明によるコンデンサの劣化検出回路は、整流回路として倍電圧整流回路(倍電圧コンデンサと平滑コンデンサ)を備えたインバータ回路その他の電源回路、およびそれらを備えた空気調和機などの電子機器に利用することができる。 The capacitor deterioration detection circuit according to the present invention is used in an inverter circuit and other power supply circuits including a voltage doubler rectifier circuit (voltage doubler capacitor and smoothing capacitor) as a rectifier circuit, and an electronic apparatus such as an air conditioner including the inverter circuit. be able to.

11…交流電源、12…整流部、13…平滑コンデンサ、14…リップル電圧検出部、15…負荷電流検出部、16…変換部、17…3相モータ、18…モータ駆動部、19…制御部、20…記憶部、21…交流電源、22…整流部、23…倍電圧コンデンサ、24…平滑コンデンサ、25…入力電流検出部、26…電圧検出部、27…変換部(インバータ)、28…負荷(3相モータ)、29…インバータ駆動回路、30…回転数検出回路、31…制御部、32…A/D変換部、33…A/D変換部、34…A/D変換部、35…記憶部、36…入力電流測定部、37…入力電流ピーク位相算出部、39…電圧測定部、40…リップル電圧算出部、41…平均電圧算出部、42…比較リップル電圧設定部、43…比較平均電圧設定部、44…比較入力電流ピーク位相設定部、45…平滑コンデンサ劣化判別部、46…倍電圧コンデンサ劣化判別部、47…モータ回転数制御部、48…警告表示制御部、49…システム停止制御部、50…インバータ制御部、51…表示部、52…入力回路。
DESCRIPTION OF SYMBOLS 11 ... AC power supply, 12 ... Rectification part, 13 ... Smoothing capacitor, 14 ... Ripple voltage detection part, 15 ... Load current detection part, 16 ... Conversion part, 17 ... Three-phase motor, 18 ... Motor drive part, 19 ... Control part , 20 ... storage section, 21 ... AC power supply, 22 ... rectification section, 23 ... voltage doubler capacitor, 24 ... smoothing capacitor, 25 ... input current detection section, 26 ... voltage detection section, 27 ... conversion section (inverter), 28 ... Load (3-phase motor), 29 ... inverter drive circuit, 30 ... rotation speed detection circuit, 31 ... control unit, 32 ... A / D conversion unit, 33 ... A / D conversion unit, 34 ... A / D conversion unit, 35 DESCRIPTION OF SYMBOLS ... Memory | storage part 36 ... Input current measurement part 37 ... Input current peak phase calculation part 39 ... Voltage measurement part 40 ... Ripple voltage calculation part 41 ... Average voltage calculation part 42 ... Comparison ripple voltage setting part 43 ... Comparative average voltage setting unit, 44 Comparison input current peak phase setting unit, 45... Smoothing capacitor deterioration determining unit, 46 .. double voltage capacitor deterioration determining unit, 47... Motor speed controller, 48 .. warning display controller, 49. Control unit 51. Display unit 52 52 Input circuit.

Claims (8)

整流部で整流した交流電源を倍電圧コンデンサで昇圧し平滑コンデンサで平滑して負荷に供給する倍電圧整流回路に、
前記倍電圧整流回路の入力電流を検出する入力電流検出部と、前記入力電流検出部で検出した入力電流から前記倍電圧コンデンサの正常時の入力電流ピークの位相と前記倍電圧コンデンサの劣化判別時の入力電流ピークの位相との位相差である入力電流ピーク位相差を算出する入力電流ピーク位相算出部とを備え、前記位相差と予め設定した比較入力電流ピーク位相差との差に基づいて前記倍電圧コンデンサの劣化を判別することを特徴とするコンデンサの劣化検出回路。
To the voltage doubler rectifier circuit that boosts the AC power source rectified by the rectifier with a voltage doubler capacitor, smoothes it with a smoothing capacitor, and supplies it to the load,
An input current detection unit for detecting an input current of the voltage doubler rectifier circuit, and a phase of an input current peak when the voltage doubler capacitor is normal from the input current detected by the input current detection unit and a deterioration determination of the voltage doubler capacitor An input current peak phase difference calculation unit that calculates an input current peak phase difference that is a phase difference from the input current peak phase, and based on a difference between the phase difference and a preset comparison input current peak phase difference. A capacitor deterioration detection circuit for determining deterioration of a voltage doubler capacitor.
前記入力電流ピーク位相算出部は、所定時間毎の入力電流値を少なくとも電源周期間測定し、その中の最大値を入力電流ピークとし、電源周期毎に発生する割り込みから前記入力電流ピークまでの位相を前記入力電流ピークの位相として算出することを特徴とする請求項1記載のコンデンサの劣化検出回路。   The input current peak phase calculation unit measures an input current value at predetermined time intervals for at least a power cycle, and sets a maximum value among them as an input current peak, and a phase from an interrupt that occurs every power cycle to the input current peak. The capacitor deterioration detection circuit according to claim 1, wherein: is calculated as a phase of the input current peak. 整流部で整流した交流電源を倍電圧コンデンサで昇圧し平滑コンデンサで平滑して負荷に供給する倍電圧整流回路に、
前記倍電圧整流回路の入力電流を検出する入力電流検出部と、前記平滑コンデンサの両端の電圧を検出する電圧検出部と、前記入力電流検出部で検出した入力電流から前記倍電圧コンデンサの正常時の入力電流ピークの位相と前記倍電圧コンデンサの劣化判別時の入力電流ピークの位相との位相差である入力電流ピーク位相差を算出する入力電流ピーク位相算出部と、前記電圧検出部で検出した前記平滑コンデンサの両端の電圧からリップル電圧を算出するリップル電圧算出部とを備え、前記入力電流ピーク位相差と予め設定した比較入力電流ピーク位相差との差に基づいて前記倍電圧コンデンサの劣化を判別するとともに、前記リップル電圧と予め設定した比較リップル電圧との差に基づいて前記平滑コンデンサの劣化を判別することを特徴とするコンデンサの劣化検出回路。
To the voltage doubler rectifier circuit that boosts the AC power source rectified by the rectifier with a voltage doubler capacitor, smoothes it with a smoothing capacitor, and supplies it to the load,
An input current detection unit for detecting an input current of the voltage doubler rectifier circuit, a voltage detection unit for detecting a voltage across the smoothing capacitor, and the normal operation of the voltage doubler capacitor from the input current detected by the input current detection unit An input current peak phase calculation unit for calculating an input current peak phase difference that is a phase difference between an input current peak phase of the input voltage and a phase difference of the input current peak at the time of deterioration determination of the voltage doubler capacitor, and the voltage detection unit A ripple voltage calculation unit that calculates a ripple voltage from the voltage across the smoothing capacitor, and the voltage doubler capacitor is deteriorated based on a difference between the input current peak phase difference and a preset comparison input current peak phase difference. And determining deterioration of the smoothing capacitor based on a difference between the ripple voltage and a preset comparison ripple voltage. Deterioration detecting circuit of a capacitor to be.
前記入力電流ピーク位相算出部は、所定時間毎の入力電流値を少なくとも電源周期間測定し、その中の最大値を入力電流ピークとし、電源周期毎に発生する割り込みから前記入力電流ピークまでの位相を前記入力電流ピークの位相として算出し、前記リップル電圧算出部は、所定時間毎の前記平滑コンデンサの両端の電圧を少なくとも電源周期間測定し、その最大値と最小値の差をリップル電圧として検出することを特徴とする請求項3記載のコンデンサの劣化検出回路。   The input current peak phase calculation unit measures an input current value at predetermined time intervals for at least a power cycle, and sets a maximum value among them as an input current peak, and a phase from an interrupt that occurs every power cycle to the input current peak. Is calculated as the phase of the input current peak, and the ripple voltage calculation unit measures the voltage at both ends of the smoothing capacitor every predetermined time for at least the power cycle, and detects the difference between the maximum value and the minimum value as the ripple voltage. The capacitor deterioration detection circuit according to claim 3, wherein 整流部で整流した交流電源を倍電圧コンデンサで昇圧し平滑コンデンサで平滑して負荷に供給する倍電圧整流回路に、
前記倍電圧整流回路の入力電流を検出する入力電流検出部と、前記平滑コンデンサの両端の電圧を検出する電圧検出部と、前記入力電流検出部で検出した入力電流から前記倍電圧コンデンサの正常時の入力電流ピークの位相と前記倍電圧コンデンサの劣化判別時の入力電流ピークの位相との位相差である入力電流ピーク位相差を算出する入力電流ピーク位相算出部と、前記電圧検出部で検出した前記平滑コンデンサの両端の電圧から平均電圧を算出する平均電圧算出部と、前記電圧検出部で検出した前記平滑コンデンサの両端の電圧からリップル電圧を算出するリップル電圧算出部とを備え、前記倍電圧コンデンサの劣化を、前記入力電流ピーク位相差と予め設定した比較入力電流ピーク位相差との差のみで又はこの入力電流ピーク位相差と予め設定した比較入力電流ピーク位相差との差および前記平均電圧と予め設定した比較平均電圧との差の組み合わせに基づいて判別するとともに、前記平滑コンデンサの劣化を、前記リップル電圧と予め設定した比較リップル電圧との差のみで又はこのリップル電圧と予め設定した比較リップル電圧との差および平均電圧と予め設定した比較平均電圧との差の組み合わせに基づいて判別することを特徴とするコンデンサの劣化検出回路。
To the voltage doubler rectifier circuit that boosts the AC power source rectified by the rectifier with a voltage doubler capacitor, smoothes it with a smoothing capacitor, and supplies it to the load,
An input current detection unit for detecting an input current of the voltage doubler rectifier circuit, a voltage detection unit for detecting a voltage across the smoothing capacitor, and the normal operation of the voltage doubler capacitor from the input current detected by the input current detection unit An input current peak phase calculation unit for calculating an input current peak phase difference that is a phase difference between an input current peak phase of the input voltage and a phase difference of the input current peak at the time of deterioration determination of the voltage doubler capacitor, and the voltage detection unit An average voltage calculation unit that calculates an average voltage from the voltage across the smoothing capacitor; and a ripple voltage calculation unit that calculates a ripple voltage from the voltage across the smoothing capacitor detected by the voltage detection unit, the voltage doubler The deterioration of the capacitor is determined only by the difference between the input current peak phase difference and the preset comparison input current peak phase difference or the input current peak phase difference. And determining based on the combination of the difference between the comparison input current peak phase difference and the difference between the average voltage and the preset comparison average voltage, and the deterioration of the smoothing capacitor is compared with the ripple voltage and the preset comparison Capacitor deterioration detection characterized by determining only based on a difference from a ripple voltage or a combination of a difference between this ripple voltage and a preset comparison ripple voltage and a difference between an average voltage and a preset comparison average voltage circuit.
前記入力電流ピーク位相算出部は、所定時間毎の入力電流値を少なくとも電源周期間測定し、その中の最大値を入力電流ピーク値とし、電源周期毎に発生する割り込みから前記入力電流ピーク値までの位相を前記入力電流ピークの位相として算出し、前記平均電圧算出部は、所定時間毎の前記平滑コンデンサの両端の電圧を少なくとも電源周期間測定し、その平均値を平均電圧として算出し、前記リップル電圧算出部は、所定時間毎の前記平滑コンデンサの両端の電圧を少なくとも電源周期間測定し、その最大値と最小値の差をリップル電圧として検出することを特徴とする請求項5記載のコンデンサの劣化検出回路。   The input current peak phase calculation unit measures an input current value at predetermined time intervals for at least a power supply cycle, and sets a maximum value among them as an input current peak value, from an interrupt generated every power supply cycle to the input current peak value Is calculated as the phase of the input current peak, the average voltage calculation unit measures the voltage across the smoothing capacitor every predetermined time for at least the power cycle, and calculates the average value as the average voltage, 6. The capacitor according to claim 5, wherein the ripple voltage calculation unit measures the voltage across the smoothing capacitor every predetermined time for at least a power cycle, and detects a difference between the maximum value and the minimum value as a ripple voltage. Deterioration detection circuit. 入力電流ピーク値の位相差の判別レベルは、比較入力電流ピーク位相設定部で、リップル電圧の判別レベルは、比較リップル電圧値設定部で、平均電圧の判別レベルは、比較平均電圧値設定部でそれぞれ劣化度合いが注意を要すると判断することを示す警告値と劣化度合いが故障と判断することを示す異常値とに設定してなることを特徴とする請求項5又は6記載のコンデンサの劣化検出回路。   The input current peak value phase difference determination level is the comparison input current peak phase setting unit, the ripple voltage determination level is the comparison ripple voltage value setting unit, and the average voltage determination level is the comparison average voltage value setting unit. 7. The capacitor deterioration detection according to claim 5, wherein a warning value indicating that the degree of deterioration is determined to require attention and an abnormal value indicating that the degree of deterioration is determined to be a failure are set. circuit. 請求項1ないし7のいずれかに記載のコンデンサの劣化検出回路を備えた電子機器。
An electronic apparatus comprising the capacitor deterioration detection circuit according to claim 1.
JP2009081188A 2009-03-30 2009-03-30 Capacitor deterioration detection circuit and electronic device equipped with the same Active JP5381229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081188A JP5381229B2 (en) 2009-03-30 2009-03-30 Capacitor deterioration detection circuit and electronic device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081188A JP5381229B2 (en) 2009-03-30 2009-03-30 Capacitor deterioration detection circuit and electronic device equipped with the same

Publications (2)

Publication Number Publication Date
JP2010233425A JP2010233425A (en) 2010-10-14
JP5381229B2 true JP5381229B2 (en) 2014-01-08

Family

ID=43048714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081188A Active JP5381229B2 (en) 2009-03-30 2009-03-30 Capacitor deterioration detection circuit and electronic device equipped with the same

Country Status (1)

Country Link
JP (1) JP5381229B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599486B1 (en) * 2013-04-22 2014-10-01 三菱電機株式会社 Capacitor deterioration diagnosis device, inverter device, and home appliance
JP5896964B2 (en) * 2013-09-02 2016-03-30 三菱電機株式会社 Electronic control unit
CN106559006B (en) * 2015-09-30 2019-02-05 浙江大学 Two-way AC-DC converter
JP7013860B2 (en) * 2017-12-27 2022-02-01 株式会社デンソー Motor drive
JPWO2022176193A1 (en) * 2021-02-22 2022-08-25
DE102021205467A1 (en) * 2021-05-28 2022-12-01 Siemens Mobility GmbH Arrangement with pulse inverter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285625A (en) * 1986-05-30 1987-12-11 松下電器産業株式会社 Inverter protector
JP3655077B2 (en) * 1998-01-29 2005-06-02 東芝エフエーシステムエンジニアリング株式会社 Power supply
JP4765689B2 (en) * 2006-03-10 2011-09-07 株式会社富士通ゼネラル Smoothing capacitor deterioration detection circuit and electronic device equipped with the same
JP2009014375A (en) * 2007-07-02 2009-01-22 Sony Corp Electronic device, printing apparatus and drive operation forcibly-deactivating method
JP2009044944A (en) * 2007-08-13 2009-02-26 Hitachi Kokusai Electric Inc Switching power supply
JP5194815B2 (en) * 2008-01-16 2013-05-08 株式会社富士通ゼネラル Smoothing capacitor abnormality detection circuit and electronic device provided with the same
JP5025599B2 (en) * 2008-09-01 2012-09-12 三菱電機株式会社 Capacitor deterioration detection device and home appliance

Also Published As

Publication number Publication date
JP2010233425A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP4765689B2 (en) Smoothing capacitor deterioration detection circuit and electronic device equipped with the same
JP5381229B2 (en) Capacitor deterioration detection circuit and electronic device equipped with the same
JP4708495B1 (en) Motor drive device with power failure detection function
US7719808B2 (en) Power converters with operating efficiency monitoring for fault detection
US7719812B2 (en) Power converters with rate of change monitoring for fault prediction and/or detection
JP5931148B2 (en) PWM rectifier with capacitance calculator
JP4151651B2 (en) Inverter device
WO2009119010A1 (en) Power conversion device
JP6690662B2 (en) Power quality control system and air conditioner
WO2019021479A1 (en) Inverter device and inverter device abnormality detection method
US20080284449A1 (en) Power converters with component stress monitoring for fault prediction
WO2020066134A1 (en) Power supply device and power supply system
JP2007288955A (en) Power conversion device
JP2011024294A (en) Control circuit of power conversion circuit and power conversion equipment including the control circuit
JP6187197B2 (en) Power converter
JP2009014428A (en) Power supply device and electric equipment
JP2001320882A (en) Power supply apparatus, inverter and air conditioner
JP6680368B2 (en) Uninterruptible power system
JP2011188627A (en) Inverter apparatus
JP4590838B2 (en) Inverter device
JP7157025B2 (en) power converter
WO2008139285A2 (en) Power converters with component stress monitoring for fault prediction
JP7285969B2 (en) Motor controller and air conditioner
JP5873287B2 (en) Inverter device
JP2011108455A (en) Electronic breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350