JP5378660B2 - Gimbal mechanism, infrared induction device, and control method of gimbal mechanism - Google Patents

Gimbal mechanism, infrared induction device, and control method of gimbal mechanism Download PDF

Info

Publication number
JP5378660B2
JP5378660B2 JP2007188608A JP2007188608A JP5378660B2 JP 5378660 B2 JP5378660 B2 JP 5378660B2 JP 2007188608 A JP2007188608 A JP 2007188608A JP 2007188608 A JP2007188608 A JP 2007188608A JP 5378660 B2 JP5378660 B2 JP 5378660B2
Authority
JP
Japan
Prior art keywords
housing
axis
plane
control
drive unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007188608A
Other languages
Japanese (ja)
Other versions
JP2009024938A (en
Inventor
栄一 徳見
隆志 吉田
隆仁 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007188608A priority Critical patent/JP5378660B2/en
Publication of JP2009024938A publication Critical patent/JP2009024938A/en
Application granted granted Critical
Publication of JP5378660B2 publication Critical patent/JP5378660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gimbal mechanism capable of quickly and accurately controlling an orientation, an infrared guidance device and a control method for the gimbal mechanism. <P>SOLUTION: This gimbal mechanism includes: a first casing 5a making a detecting part 2 turnable around a first axis in a first plane, a first driving part 6a, a first angle detecting part 7a, a second detecting casing 5b making the first casing 5a turnable around a second axis in a second plane, a second driving part 6b, a second angle detecting part 7b, a third casing 5c making the second casing 5b turnable around a third axis in the first plane, a third driving part 6c, a third angle detecting part 7c, a fourth casing 5d making the third casing turnable around a fourth axis in the second plane, a fourth driving part 6d, and a fourth angle detecting part 7d wherein, when the second casing 5b is turned by the third driving part 6c, the detecting pat 2 is turned to cancel deviation in rotating angle, and when the third casing 5c is turned by the fourth driving part 6d, the first casing 5a is turned to cancel deviation in rotating angle. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、ジンバル機構及び該ジンバル機構を備える機器並びに該ジンバル機構の制御方法に関し、特に、赤外線検知器を載置するジンバル機構及び該ジンバル機構を備える赤外線誘導装置並びに該ジンバル機構の制御方法に関する。   The present invention relates to a gimbal mechanism, a device including the gimbal mechanism, and a control method for the gimbal mechanism, and more particularly, to a gimbal mechanism for mounting an infrared detector, an infrared induction device including the gimbal mechanism, and a control method for the gimbal mechanism. .

ミサイルなどの飛翔体に搭載される赤外線誘導装置として、図7に示すような装置がある。この赤外線誘導装置12は、飛翔体先端部のドーム内に設置される2軸の自由度を有するジンバル13と、ジンバル13を2軸の各々で駆動する第1駆動部14a及び第2駆動部14bと、ジンバル13の2軸の角度を検出する第1角度検出部15a及び第2角度検出部15bと、飛翔体の角速度(レート)を検出するレート検出部9と、ジンバル13上に固定される集光光学系3及び検知器4と、検知器4からの信号を処理して赤外線画像を生成し、該赤外線画像をオートパイロット18に送信すると共に、オートパイロット18からの角度指令と第1角度検出部15a及び第2角度検出部15bからの角度情報とに基づく角度制御信号と、オートパイロット18からのレート指令とレート検出部9からのレート情報とに基づくレート制御信号とからなる制御信号を生成し、該制御信号を駆動制御部16に送信する演算処理部17と、演算処理部17からの制御信号に基づいて第1駆動部14a及び第2駆動部14bを制御する駆動制御部16と、演算処理部17からの赤外線画像を解析して目標物を検出し、飛翔体の進行方向を制御すると共に、演算処理部17に角度指令及びレート指令を送るオートパイロット18とを備えている。   As an infrared guidance device mounted on a flying object such as a missile, there is a device as shown in FIG. This infrared guiding device 12 includes a biaxial freedom gimbal 13 installed in the dome at the tip of the flying object, and a first drive unit 14a and a second drive unit 14b that drive the gimbal 13 with each of the two axes. A first angle detector 15a and a second angle detector 15b for detecting the biaxial angle of the gimbal 13; a rate detector 9 for detecting the angular velocity (rate) of the flying object; The condensing optical system 3 and the detector 4, and signals from the detector 4 are processed to generate an infrared image, the infrared image is transmitted to the autopilot 18, and the angle command from the autopilot 18 and the first angle Rate control based on angle control signal based on angle information from detection unit 15a and second angle detection unit 15b, rate command from autopilot 18 and rate information from rate detection unit 9 A control processing unit 17 that generates a control signal composed of a signal and transmits the control signal to the drive control unit 16, and the first drive unit 14a and the second drive unit 14b based on the control signal from the calculation processing unit 17 Autopilot which detects the target by analyzing the infrared image from the drive control unit 16 to be controlled and the arithmetic processing unit 17 and controls the traveling direction of the flying object, and sends the angle command and the rate command to the arithmetic processing unit 17 18.

そして、目標物から放射された赤外線は集光光学系3によって検知器4に集光され、集光された赤外線は検知器4で電気信号に変換されて演算処理部17に送られ、演算処理部17では該信号からTVモニタ等の表示装置に適した形態の赤外線画像を生成してオートパイロット18に送信し、オートパイロット18ではその赤外線画像を解析して目標物を検出し、飛翔体の進行方向を制御すると共に、角度の目標値である角度指令とレートの目標値であるレート指令とを演算処理部17に送る。一方、ジンバル13の2軸の角度は各々第1角度検出部15a及び第2角度検出部15bで検出されて演算処理部17に送られ、また、飛翔体の角速度はレート検出部9で検出されて演算処理部17に送られる。   And the infrared rays radiated from the target are condensed on the detector 4 by the condensing optical system 3, and the condensed infrared rays are converted into electric signals by the detector 4 and sent to the arithmetic processing unit 17 for arithmetic processing. The unit 17 generates an infrared image in a form suitable for a display device such as a TV monitor from the signal and transmits it to the autopilot 18. The autopilot 18 detects the target by analyzing the infrared image and detects the flying object. While controlling the traveling direction, an angle command that is a target value of an angle and a rate command that is a target value of a rate are sent to the arithmetic processing unit 17. On the other hand, the biaxial angles of the gimbal 13 are detected by the first angle detector 15a and the second angle detector 15b, respectively, and sent to the arithmetic processing unit 17, and the angular velocity of the flying object is detected by the rate detector 9. To the arithmetic processing unit 17.

演算処理部17では、オートパイロット18からの角度指令と第1角度検出部15a及び第2角度検出部15bからの角度情報とに基づいて角度制御信号を生成して駆動制御部16に送信すると共に、オートパイロット18からのレート指令とレート検出部9からのレート情報とに基づいてレート制御信号を生成して駆動制御部16に送信する。そして、これらの制御信号を送信した駆動制御部16では第1駆動部14a及び第2駆動部14bを制御し、ジンバル13を目標物に向けて目標物の追尾を行う。このような制御を行う赤外線誘導装置として、例えば、下記特許文献1に記載された赤外線追尾装置がある。   The arithmetic processing unit 17 generates an angle control signal based on the angle command from the autopilot 18 and the angle information from the first angle detection unit 15a and the second angle detection unit 15b, and transmits the angle control signal to the drive control unit 16. Based on the rate command from the autopilot 18 and the rate information from the rate detector 9, a rate control signal is generated and transmitted to the drive controller 16. The drive control unit 16 that has transmitted these control signals controls the first drive unit 14a and the second drive unit 14b, and tracks the target with the gimbal 13 facing the target. As an infrared guidance device that performs such control, for example, there is an infrared tracking device described in Patent Document 1 below.

特開2000−147123号公報(第3−6頁、第1図)JP 2000-147123 A (page 3-6, FIG. 1)

このように、上記赤外線誘導装置では、広範囲な領域を走査するために、図8に示すように、アウタジンバル軸及びインナジンバル軸の2軸で回転可能なジンバル13に集光光学系3と集光した入射光を検知する検知器4とを含む検知部2を載置し、アウタトルクモータ及びインナトルクモータなどの2つの駆動手段(第1駆動部14a及び第2駆動部14b)や2つの角度検出手段(第1角度検出部15a及び第2角度検出部15b)を用いて検知部2の方向を制御している。   As described above, in the infrared guiding device, in order to scan a wide area, as shown in FIG. The detector 2 including the detector 4 that detects the incident light is placed, and two driving means (a first driving unit 14a and a second driving unit 14b) such as an outer torque motor and an inner torque motor, The direction of the detection unit 2 is controlled using angle detection means (first angle detection unit 15a and second angle detection unit 15b).

しかしながら、各々の軸に対して1つの駆動手段を用いてジンバル13を回転させた場合、トルクモータなどの駆動手段の特性上、ジンバル13を目標とする回転角で正確に停止させることはできず、図9(a)に示すように、オーバーシュートやアンダーシュートによって回転角が変動してしまい、目標とする回転角に到達するまでに時間を要するという問題があった。また、図9(b)に示すように、回転速度を徐々に落としてオーバーシュートやアンダーシュートを抑制することも可能であるが、この方法でも、目標とする回転角に到達するまでに時間を要するという問題があった。   However, when the gimbal 13 is rotated using one driving means for each shaft, the gimbal 13 cannot be stopped accurately at the target rotation angle due to the characteristics of the driving means such as a torque motor. As shown in FIG. 9A, the rotation angle fluctuates due to overshoot or undershoot, and there is a problem that it takes time to reach the target rotation angle. In addition, as shown in FIG. 9B, it is possible to gradually reduce the rotation speed to suppress overshoot and undershoot. However, even with this method, it takes time to reach the target rotation angle. There was a problem that it took.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、迅速且つ正確に制御対象物の向きを制御することができるジンバル機構及び赤外線誘導装置並びにジンバル機構の制御方法を提供することにある。   The present invention has been made in view of the above problems, and its main object is to provide a gimbal mechanism, an infrared induction device, and a control method for the gimbal mechanism that can quickly and accurately control the orientation of a control object. It is to provide.

上記目的を達成するために、本発明は、制御対象物の向きを制御するジンバル機構であって、第1の平面内の2つの軸と、前記第1の平面と交差する第2の平面内の2つの軸とからなる4つの軸で回動可能に構成され、前記第1の平面内の一方の軸と前記第2の平面内の一方の軸とが直交し、前記第2平面内の一方の軸と前記第1の平面内の他方の軸とが直交し、前記第1の平面内の他方の軸と前記第2の平面内の他方の軸とが直交するとともに、全ての軸が略一点で交差し、前記ジンバル機構は、前記制御対象物を第1の平面内の第1の軸を中心に回動可能に保持する第1筐体、及び、前記第1筐体に固定され、前記第1の軸を中心に前記制御対象物を回動させる第1駆動部と、前記第1筐体を前記第1の平面と交差する第2の平面内の第2の軸を中心に回動可能に保持する第2筐体、及び、前記第2筐体に固定され、前記第2の軸を中心に前記第1筐体を回動させる第2駆動部と、前記第2筐体を前記第1の平面内の第3の軸を中心に回動可能に保持する第3筐体、及び、前記第3筐体に固定され、前記第2筐体を前記第3の軸を中心に回動させる第3駆動部と、前記第3筐体を前記第2の平面内の第4の軸を中心に回動可能に保持する第4筐体、及び、前記第4筐体に固定され、前記第3筐体を前記第4の軸を中心に回動させる第4駆動部と、駆動制御部を備え、前記駆動制御部は、前記第3駆動部を用いて前記第2筐体を回動させる際に、前記第3筐体に対する前記第2筐体の目標とする回転角において前記第3筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第1駆動部を用いて前記制御対象物を回動させ、前記第4駆動部を用いて前記第3筐体を回動させる際に、前記第4筐体に対する前記第3筐体の目標とする回転角において、前記第4筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第2駆動部を用いて前記第1筐体を回動させる制御を行うことを特徴とする。 In order to achieve the above object, the present invention provides a gimbal mechanism for controlling the orientation of an object to be controlled, and includes two axes in a first plane and a second plane that intersects the first plane. The two axes are configured to be rotatable about four axes, and one axis in the first plane and one axis in the second plane are orthogonal to each other in the second plane. One axis is orthogonal to the other axis in the first plane, the other axis in the first plane is orthogonal to the other axis in the second plane, and all axes are The gimbal mechanism intersects at substantially one point, and the gimbal mechanism is fixed to the first casing that holds the control target so as to be rotatable about a first axis in a first plane, and to the first casing. A first drive unit that rotates the object to be controlled around the first axis, and a first drive unit in a second plane that intersects the first plane with the first housing. A second housing that is rotatably held about the axis of the second, and a second drive unit that is fixed to the second housing and rotates the first housing about the second axis; A third housing for rotatably holding the second housing around a third axis in the first plane; and the second housing is fixed to the third housing, and the second housing is attached to the first housing. A third drive section that rotates about a third axis, a fourth casing that holds the third casing so as to be rotatable about a fourth axis in the second plane, and the first A fourth drive unit fixed to the four housings and rotating the third housing around the fourth axis; and a drive control unit, wherein the drive control unit uses the third drive unit. when rotating the second housing, such that the rotational speed of the control object with respect to the third housing in the rotational angle of the target of the second housing relative to the third housing becomes zero The target of the third housing relative to the fourth housing when the control object is rotated using the first driving portion and the third housing is rotated using the fourth driving portion. And controlling the rotation of the first casing using the second drive unit so that the rotation speed of the control object with respect to the fourth casing becomes zero at a rotation angle of To do.

また、本発明に係る赤外線誘導装置は、上記のジンバル機構を具備し、入射赤外線を集光する集光光学系と集光された前記赤外線を電気信号に変換する検知器とを含む検知部を前記制御対象物とし、前記検知部からの電気信号に基づいて生成される画像を参照して飛翔体を目標物に誘導するIn addition, an infrared guiding device according to the present invention includes the above-described gimbal mechanism, and includes a detection unit including a condensing optical system that condenses incident infrared light and a detector that converts the collected infrared light into an electrical signal. The flying object is guided to the target with reference to an image generated based on the electric signal from the detection unit as the control object .

また、本発明は、制御対象物の向きを制御するジンバル機構の制御方法であって、前記ジンバル機構を、第1の平面内の2つの軸と、前記第1の平面と交差する第2の平面内の2つの軸とからなる4つの軸で回動可能に構成され、前記第1の平面内の一方の軸と前記第2の平面内の一方の軸とが直交し、前記第2平面内の一方の軸と前記第1の平面内の他方の軸とが直交し、前記第1の平面内の他方の軸と前記第2の平面内の他方の軸とが直交するとともに、全ての軸が略一点で交差し、前記制御対象物を第1の平面内の第1の軸を中心に回動可能に保持する第1筐体、及び、前記第1筐体に固定され、前記第1の軸を中心に前記制御対象物を回動させる第1駆動部と、前記第1筐体を前記第1の平面と交差する第2の平面内の第2の軸を中心に回動可能に保持する第2筐体、及び、前記第2筐体に固定され、前記第2の軸を中心に前記第1筐体を回動させる第2駆動部と、前記第2筐体を前記第1の平面内の第3の軸を中心に回動可能に保持する第3筐体、及び、前記第3筐体に固定され、前記第2筐体を前記第3の軸を中心に回動させる第3駆動部と、前記第3筐体を前記第2の平面内の第4の軸を中心に回動可能に保持する第4筐体、及び、前記第4筐体に固定され、前記第3筐体を前記第4の軸を中心に回動させる第4駆動部と、で構成し、前記第3駆動部を用いて前記第2筐体を回動させる場合は、
前記第3筐体に対する前記第2筐体の目標とする回転角において前記第3筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第1駆動部を用いて前記制御対象物を回動させる第1の制御を行い、前記第4駆動部を用いて前記第3筐体を回動させる場合は、前記第4筐体に対する前記第3筐体の目標とする回転角において、前記第4筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第2駆動部を用いて前記第1筐体を回動させる第2の制御を行うことを特徴とする。
The present invention is also a method for controlling a gimbal mechanism that controls the orientation of a control object, wherein the gimbal mechanism is configured to have a second axis that intersects the two axes in the first plane and the first plane. It is configured to be rotatable about four axes including two axes in a plane, and one axis in the first plane and one axis in the second plane are orthogonal to each other, and the second plane And the other axis in the first plane is orthogonal, the other axis in the first plane is orthogonal to the other axis in the second plane, and all axes A shaft intersects at substantially one point, and is fixed to the first housing, the first housing holding the control object so as to be rotatable around a first shaft in a first plane, and the first housing A first drive unit that rotates the control object about one axis, and a second axis in a second plane that intersects the first plane with the first housing. A second housing that is pivotably held, a second drive unit that is fixed to the second housing and rotates the first housing around the second axis, and the second housing A third housing that holds the body pivotably about a third axis in the first plane, and is fixed to the third housing, and the second housing is attached to the third shaft. A third drive unit that rotates about the center, a fourth case that holds the third case so as to be rotatable about a fourth axis in the second plane, and the fourth case A fourth drive unit that is fixed and rotates the third housing around the fourth axis, and when the second housing is rotated using the third drive unit,
Using the first drive unit, the control object is set so that the rotation speed of the control object with respect to the third housing becomes zero at a target rotation angle of the second housing with respect to the third housing . the performing a first control to rotate, when rotating the third housing with said fourth driving unit, the rotation angle of a target of the third housing with respect to the fourth casing, The second control for rotating the first casing using the second drive unit is performed so that the rotation speed of the control target with respect to the fourth casing becomes zero.

本発明のジンバル機構及び赤外線誘導装置並びにジンバル機構の制御方法によれば、迅速且つ正確に検知部などの制御対象物の向きを制御することができる。   According to the control method of the gimbal mechanism, the infrared guiding device, and the gimbal mechanism of the present invention, the direction of the control object such as the detection unit can be controlled quickly and accurately.

その理由は、ジンバル機構を、集光光学系と検知器とを含む検知部などの制御対象物を第1の平面内の第1の軸を中心に回動可能にする第1筐体、第1駆動部及び第1角度検出部と、第1筐体を第1の平面に交差する第2の平面内の第2の軸を中心に回動可能にする第2筐体、第2駆動部及び第2角度検出部と、第2筐体を第1の平面内の第3の軸を中心に回動可能にする第3筐体、第3駆動部及び第3角度検出部と、第3筐体を第2の平面内の第4の軸を中心に回動可能にする第4筐体、第4駆動部及び第4角度検出部とで構成し、ジンバル機構の動作を制御する駆動制御部では、第3駆動部を用いて第3の軸を中心に第2筐体を回動させる際に、第2筐体の回転角のずれを打ち消すように、第1駆動部を用いて第1の軸を中心に制御対象物を回動させ、第4駆動部を用いて第4の軸を中心に第3筐体を回動させる際に、第3筐体の回転角のずれを打ち消すように、第2駆動部を用いて第2の軸を中心に第1筐体を回動させる制御を行うからである。   The reason is that the gimbal mechanism has a first housing that allows a control object such as a detection unit including a condensing optical system and a detector to rotate about a first axis in the first plane, 1 drive part, 1st angle detection part, 2nd housing | casing which can rotate centering on the 2nd axis | shaft in the 2nd plane which cross | intersects 1st housing | casing to a 1st plane, 2nd drive part And a second angle detector, a third housing that allows the second housing to rotate around a third axis in the first plane, a third drive unit, a third angle detector, and a third Drive control for controlling the operation of the gimbal mechanism, which includes a fourth housing, a fourth drive unit, and a fourth angle detection unit that allow the housing to rotate about a fourth axis in the second plane. When the second housing is rotated about the third axis using the third drive unit, the first drive unit is used to cancel the rotational angle deviation of the second housing. Control target around 1 axis When the third housing is rotated around the fourth axis using the fourth drive unit, the second drive unit is used so as to cancel the shift of the rotation angle of the third housing. This is because control is performed to rotate the first housing around the second axis.

従来技術で示したように、従来の赤外線誘導装置には、集光光学系と検知器とを含む検知部を直交する2軸で回転させるジンバル機構が設けられているが、各々の軸を中心に回転させる場合に、目標とする回転角で正確にジンバルを停止させることができず、いわゆるオーバーシュートやアンダーシュートが発生し、目標とする回転角に到達するまでに時間を要するという問題があり、高速で飛翔する目標を捕捉して追尾する赤外線誘導装置にとっては重大な問題であった。   As shown in the prior art, a conventional infrared guidance device is provided with a gimbal mechanism that rotates a detection unit including a condensing optical system and a detector on two orthogonal axes. , The gimbal cannot be stopped accurately at the target rotation angle, so-called overshoot or undershoot occurs, and it takes time to reach the target rotation angle. This is a serious problem for an infrared guidance device that captures and tracks a target flying at high speed.

そこで、本願では、迅速且つ正確に検知部の向きを制御するために、ジンバル機構を2軸で駆動するのではなく、第1の平面(例えば赤外光の入射軸に直交する平面)内の2つの軸と、第1の平面に交差する第2の平面(例えば赤外光の入射軸を含む平面)内の2つの軸の合計4つの軸を中心に回動可能にし、対となる2つの軸の一方の軸を中心にして回動させる際に、回転角のずれを打ち消すように、他方の軸を一方の軸と反対方向に回動させる制御を行う。   Therefore, in this application, in order to control the direction of the detection unit quickly and accurately, the gimbal mechanism is not driven in two axes, but in a first plane (for example, a plane orthogonal to the incident axis of infrared light). Two axes and two axes in a second plane (for example, a plane including an incident axis of infrared light) intersecting the first plane can be rotated about a total of four axes, and two pairs are formed. When rotating around one of the two axes, control is performed to rotate the other axis in the direction opposite to the other axis so as to cancel out the deviation of the rotation angle.

これにより、オーバーシュートやアンダーシュートを抑制して、迅速且つ正確に検知部の向きを制御できるようにする。   Thereby, overshoot and undershoot are suppressed, and the direction of the detection unit can be controlled quickly and accurately.

上記した本発明の実施の形態についてさらに詳細に説明すべく、本発明の一実施例に係るジンバル機構及び赤外線誘導装置並びにジンバル機構の制御方法について、図1乃至図6を参照して説明する。図1は、本発明の一実施例に係る赤外線誘導装置の構成を模式的に示す図であり、図2は、ジンバル機構の構造を模式的に示す平面図である。また、図3は、ジンバル機構の構造を模式的に示す斜視図であり、(a)は第3筐体と第4筐体との関係、(b)は第3筐体内の検知部と第1筐体と第2筐体との関係を示す図である。また、図4及び図5は、ジンバル機構の動作を説明するための図であり、図6は、本実施例の赤外線誘導装置を用いた目標物の追尾手順を示すフローチャート図である。   In order to describe the above-described embodiment of the present invention in more detail, a gimbal mechanism, an infrared guiding device, and a gimbal mechanism control method according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram schematically showing the configuration of an infrared guiding device according to an embodiment of the present invention, and FIG. 2 is a plan view schematically showing the structure of a gimbal mechanism. FIG. 3 is a perspective view schematically showing the structure of the gimbal mechanism, in which (a) shows the relationship between the third housing and the fourth housing, and (b) shows the detection unit and the first housing in the third housing. It is a figure which shows the relationship between 1 housing | casing and 2nd housing | casing. 4 and 5 are diagrams for explaining the operation of the gimbal mechanism, and FIG. 6 is a flowchart showing a target tracking procedure using the infrared guiding device of the present embodiment.

図1に示すように、本実施例の赤外線誘導装置1は、入射赤外光を検知器4に集光する集光光学系3と、入射光を電気信号に変換する赤外線検出素子がアレイ状に配列された検知器4と、集光光学系3及び検知器4を含む検知部2を回動可能に保持するジンバル5と、ジンバル5を4軸で駆動する第1〜第4駆動部6a〜6dと、各々の軸の角度を検出する第1〜第4角度検出部7a〜7dと、飛翔体の角速度(レート)を検出するレート検出部9と、検知器4からの信号を増幅しTVモニタなどの表示手段に適した形態の赤外線画像を生成して該赤外線画像をオートパイロット11に送信すると共に、オートパイロット11からの角度指令と第1〜第4角度検出部7a〜7dからの角度情報とに基づく角度制御信号と、オートパイロット11からのレート指令とレート検出部9からのレート情報とに基づくレート制御信号とからなる制御信号を生成し、該制御信号を駆動制御部8に送信する演算処理部10と、演算処理部10からの制御信号に基づいて第1〜第4駆動部6a〜6dを制御する駆動制御部8と、演算処理部10から送信された赤外線画像を解析して高温の目標物を検出し、飛翔体の進行方向を制御すると共に、赤外線画像における高温の目標物の位置情報に基づいて角度指令及びレート指令を生成して演算処理部10に送信するオートパイロット11と、を少なくとも備えている。   As shown in FIG. 1, the infrared guiding device 1 of the present embodiment includes an optical condensing optical system 3 that condenses incident infrared light on a detector 4 and an infrared detecting element that converts incident light into an electric signal in an array form. , A gimbal 5 that rotatably holds the detector 2 including the condensing optical system 3 and the detector 4, and first to fourth drive units 6a that drive the gimbal 5 with four axes. To 6d, first to fourth angle detectors 7a to 7d for detecting the angle of each axis, a rate detector 9 for detecting the angular velocity (rate) of the flying object, and a signal from the detector 4 are amplified. An infrared image in a form suitable for a display means such as a TV monitor is generated and transmitted to the autopilot 11, and the angle command from the autopilot 11 and the first to fourth angle detectors 7a to 7d are transmitted. Angle control signal based on angle information and autopilot 1 From the arithmetic processing unit 10, the control processing unit 10 generates a control signal composed of a rate control signal based on the rate command from the base station and the rate information from the rate detection unit 9, and transmits the control signal to the drive control unit 8. Based on the control signal, the drive control unit 8 that controls the first to fourth drive units 6a to 6d and the infrared image transmitted from the arithmetic processing unit 10 are analyzed to detect a high-temperature target, and the flying object An autopilot 11 that controls the traveling direction and generates an angle command and a rate command based on the position information of the high-temperature target in the infrared image and transmits it to the arithmetic processing unit 10 is provided.

なお、ここでは演算処理部10で、赤外線画像を生成する処理と角度制御信号を生成する処理とレート制御信号を生成する処理の全てを行う構成としているが、各々の処理を独立した手段(例えば、画像信号処理部と捜索処理部と追尾処理部など)で個別に行う構成としてもよい。   Here, the arithmetic processing unit 10 is configured to perform all of the processing for generating an infrared image, the processing for generating an angle control signal, and the processing for generating a rate control signal. However, each processing is performed independently (for example, The image signal processing unit, the search processing unit, the tracking processing unit, and the like may be individually performed.

また、図2及び図3に示すように、ジンバル機構(ジンバル5を構成する筐体と駆動手段と必要に応じて角度検出手段とを含めてジンバル機構と呼ぶ。)は、集光光学系3及び検知器4を含む検知部2を、赤外光の入射軸に直交する第1の平面(ここでは図2の紙面の上下方向及び紙面の鉛直方向を含む平面)内の第1の軸(ここでは図2の紙面の上下方向の軸)を中心に回動可能に保持し、必要に応じて赤外光の入射側に開口部を設けた枠状の第1筐体5a、第1筐体5aに固定され、検知部2を第1の軸を中心に回動させる第1駆動部6a、第1筐体5aに対する検知部2の回転角を検出する第1角度検出部7aと、第1筐体5aを、第1の平面に交差(交差する角度は任意であるが、好ましくは直交)する第2の平面(ここでは図2の紙面の左右方向及び紙面の鉛直方向を含む平面)内の第2の軸(ここでは図2の紙面の左右方向の軸)を中心に回動可能に保持し、必要に応じて赤外光の入射側に開口部を設けた枠状の第2筐体5b、第2筐体5bに固定され、第1筐体5aを第2の軸を中心に回動させる第2駆動部6b、第2筐体5bに対する第1筐体5aの回転角を検出する第2角度検出部7bと、第2筐体5bを、第1の平面内の第3の軸(ここでは図2の紙面の上下方向の軸)を中心に回動可能に保持し、赤外光の入射側に窓部を設けた箱状の第3筐体5c、第3筐体5cに固定され、第2筐体5bを第3の軸を中心に回動させる第3駆動部6c、第3筐体5cに対する第2筐体5bの回転角を検出する第3角度検出部7cと、第3筐体5cを、第2の平面内の第4の軸(ここでは図2の紙面の左右方向の軸)を中心に回動可能に保持する第4筐体5d、第4筐体5dに固定され、第3筐体5cを第4の軸を中心に回動させる第4駆動部6d、第4筐体5dに対する第3筐体5cの回転角を検出する第4角度検出部7dと、を備えている。   As shown in FIGS. 2 and 3, the gimbal mechanism (referred to as a gimbal mechanism including a casing and driving means constituting the gimbal 5 and, if necessary, angle detection means) is a condensing optical system 3. And the detection unit 2 including the detector 4 is connected to a first axis (in this case, a plane including the vertical direction of the paper surface and the vertical direction of the paper surface in FIG. 2) perpendicular to the incident axis of the infrared light. Here, the frame-shaped first casing 5a and the first casing are provided so as to be rotatable about an axis in the vertical direction of FIG. 2 and provided with an opening on the infrared light incident side as necessary. A first drive unit 6a that is fixed to the body 5a and rotates the detection unit 2 about the first axis; a first angle detection unit 7a that detects a rotation angle of the detection unit 2 with respect to the first housing 5a; A second plane (here, in FIG. 2) intersecting the first housing 5a with the first plane (the intersecting angle is arbitrary, but preferably orthogonal) 2) within the plane including the horizontal direction of the plane and the vertical direction of the plane) (in this case, the axis in the horizontal direction of the plane of FIG. 2) is held so as to be rotatable. The second drive unit 6b, which is fixed to the frame-like second housing 5b having an opening on the incident side and the second housing 5b, and rotates the first housing 5a about the second axis, The second angle detector 7b that detects the rotation angle of the first housing 5a with respect to the housing 5b, and the second housing 5b are connected to a third axis in the first plane (here, the vertical direction of the page of FIG. 2). And is fixed to a box-shaped third housing 5c and a third housing 5c provided with windows on the infrared light incident side, and the second housing 5b is fixed to the second housing 5b. A third drive unit 6c that rotates about the third axis, a third angle detection unit 7c that detects a rotation angle of the second housing 5b with respect to the third housing 5c, and a third housing 5c, 4th in the plane A fourth housing 5d that is rotatably held around an axis (here, a horizontal axis in FIG. 2) is fixed to the fourth housing 5d, and the third housing 5c is centered on the fourth axis. And a fourth angle detector 7d for detecting the rotation angle of the third housing 5c relative to the fourth housing 5d.

なお、図2及び図3は例示であり、各々の筐体が検知部2や他の筐体に干渉せず、かつ、入射赤外光の光路を妨げない限りにおいて、検知部2や第1〜第4筐体5a〜5dの形状やサイズ、間隔などは特に限定されず、例えば、第1筐体5a、第2筐体5bをリング状としたり、赤外光の入射側を開放したコの字状とすることもできる。また、図2及び図3では、第2の軸及び第4の軸を一方のみに形成しているが、入射赤外光の光路を妨げない限りにおいて、第1筐体5aの両側に第2の軸を設けたり、第3筐体5cの両側に第4の軸を設けてもよい。   2 and 3 are examples, and the detection unit 2 and the first unit are not limited as long as each case does not interfere with the detection unit 2 and other cases and does not disturb the optical path of incident infrared light. The shape, size, interval, etc. of the fourth casings 5a to 5d are not particularly limited. For example, the first casing 5a and the second casing 5b are formed in a ring shape, or the infrared light incident side is opened. It can also be a letter shape. In FIGS. 2 and 3, the second axis and the fourth axis are formed only on one side, but the second axis is not provided on either side of the first housing 5a as long as the optical path of the incident infrared light is not obstructed. May be provided, or a fourth axis may be provided on both sides of the third housing 5c.

また、検知器2及び第1〜第3筐体5a〜5cは1方向のみに回転する構造としてもよいし、回転方向が順次反転して往復する構造としてもよい。また、検知器2及び第1〜第3筐体5a〜5cの回転角も特に限定されないが、飛翔方向の半球を検知可能にするために、第3筐体5c(又は第1筐体5a)の回転角は360°(又は±180°)、第2筐体5b(又は検知部2)の回転角は180°(又は±90°)程度することが好ましい。また、第1筐体5aと第3筐体5cの一方、及び、検知部2と第2筐体5bの一方は、各々、他方の回転角のずれを相殺可能であればよく、回転角が小さい方がジンバル機構の構造が簡単になることから、5°程度とすることができる。   In addition, the detector 2 and the first to third housings 5a to 5c may be configured to rotate in only one direction, or may be configured to reciprocate by reversing the rotation direction sequentially. Further, the rotation angles of the detector 2 and the first to third casings 5a to 5c are not particularly limited, but the third casing 5c (or the first casing 5a) may be used in order to detect the hemisphere in the flight direction. The rotation angle is preferably 360 ° (or ± 180 °), and the rotation angle of the second housing 5b (or detection unit 2) is preferably about 180 ° (or ± 90 °). In addition, one of the first housing 5a and the third housing 5c, and one of the detection unit 2 and the second housing 5b may each be capable of offsetting the shift of the rotation angle of the other. The smaller one makes the structure of the gimbal mechanism simpler, so it can be set to about 5 °.

また、図2及び図3では、第1〜第4駆動部6a〜6dを簡易的に示しているが、これらは、各々、第1〜第4の軸を中心にして、検知部2、第1〜第3筐体5a〜5cを所望の回転角で駆動可能な構造であればよく、例えば、トルクモータなどを用いることができる。このトルクモータのトルクや最小回転角などは、駆動する構成部材の重量や赤外線誘導装置1に求められる回転精度などに応じて適宜設定することができる。   2 and 3, the first to fourth drive units 6a to 6d are simply shown. However, they are respectively centered around the first to fourth axes, and the detection unit 2 and the first drive unit 6a to 6d. Any structure that can drive the first to third housings 5a to 5c at a desired rotation angle may be used. For example, a torque motor or the like can be used. The torque, minimum rotation angle, and the like of the torque motor can be appropriately set according to the weight of the component to be driven, the rotation accuracy required for the infrared induction device 1, and the like.

また、図2及び図3では、第1〜第4角度検出部7a〜7dを簡易的に示しているが、これらは、各々、検知部2、第1〜第3筐体5a〜5cの回転角を検出可能な構造であればよく、例えば、ステータとロータなどで角度を検出する構造としてもよいし、加速度センサなどで角速度を検出する構造としてもよい。   2 and 3, the first to fourth angle detection units 7a to 7d are simply shown, but these are rotations of the detection unit 2 and the first to third housings 5a to 5c, respectively. Any structure may be used as long as the angle can be detected. For example, the structure may be such that the angle is detected by a stator and a rotor, or the angular velocity may be detected by an acceleration sensor or the like.

次に、ジンバル機構の具体的な動作について、図4及び図5を参照して説明する。図4は、第1の軸及び第3の軸を中心に回動させる場合を示し、図5は、第2の軸及び第4の軸を中心に回動させる場合を示している。   Next, a specific operation of the gimbal mechanism will be described with reference to FIGS. FIG. 4 shows a case of turning around the first axis and the third axis, and FIG. 5 shows a case of turning around the second axis and the fourth axis.

まず、検知部2の仰角を制御する場合は、図4(a)に示すように、駆動制御部8の制御信号に従って、第3筐体5cに固定された第3駆動部6cを駆動し、第3の軸を中心に第2筐体5bを回動させる。   First, when controlling the elevation angle of the detection unit 2, as shown in FIG. 4A, the third drive unit 6c fixed to the third housing 5c is driven according to the control signal of the drive control unit 8, The second housing 5b is rotated around the third axis.

その際、トルクモータなどの駆動手段は目標とする回転角で正確に停止させることは困難であり、通常は、図4(b)に示すように、第2筐体5bの回転角は目標とする回転角(ここではθ1とする。)近傍で変動し、徐々にθ1に収束するため、検知部2を目標とする回転角に合わせ込むのに時間がかかる。そこで、本実施例では、駆動制御部8は、第3角度検出部7cからの角度信号に基づいて第3筐体5cに対する第2筐体5bの角度のθ1からのずれ量を演算し、図4(c)に示すように、そのずれ量を打ち消すように、第1筐体5aに固定された第1駆動部6aを駆動し、第1の軸を中心に検知部2を回動させる。   At that time, it is difficult to accurately stop the driving means such as a torque motor at a target rotation angle. Normally, as shown in FIG. 4B, the rotation angle of the second housing 5b is set to a target. Since it fluctuates in the vicinity of the rotation angle (here, θ1) and gradually converges to θ1, it takes time to adjust the detection unit 2 to the target rotation angle. Therefore, in the present embodiment, the drive control unit 8 calculates a deviation amount of the angle of the second housing 5b with respect to the third housing 5c from θ1 based on the angle signal from the third angle detection unit 7c. As shown in 4 (c), the first drive unit 6a fixed to the first housing 5a is driven so as to cancel out the shift amount, and the detection unit 2 is rotated around the first axis.

これにより、図4(d)に示すように、検知部2の仰角を迅速かつ正確にθ1に合わせ込むことができる。なお、図4(a)では、第1の軸と第3の軸とが一致している状態を示しており、第1筐体5aが第2の軸を中心に回動すれば第1の軸と第3の軸とは第1の平面内でずれることになるが、その場合は、第1の軸と第3の軸とのなす角度を考慮して第1駆動部6aを駆動すればθ1に合わせ込むことができる。   Thereby, as shown in FIG.4 (d), the elevation angle of the detection part 2 can be adjusted to (theta) 1 rapidly and correctly. FIG. 4A shows a state in which the first axis and the third axis coincide with each other. If the first housing 5a rotates about the second axis, the first axis The axis and the third axis are displaced in the first plane. In this case, if the first drive unit 6a is driven in consideration of the angle formed by the first axis and the third axis. It can be adjusted to θ1.

一方、検知部2の回転角を調整する場合は、図5(a)に示すように、駆動制御部8の制御信号に従って、第4筐体5cに固定された第4駆動部6dを駆動し、第4の軸を中心に第3筐体5cを回動させる。   On the other hand, when adjusting the rotation angle of the detection unit 2, the fourth drive unit 6d fixed to the fourth housing 5c is driven according to the control signal of the drive control unit 8 as shown in FIG. Then, the third housing 5c is rotated around the fourth axis.

その際、図5(b)に示すように、第3筐体5cの回転角は目標とする回転角(ここではθ2とする。)近傍で変動し、徐々にθ2に収束するため、検知部2を目標とする回転角に合わせ込むのに時間がかかる。そこで、本実施例では、駆動制御部8は、第4角度検出部7dからの角度信号に基づいて第4筐体5cに対する第3筐体5cの角度のθ2からのずれ量を演算し、図5(c)に示すように、そのずれ量を打ち消すように、第2筐体5bに固定された第2駆動部6bを駆動し、第2の軸を中心に第1筐体5aを回動させる。   At this time, as shown in FIG. 5B, the rotation angle of the third housing 5c fluctuates in the vicinity of the target rotation angle (here, θ2) and gradually converges to θ2. It takes time to adjust 2 to the target rotation angle. Therefore, in this embodiment, the drive control unit 8 calculates the amount of deviation from the angle θ2 of the third housing 5c with respect to the fourth housing 5c based on the angle signal from the fourth angle detector 7d. As shown in FIG. 5 (c), the second drive unit 6b fixed to the second housing 5b is driven so as to cancel the shift amount, and the first housing 5a is rotated around the second axis. Let

これにより、図5(d)に示すように、検知部2の回転角を迅速かつ正確にθ2に合わせ込むことができる。なお、図5では、第2の軸と第4の軸とが一致している状態を示しており、第2筐体5bが第3の軸を中心に回動すれば、第2の軸と第4の軸とは第2の平面内でずれることになるが、その場合は、第2の軸と第4の軸とのなす角度を考慮して第2駆動部6bを駆動すればθ2に合わせ込むことができる。   Thereby, as shown in FIG.5 (d), the rotation angle of the detection part 2 can be rapidly and correctly adjusted to (theta) 2. FIG. 5 shows a state in which the second axis and the fourth axis coincide with each other. If the second housing 5b rotates about the third axis, the second axis and In this case, if the second drive unit 6b is driven in consideration of the angle between the second axis and the fourth axis, the angle becomes θ2. Can be combined.

また、図4及び図5では、第3駆動部6cの回転角のずれを第1駆動部6aで相殺し、第4駆動部6dの回転角のずれを第2駆動部6bで相殺する構成としたが、第1駆動部6aの回転角のずれを第3駆動部6cで相殺し、第2駆動部6bの回転角のずれを第4駆動部6dで相殺する構成とすることもできる。   4 and 5, the first drive unit 6a cancels out the rotational angle shift of the third drive unit 6c, and the second drive unit 6b cancels out the rotational angle shift of the fourth drive unit 6d. However, it is also possible to adopt a configuration in which the shift of the rotation angle of the first drive unit 6a is canceled by the third drive unit 6c, and the shift of the rotation angle of the second drive unit 6b is canceled by the fourth drive unit 6d.

また、ここでは、第3角度検出部7c(又は第4角度検出部7d)からの角度信号に基づいて第1駆動部6a(又は第2駆動部6b)を制御する構成としたが、第3駆動部6c(又は第4駆動部6d)の回転角のずれの傾向(すなわち、収束パターン)は略一定であると考えられることから、予め定められたパターンに従って第1駆動部6a(又は第2駆動部6b)を制御する構成とすることもでき、この場合は角度検出部を省略することもできる。   Here, the first drive unit 6a (or the second drive unit 6b) is controlled based on the angle signal from the third angle detection unit 7c (or the fourth angle detection unit 7d). Since the tendency of the rotational angle deviation of the driving unit 6c (or the fourth driving unit 6d) (that is, the convergence pattern) is considered to be substantially constant, the first driving unit 6a (or the second driving unit 6a (or the second driving unit 6c) is determined according to a predetermined pattern. The drive unit 6b) may be controlled, and in this case, the angle detection unit may be omitted.

次に、上記構成の赤外線誘導装置1を用いて目標物を追尾する手順について、図6のフローチャート図を参照して説明する。   Next, a procedure for tracking a target using the infrared guiding device 1 having the above-described configuration will be described with reference to the flowchart of FIG.

まず、ステップS101で、ミサイルなどの飛翔体を目標物があると思われる方向に向けて発射する。   First, in step S101, a flying object such as a missile is launched in a direction in which a target is considered to be present.

次に、ステップS102で、第1〜第4駆動部6a〜6dを用いて検知部2の向きを制御する。その際、第3駆動部6cを用いて第2筐体5bを第3の軸を中心に回動させる際に、目標とする回転角からのずれ量を相殺するように、第1駆動部6aを用いて検知部2を第1の軸を中心に回動させる。また、第4駆動部6dを用いて第3筐体5cを第4の軸を中心に回動させる際に、目標とする回転角からのずれ量を相殺するように、第2駆動部6bを用いて第1筐体5aを第2の軸を中心に回動させる。   Next, in step S102, the direction of the detection unit 2 is controlled using the first to fourth drive units 6a to 6d. At that time, when the second housing 5b is rotated around the third axis using the third driving unit 6c, the first driving unit 6a is offset so as to cancel out the deviation amount from the target rotation angle. Is used to rotate the detection unit 2 around the first axis. Further, when the third housing 5c is rotated around the fourth axis using the fourth drive unit 6d, the second drive unit 6b is set so as to cancel out the deviation amount from the target rotation angle. Using the first casing 5a, the first casing 5a is rotated around the second axis.

なお、第3駆動部6c及び第1駆動部6aを用いた制御と、第4駆動部6d及び第2駆動部6bを用いた制御とは、別々に行ってもよいし、同時に行ってもよいし、一方のみを行ってもよい。また、前述したように、第1筐体5aが回動すれば第1の軸と第3の軸とは第1の平面内でずれ、第2筐体5bが回動すれば、第2の軸と第4の軸とは第2の平面内でずれるため、第1の軸と第3の軸とのなす角や第2の軸と第4の軸とのなす角を考慮して第1駆動部6a及び第2駆動部6bを制御することが好ましい。   The control using the third drive unit 6c and the first drive unit 6a and the control using the fourth drive unit 6d and the second drive unit 6b may be performed separately or simultaneously. However, only one of them may be performed. Further, as described above, if the first housing 5a is rotated, the first axis and the third axis are displaced in the first plane, and if the second housing 5b is rotated, the second axis Since the axis and the fourth axis are displaced in the second plane, the first axis is considered in consideration of the angle between the first axis and the third axis and the angle between the second axis and the fourth axis. It is preferable to control the drive unit 6a and the second drive unit 6b.

次に、ステップS103で、入射した赤外線は集光光学系3で集光されて検知器4に入射し、検知器4では集光された赤外線を電気信号に変換して演算処理部10に送信する。そして、演算処理部10では検知器4から送信された電気信号を増幅して所定の角度における視野の赤外線画像を生成してオートパイロット11に送信する。一方、第1〜第4角度検出部7a〜7dはその時の検知部2、第1〜第3筐体の角度を検出して角度情報を演算処理部10に送信し、レート検出部9は飛翔体の角速度を検出してレート情報を演算処理部10に送信する。   Next, in step S103, the incident infrared rays are condensed by the condensing optical system 3 and incident on the detector 4. The detector 4 converts the collected infrared rays into an electrical signal and transmits it to the arithmetic processing unit 10. To do. Then, the arithmetic processing unit 10 amplifies the electrical signal transmitted from the detector 4 to generate an infrared image of a visual field at a predetermined angle and transmits it to the autopilot 11. On the other hand, the first to fourth angle detection units 7a to 7d detect the angles of the detection unit 2 and the first to third housings at that time and transmit angle information to the arithmetic processing unit 10, and the rate detection unit 9 flies. The angular velocity of the body is detected and the rate information is transmitted to the arithmetic processing unit 10.

次に、ステップS104で、オートパイロット11では受信した赤外線画像を解析して、その視野の中から所定の目標物を探索する。具体的には、赤外線画像の場合は目標物の温度が高くなるほど信号の強度が大きくなることから、しきい値以上の信号強度を有する領域を特定することによって目標物を検出することができる。   Next, in step S104, the autopilot 11 analyzes the received infrared image and searches for a predetermined target in the field of view. Specifically, in the case of an infrared image, the intensity of the signal increases as the temperature of the target increases, and therefore the target can be detected by specifying a region having a signal intensity equal to or higher than a threshold value.

そして、ステップS105で、その視野の中に目標物がない場合はステップS103に戻って、次の角度における視野を撮像して同様の処理を繰り返す。一方、ステップS105で目標物を検出した場合は、ステップS106で、オートパイロット11は赤外線画像上の目標物の位置と角度情報とに基づいて飛翔体が目標と会合するように進行方向の制御を行うと共に、演算処理部10に角度指令とレート指令とを送信する。   In step S105, if there is no target in the field of view, the process returns to step S103, the field of view at the next angle is imaged, and the same processing is repeated. On the other hand, when the target is detected in step S105, in step S106, the autopilot 11 controls the traveling direction so that the flying object meets the target based on the position and angle information of the target on the infrared image. At the same time, an angle command and a rate command are transmitted to the arithmetic processing unit 10.

次に、ステップS107で、演算処理部10では、角度指令と第1〜第4角度検出部7a〜7dからの角度情報とに基づいて角度制御信号を生成し、レート指令とレート検出部9からのレート情報とに基づいてレート制御信号を生成し、これらの制御信号を駆動制御部8に送信する。   Next, in step S107, the arithmetic processing unit 10 generates an angle control signal based on the angle command and the angle information from the first to fourth angle detection units 7a to 7d, and from the rate command and the rate detection unit 9. The rate control signal is generated based on the rate information and the control signal is transmitted to the drive control unit 8.

そして、ステップS108で、目標物が移動していないかを監視し、目標物が赤外線画像上の指定位置から外れている場合は、ステップS106に戻って、オートパイロット11では赤外線画像上の目標物の位置と角度情報とに基づいて再度、飛翔体の進行方向を制御し、ステップS106〜S108の動作を繰り返すことによって目標物を追尾する。   In step S108, it is monitored whether the target is moving. If the target is out of the designated position on the infrared image, the process returns to step S106, and the autopilot 11 detects the target on the infrared image. The traveling direction of the flying object is controlled again based on the position and angle information, and the target is tracked by repeating the operations in steps S106 to S108.

このように、本実施例の赤外線誘導装置1によれば、第3駆動部6cを用いて第3の軸を中心に第2筐体5bを回動させる際に、第2筐体5bの回転角のずれを打ち消すように、第1駆動部6aを用いて第1の軸を中心に検知部2を回動させ、第4駆動部6dを用いて第4の軸を中心に第3筐体5cを回転させる際に、第3筐体5cの回転角のずれを打ち消すように、第2駆動部6bを用いて第2の軸を中心に第1筐体5aを回動させる制御を行うため、第3駆動部6c及び第4駆動部6dのオーバーシュートやアンダーシュートを抑制して、迅速且つ正確に検知器2の向きを制御することができる。   As described above, according to the infrared guiding device 1 of the present embodiment, when the second housing 5b is rotated around the third axis using the third driving unit 6c, the rotation of the second housing 5b is performed. The third housing is rotated around the first axis using the first drive unit 6a and the fourth housing is used around the fourth axis using the fourth drive unit 6d so as to cancel the angular deviation. To rotate the first housing 5a around the second axis by using the second drive unit 6b so as to cancel the shift of the rotation angle of the third housing 5c when rotating the 5c. The direction of the detector 2 can be controlled quickly and accurately by suppressing the overshoot and undershoot of the third drive unit 6c and the fourth drive unit 6d.

なお、上記実施例では、本発明のジンバルを4軸で駆動可能な構造としたが、本発明は上記実施例に限定されるものではなく、第1の平面内の1つの軸と第2の平面内の2つの軸の合計3軸や、第1の平面内の2つの軸と第2の平面内の1つの軸の合計3軸、第1の平面内の2つの軸と第2の平面内の2つの軸と第1の平面及び第2の平面の双方に交差する第3の平面内の軸の合計5以上の軸で駆動する構造とすることもできる。   In the above embodiment, the gimbal of the present invention can be driven by four axes. However, the present invention is not limited to the above embodiment, and one axis in the first plane and the second axis. A total of three axes of two axes in the plane, a total of three axes of two axes in the first plane and one axis in the second plane, two axes in the first plane and the second plane It is also possible to adopt a structure in which driving is performed with a total of five or more axes of the two axes in the third plane and the axes in the third plane intersecting both the first plane and the second plane.

また、上記実施例では、本発明の構造を赤外線誘導装置1に適用する場合について記載したが、気象観測や火災の監視など、特定の波長帯の赤外線を検知することが望まれる任意の赤外線撮像装置に対して同様に適用することができる。   In the above embodiment, the case where the structure of the present invention is applied to the infrared guiding device 1 has been described. However, any infrared imaging in which it is desired to detect infrared rays in a specific wavelength band, such as weather observation and fire monitoring. The same applies to the device.

更に、上記実施例では、本発明のジンバル機構に検知部2を載置する場合について記載したが、向きの制御が必要な任意の機器を載置するジンバル機構及び該ジンバル機構を備える機器並びに該ジンバル機構の制御方法に対して同様に適用することができる。   Further, in the above embodiment, the case where the detection unit 2 is placed on the gimbal mechanism of the present invention has been described. However, a gimbal mechanism for placing any device that requires orientation control, a device including the gimbal mechanism, and the The present invention can be similarly applied to the control method of the gimbal mechanism.

本発明は、制御対象物の向きを制御するジンバル機構及びそのジンバル機構を備える機器並びにジンバル機構の制御方法に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a gimbal mechanism that controls the direction of an object to be controlled, a device including the gimbal mechanism, and a method for controlling the gimbal mechanism.

本発明の一実施例に係る赤外線誘導装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the infrared guidance apparatus which concerns on one Example of this invention. 本発明の一実施例に係る赤外線誘導装置のジンバル機構の構造を示す平面図である。It is a top view which shows the structure of the gimbal mechanism of the infrared rays guidance apparatus which concerns on one Example of this invention. 本発明の一実施例に係る赤外線誘導装置のジンバル機構の構造を示す斜視図であり、(a)は第3筐体と第4筐体との関係、(b)は第3筐体内の検知部と第1筐体と第2筐体との関係を示す図である。It is a perspective view which shows the structure of the gimbal mechanism of the infrared guidance device which concerns on one Example of this invention, (a) is the relationship between a 3rd housing | casing and a 4th housing | casing, (b) is the detection in a 3rd housing | casing. It is a figure which shows the relationship between a part, a 1st housing | casing, and a 2nd housing | casing. 本発明の一実施例に係る赤外線誘導装置のジンバル機構の動作を説明するための図である。It is a figure for demonstrating operation | movement of the gimbal mechanism of the infrared guidance apparatus which concerns on one Example of this invention. 本発明の一実施例に係る赤外線誘導装置のジンバル機構の動作を説明するための図である。It is a figure for demonstrating operation | movement of the gimbal mechanism of the infrared guidance apparatus which concerns on one Example of this invention. 本発明の一実施例に係る赤外線誘導装置を用いた目標物の追尾方法を示すフローチャート図である。It is a flowchart figure which shows the tracking method of the target using the infrared guidance device which concerns on one Example of this invention. 従来の赤外線誘導装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the conventional infrared guidance apparatus. 従来の赤外線誘導装置のジンバル機構の構造を示す斜視図である。It is a perspective view which shows the structure of the gimbal mechanism of the conventional infrared guidance apparatus. 従来の赤外線誘導装置におけるジンバルの角度制御特性を示す図である。It is a figure which shows the angle control characteristic of the gimbal in the conventional infrared guidance apparatus.

符号の説明Explanation of symbols

1 赤外線誘導装置
2 検知部
3 集光光学系
4 検知器
5 ジンバル
5a 第1筐体
5b 第2筐体
5c 第3筐体
5d 第4筐体
6a 第1駆動部
6b 第2駆動部
6c 第3駆動部
6d 第4駆動部
7a 第1角度検出部
7b 第2角度検出部
7c 第3角度検出部
7d 第4角度検出部
8 駆動制御部
9 レート検出部
10 演算処理部
11 オートパイロット
12 赤外線誘導装置
13 ジンバル
14a 第1駆動部
14b 第2駆動部
15a 第1角度検出部
15b 第2角度検出部
16 駆動制御部
17 演算処理部
18 オートパイロット
DESCRIPTION OF SYMBOLS 1 Infrared guidance device 2 Detection part 3 Condensing optical system 4 Detector 5 Gimbal 5a 1st housing | casing 5b 2nd housing | casing 5c 3rd housing | casing 5d 4th housing | casing 6a 1st drive part 6b 2nd drive part 6c 3rd Drive part 6d 4th drive part 7a 1st angle detection part 7b 2nd angle detection part 7c 3rd angle detection part 7d 4th angle detection part 8 Drive control part 9 Rate detection part 10 Arithmetic processing part 11 Autopilot 12 Infrared guidance device 13 gimbal 14a first drive unit 14b second drive unit 15a first angle detection unit 15b second angle detection unit 16 drive control unit 17 arithmetic processing unit 18 autopilot

Claims (4)

制御対象物の向きを制御するジンバル機構であって、
第1の平面内の2つの軸と、前記第1の平面と交差する第2の平面内の2つの軸とからなる4つの軸で回動可能に構成され、
前記第1の平面内の一方の軸と前記第2の平面内の一方の軸とが直交し、前記第2平面内の一方の軸と前記第1の平面内の他方の軸とが直交し、前記第1の平面内の他方の軸と前記第2の平面内の他方の軸とが直交するとともに、全ての軸が略一点で交差し、
前記ジンバル機構は、
前記制御対象物を第1の平面内の第1の軸を中心に回動可能に保持する第1筐体、及び、前記第1筐体に固定され、前記第1の軸を中心に前記制御対象物を回動させる第1駆動部と、
前記第1筐体を前記第1の平面と交差する第2の平面内の第2の軸を中心に回動可能に保持する第2筐体、及び、前記第2筐体に固定され、前記第2の軸を中心に前記第1筐体を回動させる第2駆動部と、
前記第2筐体を前記第1の平面内の第3の軸を中心に回動可能に保持する第3筐体、及び、前記第3筐体に固定され、前記第2筐体を前記第3の軸を中心に回動させる第3駆動部と、
前記第3筐体を前記第2の平面内の第4の軸を中心に回動可能に保持する第4筐体、及び、前記第4筐体に固定され、前記第3筐体を前記第4の軸を中心に回動させる第4駆動部と、
駆動制御部を備え、
前記駆動制御部は、前記第3駆動部を用いて前記第2筐体を回動させる際に、前記第3筐体に対する前記第2筐体の目標とする回転角において前記第3筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第1駆動部を用いて前記制御対象物を回動させ、
前記第4駆動部を用いて前記第3筐体を回動させる際に、前記第4筐体に対する前記第3筐体の目標とする回転角において、前記第4筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第2駆動部を用いて前記第1筐体を回動させる制御を行うことを特徴とするジンバル機構。
A gimbal mechanism for controlling the direction of a controlled object,
It is configured to be rotatable on four axes consisting of two axes in the first plane and two axes in the second plane intersecting the first plane,
One axis in the first plane is orthogonal to one axis in the second plane, and one axis in the second plane is orthogonal to the other axis in the first plane. The other axis in the first plane and the other axis in the second plane are orthogonal to each other, and all the axes intersect at approximately one point,
The gimbal mechanism is
A first casing that holds the control object so as to be rotatable about a first axis in a first plane, and the control that is fixed to the first casing and that is centered on the first axis. A first drive unit for rotating the object;
A second housing for rotatably holding the first housing around a second axis in a second plane intersecting the first plane; and fixed to the second housing, A second drive unit for rotating the first housing around a second axis;
A third housing for rotatably holding the second housing around a third axis in the first plane; and the second housing is fixed to the third housing, and the second housing is attached to the first housing. A third drive unit that rotates about the axis of 3;
A fourth housing that holds the third housing so as to be rotatable about a fourth axis in the second plane, and is fixed to the fourth housing, and the third housing is attached to the first housing. A fourth drive unit that rotates about the axis of 4;
A drive control unit,
When the second control unit rotates the second housing using the third driving unit, the drive control unit is configured to rotate the second housing at a target rotation angle of the second housing with respect to the third housing. Rotating the control object using the first drive unit so that the rotation speed of the control object becomes zero ,
When the third housing is rotated using the fourth drive unit, the control target object with respect to the fourth housing is rotated at a target rotation angle of the third housing with respect to the fourth housing. A gimbal mechanism that performs control to rotate the first housing using the second drive unit so that the rotation speed becomes zero .
請求項1に記載のジンバル機構を具備し、入射赤外線を集光する集光光学系と集光された前記赤外線を電気信号に変換する検知器とを含む検知部を前記制御対象物とし、前記検知部からの電気信号に基づいて生成される画像を参照して飛翔体を目標物に誘導する赤外線誘導装置。A control unit comprising the gimbal mechanism according to claim 1 and including a condensing optical system that condenses incident infrared light and a detector that converts the condensed infrared light into an electrical signal is the control object, and An infrared guidance device for guiding a flying object to a target with reference to an image generated based on an electrical signal from a detection unit. 制御対象物の向きを制御するジンバル機構の制御方法であって、A control method of a gimbal mechanism for controlling the direction of a control object,
前記ジンバル機構を、The gimbal mechanism
第1の平面内の2つの軸と、前記第1の平面と交差する第2の平面内の2つの軸とからなる4つの軸で回動可能に構成され、It is configured to be rotatable on four axes consisting of two axes in the first plane and two axes in the second plane intersecting the first plane,
前記第1の平面内の一方の軸と前記第2の平面内の一方の軸とが直交し、前記第2平面内の一方の軸と前記第1の平面内の他方の軸とが直交し、前記第1の平面内の他方の軸と前記第2の平面内の他方の軸とが直交するとともに、全ての軸が略一点で交差し、One axis in the first plane is orthogonal to one axis in the second plane, and one axis in the second plane is orthogonal to the other axis in the first plane. The other axis in the first plane and the other axis in the second plane are orthogonal to each other, and all the axes intersect at approximately one point,
前記制御対象物を第1の平面内の第1の軸を中心に回動可能に保持する第1筐体、及び、前記第1筐体に固定され、前記第1の軸を中心に前記制御対象物を回動させる第1駆動部と、A first casing that holds the control object so as to be rotatable about a first axis in a first plane, and the control that is fixed to the first casing and that is centered on the first axis. A first drive unit for rotating the object;
前記第1筐体を前記第1の平面と交差する第2の平面内の第2の軸を中心に回動可能に保持する第2筐体、及び、前記第2筐体に固定され、前記第2の軸を中心に前記第1筐体を回動させる第2駆動部と、A second housing for rotatably holding the first housing around a second axis in a second plane intersecting the first plane; and fixed to the second housing, A second drive unit for rotating the first housing around a second axis;
前記第2筐体を前記第1の平面内の第3の軸を中心に回動可能に保持する第3筐体、及び、前記第3筐体に固定され、前記第2筐体を前記第3の軸を中心に回動させる第3駆動部と、A third housing for rotatably holding the second housing around a third axis in the first plane; and the second housing is fixed to the third housing, and the second housing is attached to the first housing. A third drive unit that rotates about the axis of 3;
前記第3筐体を前記第2の平面内の第4の軸を中心に回動可能に保持する第4筐体、及び、前記第4筐体に固定され、前記第3筐体を前記第4の軸を中心に回動させる第4駆動部と、で構成し、A fourth housing that holds the third housing so as to be rotatable about a fourth axis in the second plane, and is fixed to the fourth housing, and the third housing is attached to the first housing. And a fourth drive unit that rotates about the axis of 4,
前記第3駆動部を用いて前記第2筐体を回動させる場合は、前記第3筐体に対する前記第2筐体の目標とする回転角において前記第3筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第1駆動部を用いて前記制御対象物を回動させる第1の制御を行い、When the second housing is rotated using the third driving unit, the control object rotates with respect to the third housing at a target rotation angle of the second housing with respect to the third housing. First control is performed to rotate the control object using the first drive unit so that the speed becomes zero,
前記第4駆動部を用いて前記第3筐体を回動させる場合は、前記第4筐体に対する前記第3筐体の目標とする回転角において、前記第4筐体に対する前記制御対象物の回転速度がゼロとなるように、前記第2駆動部を用いて前記第1筐体を回動させる第2の制御を行うことを特徴とするジンバル機構の制御方法。When the third housing is rotated using the fourth drive unit, the control object with respect to the fourth housing is rotated at a target rotation angle of the third housing with respect to the fourth housing. A control method for a gimbal mechanism, characterized in that second control for rotating the first housing using the second drive unit is performed so that the rotation speed becomes zero.
前記第1の制御では、前記第1筐体に対する前記制御対象物の回動範囲を、前記第3筐体に対する前記第2筐体の回動範囲よりも小さくし、In the first control, a rotation range of the control object with respect to the first casing is made smaller than a rotation range of the second casing with respect to the third casing,
前記第2の制御では、前記第2筐体に対する前記第1筐体の回動範囲を、前記第4筐体に対する前記第3筐体の回動範囲よりも小さくすることを特徴とする請求項3に記載のジンバル機構の制御方法。In the second control, a rotation range of the first housing with respect to the second housing is made smaller than a rotation range of the third housing with respect to the fourth housing. 4. A control method of the gimbal mechanism according to 3.
JP2007188608A 2007-07-19 2007-07-19 Gimbal mechanism, infrared induction device, and control method of gimbal mechanism Active JP5378660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188608A JP5378660B2 (en) 2007-07-19 2007-07-19 Gimbal mechanism, infrared induction device, and control method of gimbal mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188608A JP5378660B2 (en) 2007-07-19 2007-07-19 Gimbal mechanism, infrared induction device, and control method of gimbal mechanism

Publications (2)

Publication Number Publication Date
JP2009024938A JP2009024938A (en) 2009-02-05
JP5378660B2 true JP5378660B2 (en) 2013-12-25

Family

ID=40396900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188608A Active JP5378660B2 (en) 2007-07-19 2007-07-19 Gimbal mechanism, infrared induction device, and control method of gimbal mechanism

Country Status (1)

Country Link
JP (1) JP5378660B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3244228A4 (en) * 2015-01-05 2018-10-10 Nec Corporation Collaborative control device and collaborative control method
JP7244049B2 (en) * 2018-11-05 2023-03-22 株式会社エアロネクスト gimbal mechanism

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103997A (en) * 1990-08-21 1992-04-06 Mitsubishi Electric Corp Infra-red ray guiding device
JP3433994B2 (en) * 1993-12-27 2003-08-04 三菱プレシジョン株式会社 Camera stabilizer
JPH11341487A (en) * 1998-05-27 1999-12-10 Kaiyo Sogo Kaihatsu Kk Monitoring camera device
JP3120846B2 (en) * 1998-11-12 2000-12-25 日本電気株式会社 Infrared tracking device
JP2002130997A (en) * 2000-10-30 2002-05-09 Mitsubishi Heavy Ind Ltd Infrared ray induction apparatus for flying structure
JP3548733B2 (en) * 2001-06-06 2004-07-28 株式会社カワサキプレシジョンマシナリ Monitoring device
JP2003018452A (en) * 2001-06-29 2003-01-17 Kihara Kosokutei Kenkyusho:Kk Radiation type surveillance camera system
IL149934A (en) * 2002-05-30 2007-05-15 Rafael Advanced Defense Sys Airborne reconnaissance system
JP4284496B2 (en) * 2003-01-14 2009-06-24 多摩川精機株式会社 Space stabilizer
JP4423371B2 (en) * 2003-06-02 2010-03-03 多摩川精機株式会社 Space stabilizer
JP4516835B2 (en) * 2004-12-10 2010-08-04 日本電気株式会社 Infrared guidance device and flying object guidance method

Also Published As

Publication number Publication date
JP2009024938A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5010634B2 (en) Mobile image tracking device
CA3006155C (en) Positioning system for aerial non-destructive inspection
WO2017065102A1 (en) Flying-type inspection device and inspection method
JP6022567B2 (en) Beam guided motion control system
US8174581B2 (en) Moving object image tracking apparatus and method
JP4810582B2 (en) Mobile object image tracking apparatus and method
JP5665677B2 (en) Tracking device
TW201321059A (en) Camera ball turret having high bandwidth data transmission to external image processor
JP2013534339A (en) Drive command based vision system control system and method for target tracking
JP6831274B2 (en) Flight equipment
JP5378660B2 (en) Gimbal mechanism, infrared induction device, and control method of gimbal mechanism
KR101564298B1 (en) Device and Method for improving maneuverability of Lineofsight stabilizer having Dual Gimbal Structure
EP3822732B1 (en) Control method and apparatus for unmanned aerial vehicle and unmanned aerial vehicle
JP2014175774A (en) Tracking apparatus
JP2007240309A (en) Target position aligning device and target position aligning method
JP2005207862A (en) Target position information acquiring system and target position information acquiring method
JP2020062951A (en) Flying machine
JP6434764B2 (en) Aircraft flight control method and aircraft flight control system
JP4257266B2 (en) Floating body guidance device
JPH06331358A (en) Guidance tracking device
KR101371388B1 (en) Generator for Rotation type Omnidirectional 360 Degree Panoramic Infrared Image Using Multi-Linear Detector
JP2008122008A (en) Gimbal device for target acquisition
JP7433839B2 (en) Lightwave target detection device and polarization control method
JP2006162206A (en) Infrared guidance device, and guiding method for missile
JP2008070227A (en) Target acquisition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130213

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5378660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150