JP5380782B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP5380782B2
JP5380782B2 JP2007079154A JP2007079154A JP5380782B2 JP 5380782 B2 JP5380782 B2 JP 5380782B2 JP 2007079154 A JP2007079154 A JP 2007079154A JP 2007079154 A JP2007079154 A JP 2007079154A JP 5380782 B2 JP5380782 B2 JP 5380782B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
light
pair
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007079154A
Other languages
Japanese (ja)
Other versions
JP2008241872A (en
Inventor
透 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007079154A priority Critical patent/JP5380782B2/en
Publication of JP2008241872A publication Critical patent/JP2008241872A/en
Application granted granted Critical
Publication of JP5380782B2 publication Critical patent/JP5380782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は光検出装置、焦点検出装置および撮像装置に関する。   The present invention relates to a light detection device, a focus detection device, and an imaging device.

撮影レンズの予定焦点面にマイクロレンズアレイを配置するとともに、その背後に受光素子アレイを配置し、撮影レンズの焦点検出を行う焦点検出装置が知られている。(例えば、特許文献1参照)。   2. Description of the Related Art A focus detection device is known in which a microlens array is disposed on a planned focal plane of a photographing lens and a light receiving element array is disposed behind the microlens array to detect the focus of the photographing lens. (For example, refer to Patent Document 1).

この出願の発明に関連する先行技術文献としては次のものがある。
特開昭54−159259号公報
Prior art documents related to the invention of this application include the following.
JP 54-159259 A

しかしながら、上述した従来の焦点検出装置では、マイクロレンズアレイの位置付近に物体像がある場合にマイクロレンズ間の境界位置で不感帯を生じるという問題がある。物体像がマイクロレンズアレイ近傍にあるため、マイクロレンズとマイクロレンズとの間に物体像のエッジ、すなわちコントラストの変化帯がある場合には、この位置の像はマイクロレンズ間の光学的に無効な領域に投影され、有効な光束が受光素子に投影されなくなって焦点検出性能が低下する。   However, the above-described conventional focus detection apparatus has a problem that a dead zone is generated at a boundary position between microlenses when an object image is present near the position of the microlens array. Since the object image is in the vicinity of the microlens array, if there is an edge of the object image between the microlenses, that is, a contrast change band, the image at this position is optically invalid between the microlenses. The projected light is projected onto the area, and an effective light beam is not projected onto the light receiving element, so that the focus detection performance is deteriorated.

請求項1の発明による撮像装置は、撮影光学系の予定結像面近傍に、二次元状に配置される複数のマイクロレンズと、前記複数のマイクロレンズの各々を透過した光束を受光するように各マイクロレンズの背後に二次元状に配置される複数の受光素子と、所定の方向に配列された前記マイクロレンズの各々に対して、当該マイクロレンズの光軸を中心として前記所定の方向に対称な位置に位置する一対の受光素子群を選択して、各受光素子群の出力信号を加算して、一対の加算出力信号を算出する選択手段と、前記選択手段によって算出された一対の加算出力信号に基づき焦点検出する焦点検出手段と、を備え、前記選択手段は、前記受光素子への入射光量が多い時には、前記受光素子群の受光素子数が少なくかつ前記一対の受光素子群のそれぞれの受光素子数が等しくなるように、前記受光素子への入射光量が少ない時には、前記受光素子群の受光素子数が多くかつ前記一対の受光素子群のそれぞれの受光素子数が等しくなるように、前記受光素子への入射光量に応じて前記受光素子群の受光素子数を変更し、前記受光素子数が変更された一対の受光素子群の基線長を、前記各受光素子群の選択の仕方それぞれに対応する基線長が記憶されたテーブルから読み出して、前記読み出した基線長を前記焦点検出手段による焦点検出に用いることを特徴とする。 An image pickup apparatus according to a first aspect of the present invention receives a plurality of microlenses arranged two-dimensionally in the vicinity of a predetermined imaging plane of a photographing optical system and a light beam transmitted through each of the plurality of microlenses. A plurality of light-receiving elements arranged two-dimensionally behind each microlens and each of the microlenses arranged in a predetermined direction are symmetrical in the predetermined direction about the optical axis of the microlens Selecting means for selecting a pair of light receiving element groups located at different positions, adding the output signals of the respective light receiving element groups, and calculating a pair of added output signals, and a pair of addition outputs calculated by the selecting means Focus detection means for detecting a focus based on a signal, and the selection means has a small number of light receiving elements in the light receiving element group and a small number of light receiving element groups when the amount of light incident on the light receiving element is large. When the amount of light incident on the light receiving element is small so that the number of light receiving elements is equal, the number of light receiving elements in the light receiving element group is large and the number of light receiving elements in the pair of light receiving element groups is equal. In addition, the number of light receiving elements of the light receiving element group is changed in accordance with the amount of light incident on the light receiving element, and the base line length of the pair of light receiving element groups in which the number of light receiving elements is changed is selected for each light receiving element group. The base line length corresponding to each method is read from a stored table, and the read base line length is used for focus detection by the focus detection means .

本発明によれば、マイクロレンズ間の境界位置における不感帯の影響をなくして焦点検出性能を向上させることができる。   According to the present invention, it is possible to improve the focus detection performance by eliminating the influence of the dead zone at the boundary position between the microlenses.

図1は、一実施の形態の光検出装置および焦点検出装置を備えた撮像装置としてのカメラの横断面図である。なお、本願発明の光検出装置および焦点検出装置と直接的に関係のないカメラの機器および回路の図示と説明を省略する。また、本願発明の光検出装置および焦点検出装置は一眼レフカメラやコンパクトカメラなどのあらゆる種類のカメラに適用することができる。さらに、本願発明の光検出装置は焦点検出装置に限らず、例えば画像合成装置などに適用することができる。   FIG. 1 is a cross-sectional view of a camera as an imaging apparatus including a light detection device and a focus detection device according to an embodiment. Illustration and description of camera devices and circuits not directly related to the light detection device and the focus detection device of the present invention are omitted. In addition, the light detection device and the focus detection device of the present invention can be applied to all types of cameras such as a single-lens reflex camera and a compact camera. Furthermore, the light detection device of the present invention is not limited to the focus detection device, and can be applied to, for example, an image composition device.

カメラ1の撮影レンズ(撮影光学系)2を透過した被写体からの光束は、予定結像面3に被写体像を結ぶ。通常、この予定結像面3に撮像素子やフィルムが配設される。撮影前はミラー4が撮影レンズ2の撮影光路中に置かれており、ミラー4で反射された被写体からの光束がマイクロレンズアレイ5と受光素子アレイ6に導かれる。マイクロレンズアレイ5は予定結像面3と光学的に等価な面に配置され、その背後に受光素子アレイ6が配置される。   The light beam from the subject that has passed through the photographing lens (photographing optical system) 2 of the camera 1 forms a subject image on the scheduled imaging plane 3. Usually, an imaging element and a film are disposed on the planned imaging plane 3. Before photographing, the mirror 4 is placed in the photographing optical path of the photographing lens 2, and the light flux from the subject reflected by the mirror 4 is guided to the microlens array 5 and the light receiving element array 6. The microlens array 5 is disposed on a surface that is optically equivalent to the planned imaging plane 3, and the light receiving element array 6 is disposed behind the microlens array 5.

図2はマイクロレンズアレイ5と受光素子アレイ6の拡大図である。マイクロレンズアレイ5は複数のマイクロレンズ5aを二次元状に配列して構成され、受光素子アレイ6は複数の受光素子(光電変換素子)6aを二次元状に配列して構成される。   FIG. 2 is an enlarged view of the microlens array 5 and the light receiving element array 6. The microlens array 5 is configured by arranging a plurality of microlenses 5a in a two-dimensional manner, and the light receiving element array 6 is configured by arranging a plurality of light receiving devices (photoelectric conversion elements) 6a in a two-dimensional manner.

ある一つのマイクロレンズ5aにより被写体像が光軸方向に受光素子6a上に投影されるとすると、ある範囲の受光素子6aの一群がそのマイクロレンズ5aに対応することになる。この点からはマイクロレンズ5aごとに一群の受光素子6aを配置してもよいが、この一実施の形態では一様な平面上に複数の受光素子6aを二次元状に連続して配列した受光素子6を例に上げて説明する。   If a subject image is projected onto the light receiving element 6a in the optical axis direction by a certain micro lens 5a, a group of light receiving elements 6a in a certain range corresponds to the micro lens 5a. From this point, a group of light receiving elements 6a may be arranged for each microlens 5a. In this embodiment, however, a plurality of light receiving elements 6a are continuously arranged in a two-dimensional manner on a uniform plane. The element 6 will be described as an example.

例えば図3に示す例では、一つのマイクロレンズ5aに対して横11個、縦11個の受光素子6aからなる正方形の角を省いた領域(図3に太線で示す範囲)の受光素子6aが対応している。図3の上側に示すマイクロレンズ5aでは、対応する受光素子6aの領域の中心にある黒く塗りつぶした受光素子6aがこのマイクロレンズ5aの光軸中心に位置し、マイクロレンズに対応する受光素子の領域は上下左右に5個素子づつの広がりを有する。つまり、マイクロレンズアレイ5上の各マイクロレンズ5aに対応する受光素子アレイ6上の複数の受光素子6aの内の1つの受光素子6aが、各マイクロレンズ5aの光軸上に配置されるようにマイクロレンズアレイと受光素子アレイとを相対的に位置決めして作成されている。   For example, in the example shown in FIG. 3, the light receiving element 6 a in a region (range shown by a thick line in FIG. 3) in which the square corners composed of 11 horizontal and 11 vertical light receiving elements 6 a are omitted with respect to one microlens 5 a. It corresponds. In the microlens 5a shown in the upper side of FIG. 3, the light-receiving element 6a filled in black at the center of the area of the corresponding light-receiving element 6a is located at the center of the optical axis of the microlens 5a, and the area of the light-receiving element corresponding to the microlens Has a spread of 5 elements vertically and horizontally. That is, one light receiving element 6a among the plurality of light receiving elements 6a on the light receiving element array 6 corresponding to each micro lens 5a on the micro lens array 5 is arranged on the optical axis of each micro lens 5a. The microlens array and the light receiving element array are relatively positioned.

複数のマイクロレンズ5aと受光素子6aの関係を図4に示す。この例ではマイクロレンズ5aの径が受光素子6aの一辺の長さのちょうど整数倍になっており、マイクロレンズ5aに対応する受光素子領域内の複数の受光素子6aの中から焦点検出に用いる受光素子6aを選択する際に、領域内からバランスよく選択することができる。これにより、焦点検出結果にマイクロレンズ5aごとの揺らぎが生じるのを防止することができる。   FIG. 4 shows the relationship between the plurality of microlenses 5a and the light receiving element 6a. In this example, the diameter of the microlens 5a is exactly an integral multiple of the length of one side of the light receiving element 6a, and light reception used for focus detection among the plurality of light receiving elements 6a in the light receiving element region corresponding to the microlens 5a. When the element 6a is selected, it can be selected in a balanced manner from within the region. Thereby, it is possible to prevent the fluctuation of each microlens 5a from occurring in the focus detection result.

ここで、マイクロレンズ5aの配列について考察する。図5に示すマイクロレンズ5aの配列例では、複数のマイクロレンズ5aが正方稠密(最密)に配列されていて、水平方向の上下に隣接する2列のマイクロレンズ列(例えば図中のA列とB列)において、マイクロレンズ5aが互い違いに配列されている。そして、あるマイクロレンズ5aの水平方向の中心位置は、上方または下方のマイクロレンズ列の水平方向の境界線上になる。なお、垂直方向のマイクロレンズ列においても同様な配列になっている。   Here, the arrangement of the microlenses 5a will be considered. In the arrangement example of the microlenses 5a shown in FIG. 5, a plurality of microlenses 5a are arranged in a close-packed square (closest), and two rows of microlenses are arranged adjacent to each other in the horizontal direction (for example, row A in the figure). And B rows), the microlenses 5a are arranged alternately. Then, the horizontal center position of a certain microlens 5a is on the horizontal boundary line of the upper or lower microlens array. Note that the arrangement is similar in the vertical microlens array.

図4および図5から明らかなように、この一実施の形態ではマイクロレンズアレイ5上のマイクロレンズ5aの配列方向が、受光素子アレイ6上の受光素子6aの配列方向に対して45度の方向となるように、マイクロレンズアレイ5上のマイクロレンズ5aを配列する。換言すれば、マイクロレンズアレイ5上の隣接して配列される2列のマイクロレンズ列(図5に示すA列とB列)は、互いにマイクロレンズ5aの半径だけ位相をずらして配列する。   As apparent from FIGS. 4 and 5, in this embodiment, the arrangement direction of the microlenses 5 a on the microlens array 5 is 45 degrees with respect to the arrangement direction of the light receiving elements 6 a on the light receiving element array 6. The microlenses 5a on the microlens array 5 are arranged so that In other words, two adjacent microlens rows (row A and row B shown in FIG. 5) arranged on the microlens array 5 are arranged with their phases shifted from each other by the radius of the microlens 5a.

水平および垂直方向に隣接するマイクロレンズ5aの中心間距離は、図4に示すように受光素子6aの一辺の長さの整数倍になっている。なお、この中心間距離は受光素子6aの一辺の長さの奇数倍にすることが望ましい。その理由は、マイクロレンズ5aの中心に受光素子6aを配置することができ、かつ、マイクロレンズ5aと受光素子6aの相対関係がどのマイクロレンズ5aに対しても同一となるからである。各マイクロレンズ5aに対応する受光素子領域から焦点検出に用いる受光素子6aを選択する際に、すべてのマイクロレンズ5aで同じ選択パターンとすることができる。つまり、各マイクロレンズ5aに対応する受光素子領域内からバランスよく焦点検出用受光素子を選択することができ、焦点検出結果にマイクロレンズ5aごとの揺らぎが生じるのを防止して焦点検出性能を向上させることができる。   The distance between the centers of the microlenses 5a adjacent in the horizontal and vertical directions is an integral multiple of the length of one side of the light receiving element 6a as shown in FIG. The center distance is desirably an odd multiple of the length of one side of the light receiving element 6a. The reason is that the light receiving element 6a can be arranged at the center of the microlens 5a, and the relative relationship between the microlens 5a and the light receiving element 6a is the same for any microlens 5a. When selecting the light receiving element 6a used for focus detection from the light receiving element region corresponding to each micro lens 5a, the same selection pattern can be used for all the micro lenses 5a. In other words, the focus detection light-receiving element can be selected in a well-balanced manner from within the light-receiving element region corresponding to each microlens 5a, and the focus detection performance is prevented by causing fluctuation for each microlens 5a in the focus detection result. Can be made.

次に、撮影レンズ2の光軸方向におけるマイクロレンズアレイ5と受光素子アレイ6の配置について考察する。上述したように、撮影レンズ2の予定結像面3と光学的に等価な面にマイクロレンズアレイ5が配置され、撮影レンズ2により結像された被写体像がマイクロレンズ5aにより受光素子6a上に投影される。予定結像面3と光学的に等価なマイクロレンズアレイ5の受光面は、撮影レンズ2の瞳面と略共役の位置にあり、受光素子アレイ6の受光素子6aの選択は、この焦点検出光学系において瞳開口を選ぶのと等価である。   Next, the arrangement of the microlens array 5 and the light receiving element array 6 in the optical axis direction of the photographing lens 2 will be considered. As described above, the microlens array 5 is disposed on a surface that is optically equivalent to the planned imaging surface 3 of the photographing lens 2, and the subject image formed by the photographing lens 2 is placed on the light receiving element 6a by the microlens 5a. Projected. The light-receiving surface of the microlens array 5 that is optically equivalent to the planned imaging surface 3 is at a position substantially conjugate with the pupil plane of the photographing lens 2, and the selection of the light-receiving element 6a of the light-receiving element array 6 is the focus detection optical. Equivalent to choosing a pupil opening in the system.

したがって、図3に示す各マイクロレンズ5aの光軸上の受光素子6a、すなわち各マイクロレンズ5aに対応する受光素子領域内の中央の受光素子6aを選択してマイクロレンズアレイ5の像を合成すれば、撮影レンズ2に小さな絞りを配したものと同じになり、焦点深度が深く、いわばパンフォーカスな画像が得られることになる。各マイクロレンズ5aの中心に受光素子6aを配置することによって、焦点位置に拠らない被写体像を得ることができる。   Therefore, the light receiving element 6a on the optical axis of each micro lens 5a shown in FIG. 3, that is, the center light receiving element 6a in the light receiving element region corresponding to each micro lens 5a is selected to synthesize the image of the micro lens array 5. In other words, it is the same as that in which the photographing lens 2 is provided with a small aperture, and a deep focus, that is, a pan-focus image can be obtained. By disposing the light receiving element 6a at the center of each microlens 5a, a subject image that does not depend on the focal position can be obtained.

さらに具体的には、図3の下側に示すマイクロレンズ5aにおいて、黒く塗りつぶされた左右それぞれの受光素子6aの列(群)は、同様に撮影レンズ2において左右短冊状の絞りを透過した被写体像を合成する。この左右の合成像の視差から、撮影レンズ2の焦点調節状態を算出することができる。   More specifically, in the microlens 5a shown in the lower side of FIG. 3, the row (group) of the left and right light receiving elements 6a painted black is the subject that has similarly passed through the left and right strip-shaped apertures in the photographing lens 2. Synthesize the image. From the parallax between the left and right composite images, the focus adjustment state of the photographic lens 2 can be calculated.

この一実施の形態では、以下に示す焦点調節状態の検出方法を採用する。ここでは、図5に示すマイクロレンズアレイ5の水平方向の列から焦点調節状態を検出する例を示す。この場合、図5に示すA列とB列のマイクロレンズ5aに対応する受光素子6aの出力信号に基づいて撮影レンズ2の焦点調節状態を検出する。   In this embodiment, the following focus adjustment state detection method is employed. Here, an example in which the focus adjustment state is detected from the horizontal column of the microlens array 5 shown in FIG. In this case, the focus adjustment state of the photographing lens 2 is detected based on the output signal of the light receiving element 6a corresponding to the micro lens 5a in the A row and the B row shown in FIG.

A列とB列の各マイクロレンズ5aに対応する複数の受光素子6aの中から、図3の下側に示すマイクロレンズ5aのように、左右3個づつの受光素子6aで構成される一対の受光素子群I、Dを形成する。そして、まず受光素子群Iに含まれる3個の受光素子6aの出力信号を加算し、これをA列のj番目のマイクロレンズ5aの左側データAijとする。同様に、受光素子群Dに含まれる3個の受光素子6aの出力信号を加算し、これをA列のj番目のマイクロレンズ5aの右側データAdjとする。   Among a plurality of light receiving elements 6a corresponding to each of the microlenses 5a in the A row and the B row, a pair of light receiving elements 6a each including three right and left like the microlens 5a shown in the lower side of FIG. The light receiving element groups I and D are formed. First, the output signals of the three light receiving elements 6a included in the light receiving element group I are added, and this is used as the left data Aij of the jth microlens 5a in the A column. Similarly, the output signals of the three light receiving elements 6a included in the light receiving element group D are added to obtain the right data Adj of the jth microlens 5a in the A column.

左右一対のデータ列{Aij}と{Adj}の視差、すなわちイメージのずれに基づいて焦点調節情報を得る方法は、従来のTCL(Through Camera Lens)タイプの焦点検出装置と基本的に同様である。まず、一対の列の一方をある量kだけずらしたTakを考える。
Tak=Σ|Aij+k−Adj| ・・・(1)
(1)式において、ΣはA列のj=1〜n(nは焦点検出に用いる受光素子数)の総和を表す。(1)式で表されるTakが最少となるkを求める。本質的にイメージは連続であり、またずれ量も連続的に変化するものであるから、このように離散的な計算から得られた離散的なデータTak列を内挿してずれ量HAを求める。
The method of obtaining focus adjustment information based on the parallax of the pair of left and right data strings {Aij} and {Adj}, that is, the image shift, is basically the same as a conventional TCL (Through Camera Lens) type focus detection device. . First, consider Tak in which one of a pair of columns is shifted by a certain amount k.
Tak = Σ | Aij + k−Adj | (1)
In the equation (1), Σ represents the total sum of j = 1 to n in the A column (n is the number of light receiving elements used for focus detection). Find k that minimizes Tak expressed by equation (1). Since the image is essentially continuous and the shift amount also changes continuously, the shift amount HA is obtained by interpolating the discrete data Tak sequence obtained from the discrete calculation in this way.

上述したように、この列は不感帯を含んでおり、マイクロレンズアレイ5の近傍に被写体像面があると、この計算結果の信頼性は低下する。そこで、A列のマイクロレンズ5aに隣接し、レンズ半ピッチ分だけ位置がずれているB列のマイクロレンズ5aに対応するデータを利用する。A列データを計算したのと同様に、Tbkを求める。
Tbk=Σ|Bij+k−Bdj| ・・・(2)
(2)式において、ΣはB列のj=1〜n(nは焦点検出に用いる受光素子数)の操作を表す。このB列データTbkを内挿してずれ量HBを求め、このずれ量HBと上記A列のずれ量HAの相加平均ないしは相乗平均をとり、焦点調節情報とすることができる。
As described above, this column includes a dead zone, and if the subject image plane is in the vicinity of the microlens array 5, the reliability of the calculation result decreases. Therefore, data corresponding to the microlenses 5a in the B row, which are adjacent to the microlenses 5a in the A row and whose positions are shifted by the lens half pitch, is used. Tbk is obtained in the same manner as the column A data is calculated.
Tbk = Σ | Bij + k−Bdj | (2)
In the equation (2), Σ represents an operation of j = 1 to n (n is the number of light receiving elements used for focus detection) in the B row. The B column data Tbk is interpolated to obtain a shift amount HB, and an arithmetic average or a geometric average of the shift amount HB and the shift amount HA of the A column can be obtained as focus adjustment information.

このようにすれば、相補的に位置する二つの列、A列とB列とが互いの不感帯を補い合い、被写体像がマイクロレンズアレイ5の受光面の近傍にあっても安定した焦点検出結果を得ることができる。   In this way, the two rows, A row and B row, which are complementarily positioned complement each other's dead band, and a stable focus detection result can be obtained even if the subject image is in the vicinity of the light receiving surface of the microlens array 5. Can be obtained.

この計算は、一対のデータ列{Adj}と{Bdj}を互い違いに整列させた新たなデータ列{Cdj}と、一対のデータ列{Aij}と{Bij}を互い違いに配列させた新たなデータ列{Cij}を考え、これらのデータ列{Cdj}と{Cij}のずれ量を算出しても同様な効果が得られる。このとき、データ列{Cdj}と{Cij}は、
{Cdj}=・・,Adj,Bdj,Adj+1,Bdj+1,Adj+2,Bdj+2,・・、
{Cij}=・・,Aij,Bij,Aij+1,Bij+1,Aij+2,Bij+2,・・ ・・・(3)
のようなA列とB列とを合わせた長さを持つ数列となる。この数列から従来の方法でずれ量HCを算出すればよい。
In this calculation, a new data string {Cdj} in which a pair of data strings {Adj} and {Bdj} are alternately arranged, and a new data in which a pair of data strings {Aij} and {Bij} are alternately arranged. Considering the sequence {Cij}, the same effect can be obtained by calculating the shift amount between these data sequences {Cdj} and {Cij}. At this time, the data strings {Cdj} and {Cij}
{Cdj} = ・ ・, Adj, Bdj, Adj + 1, Bdj + 1, Adj + 2, Bdj + 2, ...
{Cij} = ..., Aij, Bij, Aij + 1, Bij + 1, Aij + 2, Bij + 2, ... (3)
Thus, the sequence is a number sequence having a combined length of the A column and the B column. The deviation amount HC may be calculated from this sequence by a conventional method.

また、演算量を少なくするために、次のような計算方法を採用してもよい。この場合、上述したデータ列の合成ではなく、算出値の合成になる。まず、データ列{Adj}と{Aij}からずれ量HAを算出し、同様にデータ列{Bdj}と{Bij}からずれ量HBを算出する。この値は配列上、相補的であるから、ずれ量Hを、
H=√(HA・HB) ・・・(4)
あるいは、
H=(HA+HB)/2 ・・・(5)
として求める。これによって、不感帯の影響を小さくした焦点調節情報を得ることができる。
In order to reduce the amount of calculation, the following calculation method may be employed. In this case, instead of the above-described data string synthesis, the calculation values are synthesized. First, the shift amount HA is calculated from the data strings {Adj} and {Aij}, and similarly, the shift amount HB is calculated from the data strings {Bdj} and {Bij}. Since this value is complementary on the sequence, the deviation H is
H = √ (HA / HB) (4)
Or
H = (HA + HB) / 2 (5)
Asking. Thereby, it is possible to obtain focus adjustment information in which the influence of the dead zone is reduced.

この正方配列では、水平方向と垂直方向が回転対称であるから、垂直方向についても同様である。被写体の焦点が合焦点付近で上記不感帯への配慮が不要なときには、45度方向のマイクロレンズ列を用いて焦点検出を行うことも可能である。この場合、隣接する列を用いても配置が相補的ではないので、データ量を増やすことは揺らぎを安定させる意味しかなく、一列の処理で充分である。各マイクロレンズ5aに対応する受光素子群は、例えば図6の上に示すマイクロレンズ5aに対応する一対の受光素子群のようにすると、この演算に適したデータが用意できる。   In this square arrangement, since the horizontal direction and the vertical direction are rotationally symmetric, the same applies to the vertical direction. When it is not necessary to consider the dead zone when the subject is in focus, it is possible to perform focus detection using a microlens array in the 45 degree direction. In this case, since the arrangement is not complementary even if adjacent columns are used, increasing the amount of data only has the meaning of stabilizing fluctuations, and processing in one column is sufficient. When the light receiving element group corresponding to each microlens 5a is, for example, a pair of light receiving element groups corresponding to the microlens 5a shown in FIG. 6, data suitable for this calculation can be prepared.

各マイクロレンズ5aに対応する受光素子領域の中から一対の焦点検出用受光素子群を選択する際には、マイクロレンズ5aの配列や基線の向きに応じて選択方法を変える必要がある。撮影レンズ2の開口より大きな瞳を設けることはできないから、撮影レンズ2の絞り値によって受光素子群の選択を変える必要がある。また、受光素子6aへの入射光量、あるいは受光素子群に入る光子の量が、受光素子6aの蓄積時間もしくはサンプリング時間に影響することから、光量が少ない場合には受光素子群の領域を広げ(図3の下側のマイクロレンズおよび図7の下側マイクロレンズ5a参照)、多いときには受光素子群の領域を理想に近い小さな領域とする必要がある(図7の下側のマイクロレンズ5a参照)。基線の方向が回転するときには、もちろんそれに応じて受光素子群の選択位置を変化させる必要がある。   When selecting a pair of focus detection light receiving element groups from the light receiving element regions corresponding to each micro lens 5a, it is necessary to change the selection method according to the arrangement of the micro lenses 5a and the direction of the base line. Since a pupil larger than the aperture of the photographing lens 2 cannot be provided, it is necessary to change the selection of the light receiving element group according to the aperture value of the photographing lens 2. Further, the amount of light incident on the light receiving element 6a or the amount of photons entering the light receiving element group affects the accumulation time or sampling time of the light receiving element 6a. 3 and the lower microlens 5a in FIG. 7), the area of the light receiving element group needs to be a small area close to the ideal (see the lower microlens 5a in FIG. 7). . When the direction of the base line rotates, of course, it is necessary to change the selected position of the light receiving element group accordingly.

なお、理想的な瞳位置を種々の状況に応じていくつかの有限個の受光素子群の結合としているため、基線長には一定の誤差が生じる。焦点ずれの値は基線長に対して線形であるから、この誤差は焦点ずれの値にそのままかかってくることになる。そこで、各受光素子群の選択の仕方それぞれに対応する基線長テーブルを用意し、受光素子群を選択するときには必要な基線長をテーブルから読み出し、実効的な値として援用する。   Since the ideal pupil position is a combination of several finite number of light receiving element groups according to various situations, a certain error occurs in the baseline length. Since the defocus value is linear with respect to the baseline length, this error is directly applied to the defocus value. Therefore, a baseline length table corresponding to each method of selecting each light receiving element group is prepared, and when selecting a light receiving element group, a necessary baseline length is read from the table and used as an effective value.

一実施の形態の焦点検出装置を備えたカメラの横断面図1 is a cross-sectional view of a camera including a focus detection device according to an embodiment. マイクロレンズアレイと受光素子アレイの拡大図Enlarged view of micro lens array and light receiving element array マイクロレンズアレイ上の各マイクロレンズに対応する受光素子アレイ上の受光素子の配列と、一対の焦点検出用受光素子群の選択方法を示す図The figure which shows the selection method of the light receiving element group for light detection element array on a light receiving element array corresponding to each micro lens on a micro lens array, and a pair of light receiving element group for focus detection マイクロレンズアレイ上の各マイクロレンズに対応する受光素子アレイ上の受光素子の配列を示す図The figure which shows the arrangement | sequence of the light receiving element on the light receiving element array corresponding to each micro lens on a micro lens array マイクロレンズアレイ上のマイクロレンズの配列を示す図The figure which shows the arrangement of the micro lens on the micro lens array マイクロレンズアレイ上の各マイクロレンズに対応する受光素子アレイ上の受光素子の配列と、一対の焦点検出用受光素子群の選択方法を示す図The figure which shows the selection method of the light receiving element group for light detection element array on a light receiving element array corresponding to each micro lens on a micro lens array, and a pair of light receiving element group for focus detection マイクロレンズアレイ上の各マイクロレンズに対応する受光素子アレイ上の受光素子の配列と、一対の焦点検出用受光素子群の選択方法を示す図The figure which shows the selection method of the light receiving element group for light detection element array on a light receiving element array corresponding to each micro lens on a micro lens array, and a pair of light receiving element group for focus detection

符号の説明Explanation of symbols

1 カメラ
2 撮影レンズ
5 マイクロレンズアレイ
5a マイクロレンズ
6 受光素子アレイ
6a 受光素子
DESCRIPTION OF SYMBOLS 1 Camera 2 Shooting lens 5 Micro lens array 5a Micro lens 6 Light receiving element array 6a Light receiving element

Claims (3)

撮影光学系の予定結像面近傍に、二次元状に配置される複数のマイクロレンズと、
前記複数のマイクロレンズの各々を透過した光束を受光するように各マイクロレンズの背後に二次元状に配置される複数の受光素子と、
所定の方向に配列された前記マイクロレンズの各々に対して、当該マイクロレンズの光軸を中心として前記所定の方向に対称な位置に位置する一対の受光素子群を選択して、各受光素子群の出力信号を加算して、一対の加算出力信号を算出する選択手段と、
前記選択手段によって算出された一対の加算出力信号に基づき焦点検出する焦点検出手段と、を備え、
前記選択手段は、前記受光素子への入射光量が多い時には、前記受光素子群の受光素子数が少なくかつ前記一対の受光素子群のそれぞれの受光素子数が等しくなるように、前記受光素子への入射光量が少ない時には、前記受光素子群の受光素子数が多くかつ前記一対の受光素子群のそれぞれの受光素子数が等しくなるように、前記受光素子への入射光量に応じて前記受光素子群の受光素子数を変更し、
前記受光素子数が変更された一対の受光素子群の基線長を、前記各受光素子群の選択の仕方それぞれに対応する基線長が記憶されたテーブルから読み出して、前記読み出した基線長を前記焦点検出手段による焦点検出に用いることを特徴とする撮像装置。
A plurality of microlenses arranged two-dimensionally in the vicinity of the planned imaging plane of the photographing optical system;
A plurality of light receiving elements arranged two-dimensionally behind each micro lens so as to receive a light beam transmitted through each of the plurality of micro lenses;
For each of the microlenses arranged in a predetermined direction, a pair of light receiving element groups positioned at positions symmetrical to the predetermined direction with the optical axis of the microlens as the center is selected, and each light receiving element group Selecting means for adding a pair of output signals to calculate a pair of added output signals;
A focus detection means for detecting a focus based on a pair of added output signals calculated by the selection means,
When the amount of light incident on the light receiving element is large, the selection unit applies the light to the light receiving element so that the number of light receiving elements in the light receiving element group is small and the number of light receiving elements in the pair of light receiving element groups is equal. When the amount of incident light is small, the number of light receiving elements in the light receiving element group is large and the number of light receiving elements in the pair of light receiving element groups is equal to each other. Change the number of light receiving elements ,
The base line length of the pair of light receiving element groups in which the number of light receiving elements is changed is read from a table in which base line lengths corresponding to the selection methods of the respective light receiving element groups are stored, and the read base line length is read from the focal point. An imaging apparatus used for focus detection by a detection means .
請求項1に記載の撮像装置において、
前記複数のマイクロレンズの各々において、当該マイクロレンズの光軸上に配置された前記受光素子の出力信号に基づき、画像を生成する画像生成手段を更に備えることを特徴とする撮像装置。
The imaging device according to claim 1,
Each of the plurality of microlenses further includes image generation means for generating an image based on an output signal of the light receiving element disposed on the optical axis of the microlens.
請求項1または2に記載の撮像装置において、
前記受光素子群の受光素子は、互いに隣接していることを特徴とする撮像装置。
The imaging device according to claim 1 or 2,
The light receiving element of the light receiving element group is adjacent to each other.
JP2007079154A 2007-03-26 2007-03-26 Imaging device Expired - Fee Related JP5380782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079154A JP5380782B2 (en) 2007-03-26 2007-03-26 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079154A JP5380782B2 (en) 2007-03-26 2007-03-26 Imaging device

Publications (2)

Publication Number Publication Date
JP2008241872A JP2008241872A (en) 2008-10-09
JP5380782B2 true JP5380782B2 (en) 2014-01-08

Family

ID=39913346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079154A Expired - Fee Related JP5380782B2 (en) 2007-03-26 2007-03-26 Imaging device

Country Status (1)

Country Link
JP (1) JP5380782B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472584B2 (en) * 2008-11-21 2014-04-16 ソニー株式会社 Imaging device
JP5446311B2 (en) * 2009-02-20 2014-03-19 株式会社ニコン Imaging device
JP5515396B2 (en) * 2009-05-08 2014-06-11 ソニー株式会社 Imaging device
CN103081457B (en) * 2010-08-24 2016-04-13 富士胶片株式会社 Solid state image pickup device
JP6172978B2 (en) * 2013-03-11 2017-08-02 キヤノン株式会社 IMAGING DEVICE, IMAGING SYSTEM, SIGNAL PROCESSING DEVICE, PROGRAM, AND STORAGE MEDIUM
JP6289017B2 (en) * 2013-03-27 2018-03-07 キヤノン株式会社 Imaging apparatus, control method therefor, program, and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185191A (en) * 1978-06-05 1980-01-22 Honeywell Inc. Range determination system
JPS58150920A (en) * 1982-03-04 1983-09-07 Nippon Kogaku Kk <Nikon> Focus detector
JPH06324414A (en) * 1993-05-11 1994-11-25 Aloka Co Ltd Thermal phosphor sheet developing device
JPH1096852A (en) * 1996-09-20 1998-04-14 Kyocera Corp Focus detector using two-dimensional imaging device
JP2000125180A (en) * 1998-10-20 2000-04-28 Olympus Optical Co Ltd Electronic camera
JP4826152B2 (en) * 2005-06-23 2011-11-30 株式会社ニコン Image composition method and imaging apparatus

Also Published As

Publication number Publication date
JP2008241872A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5191168B2 (en) Focus detection apparatus and imaging apparatus
JP4961993B2 (en) Imaging device, focus detection device, and imaging device
JP4673202B2 (en) Image input device
JP5375010B2 (en) Imaging device
JP5157128B2 (en) Focus detection apparatus and imaging apparatus
JP5094068B2 (en) Imaging apparatus and focus control method
US20110317042A1 (en) Image Pickup System
JP5380782B2 (en) Imaging device
JP6124564B2 (en) Focus detection apparatus and method, and imaging apparatus
JP2008209761A (en) Focus detecting device and imaging apparatus
JP2015194706A5 (en)
US20110249156A1 (en) Image pickup apparatus and camera
JP2008299184A (en) Imaging apparatus and focus detecting device
JP5448731B2 (en) Focus detection device
JP2008026789A (en) Imaging apparatus and method for controlling focus
US20200252568A1 (en) Image sensor and image capture apparatus
JP2013258500A (en) Imaging device
JP4821674B2 (en) Focus detection apparatus and imaging apparatus
JP2007139935A (en) Focus detecting device and imaging device having the focus detecting device
JP4802864B2 (en) Focus detection apparatus and imaging apparatus
JP2015141285A (en) Focus detection device, focus adjustment device and camera
JP2009151154A (en) Photodetector, focus detector and imaging apparatus
US7582854B2 (en) Focus detection apparatus for detecting a relative positional relationship between a pair of object images
JP5220375B2 (en) Imaging apparatus and imaging apparatus having the same
JP2016031446A (en) Imaging device and method of controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5380782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees