JP5377025B2 - Rubber bearing - Google Patents

Rubber bearing Download PDF

Info

Publication number
JP5377025B2
JP5377025B2 JP2009079375A JP2009079375A JP5377025B2 JP 5377025 B2 JP5377025 B2 JP 5377025B2 JP 2009079375 A JP2009079375 A JP 2009079375A JP 2009079375 A JP2009079375 A JP 2009079375A JP 5377025 B2 JP5377025 B2 JP 5377025B2
Authority
JP
Japan
Prior art keywords
rubber
component
rubber composition
carbon fiber
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009079375A
Other languages
Japanese (ja)
Other versions
JP2010229323A (en
Inventor
健次 山本
繁宏 大坪
朋久 岩本
聡 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2009079375A priority Critical patent/JP5377025B2/en
Publication of JP2010229323A publication Critical patent/JP2010229323A/en
Application granted granted Critical
Publication of JP5377025B2 publication Critical patent/JP5377025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high damping rubber composition which has high damping performance and vulcanization rate and is suitable for use in large bearings e.g. for bridges and buildings and a rubber bearing using the rubber composition. <P>SOLUTION: The isolation bearing is composed of stiffening plates 1 and rubber layers 2 laminated alternatively with one on the other to form an integrated single body. The rubber layers 2 contain components (A)-(C) and are formed of a high damping rubber composition in which the content of the component (B) is set in the range of 5-100 pts.wt. relative to 100 pts.wt. of the component (A). (A): Diene rubber. (B): Pitch-based carbon fiber filler having an average fiber diameter of 4-15 &mu;m and an average fiber length of 10 &mu;m-10 cm. (C): Sulfur-based vulcanizing agent. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、防振特性および免震特性を有する高減衰ゴム組成物を用いたゴム支承体に関するものである。 The present invention relates to a rubber bearing body using a high-damping rubber composition having anti-vibration characteristics and seismic isolation characteristics.

近年、橋梁技術の進歩がめざましく、橋梁規模が年々大型化し、これに伴って長大橋が設計されている。上記長大橋の架設は、通常、所定の間隔で配設された橋脚の上に、多数のゴム製の支承体を設置し、この支承体を介して、上記橋脚に長スパンの橋桁を設置し、行われる。このようにしてゴム支承体を介在させることにより、上記長大橋において、防振支持および免震支持等の機能が効果的に得られるようになる。ところで、上記ゴム支承体には、極めて大きな荷重が負荷されることから、その荷重支持に優れるよう、通常、金属板等の剛性を有する硬質板を、ゴム層と交互に積層し一体化して、形成される。   In recent years, the progress of bridge technology has been remarkable, and the scale of the bridge has been increasing year by year, and a long bridge has been designed accordingly. For the construction of the long bridge, usually a large number of rubber supports are installed on the piers arranged at predetermined intervals, and a long span bridge girder is installed on the pier via these supports. Done. By interposing the rubber bearing body in this way, functions such as anti-vibration support and seismic isolation support can be effectively obtained in the long bridge. By the way, since a very large load is applied to the rubber bearing body, usually a rigid hard plate such as a metal plate is alternately laminated and integrated with a rubber layer so that the load support is excellent, It is formed.

そして、上記ゴム層の材料としては、従来から、減衰性に優れた、天然ゴムやジエン系合成ゴムを主成分とするゴム組成物が用いられている。しかし、天然ゴムやジエン系合成ゴムのみでは、目的とする減衰性にはやや劣ることから、通常、そのゴム組成物中に、減衰特性を補助するカーボンブラック等の充填剤が配合されている(特許文献1〜3参照)。   As a material for the rubber layer, conventionally, a rubber composition having excellent damping properties and mainly composed of natural rubber or diene synthetic rubber has been used. However, since natural rubber and diene synthetic rubber alone are somewhat inferior in target damping properties, fillers such as carbon black for assisting damping characteristics are usually blended in the rubber composition ( Patent Literatures 1 to 3).

特開2001−164044公報JP 2001-164044 A WO98/32794号公報WO98 / 32794 gazette 特開平11−132274号公報JP-A-11-132274

ところで、橋梁用や建築物用の支承体は、大型であることから、その製造時に、製品内部(中心部)に熱を行き渡らせ、上記ゴム組成物の加硫を充分に行うためには、長時間(20時間前後)の加熱が必要である。これは、ゴムの、熱伝導性に劣る(熱を伝えにくい)性質によるものである。   By the way, since the support body for bridges and buildings is large-sized, in order to sufficiently spread the heat inside the product (center part) during the production and vulcanize the rubber composition, Heating for a long time (around 20 hours) is required. This is due to the property of rubber that is inferior in heat conductivity (it is difficult to conduct heat).

上記のようにゴム組成物中にカーボンブラックを配合した場合、カーボンブラックが熱伝導性を有することから、上記大型製品の用途においても、ある程度の加硫速度の向上効果は期待できる。しかし、所望の熱伝導性を発揮させるには、多量のカーボンブラックを添加する必要がある。このようなカーボンブラックの多量添加は、ゴム層の伸びの低下や硬度上昇を伴うことから、ゴム支承体の物性低下(機能低下)を引き起こすとともに、その上記ゴム組成物(未加硫ゴム)の粘度が増大することによる加工性(ハンドリング)の悪化等も懸念される。   When carbon black is blended in the rubber composition as described above, since carbon black has thermal conductivity, a certain degree of vulcanization speed improvement effect can be expected even in the use of the large product. However, it is necessary to add a large amount of carbon black in order to exhibit the desired thermal conductivity. Addition of such a large amount of carbon black is accompanied by a decrease in the elongation of the rubber layer and an increase in hardness, thereby causing a decrease in physical properties (degradation of function) of the rubber support, and the rubber composition (unvulcanized rubber). There is also concern about deterioration of workability (handling) due to an increase in viscosity.

また、加硫剤や加硫促進剤の種類および量の調整により、加硫速度を上げることも可能ではあるが、しかし、このような手法は、ゴム焼け(スコーチ)を生じやすく、貯蔵安定性、接着不具合、外観不具合等を引き起こすおそれがある。   It is also possible to increase the vulcanization speed by adjusting the type and amount of the vulcanizing agent and vulcanization accelerator. However, such a method is likely to cause rubber scorching and storage stability. There is a risk of causing adhesion failure, appearance failure, and the like.

本発明は、このような事情に鑑みなされたもので、高減衰で、かつ、加硫速度が速く、橋梁用や建築物用等といった大型の支承体用途に適する高減衰ゴム組成物を用いたゴム支承体の提供をその目的とする。 The present invention has been made in view of such circumstances, and uses a high-damping rubber composition that is highly damped, has a high vulcanization speed, and is suitable for use in large bearings such as for bridges and buildings. Its purpose is to provide a rubber bearing.

上記の目的を達成するために、本発明は、下記の(A)を主成分とし、下記の(B)および(C)成分を含有する高減衰ゴム組成物であって、(A)成分100重量部に対して、(B)成分の含有割合が5〜100重量部の範囲に設定されている高減衰ゴム組成物を用いてなるゴム支承体を、その要旨とする。
(A)ジエン系ゴム。
(B)平均繊維径4〜15μm、平均繊維長10μm〜10cmのピッチ系炭素繊維フィラー。
(C)硫黄系加硫剤。
In order to achieve the above object, the present invention provides a highly damped rubber composition comprising the following (A) as a main component and the following (B) and (C) components, wherein (A) component 100: relative parts by weight, the rubber bearing body formed have use high damping rubber composition is set in a range content ratio of 5 to 100 parts by weight of component (B), the gist of it.
(A) Diene rubber.
(B) A pitch-based carbon fiber filler having an average fiber diameter of 4 to 15 μm and an average fiber length of 10 μm to 10 cm.
(C) Sulfur-based vulcanizing agent.

すなわち、本発明者らは、高減衰で、かつ、加硫速度が速く、橋梁用や建築物用等といった大型の支承体用途に適する高減衰ゴム組成物として、まず、ジエン系ゴム組成物中に熱伝導性フィラーを含有させたものを用いることを検討した。しかしながら、カーボンブラック、金属酸化物(アルミナ、酸化亜鉛等)等の従来公知のゴム用熱伝導性フィラーでは、先に述べたように、加硫速度を向上させるのに多量に添加する必要があり、それによる物性低下,加工性の悪化等の問題が懸念される。そこで、ゴム用のフィラーでないものについても各種検討し、実験を重ねた。その実験の結果、平均繊維径4〜15μm、平均繊維長10μm〜10cmのピッチ系炭素繊維フィラーを配合したところ、その配合量が少量であっても、ゴム内に炭素繊維が細かく分散されることにより、熱を伝える媒体となり、上記のような問題を生じず加硫速度の向上を実現できることを突き止め、本発明に到達した。   That is, the inventors of the present invention, as a highly attenuated rubber composition suitable for large bearing applications such as for bridges and buildings with high attenuation and high vulcanization speed, are firstly used in diene rubber compositions. The use of a material containing a thermally conductive filler was investigated. However, conventionally known heat conductive fillers for rubber such as carbon black and metal oxides (alumina, zinc oxide, etc.) need to be added in a large amount to improve the vulcanization rate as described above. Therefore, there are concerns about problems such as deterioration of physical properties and deterioration of workability. Therefore, various types of non-rubber fillers were examined and experiments were repeated. As a result of the experiment, when a pitch-based carbon fiber filler having an average fiber diameter of 4 to 15 μm and an average fiber length of 10 μm to 10 cm is blended, the carbon fibers are finely dispersed in the rubber even if the blending amount is small. As a result, the present inventors have found that a medium for transferring heat can be realized and an improvement in the vulcanization speed can be realized without causing the above-mentioned problems.

以上のように、本発明のゴ支承体は、ジエン系ゴム組成物中に、平均繊維径4〜15μm,平均繊維長10μm〜10cmのピッチ系炭素繊維フィラー〔(B)成分〕を特定量含有させたもの(高減衰ゴム組成物)を用いてなるものである。そのため、高減衰で、かつ、ゴム組成物加硫時の熱伝導も良好に行われるようになるため加硫速度が速く、橋梁用や建築物用等といった大型の支承体用途に優れた効果を発揮することができる。 As described above, rubber scaffold of the present invention, the diene rubber composition, identified an average fiber diameter of a range of 4-15 .mu.m, pitch-based carbon fiber filler having an average fiber length 10μm~10cm [component (B)] weight What is contained (high damping rubber composition) is used . Therefore, it has high damping and heat conduction during rubber composition vulcanization is good, so the vulcanization speed is fast, and it has an excellent effect for large support applications such as for bridges and buildings. It can be demonstrated.

特に、上記炭素繊維フィラー〔(B)成分〕の、六角網面の成長方向に由来する結晶子サイズが5nm以上であると、本発明のゴム支承体に用いられる高減衰ゴム組成物の加硫速度を、より速くすることができ、上記のような橋梁用や建築物用等といった大型の支承体用途に優れた効果を発揮することができる。 In particular, when the carbon fiber filler [component (B)] has a crystallite size derived from the growth direction of the hexagonal network surface of 5 nm or more, the vulcanization of the highly attenuated rubber composition used in the rubber support of the present invention. The speed can be further increased, and an excellent effect can be exhibited in large-sized bearings such as those for bridges and buildings as described above.

また、上記炭素繊維フィラー〔(B)成分〕の真密度が1.5〜2.3g/ccの範囲であり、繊維軸方向の熱伝導率が300W/m・K以上であると、本発明のゴム支承体に用いられる高減衰ゴム組成物の加硫速度を、より速くすることができ、上記のような橋梁用や建築物用等といった大型の支承体用途に優れた効果を発揮することができる。 The true density of the carbon fiber filler [component (B)] is in the range of 1.5 to 2.3 g / cc, and the thermal conductivity in the fiber axis direction is 300 W / m · K or more. The vulcanization rate of the high damping rubber composition used in rubber bearings can be increased, and it has excellent effects for large bearings such as those for bridges and buildings as described above Can do.

本発明の免震支承体の一例を示す断面図である。It is sectional drawing which shows an example of the seismic isolation bearing body of this invention. 本発明の免震支承体の他の例を示す断面図である。It is sectional drawing which shows the other example of the seismic isolation bearing body of this invention. 本発明の免震支承体の他の例を示す断面図である。It is sectional drawing which shows the other example of the seismic isolation bearing body of this invention.

つぎに、本発明の実施の形態を詳しく説明する。   Next, embodiments of the present invention will be described in detail.

本発明のゴム支承体に用いられる高減衰ゴム組成物は、ジエン系ゴム(A成分)を主成分とし、平均繊維径4〜15μm,平均繊維長10μm〜10cmのピッチ系炭素繊維フィラー(B成分)と、硫黄系加硫剤(C成分)とを含有するものであって、上記炭素繊維フィラー(B成分)の含有割合が特定の範囲に設定されている。なお、本発明において、上記「主成分」とは、組成物の特性に大きな影響を与えるもののことであり、通常は、全体の55重量%以上を意味する。 The high damping rubber composition used for the rubber support of the present invention is a pitch-based carbon fiber filler (B component) having a diene rubber (component A) as a main component, an average fiber diameter of 4 to 15 μm, and an average fiber length of 10 μm to 10 cm. ) And a sulfur-based vulcanizing agent (C component), and the content ratio of the carbon fiber filler (B component) is set in a specific range. In the present invention, the above “main component” means a material that greatly affects the properties of the composition, and usually means 55% by weight or more of the whole.

上記ジエン系ゴム〔(A)成分〕としては、例えば、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル−ブタジエンゴム(NBR)、エチレン−プロピレン−ジエン三元共重合体(EPDM)等があげられる。これらは単独であるいは二種以上併せて用いられる。なかでも、強度、耐油性、耐熱性等の観点から、NR,BRが好ましい。   Examples of the diene rubber [component (A)] include natural rubber (NR), butadiene rubber (BR), styrene-butadiene rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), and ethylene. -Propylene-diene terpolymer (EPDM) and the like. These may be used alone or in combination of two or more. Of these, NR and BR are preferable from the viewpoints of strength, oil resistance, heat resistance and the like.

そして、上記(A)成分とともに用いられる熱伝導性フィラーとしては、先に述べたように、平均繊維径4〜15μm,平均繊維長10μm〜10cmのピッチ系炭素繊維フィラー〔(B)成分〕が用いられる。好ましくは、平均繊維長50μm〜25mm,平均繊維径8〜10μmの炭素繊維フィラーである。すなわち、炭素繊維フィラーの平均繊維径が上記範囲未満であると、熱伝導性が悪くなる方向となるからであり、逆に、平均繊維径が上記範囲を超えると、材料特性の変化に大きく影響を与える(ゴムが硬くなり、伸びも悪くなる)からである。また、炭素繊維フィラーの平均繊維長が上記範囲未満であると、高い熱伝導性(所望の加硫速度向上効果)を発揮することができないからであり、逆に、平均繊維長が上記範囲を超えると、ゴムコンパウンド練り前における秤量時に作業性(ハンドリング)が悪くなる為である。なお、上記平均繊維径および平均繊維長は、例えば、SEM(電子顕微鏡)観察等により測定することができる。   And as a heat conductive filler used with the said (A) component, as mentioned above, the pitch-type carbon fiber filler [(B) component] with an average fiber diameter of 4-15 micrometers and an average fiber length of 10 micrometers-10 cm is mentioned. Used. Preferably, a carbon fiber filler having an average fiber length of 50 μm to 25 mm and an average fiber diameter of 8 to 10 μm. That is, if the average fiber diameter of the carbon fiber filler is less than the above range, the thermal conductivity tends to deteriorate. Conversely, if the average fiber diameter exceeds the above range, the change in material properties is greatly affected. (The rubber becomes harder and the elongation becomes worse). Further, if the average fiber length of the carbon fiber filler is less than the above range, high thermal conductivity (desired vulcanization speed improvement effect) cannot be exhibited. Conversely, the average fiber length is within the above range. This is because workability (handling) deteriorates during weighing before kneading the rubber compound. In addition, the said average fiber diameter and average fiber length can be measured by SEM (electron microscope) observation etc., for example.

特に、上記特定のピッチ系炭素繊維フィラー〔(B)成分〕は、その六角網面の成長方向に由来する結晶子サイズが5nm以上であることが好ましい。より好ましくは、20nm以上であり、さらに好ましくは30nm以上である。すなわち、このような範囲に設定することにより、高減衰ゴム組成物の加硫速度を、より速くすることができ、橋梁用や建築物用等といった大型の支承体の用途に用いても、その製品内部(中心部)にまで、速く熱を行き渡らせることができ、加硫時間の短縮化が狙えるからである。なお、六角網面の成長方向に由来する結晶子サイズは、例えば、X線回折法にて得られる炭素結晶の(110)面からの回折線によって求めることができる。結晶子サイズが重要になるのは、熱伝導が主としてフォノンによって担われており、フォノンを発生するのが結晶であることに由来している。   In particular, the specific pitch-based carbon fiber filler (component (B)) preferably has a crystallite size derived from the growth direction of the hexagonal network surface of 5 nm or more. More preferably, it is 20 nm or more, and more preferably 30 nm or more. That is, by setting in such a range, the vulcanization speed of the high damping rubber composition can be increased, and even when used for large bearings such as for bridges and buildings, the This is because heat can be quickly distributed to the inside (center) of the product, and the vulcanization time can be shortened. The crystallite size derived from the growth direction of the hexagonal network surface can be obtained, for example, by diffraction lines from the (110) plane of the carbon crystal obtained by the X-ray diffraction method. The reason why the crystallite size is important is that heat conduction is mainly performed by phonons, and it is the crystals that generate phonons.

また、上記特定のピッチ系炭素繊維フィラー〔(B)成分〕は、その真密度が1.5〜2.3g/ccであり、繊維軸方向の熱伝導率は300W/m・K以上であることが好ましい。すなわち、このような範囲に設定することにより、本発明のゴム支承体に用いられる高減衰ゴム組成物の加硫速度を、より速くすることができ、橋梁用や建築物用等といった大型の支承体の用途に用いても、その製品内部(中心部)にまで、速く熱を行き渡らせることができ、加硫時間の短縮化が狙えるからである。 The specific pitch-based carbon fiber filler (component (B)) has a true density of 1.5 to 2.3 g / cc and a thermal conductivity in the fiber axis direction of 300 W / m · K or more. It is preferable. That is, by setting in such a range, the vulcanization speed of the high-damping rubber composition used in the rubber bearing body of the present invention can be increased, and large bearings such as for bridges and buildings can be used. This is because even when used for body use, heat can be quickly distributed to the inside (center part) of the product, and the vulcanization time can be shortened.

上記特定のピッチ系炭素繊維フィラー〔(B)成分〕の原料としては、例えば、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等があげられる。これらは単独であるいは二種以上併せて用いられる。なかでも、熱伝導性を向上させ、加硫速度を速くする観点から、ナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特に光学的異方性ピッチ、すなわちメソフェーズピッチが好ましい。   Examples of the raw material for the specific pitch-based carbon fiber filler [component (B)] include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, condensed heterocyclic compounds such as petroleum-based pitch and coal-based pitch, and the like. These may be used alone or in combination of two or more. Of these, condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene are preferred from the viewpoint of improving thermal conductivity and increasing the vulcanization rate, and optically anisotropic pitch, that is, mesophase pitch is particularly preferred.

そして、上記特定のピッチ系炭素繊維フィラー〔(B)成分〕は、例えば、メルトブロー法等に従い、250〜350℃程で溶融した上記原料ピッチを、ノズル口金から糸状に吐出し、これを冷却して溶融紡糸を得た後、この溶融紡糸を、不融化、焼成、粉砕を経て最後に黒鉛化することによって製造することができる。   And the said specific pitch type carbon fiber filler [(B) component] discharges the said raw material pitch fuse | melted at about 250-350 degreeC, for example according to the melt blow method etc. from a nozzle mouthpiece, and cools this. After melt spinning is obtained, the melt spinning can be produced by infusibilizing, firing and pulverizing and finally graphitizing.

上記不融化は、空気、或いはオゾン、二酸化窒素、窒素、酸素、ヨウ素、臭素を空気に添加したガスを用いて200〜350℃で達成される。安全性、利便性を考慮すると空気中で実施することが好ましい。また、不融化したピッチ繊維は、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガス中で600〜1500℃で焼成され、次いで2000〜3500℃で黒鉛化されるが、焼成は常圧で、且つコストの安い窒素中で実施される場合が多く、黒鉛化は使用する炉の形式に応じて、不活性ガスの種類を変更する事が一般的である。不融化後或いは焼成後、必要に応じ得られた繊維を粉砕する。粉砕は、具体的には、カッター、ボールミル、ジェットミル、クラッシャーなどを用いることにより行われる。粉砕されたピッチ系炭素繊維フィラーを必要に応じて焼成し、次いで黒鉛化する。黒鉛化温度は、炭素繊維としての熱伝導率を高くするためには、2000〜3500℃にすることが好ましい。より好ましくは2300〜3100℃である。黒鉛化の際に黒鉛性のルツボに入れ処理すると、外部からの物理的、化学的作用を遮断でき、好ましい。黒鉛製のルツボは上記の炭素繊維を、所望の量入れることが出来るものであるならば、大きさ、形状に制約はないが、黒鉛化処理中または冷却中に炉内の酸化性のガス、または水蒸気との反応による当該炭素繊維の損傷を防ぐために、フタ付きの気密性の高いものが好適に利用できる。   The infusibilization is achieved at 200 to 350 ° C. using air or a gas obtained by adding ozone, nitrogen dioxide, nitrogen, oxygen, iodine, or bromine to air. Considering safety and convenience, it is preferable to carry out in the air. The infusibilized pitch fiber is fired at 600-1500 ° C. in vacuum or in an inert gas such as nitrogen, argon, krypton, and then graphitized at 2000-3500 ° C. In many cases, the graphitization is performed in low-cost nitrogen, and graphitization is generally performed by changing the type of the inert gas according to the type of furnace used. After infusibilization or firing, the obtained fiber is pulverized as necessary. Specifically, the pulverization is performed by using a cutter, a ball mill, a jet mill, a crusher, or the like. The pulverized pitch-based carbon fiber filler is fired as necessary and then graphitized. The graphitization temperature is preferably 2000 to 3500 ° C. in order to increase the thermal conductivity of the carbon fiber. More preferably, it is 2300-3100 degreeC. When graphitizing, it is preferable to place it in a graphite crucible because it can block physical and chemical effects from the outside. The graphite crucible is not limited in size and shape as long as the above-mentioned carbon fiber can be put in a desired amount, but the oxidizing gas in the furnace during graphitization or cooling, Or in order to prevent the said carbon fiber from being damaged by reaction with water vapor | steam, a highly airtight thing with a lid | cover can be utilized suitably.

上記特定のピッチ系炭素繊維フィラー〔(B)成分〕の配合割合は、ジエン系ゴム〔(A)成分〕100重量部(以下、「部」と略す)に対して、5〜100部の範囲で配合される。好ましくは10〜50部の範囲である。すなわち、上記炭素繊維フィラーの配合割合が上記範囲未満であると、所望の熱伝導性(加硫速度の向上効果)を発揮することができないからであり、逆に、上記炭素繊維フィラーの配合割合を上記範囲よりも高くしても、コストアップにつながるのみで、それ以上の効果は期待できないからである。   The blending ratio of the specific pitch-based carbon fiber filler [(B) component] is in the range of 5 to 100 parts with respect to 100 parts by weight (hereinafter referred to as “part”) of the diene rubber [(A) component]. It is blended with. Preferably it is the range of 10-50 parts. That is, if the blending ratio of the carbon fiber filler is less than the above range, desired thermal conductivity (improvement effect of vulcanization rate) cannot be exhibited, and conversely, the blending ratio of the carbon fiber filler. This is because even if the value is higher than the above range, it only leads to an increase in cost, and no further effect can be expected.

上記(A)および(B)成分とともに用いられる硫黄系加硫剤〔(C)成分〕としては、例えば、硫黄、塩化硫黄等の硫黄(粉末硫黄,沈降硫黄,不溶性硫黄)や、2−メルカプトイミダゾリン、ジペンタメチレンチウラムペンタサルファイド等があげられる。これらは単独であるいは二種以上併せて用いられる。   Examples of the sulfur-based vulcanizing agent [(C) component] used together with the components (A) and (B) include sulfur such as sulfur and sulfur chloride (powder sulfur, precipitated sulfur, insoluble sulfur), and 2-mercapto. Examples include imidazoline and dipentamethylene thiuram pentasulfide. These may be used alone or in combination of two or more.

上記硫黄系加硫剤〔(C)成分〕の配合量は、上記ジエン系ゴム〔(A)成分〕100部に対して、0.3〜7部の範囲が好ましく、特に好ましくは1〜5部の範囲である。すなわち、上記加硫剤の配合量が少なすぎると、加硫反応性が悪くなる傾向がみられ、逆に加硫剤の配合量が多すぎると、ゴム物性(破断強度,破断伸び)が低下する傾向がみられるからである。   The amount of the sulfur vulcanizing agent [component (C)] is preferably in the range of 0.3 to 7 parts, particularly preferably 1 to 5 with respect to 100 parts of the diene rubber [component (A)]. Part range. That is, if the amount of the vulcanizing agent is too small, the vulcanization reactivity tends to be deteriorated. Conversely, if the amount of the vulcanizing agent is too large, the rubber properties (breaking strength, breaking elongation) are lowered. This is because the tendency to do is seen.

また、上記特殊な高減衰ゴム組成物には、上記(A)〜(C)成分に加えて、カーボンブラック、プロセスオイル、老化防止剤、加工助剤、加硫促進剤、白色充填剤、反応性モノマー、発泡剤等を必要に応じて適宜配合しても差し支えない。   In addition to the above components (A) to (C), the special high attenuation rubber composition includes carbon black, process oil, anti-aging agent, processing aid, vulcanization accelerator, white filler, reaction A functional monomer, a foaming agent and the like may be appropriately blended as necessary.

そして、上記特殊な高減衰ゴム組成物は、上記(A)〜(C)成分および必要に応じてその他の成分を用いて、これらをニーダー,バンバリーミキサー,オープンロール,2軸スクリュー式攪拌機等の混練機を用いて混練することにより、調製することができる。   And the special high damping rubber composition uses the above components (A) to (C) and other components as required, and these are used as kneaders, Banbury mixers, open rolls, twin screw type stirrers, etc. It can be prepared by kneading using a kneader.

上記特殊な高減衰ゴム組成物は、橋梁用支承体、建築物用支承体といった大型の支承体の材料として好ましく用いられる。 The special high damping rubber composition, for bridges scaffold, Ru is preferably used as a material of a large scaffold such buildings for scaffold.

橋梁用または建築物用の免震支承体は、例えば、図1に示すように、硬質板1とゴム層2とが交互に積層され一体化されたものである。そして、上記ゴム層2が、本発明に係る上記特殊な高減衰ゴム組成物によって形成されており、これが最大の特徴である。図において、3,4は、金属製の取付板であり、硬質板1とゴム層2との積層体の上部および下部に接着固定されている。そして、上記免震支承体では、その下部取付板4が、橋脚等の下部構造体に固定されるようになっており、上部取付板3が、橋桁等の上部構造体に固定されるようになっている。   For example, as shown in FIG. 1, a seismic isolation support for a bridge or a building is formed by alternately laminating hard plates 1 and rubber layers 2. The rubber layer 2 is formed of the special high damping rubber composition according to the present invention, which is the greatest feature. In the figure, 3 and 4 are metal attachment plates, which are bonded and fixed to the upper and lower portions of the laminate of the hard plate 1 and the rubber layer 2. And in the said seismic isolation bearing body, the lower attachment plate 4 is fixed to lower structures, such as a bridge pier, and the upper attachment plate 3 is fixed to upper structures, such as a bridge girder. It has become.

上記硬質板1としては、例えば、圧延鋼板,鉄板などの金属板や、硬質プラスチック板材等が用いられる。   As the hard plate 1, for example, a metal plate such as a rolled steel plate or an iron plate, a hard plastic plate material, or the like is used.

ここで、図1に示す免震支承体は、例えば、つぎのようにして作製される。すなわち、まず、上記(A)〜(C)成分および必要に応じてその他の成分を配合し、これらをニーダー,バンバリーミキサー,オープンロール,混合ロール,2軸スクリュー式攪拌機等の混練機を用いて混練することにより、ゴム層2用材料であるゴム組成物を調製する。つぎに、所定の大きさの硬質板1を複数枚準備し、さらに、上部取付板3および下部取付板4も準備し、所定の配置となるよう、これらを成形金型内にセットする。なお、成形金型内にセットする上記硬質板1等には、予め、接着剤を塗布しておいてもよい。続いて、この金型内の空隙に、上記調製のゴム組成物を射出等により注入するか、もしくは、あらかじめロール等で調製したゴム組成物を重量成型し、金型に敷き詰めて、押し型加硫を行う。そして、上記ゴム組成物を、130〜180℃で、5〜90分間、加熱加硫する。免震支承体のような大型ゴム製品は、製品内部へ熱を伝えて加硫するのに長時間(20時間前後)を要するが、本発明に係る上記特殊な高減衰ゴム組成物は加硫時間の短縮化が狙えるため、このように加硫時間が短くても、充分な加硫を行うことができ、生産効率の向上効果等が期待できる。そして、上記加硫後、これを脱型することにより、目的とする免震支承体を得ることができる。   Here, the seismic isolation bearing shown in FIG. 1 is produced as follows, for example. That is, first, the above components (A) to (C) and other components are blended as necessary, and these are mixed using a kneader such as a kneader, a Banbury mixer, an open roll, a mixing roll, or a twin screw type stirrer. By kneading, a rubber composition which is a material for the rubber layer 2 is prepared. Next, a plurality of hard plates 1 having a predetermined size are prepared, and an upper mounting plate 3 and a lower mounting plate 4 are also prepared, and these are set in a molding die so as to have a predetermined arrangement. Note that an adhesive may be applied in advance to the hard plate 1 or the like set in the molding die. Subsequently, the rubber composition prepared above is injected into the gap in the mold by injection or the like, or the rubber composition prepared in advance by a roll or the like is weight-molded and spread on the mold, and the mold is added. Sulfur is performed. And the said rubber composition is heat-vulcanized at 130-180 degreeC for 5-90 minutes. Large rubber products such as seismic isolation bearings require a long time (around 20 hours) to transmit heat to the inside of the product and vulcanize, but the special high damping rubber composition according to the present invention is vulcanized. Since the time can be shortened, even if the vulcanization time is short as described above, sufficient vulcanization can be performed, and an effect of improving production efficiency can be expected. And after the said vulcanization | cure, the target seismic isolation bearing body can be obtained by demolding this.

また、図1に示す免震支承体は、つぎのようにして作製することもできる。すなわち、上記と同様にして調製したゴム組成物を用い、押出成形等により所定厚みのゴムシート(ゴム層2)に成形した後、これを、適当な接着剤を用いて、所定の硬質板1と交互に積層し接着して、ゴムブロックを作製し、更に必要に応じて、その上下面に上部取付板3および下部取付板4を接着して一体化する。これにより、目的とする免震支承体を得ることができる(図1参照)。   Moreover, the seismic isolation bearing body shown in FIG. 1 can also be produced as follows. That is, a rubber composition prepared in the same manner as described above is used to form a rubber sheet (rubber layer 2) having a predetermined thickness by extrusion molding or the like, and this is then used to form a predetermined hard plate 1 using an appropriate adhesive. A rubber block is produced by alternately laminating and adhering to each other, and if necessary, the upper mounting plate 3 and the lower mounting plate 4 are bonded and integrated on the upper and lower surfaces. Thereby, the target seismic isolation bearing can be obtained (refer FIG. 1).

そして、硬質板1とゴム層2とが交互に積層され一体化された上記免震支承体は、そのゴム層2が、本発明に係る上記特殊な高減衰ゴム組成物を加硫してなるものであり、その振動吸収により生じた熱エネルギーを外気に発散させる性能(熱伝導性)が高いことから、耐久使用によるゴム劣化(熱劣化)等も生じにくく、特に、橋梁用途や建築物用途の支承体として優れた免震性能を発揮することができる。   And the said seismic isolation bearing body by which the hard board 1 and the rubber layer 2 were laminated | stacked alternately and integrated is the rubber layer 2 formed by vulcanizing | curing the said special high damping rubber composition which concerns on this invention. Because it has high performance (thermal conductivity) to dissipate thermal energy generated by absorbing vibrations to the outside air, it is unlikely to cause rubber degradation (thermal degradation) due to durable use, especially for bridges and buildings. Excellent base isolation performance as a support body.

なお、図1に示す免震支承体は、そのゴム層2の水平方向の大きさが、硬質板1の大きさに比べると大きいことから、その断面において、硬質板1がゴム内に完全に埋設された状態となっている。しかしながら、本発明では、このような断面構造に限定されず、例えば、図2に示すように、硬質板1の水平方向の大きさが、ゴム層2の大きさと同じになるようにし、硬質板1の外周側面が、その積層体の側面と面一になるようにしてもよい。また、図3に示すように、硬質板1の水平方向の大きさが、ゴム層2の大きさより大きくなるよう設定し、図示のように積層一体化してもよい。そして、図1に示す免震支承体は、その構造上、端部への応力集中軽減という利点があり、図3のものは、製造しやすいという利点がある。   Note that the seismic isolation bearing shown in FIG. 1 has a rubber layer 2 whose horizontal size is larger than that of the hard plate 1, so that the hard plate 1 is completely in the rubber in its cross section. It is buried. However, the present invention is not limited to such a cross-sectional structure. For example, as shown in FIG. 2, the size of the hard plate 1 in the horizontal direction is the same as the size of the rubber layer 2, and the hard plate The outer peripheral side surface of 1 may be flush with the side surface of the laminate. Moreover, as shown in FIG. 3, the horizontal size of the hard plate 1 may be set to be larger than the size of the rubber layer 2, and may be laminated and integrated as shown. The seismic isolation support shown in FIG. 1 has the advantage of reducing stress concentration at the end due to its structure, and the one shown in FIG. 3 has the advantage of being easy to manufacture.

このようにして得られる免震支承体の寸法は、例えば、その外径は、20〜200cm程度であり、また、上記免震支承体の総厚みは、10〜80cm程度である。さらに、上記免震支承体を構成する各層の厚みも、各層の目的とする機能が充分に達成され得るような範囲内であればよく、例えば、硬質板1の厚みは、1層0.1〜2cm程度であり、ゴム層2の厚みは、1層0.5〜7cm程度であり、ゴム製外皮5の厚みは、0.5〜10cm程度である。さらに、上記免震支承体における硬質板1やゴム層2の積層数に関しても、免震積層体の用途に応じて適宜に設定することができる。   The dimension of the seismic isolation bearing body thus obtained is, for example, about 20 to 200 cm in outer diameter, and the total thickness of the base isolation bearing body is about 10 to 80 cm. Further, the thickness of each layer constituting the seismic isolation bearing may be within a range in which the intended function of each layer can be sufficiently achieved. For example, the thickness of the hard plate 1 is 0.1 layer per layer. The thickness of the rubber layer 2 is about 0.5 to 7 cm, and the thickness of the rubber outer skin 5 is about 0.5 to 10 cm. Further, the number of laminated hard plates 1 and rubber layers 2 in the seismic isolation bearing can be appropriately set according to the use of the seismic isolation laminate.

なお、上記免震支承体の外形は、円柱状,楕円柱状,角柱状等、その用途に応じて適宜に設定することができる。   In addition, the external shape of the said seismic isolation bearing body can be suitably set according to the use, such as columnar shape, elliptical column shape, prismatic shape.

つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

まず、実施例および比較例に先立ち、下記に示す材料を準備した。   First, prior to the examples and comparative examples, the following materials were prepared.

〔NR〕
天然ゴム
[NR]
Natural rubber

〔酸化亜鉛〕
酸化亜鉛2種、三井金属鉱業社製
[Zinc oxide]
2 types of zinc oxide, made by Mitsui Mining & Mining

〔ステアリン酸〕
ルーナックS30、花王社製
〔stearic acid〕
Lunac S30, manufactured by Kao

〔老化防止剤〕
オゾノン6C、精工化学社製
[Anti-aging agent]
Ozonon 6C, manufactured by Seiko Chemical Co., Ltd.

〔ワックス〕
サンノック、大内新興化学社製
〔wax〕
Sunnock, Ouchi Shinsei Chemical Co., Ltd.

〔カーボンブラック〕
ショウブラックN220、昭和キャボット社製
〔Carbon black〕
Show Black N220, Showa Cabot

〔炭素繊維フィラー(i) 〕
ラヒーマX−A101(平均繊維径:8μm、平均繊維長:10μm、真密度:1.0g/cc、熱伝導率:約600W/m・K)、帝人社製
[Carbon fiber filler (i)]
Lahima X-A101 (average fiber diameter: 8 μm, average fiber length: 10 μm, true density: 1.0 g / cc, thermal conductivity: about 600 W / m · K), manufactured by Teijin Ltd.

〔炭素繊維フィラー(ii)〕
ラヒーマR−A201(平均繊維径:8μm、平均繊維長:50μm、真密度:1.0g/cc、熱伝導率:約600W/m・K)、帝人社製
(Carbon fiber filler (ii))
Lahima R-A201 (average fiber diameter: 8 μm, average fiber length: 50 μm, true density: 1.0 g / cc, thermal conductivity: about 600 W / m · K), manufactured by Teijin Ltd.

〔炭素繊維フィラー(iii) 〕
GRANOC XN−100−25Z(平均繊維径:10μm、平均繊維長:25mm、真密度:2. 2g/cc、熱伝導率:約900W/m・K)、日本グラファイトファイバー社製
[Carbon fiber filler (iii)]
GRANOC XN-100-25Z (average fiber diameter: 10 μm, average fiber length: 25 mm, true density: 2.2 g / cc, thermal conductivity: about 900 W / m · K), manufactured by Nippon Graphite Fiber

〔プロセスオイル〕
サンセン410、日本サン石油社製
[Process oil]
Sunsen 410, made by Nippon San Oil Co., Ltd.

〔加硫促進剤〕
サンセラーCZ−G、三新化学社製
[Vulcanization accelerator]
Sunseller CZ-G, manufactured by Sanshin Chemical Co., Ltd.

〔硫黄〕
イオウ、軽井沢精錬所社製
〔sulfur〕
Sulfur, manufactured by Karuizawa Refinery

〔実施例1〕
NR100部と、酸化亜鉛5部と、ステアリン酸2部と、老化防止剤1部と、ワックス2部と、カーボンブラック30部と、炭素繊維フィラー(i) 30部と、プロセスオイル5部とを配合し、これらをバンバリーミキサーを用いて、140℃で5分間混練を行った。つぎに、これに、硫黄2.8部と、加硫促進剤1部とを配合し、オープンロールを用いて、60℃で5分間混練することにより、ゴム組成物を調製した。
[Example 1]
100 parts of NR, 5 parts of zinc oxide, 2 parts of stearic acid, 1 part of anti-aging agent, 2 parts of wax, 30 parts of carbon black, 30 parts of carbon fiber filler (i), and 5 parts of process oil These were blended and kneaded at 140 ° C. for 5 minutes using a Banbury mixer. Next, 2.8 parts of sulfur and 1 part of a vulcanization accelerator were blended therein and kneaded at 60 ° C. for 5 minutes using an open roll to prepare a rubber composition.

〔実施例2〜3、比較例1〕
後記の表1に示すように、各成分の配合量等を変更する以外は、実施例1に準じて、ゴム組成物を調製した。
[Examples 2-3, Comparative Example 1]
As shown in Table 1 below, a rubber composition was prepared according to Example 1 except that the amount of each component was changed.

このようにして得られた実施例および比較例のゴム組成物を用い、下記の基準に従って、各特性の評価を行った。その結果を、後記の表1に併せて示した。   Using the rubber compositions of Examples and Comparative Examples thus obtained, each characteristic was evaluated according to the following criteria. The results are also shown in Table 1 below.

〔加硫時間〕
上記ゴム組成物を用いて、150℃でプレス加硫し、9cm×9cm×厚み4cmのゴム試験片を作製した。そして、上記ゴム試験片の作製に際し、その中央部を狙って削りだしたゴムブロック(3cm×3cm×厚み1.25cm)の圧縮永久歪み(JIS K6262に準じて25%圧縮し、70℃雰囲気下で24時間放置した後の圧縮永久歪み)の値が25%以下となるのに要する加硫時間(分)を測定した。
[Vulcanization time]
Using the rubber composition described above, press vulcanization was performed at 150 ° C. to prepare a 9 cm × 9 cm × 4 cm thick rubber test piece. Then, when producing the rubber test piece, compression set (25% compression according to JIS K6262) of a rubber block (3 cm × 3 cm × thickness 1.25 cm) cut out aiming at the central portion, and in an atmosphere at 70 ° C. The vulcanization time (minutes) required for the value of compression set after standing for 24 hours to be 25% or less was measured.

〔熱伝導率〕
上記ゴム組成物を用いて、150℃でプレス加硫し、9cm×9cm×厚み4cmのゴム試験片を作製した。そして、迅速熱伝導率計装置(KemthermQTM−D3、京都電子工業社製)を用い、そのプローブを、上記作製のゴム試験片の表面および裏面に押しあて、熱伝導率(W/m・K)を測定した。
〔Thermal conductivity〕
Using the rubber composition described above, press vulcanization was performed at 150 ° C. to prepare a 9 cm × 9 cm × 4 cm thick rubber test piece. Then, using a rapid thermal conductivity meter device (Kemtherm QTM-D3, manufactured by Kyoto Electronics Industry Co., Ltd.), the probe was pressed against the front and back surfaces of the rubber test piece produced above, and the thermal conductivity (W / m · K). Was measured.

Figure 0005377025
Figure 0005377025

上記結果から、実施例品は、加硫時間の短縮を図ることができた。また、ゴム試験片の熱伝導率も高く、そのため、振動吸収により生じた熱エネルギーを外気に発散させる性能が高く、耐久使用によるゴム劣化(熱劣化)等も生じにくくなると推察される。このような結果から、例えば、実施例のゴム組成物を用い、図1〜図3に示す形状の橋梁用途や建築物用途の免震支承体を作製した場合、実施例に準じる優れた免震・防振性能を発揮することができると推察される。   From the above results, it was possible to shorten the vulcanization time of the example products. In addition, the thermal conductivity of the rubber test piece is high, and therefore, it is presumed that the performance of radiating the thermal energy generated by vibration absorption to the outside air is high, and rubber deterioration (heat deterioration) due to durable use is less likely to occur. From such a result, for example, when using the rubber composition of the example to produce a base-isolated support for the bridge use or the building use having the shape shown in FIGS. 1 to 3, excellent seismic isolation according to the example.・ It is presumed that anti-vibration performance can be demonstrated.

これに対して、比較例1品は、炭素繊維フィラーでなく、カーボンブラックを多量配合することにより対処しているが、実施例品に比べ、熱伝導率は低く、そのため、振動吸収により生じた熱エネルギーがこもりやすく、耐久使用によりゴム劣化(熱劣化)等が生じると推察される。また、実施例に比べて加硫に要する時間が長く、生産効率が悪いことがわかる。   On the other hand, the product of Comparative Example 1 is dealt with by blending a large amount of carbon black instead of the carbon fiber filler, but the thermal conductivity is lower than that of the product of the Example, so that it was caused by vibration absorption. It is presumed that heat energy is easily stored and rubber deterioration (heat deterioration) or the like occurs due to durable use. In addition, it can be seen that the time required for vulcanization is longer than in the examples and the production efficiency is poor.

なお、実施例のゴム組成物のポリマーには、上記のように天然ゴム(NR)が使用されているが、他のジエン系ゴム(BR、NR/BRブレンド等)を用いた場合も、上記実施例と同様、優れた結果が得られた。   In addition, although the natural rubber (NR) is used as described above for the polymer of the rubber composition of the examples, the above also applies when other diene rubbers (BR, NR / BR blend, etc.) are used. Similar to the examples, excellent results were obtained.

また、実施例で使用されている炭素繊維フィラー以外であっても、平均繊維径4〜15μm,平均繊維長10μm〜10cmのピッチ系炭素繊維フィラーであれば、本発明のゴム支承体における高減衰ゴム組成物の材料として用いることにより、実施例と同様、優れた結果が得られることが、実験により確認されている。 Moreover, even if it is other than the carbon fiber filler used in the examples, if the pitch-based carbon fiber filler has an average fiber diameter of 4 to 15 μm and an average fiber length of 10 μm to 10 cm, it is highly attenuated in the rubber support of the present invention. It has been confirmed by experiments that excellent results can be obtained by using it as a material for the rubber composition, as in Examples.

本発明のゴム支承体に用いられる高減衰ゴム組成物は、橋梁用支承体、建築物用支承体といった大型の免震支承体の材料として好ましく用いられるが、それ以外にも、自動車用制振材、洗濯機等の一般家電製品の制振ダンパー等にも用いることができる。 The high damping rubber composition used for the rubber bearing of the present invention is preferably used as a material for large seismic isolation bearings such as bridge bearings and building bearings. It can also be used for vibration damping dampers for general household electrical appliances such as materials and washing machines.

1 硬質板
2 ゴム層
1 Hard plate 2 Rubber layer

Claims (4)

下記の(A)を主成分とし、下記の(B)および(C)成分を含有する高減衰ゴム組成物であって、(A)成分100重量部に対して、(B)成分の含有割合が5〜100重量部の範囲に設定されている高減衰ゴム組成物を用いてなることを特徴とするゴム支承体
(A)ジエン系ゴム。
(B)平均繊維径4〜15μm、平均繊維長10μm〜10cmのピッチ系炭素繊維フィラー。
(C)硫黄系加硫剤。
A highly damped rubber composition comprising the following (A) as a main component and containing the following (B) and (C) components, and the content ratio of the (B) component with respect to 100 parts by weight of the (A) component: rubber scaffold but characterized by comprising using a high damping rubber composition that is set to a range of 5 to 100 parts by weight.
(A) Diene rubber.
(B) A pitch-based carbon fiber filler having an average fiber diameter of 4 to 15 μm and an average fiber length of 10 μm to 10 cm.
(C) Sulfur-based vulcanizing agent.
上記(B)成分のピッチ系炭素繊維フィラーの、六角網面の成長方向に由来する結晶子サイズが5nm以上である請求項1記載のゴ支承体(B) described above of the pitch-based carbon fiber filler of the component, a crystallite size derived from the growth direction of the hexagonal plane is that 5nm or more claims 1 rubber scaffold according. 上記(B)成分のピッチ系炭素繊維フィラーの真密度が1.5〜2.3g/ccの範囲であり、その繊維軸方向の熱伝導率が300W/m・K以上である請求項1または2記載のゴ支承体The true density of the pitch-based carbon fiber filler as the component (B) is in the range of 1.5 to 2.3 g / cc, and the thermal conductivity in the fiber axis direction is 300 W / m · K or more. rubber bearing body of the second aspect. 上記(A)成分のジエン系ゴムが、天然ゴム、ブタジエンゴム、スチレン−ブタジエンゴム、イソプレンゴム、アクリロニトリル−ブタジエンおよびエチレン−プロピレン−ジエン三元共重合体からなる群から選ばれた少なくとも一つである請求項1〜3のいずれか一項に記載のゴ支承体The diene rubber as the component (A) is at least one selected from the group consisting of natural rubber, butadiene rubber, styrene-butadiene rubber, isoprene rubber, acrylonitrile-butadiene, and ethylene-propylene-diene terpolymer. rubber bearing as claimed in any one of a claims 1-3.
JP2009079375A 2009-03-27 2009-03-27 Rubber bearing Active JP5377025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079375A JP5377025B2 (en) 2009-03-27 2009-03-27 Rubber bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079375A JP5377025B2 (en) 2009-03-27 2009-03-27 Rubber bearing

Publications (2)

Publication Number Publication Date
JP2010229323A JP2010229323A (en) 2010-10-14
JP5377025B2 true JP5377025B2 (en) 2013-12-25

Family

ID=43045433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079375A Active JP5377025B2 (en) 2009-03-27 2009-03-27 Rubber bearing

Country Status (1)

Country Link
JP (1) JP5377025B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192337A (en) * 1998-12-21 2000-07-11 Mitsubishi Chemicals Corp Graphite carbon fiber and heat-dissipation sheet made thereof
JP2001164044A (en) * 1999-12-13 2001-06-19 Bridgestone Corp Vibration insulating rubber composition
JP2003327836A (en) * 2002-05-07 2003-11-19 Mitsubishi Gas Chem Co Inc High heat conductive material and molded product
JP2009040931A (en) * 2007-08-10 2009-02-26 Two-One:Kk Vulcanizable rubber composition and molded article
JP2009149769A (en) * 2007-12-20 2009-07-09 Bando Chem Ind Ltd Elastomer composition, elastomer molded body and heat radiation sheet
JP4750882B2 (en) * 2008-12-01 2011-08-17 住友ゴム工業株式会社 Sidewall reinforcing layer or sidewall rubber composition and tire

Also Published As

Publication number Publication date
JP2010229323A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
Gavgani et al. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties
JP5232082B2 (en) Rubber composition for bladder, method for producing the same, and bladder
BRPI1105885A2 (en) rubber composition for inner tube and inner tube
Tao et al. Expanded graphite/polydimethylsiloxane composites with high thermal conductivity
Wu et al. Correlating synergistic reinforcement with chain motion in elastomer/nanocarbon hybrids composites
TWI575007B (en) High decay composition
Azizli et al. Compatibilizer/graphene/carboxylated acrylonitrile butadiene rubber (XNBR)/ethylenepropylenediene monomer (EPDM) nanocomposites: Morphology, compatibility, rheology and mechanical properties
Chukov et al. Highly filled elastomeric matrix composites: Structure and property evolution at low temperature carbonization
EP3321317B1 (en) Rubber composition for vulcanizing bladder and vulcanizing bladder
KR101000811B1 (en) Rubber composition of tire tread base
JP7272760B2 (en) Manufacturing method of insulation material
JP5632790B2 (en) Rubber composition for bladder and bladder for vulcanization
JP5377025B2 (en) Rubber bearing
JP2011001521A (en) Rubber composition for base tread, and pneumatic tire
Cui et al. Thermoplastic vulcanizates with an integration of good mechanical performance and excellent resistance to high temperature and oil based on HNBR/TPEE
Winya et al. A comparison between the effects of sepiolite and silica on mechanical properties and thermal stability of NR/EPDM blend
JP2017207106A (en) Hose rubber composition and hose
AU2016294055A1 (en) Rubber composition for flame-retardant hose, and flame-retardant hose
JP2011037979A (en) Rubber composition for inner liner and pneumatic tire
JP5232081B2 (en) Rubber composition for bladder and bladder
Haghnegahdar Effects of graphene network formation and its correlation with microstructure and mechanical properties in dynamically vulcanized PP/EPDM composites reinforced with few‐layer graphene
Sikong et al. Superior properties of natural rubber enhanced by multiwall-carbon nanotubes/nanoclay hybrid
JP2010230108A (en) Antivibration mount for stepping motor
Han et al. Thermal and electrical insulation properties of BN‐filled polymer‐based elastomer composites
JPH10219033A (en) Rubber composition for high-attenuation support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Ref document number: 5377025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350