JP5377013B2 - Short side structure of continuous casting mold - Google Patents

Short side structure of continuous casting mold Download PDF

Info

Publication number
JP5377013B2
JP5377013B2 JP2009064773A JP2009064773A JP5377013B2 JP 5377013 B2 JP5377013 B2 JP 5377013B2 JP 2009064773 A JP2009064773 A JP 2009064773A JP 2009064773 A JP2009064773 A JP 2009064773A JP 5377013 B2 JP5377013 B2 JP 5377013B2
Authority
JP
Japan
Prior art keywords
short
short side
heat
continuous casting
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009064773A
Other languages
Japanese (ja)
Other versions
JP2010214427A (en
Inventor
修至 脇田
孝 栃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
NS Plant Designing Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Plant Designing Corp, Nippon Steel Engineering Co Ltd filed Critical NS Plant Designing Corp
Priority to JP2009064773A priority Critical patent/JP5377013B2/en
Publication of JP2010214427A publication Critical patent/JP2010214427A/en
Application granted granted Critical
Publication of JP5377013B2 publication Critical patent/JP5377013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a short side edge part structure of a continuous casting mold having small thickness of a short side, the structure suppressing sliding flaws occurring when the short side is slid for changing the casting width. <P>SOLUTION: A pair of long sides 10, 11 are arranged opposite to each other, and a pair of slidable short sides 12, 13 are arranged between the long sides 10, 11 so as to be opposite to each other, further, long side back plates 14, 15 and short side back plates 16, 17 are arranged at the back faces of the long sides 10, 11 and the short sides 12, 13, respectively, and dovetail grooves 32 extending from the upper edge to the lower part of the side edge parts 30, 31 are formed over the respective side edge parts 30 of the short sides 12, 13 and the respective side edge parts 31 of the short side back plates 16, 17 corresponding to both the side edge parts 30. Further, heat resistant cushion material 33 having lubricity is attached to the dovetail groove 32 in a state of receiving holding power from the long sides 10, 11 so as to be projected from the side faces 38 of the short sides 12, 13. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、鋳造幅の変更により発生し得る摺動疵を抑制可能な連続鋳造鋳型の短辺端部構造に関する。 The present invention relates to a short-side end structure of a continuous casting mold capable of suppressing sliding flaws that can be generated by changing the casting width.

一対の長辺及びこの両長辺の間に対向して配置され長辺に挟持される一対の短辺を有する連続鋳造用の鋳型において、この一対の短辺を摺動可能にすれば、製造する鋳片の幅を変更することができる。
この場合、長辺に接する各短辺の両端部は長辺から挟持力を受けているため、短辺を摺動すると長辺に摺動疵をもたらすことがある。
そこで、この摺動疵の発生を抑制するため、長辺に挟持される短辺の両端部に潤滑性を有する耐熱性緩衝材を取付けることが提案されている(特許文献1参照)。
In a continuous casting mold having a pair of long sides and a pair of short sides arranged oppositely between the long sides and being sandwiched between the long sides, if the pair of short sides is made slidable, manufacturing The width of the cast slab can be changed.
In this case, since both end portions of each short side that are in contact with the long side receive a clamping force from the long side, sliding the short side may cause a sliding wrinkle on the long side.
Therefore, in order to suppress the occurrence of this sliding wrinkle, it has been proposed to attach a heat-resistant cushioning material having lubricity to both ends of the short side sandwiched by the long side (see Patent Document 1).

特許文献1記載の連続鋳造鋳型の短辺端部では、短辺の両端部に鋳造方向に延びる凹形状の溝が形成され、この凹形状の溝に耐熱性緩衝材が取付けられている。
耐熱性緩衝材を摩擦抵抗が小さい特性を持つものとすれば、短辺を摺動する際に短辺と長辺との接触部に生じる摩擦抵抗は小さく、長辺に発生する摺動疵を抑制することができる。
また、耐熱性緩衝材は耐熱性にも優れ、高温下でも摩擦抵抗が小さいとの特性が損なわれず摺動疵の抑制ができる。
なお、耐熱性緩衝材は直接溶鋼に触れないよう溶鋼との接触面である短辺の内表面から一定の距離を有した側端部に凹形状の溝が形成されている。
In the short side end portion of the continuous casting mold described in Patent Document 1, a concave groove extending in the casting direction is formed at both ends of the short side, and a heat-resistant cushioning material is attached to the concave groove.
If the heat-resistant cushioning material has low frictional resistance, the frictional resistance generated at the contact portion between the short side and the long side when sliding on the short side is small, and the sliding wrinkles generated on the long side are Can be suppressed.
Further, the heat-resistant cushioning material is excellent in heat resistance, and the characteristic that the frictional resistance is low even at high temperatures is not impaired, and sliding wrinkles can be suppressed.
The heat-resistant cushioning material has a concave groove formed at a side end portion having a certain distance from the inner surface of the short side which is a contact surface with the molten steel so as not to directly touch the molten steel.

特開昭63−2536号公報JP-A 63-2536

特許文献1記載の連続鋳造鋳型において、耐熱性緩衝材が取付けられる溝はその全体が短辺の側面の内側に位置するように形成されていることから、耐熱性緩衝材の幅は短辺の厚みよりも狭くなる。
また、溶鋼の熱によって短辺は内表面とその近傍に熱変形が生じることから、この熱変形の影響を受けない位置に耐熱性緩衝材を配置する必要があり、このためには、短辺の内表面から一定の距離を有して溝を形成することを要する。
したがって、耐熱性緩衝材の最大幅は短辺の厚みからこの一定の距離分を差し引いた値となる。
一方、電磁力応用の連続鋳造鋳型では、電磁力を減衰するため、あるいは連続鋳造により短辺に生じる温度を低減する等のために、短辺の厚み幅を狭くすることがしばしば求められる。
ここで、耐熱性緩衝材が単位面積あたりに受ける面圧は、長辺から受ける挟持力の大きさに比例し、耐熱性緩衝材の面積の大きさに反比例するので、耐熱性緩衝材の幅を狭くして面積を小さくすれば、面圧は大きくなる。
In the continuous casting mold described in Patent Document 1, the groove to which the heat-resistant cushioning material is attached is formed so that the entire groove is located inside the side surface of the short side. It becomes narrower than the thickness.
In addition, since the short side is thermally deformed on the inner surface and its vicinity due to the heat of the molten steel, it is necessary to arrange a heat-resistant cushioning material at a position not affected by the thermal deformation. It is necessary to form the groove with a certain distance from the inner surface.
Therefore, the maximum width of the heat resistant cushioning material is a value obtained by subtracting this constant distance from the thickness of the short side.
On the other hand, in continuous casting molds using electromagnetic force, it is often required to narrow the thickness width of the short side in order to attenuate the electromagnetic force or reduce the temperature generated in the short side by continuous casting.
Here, the surface pressure that the heat-resistant cushioning material receives per unit area is proportional to the holding force received from the long side and inversely proportional to the size of the area of the heat-resistant cushioning material. If the surface area is reduced by narrowing the surface pressure, the surface pressure increases.

耐熱性緩衝材には、耐熱性緩衝材を構成する耐熱性樹脂によって固有の許容面圧があり、許容面圧より大きい面圧を受けると破損等が生じ得る。
したがって、短辺の両側面内に形成された溝に耐熱性緩衝材を配置する形態は、短辺の厚み幅が狭い連続鋳造鋳型で、耐熱性緩衝材に確保できる幅が狭くなって、耐熱性緩衝材の長辺との接合面の面積も小さくなり、耐熱性緩衝材が受ける面圧が大きくなる。
すなわち耐熱性緩衝材の幅が狭くなり、耐熱性緩衝材が受ける面圧が許容面圧を上回る場合には、この従来の耐熱性緩衝材の配置形態は適用することができない。
そこで、本発明は、連続鋳造鋳型において、短辺の厚み幅が狭い場合であっても摺動疵を抑制可能な連続鋳造鋳型の短辺端部構造の提供を目的とする。
The heat-resistant buffer material has an inherent allowable surface pressure depending on the heat-resistant resin constituting the heat-resistant buffer material, and damage or the like may occur when the surface pressure is larger than the allowable surface pressure.
Therefore, the form in which the heat-resistant cushioning material is arranged in the grooves formed in both side surfaces of the short side is a continuous casting mold with a narrow width of the short side, and the width that can be secured for the heat-resistant cushioning material is narrowed, The area of the joint surface with the long side of the cushioning material is also reduced, and the surface pressure received by the heat resistant cushioning material is increased.
That is, when the width of the heat-resistant cushioning material becomes narrow and the surface pressure received by the heat-resistant cushioning material exceeds the allowable surface pressure, this conventional heat-resistant cushioning material arrangement form cannot be applied.
Therefore, an object of the present invention is to provide a short-side end structure of a continuous casting mold that can suppress sliding wrinkles even when the thickness width of the short side is narrow in the continuous casting mold.

前記目的に沿う連続鋳造鋳型の短辺端部構造は、それぞれバックプレートで支持された一対の長辺及び該長辺の間に対向して摺動可能に配置される一対の短辺を有する連続鋳造鋳型の短辺端部構造において、前記短辺と該短辺の背面に配置される前記バックプレートに跨って溝を形成し、該溝に配置された潤滑性を有する耐熱性緩衝材は、該耐熱性緩衝材が前記長辺から挟持力を受ける状態で前記短辺の側面から突出する。
本発明に係る連続鋳造鋳型の短辺端部構造において、前記溝は入り口側から奥側に拡幅されたあり溝であって、前記耐熱性緩衝材は耐摩耗性を有し、該耐熱性緩衝材の断面は前記あり溝に嵌合する形状とする耐熱性樹脂であることが好ましい。
The short-side end structure of the continuous casting mold that meets the above-mentioned purpose has a pair of long sides supported by a back plate and a pair of short sides that are slidably disposed facing each other. In the short-side end structure of the casting mold, a groove is formed across the short plate and the back plate disposed on the back surface of the short side, and the heat-resistant cushioning material having lubricity disposed in the groove is, The heat-resistant cushioning material protrudes from the side surface of the short side in a state of receiving a clamping force from the long side.
In the short side end structure of the continuous casting mold according to the present invention, the groove is a dove groove widened from the entrance side to the back side, and the heat-resistant cushioning material has wear resistance, and the heat-resistant buffer It is preferable that the cross section of the material is a heat resistant resin having a shape that fits into the dovetail groove.

本発明に係る連続鋳造鋳型の短辺端部構造において、前記耐熱性樹脂は、フッ素樹脂又はフッ素樹脂に金属粉末が混入されたものであって、前記長辺から受ける挟持力による面圧が15MPa以下であることが好ましい。
本発明に係る連続鋳造鋳型の短辺端部構造において、前記短辺の幅は該短辺を支持する前記バックプレートの幅より0.8〜4mmの範囲で広く、前記耐熱性緩衝材は、前記長辺から挟持力を受けていない状態で前記短辺の側面から0.2〜1mm以内の範囲で突出していることが好ましい。
In the short-side end structure of the continuous casting mold according to the present invention, the heat-resistant resin is a fluororesin or a metal powder mixed with a fluororesin, and a surface pressure due to a clamping force received from the long side is 15 MPa. The following is preferable.
In the short-side end structure of the continuous casting mold according to the present invention, the width of the short side is wider in the range of 0.8 to 4 mm than the width of the back plate supporting the short side, It is preferable to project within a range of 0.2 to 1 mm from the side surface of the short side in a state where no clamping force is received from the long side.

本発明に係る連続鋳造鋳型の短辺端部構造において、前記耐熱性緩衝材の底部は平面であって、前記あり溝の短辺側に形成される底面と該短辺のバックプレート側に形成される底面とが同一平面上に位置しない場合、前記あり溝の入り口側から遠くに位置する方の底面に金属板からなるシムを配置することが好ましい。
本発明に係る連続鋳造鋳型の短辺端部構造において、前記短辺の厚みが10〜30mmの範囲とすることができる。
In the short-side end structure of the continuous casting mold according to the present invention, the bottom of the heat-resistant cushioning material is flat, and is formed on the bottom surface formed on the short side of the dovetail groove and on the back plate side of the short side. When the bottom surface to be formed is not located on the same plane, it is preferable to arrange a shim made of a metal plate on the bottom surface located far from the entrance side of the dovetail groove.
In the short side edge part structure of the continuous casting mold according to the present invention, the thickness of the short side may be in the range of 10 to 30 mm.

請求項1〜6記載の連続鋳造鋳型の短辺端部構造は、短辺と短辺の背面に配置されるバックプレートに跨って形成された溝に配置された耐熱性緩衝材が、長辺から挟持力を受ける状態で短辺の側面から突出するので、短辺の厚み幅が狭い連続鋳造鋳型でも、幅の広い耐熱性緩衝材を配置可能となり、耐熱性緩衝材が受ける面圧を許容面圧以下に抑えることができ、また、耐熱性緩衝材として潤滑性を有するものを用いているので、摺動疵の発生を低減可能となる。 The short-side end structure of the continuous casting mold according to claim 1, wherein the heat-resistant cushioning material disposed in the groove formed across the back plate disposed on the back surface of the short side and the short side is the long side. Because it protrudes from the side surface of the short side while receiving the clamping force from, it is possible to place a wide heat-resistant cushioning material even in a continuous casting mold with a narrow width of the short side, and tolerate the surface pressure that the heat-resistant cushioning material receives The surface pressure can be reduced to less than the surface pressure, and the use of a heat-resistant cushioning material having lubricity makes it possible to reduce the occurrence of sliding wrinkles.

特に、請求項2記載の連続鋳造鋳型の短辺端部構造は、耐熱性緩衝材を配置する溝が入り口側から奥側に拡幅されたあり溝であって、耐熱性緩衝材はその断面があり溝に嵌合する形状の耐熱性樹脂であるので、短辺とバックプレートに跨って配置された耐熱性緩衝材の鋳型からの脱落を抑制可能である。
また、耐熱性緩衝材として耐摩耗性を有するものを用いているので長期にわたって摺動疵を防止するために使用することができ、耐熱性緩衝材の取替え、修復等の頻度を低減できる。
In particular, the short-side end structure of the continuous casting mold according to claim 2 is a dove groove in which the groove for disposing the heat-resistant buffer material is widened from the entrance side to the back side, and the cross-section of the heat-resistant buffer material is Since the heat-resistant resin is shaped to fit into the dovetail groove, it is possible to prevent the heat-resistant cushioning material disposed across the short side and the back plate from dropping from the mold.
In addition, since a material having wear resistance is used as the heat-resistant cushioning material, it can be used to prevent sliding wrinkles over a long period of time, and the frequency of replacement and repair of the heat-resistant cushioning material can be reduced.

請求項3記載の連続鋳造鋳型の短辺端部構造において、フッ素樹脂は耐摩耗性、耐熱性及び潤滑性に優れるので、高温下での使用に適し、更に長辺との間に生じる摩擦抵抗を小さくでき、短辺の摺動による摺動疵の発生を抑えることが可能となる。特に、400℃程度の耐熱性を有し、しかも潤滑機能も兼ね備えたフッ素樹脂、四フッ化エチレン系樹脂、たとえばテフロン(登録商標)などが、耐熱性樹脂として使用できる。
また、フッ素樹脂に金属粉末が混入されたものは金属粉末が混入されていない場合と比較して、剪断に対する強度を大きくすることができる。
更に、長辺から受ける挟持力により生じる面圧が15MPa以下のため、フッ素樹脂又はフッ素樹脂に金属粉末が混入された耐熱性樹脂の破損等を防止することができる。
4. The short-side end structure of the continuous casting mold according to claim 3, wherein the fluororesin is excellent in wear resistance, heat resistance and lubricity, so that it is suitable for use at a high temperature and has a frictional resistance generated between the long side and the long side. And the generation of sliding wrinkles due to sliding on the short side can be suppressed. In particular, a fluororesin or a tetrafluoroethylene-based resin, such as Teflon (registered trademark), which has a heat resistance of about 400 ° C. and also has a lubricating function, can be used as the heat-resistant resin.
Moreover, what mixed the metal powder in the fluororesin can enlarge the intensity | strength with respect to a shear compared with the case where the metal powder is not mixed.
Further, since the surface pressure generated by the clamping force received from the long side is 15 MPa or less, it is possible to prevent damage or the like of the fluororesin or the heat resistant resin in which the metal powder is mixed in the fluororesin.

請求項4記載の連続鋳造鋳型の短辺端部構造において、短辺の幅は短辺を支持するバックプレートの幅より0.8〜4mmの範囲で広く、耐熱性緩衝材は、長辺から狭持力を受けていない状態で短辺の側面から0.2〜1mmの範囲で突出しているので、耐熱性緩衝材が長辺から挟持力を受けても、各短辺及び各バックプレートが直接長辺に接合しないように、耐熱性緩衝材を短辺の側面から突出させることができる。 The short side edge structure of the continuous casting mold according to claim 4, wherein the width of the short side is wider in a range of 0.8 to 4 mm than the width of the back plate supporting the short side, and the heat resistant cushioning material is from the long side. Since it protrudes in the range of 0.2 to 1 mm from the side surface of the short side without receiving the holding force, each short side and each back plate is not affected even if the heat-resistant cushioning material receives the clamping force from the long side. The heat-resistant cushioning material can be protruded from the side surface of the short side so as not to be joined directly to the long side.

請求項5記載の連続鋳造鋳型の短辺端部構造において、あり溝の短辺側に形成される底面とバックプレート側に形成される底面とが同一平面上に位置しない場合、あり溝の入り口側から遠くに位置する方の底面に金属板からなるシムを配置するので、耐熱性緩衝材をあり溝へ安定して取付けることができる。 6. The short side edge structure of the continuous casting mold according to claim 5, wherein the bottom surface formed on the short side of the dovetail groove and the bottom surface formed on the back plate side are not located on the same plane, and the dovetail entrance Since the shim made of a metal plate is disposed on the bottom surface located far from the side, the heat-resistant cushioning material can be stably attached to the groove.

請求項6記載の連続鋳造鋳型の短辺端部構造において、短辺の厚みが10〜30mmの範囲にあっても、耐熱性緩衝材の幅は短辺の厚みによって制限を受けないので、耐熱性緩衝材が受ける面圧を、耐熱性緩衝材の破損等を生じさせない範囲の値にするために必要な幅を確保できる。 In the short side edge structure of the continuous casting mold according to claim 6, even if the thickness of the short side is in the range of 10 to 30 mm, the width of the heat resistant cushioning material is not limited by the thickness of the short side. It is possible to secure a width necessary for the surface pressure received by the cushioning material to fall within a range that does not cause damage to the heat-resistant cushioning material.

本発明の一実施の形態に係る連続鋳造鋳型の短辺端部構造を有する連続鋳造鋳型の平面図である。It is a top view of the continuous casting mold which has the short side edge part structure of the continuous casting mold which concerns on one embodiment of this invention. 同連続鋳造鋳型の一部省略正断面図である。It is a partially omitted front sectional view of the continuous casting mold. (A)は同連続鋳造鋳型の短辺の正面図、(B)は同連続鋳造鋳型の短辺及び短辺バックプレートの側面図である。(A) is a front view of the short side of the continuous casting mold, and (B) is a side view of the short side and the short side back plate of the continuous casting mold. (A)は同連続鋳造鋳型の短辺端部構造を示す平面図、(B)、(C)はそれぞれ同連続鋳造鋳型の短辺及びバックプレートに耐熱性緩衝材が取付けられた状態、取り外された状態を示す説明図である。(A) is a plan view showing the short-side end structure of the continuous casting mold, and (B) and (C) are a state in which a heat-resistant cushioning material is attached to the short side and back plate of the continuous casting mold, respectively, and removal. It is explanatory drawing which shows the state shown.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

図1、図2に示すように、本発明の一実施の形態に係る連続鋳造鋳型の短辺端部構造を有する連続鋳造鋳型は、一対の長辺10、11が対向して配置され、また、長辺10、11の間に摺動可能な一対の短辺12、13が対向して配置されている。
長辺10、11、短辺12、13の直後にはそれぞれ長辺バックプレート14、15、短辺バックプレート16、17がそれぞれの内表面を長辺10、11、短辺12、13の背面と当接するように配置されている。
長辺バックプレート14、15には、それぞれ上下左右の4箇所に貫通孔が設けられ、各貫通孔に長辺バックプレート14、15に渡って配置されたタイロッド28が貫入されている。各タイロッド28の両端部は長辺バックプレート14、15それぞれの背面から突出している。
As shown in FIGS. 1 and 2, a continuous casting mold having a short-side end structure of a continuous casting mold according to an embodiment of the present invention has a pair of long sides 10 and 11 facing each other, and A pair of slidable short sides 12 and 13 are arranged to face each other between the long sides 10 and 11.
Immediately after the long sides 10 and 11 and the short sides 12 and 13, the long side back plates 14 and 15 and the short side back plates 16 and 17 are the inner surfaces of the long sides 10 and 11, and the short sides 12 and 13, respectively. It arrange | positions so that it may contact | abut.
The long side back plates 14, 15 are provided with through holes at four locations on the top, bottom, left, and right, respectively, and tie rods 28 arranged over the long side back plates 14, 15 are inserted into the through holes. Both end portions of each tie rod 28 protrude from the back surfaces of the long side back plates 14 and 15.

各タイロッド28の一方の端部に長辺バックプレート14の背面に当接する第1のナット39がそのタイロッド28の端部との相対的な位置を変えないように装着されている。
また、各タイロッド28の他方の端部に長辺バックプレート15の背面に近い方から離れる方に向かって順に伸縮手段29と第2のナット40がそれぞれ取付けられ、伸縮手段29は、長辺バックプレート15の背面と第2のナット40にそれぞれ当接し、更に、第2のナット40は第2のナット40が装着されているタイロッド28の箇所の位置が変わらないように固定されている。伸縮手段29として、例えば皿ばねを用いることができる。
この構成によって、伸縮手段29がタイロッド28の長手方向に伸縮することで長辺バックプレート14、15は内向きに締め付けられる。
なお、タイロッド28の代わりに他のクランプ機構により長辺バックプレート14、15を内向きに締め付けてもよい。
A first nut 39 that abuts against the back surface of the long side back plate 14 is attached to one end portion of each tie rod 28 so as not to change the position relative to the end portion of the tie rod 28.
In addition, the expansion / contraction means 29 and the second nut 40 are attached to the other end of each tie rod 28 in order from the side closer to the back side of the long side back plate 15, respectively. The back surface of the plate 15 and the second nut 40 are in contact with each other, and the second nut 40 is fixed so that the position of the tie rod 28 to which the second nut 40 is attached does not change. As the expansion / contraction means 29, for example, a disc spring can be used.
With this configuration, the long side back plates 14 and 15 are tightened inward by the expansion and contraction means 29 extending and contracting in the longitudinal direction of the tie rod 28.
The long side back plates 14 and 15 may be tightened inward by another clamping mechanism instead of the tie rod 28.

短辺バックプレート16、17の各背面には幅変更機構18、19が配置されている。幅変更機構18(幅変更機構19についても同じ)は短辺バックプレート16の背面上下2箇所にそれぞれ連結部材20、21を介して連結された長尺の油圧シリンダ22、23を有し、四角柱形状の支持部材24によって支持フレーム25に固定されている。
なお、油圧シリンダ22、23はそれぞれ支持部材24の上下2箇所に貫入して固定されている長尺の外筒26と、外筒26の内側で外筒26の長手方向に沿って可動するロッド27とから構成される。
Width change mechanisms 18 and 19 are arranged on the back surfaces of the short side back plates 16 and 17. The width changing mechanism 18 (the same applies to the width changing mechanism 19) has long hydraulic cylinders 22 and 23 that are connected to the upper and lower portions of the short side back plate 16 via connecting members 20 and 21, respectively. It is fixed to the support frame 25 by a prismatic support member 24.
The hydraulic cylinders 22 and 23 are each a long outer cylinder 26 that penetrates and is fixed at two upper and lower portions of the support member 24, and a rod that moves along the longitudinal direction of the outer cylinder 26 inside the outer cylinder 26. 27.

各支持部材24は長手方向が垂直になるよう配置され、その下側を支持フレーム25に貫入して固定されている。
油圧シリンダ22、23はロッド27を短辺バックプレート16の方向に可動させて短辺バックプレート16と共に短辺12を対向する短辺13の方向に押圧して移動させる。
また、油圧シリンダ22、23はロッド27を可動して短辺12を短辺13のある方向とは逆向きに移動させることもでき、短辺12、13の相互間の距離は変更可能である。
Each support member 24 is arranged so that its longitudinal direction is vertical, and the lower side of the support member 24 penetrates and is fixed to the support frame 25.
The hydraulic cylinders 22 and 23 move the rod 27 in the direction of the short side back plate 16 and press and move the short side 12 together with the short side back plate 16 in the direction of the short side 13 facing each other.
Also, the hydraulic cylinders 22 and 23 can move the rod 27 to move the short side 12 in the direction opposite to the direction in which the short side 13 is present, and the distance between the short sides 12 and 13 can be changed. .

図3(A)、(B)に示すように、短辺12(短辺13についても同じ)の両側端部30とそれぞれの側端部30に対応した短辺バックプレート16(短辺バックプレート17についても同じ)の側端部31には短辺12と短辺バックプレート16に跨り、かつ短辺12と短辺バックプレート16の上端から下部に渡ってあり溝(溝の一例)32が形成され、このあり溝32に耐熱性緩衝材33が取付けられている。
あり溝32は短辺12と短辺バックプレート16両方の上端を開口し、下端は開口しないように形成されているので、耐熱性緩衝材33を上端から脱着可能にすると共に、取付けられた耐熱性緩衝材33の下方への脱落を防止する。
As shown in FIGS. 3A and 3B, both side end portions 30 of short side 12 (the same applies to short side 13) and short side back plate 16 corresponding to each side end portion 30 (short side back plate). 17 also extends over the short side 12 and the short side back plate 16 and extends from the upper end to the lower side of the short side 12 and the short side back plate 16 and has a groove (an example of a groove) 32. A heat-resistant cushioning material 33 is attached to the dovetail groove 32.
The dovetail groove 32 is formed so that the upper ends of both the short side 12 and the short side back plate 16 are opened and the lower end is not opened, so that the heat resistant cushioning material 33 can be detached from the upper end and the attached heat resistant The downward cushioning material 33 is prevented from falling off.

図4(A)、(B)、(C)に示すように、短辺12(短辺13についても同じ)の幅は短辺バックプレート16の幅より0.8〜4mmの範囲で広く、短辺バックプレート16に対して短辺12の側面38(短辺12の内表面と垂直方向で側端部30に配置される平面)が突出する突出長bは0.4〜2mmの範囲となっている。また、短辺12の厚みは10〜30mmの範囲である。短辺12の幅とは、両側面38間の距離であり、短辺12の厚みとは、内表面と背面間の距離をいう。
短辺12と短辺バックプレート16を上方から見て、あり溝32は形成された溝の入り口側から奥側に拡幅されており、その底部の幅xは20mm以上となり、また、短辺12の溝の入り口(開口部)は短辺12の内表面から距離yを有する位置から形成される。あり溝32の溝の入り口側とは長辺10、11側のことであり、奥側とは短辺12の幅方向中央側のことである。
ここで、距離yは5〜10mmの範囲としているので、溶鋼の熱により短辺12の内表面及びその近傍が変形するが、あり溝32に取付けられた耐熱性緩衝材33は、この変形の影響を受けないため、変形前後で長辺10、11と耐熱性緩衝材33の接合する位置関係を変えることなく同じ接合状態を保持できる。
4A, 4B, and 4C, the width of the short side 12 (the same applies to the short side 13) is wider in the range of 0.8 to 4 mm than the width of the short side back plate 16, The protruding length b in which the side surface 38 of the short side 12 (the plane disposed on the side end 30 in the direction perpendicular to the inner surface of the short side 12) protrudes from the short side back plate 16 is in the range of 0.4 to 2 mm. It has become. Moreover, the thickness of the short side 12 is the range of 10-30 mm. The width of the short side 12 is the distance between the side surfaces 38, and the thickness of the short side 12 is the distance between the inner surface and the back surface.
When the short side 12 and the short side back plate 16 are viewed from above, the dovetail groove 32 is widened from the entrance side to the back side of the formed groove, the width x of the bottom thereof is 20 mm or more, and the short side 12 The groove entrance (opening) is formed from a position having a distance y from the inner surface of the short side 12. The entrance side of the groove 32 of the dovetail groove 32 is the long side 10, 11 side, and the back side is the width direction center side of the short side 12.
Here, since the distance y is in the range of 5 to 10 mm, the inner surface of the short side 12 and the vicinity thereof are deformed by the heat of the molten steel, but the heat-resistant cushioning material 33 attached to the dovetail groove 32 is not deformed. Since it is not influenced, the same joining state can be maintained without changing the positional relationship between the long sides 10 and 11 and the heat-resistant buffer material 33 before and after deformation.

耐熱性緩衝材33の水平方向の断面形状は、あり溝32に嵌合する形状である等脚台形であり、その下辺は上辺より長くその長さはxと同じ又はxより0.5mm以下の範囲で長くても短くでもよい。また、この等脚台形の両側辺の上辺から下辺にかけての傾斜はあり溝32の入り口側から奥側にかけての傾斜率と同じであるので、耐熱性緩衝材33はあり溝32に隙間をほとんど有することなく確実に取付けられる。 The cross-sectional shape in the horizontal direction of the heat-resistant cushioning material 33 is an isosceles trapezoid that fits into the dovetail groove 32, and its lower side is longer than the upper side and its length is the same as x or 0.5 mm or less from x. The range may be long or short. Further, since the slope from the upper side to the lower side of both sides of the isosceles trapezoid is the same as the slope rate from the entrance side to the back side of the groove 32, the heat-resistant cushioning material 33 has the clearance 32 in the groove 32. It can be securely installed without any problems.

あり溝32の底面34は短辺12と短辺バックプレート16の両側に位置する2つの平面から形成されている。ここで、底面34を形成する2つの平面のうち短辺12側に位置する平面と短辺バックプレート16側に位置する平面が同一平面上にない場合、あり溝32の入り口側から遠くに位置する方の平面に金属板からなる図示しないシムが配置されるので、これら2つの平面間の段差を無くすことができる。
したがって、あり溝32の底面34を形成する短辺12と短辺バックプレート16それぞれに位置する平面間に段差が生じている場合でも、底部が平面である耐熱性緩衝材33を短辺12と短辺バックプレート16へ安定して取付けることができる。
なお、あり溝の底面を形成する2つの平面双方に厚さの異なるシムを配置してこれら2つの平面間の段差を無くすようにしてもよい。
The bottom surface 34 of the dovetail groove 32 is formed from two flat surfaces located on both sides of the short side 12 and the short side back plate 16. Here, when the plane located on the short side 12 side and the plane located on the short side back plate 16 side of the two planes forming the bottom surface 34 are not on the same plane, they are located far from the entrance side of the dovetail groove 32. Since a shim (not shown) made of a metal plate is disposed on the plane to be performed, a step between these two planes can be eliminated.
Therefore, even when there is a step between the short sides 12 forming the bottom surface 34 of the dovetail groove 32 and the short side back plate 16, the heat-resistant cushioning material 33 having a flat bottom is connected to the short side 12. It can be stably attached to the short side back plate 16.
Note that shims having different thicknesses may be arranged on both of the two planes forming the bottom surface of the dovetail so as to eliminate the step between these two planes.

耐熱性緩衝材33は、長辺10、11から挟持力を受けていない状態で、上面(断面台形形状の上辺を形成する面)36と底面(あり溝32の底面34に接する面)37間の距離が3〜7mmの範囲であり、上面36の短辺12の側面38からの長辺10、11側(短辺12の幅方向外側)への突出長aが0.2〜1mmの範囲となるようにあり溝32に取付けられている。
そして、その突出長aは、タイロッド28の締め付けにより耐熱性緩衝材33が長辺10、11から挟持力を受けた状態で、挟持力を受けていないときに比べて0.5mm以内の範囲で狭くなるが、挟持力を受けても耐熱性緩衝材33の上部が短辺12の側面38から突出するように上面36と底面37の距離が調整されている。
The heat-resistant cushioning material 33 is between the upper surface (surface that forms the upper side of the trapezoidal cross section) 36 and the bottom surface (the surface that contacts the bottom surface 34 of the dovetail groove 32) 37 in a state where it does not receive the clamping force from the long sides 10 and 11. Is a range of 3 to 7 mm, and a protrusion length a from the side surface 38 of the short side 12 of the upper surface 36 to the long side 10 and 11 side (outside in the width direction of the short side 12) is 0.2 to 1 mm. It is attached to the dovetail groove 32 so that
The protrusion length a is within a range of 0.5 mm or less when the heat-resistant cushioning material 33 receives the clamping force from the long sides 10 and 11 by tightening the tie rod 28 and does not receive the clamping force. The distance between the upper surface 36 and the bottom surface 37 is adjusted so that the upper portion of the heat-resistant cushioning material 33 protrudes from the side surface 38 of the short side 12 even when receiving a clamping force.

また、耐熱性緩衝材33は、耐摩耗性、耐熱性を有し、更に潤滑性に優れた耐熱性樹脂であるフッ素樹脂の一例であるテフロン(登録商標)からなる。
したがって、耐熱性緩衝材33が長辺10、11から挟持力を受けながら、短辺12が摺動する際、長辺10、11に短辺12の各側面38が接せず、耐熱性緩衝材33の上面36が接するので、耐熱性緩衝材33の優れた潤滑性により、長辺10、11に生じる摺動疵を低減できる。
なお、耐熱性緩衝材33は、フッ素樹脂に金属粉末、例えば銅粉末が混入されたものとすることもできる。
金属粉末を混入すれば、混入しない場合と比べて剪断に対する強度を大きくできる。
Further, the heat-resistant buffer material 33 is made of Teflon (registered trademark), which is an example of a fluororesin that is a heat-resistant resin having wear resistance and heat resistance and excellent in lubricity.
Therefore, when the short side 12 slides while the heat-resistant cushioning material 33 receives the clamping force from the long sides 10 and 11, the side surfaces 38 of the short side 12 do not contact the long sides 10 and 11, and the heat-resistant buffer 33 Since the upper surface 36 of the material 33 contacts, the sliding wrinkles generated on the long sides 10 and 11 can be reduced by the excellent lubricity of the heat-resistant buffer material 33.
In addition, the heat-resistant buffer material 33 can also be made by mixing a metal powder, for example, a copper powder, into a fluororesin.
If metal powder is mixed, the strength against shearing can be increased as compared with the case where metal powder is not mixed.

このテフロン(登録商標)からなる耐熱性緩衝材33は常温(5〜35℃)での横すべりに対する許容面圧が30MPaであるが、耐熱性緩衝材33が使用される高温環境下(常温より高い温度、例えば100℃)では、この許容面圧は低下する。
そこで、高温下で耐熱性緩衝材33に破損等が生じない範囲で最大の面圧である指標面圧を、常温の値の半分にあたる15MPaとし、以下に耐熱性緩衝材33が受ける面圧がこの指標面圧より小さい値となることを説明する。
The heat-resistant cushioning material 33 made of Teflon (registered trademark) has an allowable surface pressure of 30 MPa for side slip at room temperature (5-35 ° C.), but in a high-temperature environment where the heat-resistant cushioning material 33 is used (higher than room temperature). At a temperature (for example, 100 ° C.), this allowable surface pressure decreases.
Therefore, the index surface pressure, which is the maximum surface pressure within a range where the heat-resistant buffer material 33 is not damaged at a high temperature, is set to 15 MPa, which is half of the normal temperature value, and the surface pressure received by the heat-resistant buffer material 33 is as follows. It will be explained that the value is smaller than the index surface pressure.

タイロッド28による長辺10、11の締め付け力は、長辺10、11それぞれの内表面と短辺12、13の両側端部30が形成する4箇所の隙間から溶鋼が漏れないように、溶鋼静圧力より大きくする必要があり、各耐熱性緩衝材33が長辺10、11から受ける挟持力の合計は、このタイロッド28の締め付け力から溶鋼静圧力を差し引いた大きさとなる。
そして、長辺10、11から受ける挟持力により各耐熱性緩衝材33に作用する面圧は、各耐熱性緩衝材33が長辺10、11から受ける個々の挟持力を耐熱性緩衝材33の上面36の面積で除算して得ることができる。
The fastening force of the long sides 10 and 11 by the tie rod 28 is such that the molten steel does not leak from the four gaps formed by the inner surface of each of the long sides 10 and 11 and both end portions 30 of the short sides 12 and 13. It is necessary to make it larger than the pressure, and the total clamping force that each heat-resistant cushioning material 33 receives from the long sides 10 and 11 is a size obtained by subtracting the molten steel static pressure from the clamping force of the tie rod 28.
The surface pressure acting on each heat-resistant cushioning material 33 by the clamping force received from the long sides 10 and 11 is the same as that of each heat-resistant cushioning material 33 received from the long sides 10 and 11. It can be obtained by dividing by the area of the upper surface 36.

図3(B)に示すように耐熱性緩衝材33の上面36の形状は長方形であって、この長方形の長さhは短辺12の高さより短いため、短辺12の高さが900mmであれば、hは900mm未満の値、例えば850mmとなる。
各耐熱性緩衝材33に加わる挟持力を200kN、短辺12の厚みを25mmとして、各耐熱性緩衝材33に生じる面圧が指標面圧である15MPaより小さくなるためには、上面36の面積が押圧力200kNを指標面圧15MPaで除算した値よりも大きいことが条件となり、これは上面36の幅zが15.7mm(正確には、この値は200kNを15MPaで除算した値について100分の1の桁を切り上げたもの)以上であればよいことを意味する(zは図4(C)参照)。
前述の通り各耐熱性緩衝材33は短辺12(短辺13についても同様)と短辺バックプレート16に跨って取付けられているので、上面36は短辺12の厚みより広い幅とすることができる。
したがって、上面36の幅zは15.7mm以上を確保でき、耐熱性緩衝材33が受ける面圧を指標面圧15MPaより小さくすることが可能である。
As shown in FIG. 3B, the shape of the upper surface 36 of the heat-resistant cushioning material 33 is a rectangle, and the length h of the rectangle is shorter than the height of the short side 12, so the height of the short side 12 is 900 mm. If present, h is a value less than 900 mm, for example, 850 mm.
In order for the clamping force applied to each heat-resistant buffer material 33 to be 200 kN and the thickness of the short side 12 to be 25 mm, the surface pressure generated in each heat-resistant buffer material 33 is less than 15 MPa, which is the index surface pressure. Is larger than the value obtained by dividing the pressing force 200 kN by the index surface pressure of 15 MPa. This is because the width z of the upper surface 36 is 15.7 mm (exactly, this value is 100 minutes for the value obtained by dividing 200 kN by 15 MPa. It means that it is sufficient if it is greater than or equal to 1) (z is shown in FIG. 4C).
Since each heat-resistant cushioning material 33 is attached across the short side 12 (the same applies to the short side 13) and the short side back plate 16 as described above, the upper surface 36 has a width wider than the thickness of the short side 12. Can do.
Therefore, the width z of the upper surface 36 can be secured to 15.7 mm or more, and the surface pressure received by the heat resistant buffer material 33 can be made smaller than the index surface pressure of 15 MPa.

一方、従来の短辺の両側端部に耐熱性緩衝材が収まるように取付けられた連続鋳造鋳型(例えば特許文献1記載の連続鋳造鋳型)においては、耐熱性緩衝材が短辺の熱変形の影響を受けない位置に配置されるため、溶鋼に接する短辺の内表面から一定の距離を保った位置に耐熱性緩衝材を配置することが求められる。
これによって、耐熱性緩衝材の幅を短辺の厚みよりも狭くする必要があり、短辺の高さ及び厚みがそれぞれ900mm、25mmであれば、耐熱性緩衝材の幅は最大でも10mm程度となる。
耐熱性緩衝材の幅が10mmの場合、各耐熱性緩衝材に加わる挟持力の大きさが200kNでは、各耐熱性緩衝材に生じる面圧が約23.5MPaとなり、これは耐熱性緩衝材の指標面圧15MPaを上回った値、即ち、耐熱性緩衝材に破損等が発生し得る値となる。
On the other hand, in the conventional continuous casting mold (for example, the continuous casting mold described in Patent Document 1) attached so that the heat-resistant cushioning material is accommodated at both end portions of the short side, the heat-resistant cushioning material is not deformed by heat of the short side. Since it arrange | positions in the position which is not influenced, it is calculated | required to arrange | position a heat resistant shock absorbing material in the position which maintained the fixed distance from the inner surface of the short side which contact | connects molten steel.
Accordingly, it is necessary to make the width of the heat resistant cushioning material narrower than the thickness of the short side. If the height and thickness of the short side are 900 mm and 25 mm, respectively, the width of the heat resistant cushioning material is about 10 mm at the maximum. Become.
When the width of the heat-resistant cushioning material is 10 mm, when the holding force applied to each heat-resistant cushioning material is 200 kN, the surface pressure generated in each heat-resistant cushioning material is about 23.5 MPa. The value exceeds the index surface pressure of 15 MPa, that is, a value at which damage or the like can occur in the heat-resistant buffer material.

以上、本発明の一実施の形態を説明したが、本発明は、上記した形態、例えば、短辺の厚み、耐熱性緩衝材の大きさに限定されるものでなく、耐熱性樹脂として、テフロン(登録商標)の代わりに400℃程度の耐熱性と潤滑機能も兼ね備えた他のフッ素樹脂、四フッ化エチレン系樹脂を使用してもよく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described form, for example, the thickness of the short side and the size of the heat resistant cushioning material. Instead of (registered trademark), other fluororesins having a heat resistance of about 400 ° C. and a lubricating function may be used, and tetrafluoroethylene resins may be used. Scope of application.

10、11:長辺、12、13:短辺、14、15:長辺バックプレート、16、17:短辺バックプレート、18、19:幅変更機構、20、21:連結部材、22、23:油圧シリンダ、24:支持部材、25:支持フレーム、26:外筒、27:ロッド、28:タイロッド、29:伸縮手段、30:側端部、31:側端部、32:あり溝、33:耐熱性緩衝材、34:底面、36:上面、37:底面、38:側面、39:第1のナット、40:第2のナット 10, 11: Long side, 12, 13: Short side, 14, 15: Long side back plate, 16, 17: Short side back plate, 18, 19: Width changing mechanism, 20, 21: Connecting member, 22, 23 : Hydraulic cylinder, 24: support member, 25: support frame, 26: outer cylinder, 27: rod, 28: tie rod, 29: expansion / contraction means, 30: side end, 31: side end, 32: dovetail groove, 33 : Heat resistant cushioning material, 34: bottom surface, 36: top surface, 37: bottom surface, 38: side surface, 39: first nut, 40: second nut

Claims (6)

それぞれバックプレートで支持された一対の長辺及び該長辺の間に対向して摺動可能に配置される一対の短辺を有する連続鋳造鋳型の短辺端部構造において、
前記短辺と該短辺の背面に配置される前記バックプレートに跨って溝を形成し、該溝に配置された潤滑性を有する耐熱性緩衝材は、該耐熱性緩衝材が前記長辺から挟持力を受ける状態で前記短辺の側面から突出することを特徴とする連続鋳造鋳型の短辺端部構造。
In a short side end structure of a continuous casting mold having a pair of long sides supported by a back plate and a pair of short sides slidably disposed between the long sides.
A groove is formed across the short plate and the back plate disposed on the back surface of the short side, and the heat-resistant cushioning material having lubricity disposed in the groove has the heat-resistant cushioning material from the long side. A short-side end portion structure of a continuous casting mold, wherein the structure projects from a side surface of the short side in a state of receiving a clamping force.
請求項1記載の連続鋳造鋳型の短辺端部構造において、前記溝は入り口側から奥側に拡幅されたあり溝であって、前記耐熱性緩衝材は耐摩耗性を有し、該耐熱性緩衝材の断面は前記あり溝に嵌合する形状とする耐熱性樹脂であることを特徴とする連続鋳造鋳型の短辺端部構造。 2. The short side end structure of the continuous casting mold according to claim 1, wherein the groove is a dove groove widened from the entrance side to the back side, and the heat-resistant cushioning material has wear resistance, and the heat resistance A short-side end structure of a continuous casting mold, characterized in that the cross-section of the cushioning material is a heat-resistant resin having a shape that fits into the dovetail groove. 請求項2記載の連続鋳造鋳型の短辺端部構造において、前記耐熱性樹脂は、フッ素樹脂又はフッ素樹脂に金属粉末が混入されたものであって、前記長辺から受ける挟持力による面圧が15MPa以下であることを特徴とする連続鋳造鋳型の短辺端部構造。 The short-side end structure of the continuous casting mold according to claim 2, wherein the heat-resistant resin is a fluororesin or a mixture of fluororesin with metal powder, and a surface pressure due to a clamping force received from the long side is A short-side end structure of a continuous casting mold, which is 15 MPa or less. 請求項1〜3のいずれか1項に記載の連続鋳造鋳型の短辺端部構造において、前記短辺の幅は該短辺を支持する前記バックプレートの幅より0.8〜4mmの範囲で広く、前記耐熱性緩衝材は、前記長辺から挟持力を受けていない状態で前記短辺の側面から0.2〜1mm以内の範囲で突出していることを特徴とする連続鋳造鋳型の短辺端部構造。 The short side edge part structure of the continuous casting mold of any one of Claims 1-3 WHEREIN: The width | variety of the said short side is the range of 0.8-4 mm from the width | variety of the said back plate which supports this short side. Widely, the heat-resistant cushioning material protrudes within a range of 0.2 to 1 mm from the side surface of the short side in a state where it does not receive a clamping force from the long side. End structure. 請求項2又は3記載の連続鋳造鋳型の短辺端部構造において、前記耐熱性緩衝材の底部は平面であって、前記あり溝の短辺側に形成される底面と該短辺のバックプレート側に形成される底面とが同一平面上に位置しない場合、前記あり溝の入り口側から遠くに位置する方の底面に金属板からなるシムを配置することを特徴とする連続鋳造鋳型の短辺端部構造。 4. The short-side end structure of the continuous casting mold according to claim 2 , wherein a bottom portion of the heat-resistant cushioning material is a flat surface, and a bottom surface formed on the short side of the dovetail groove and a back plate of the short side. If the bottom surface formed on the side is not located on the same plane, a short side of the continuous casting mold, wherein a shim made of a metal plate is disposed on the bottom surface far from the entrance side of the dovetail groove End structure. 請求項1〜5のいずれか1項に記載の連続鋳造鋳型の短辺端部構造において、前記短辺の厚みが10〜30mmの範囲にあることを特徴とする連続鋳造鋳型の短辺端部構造。 The short side edge part structure of the continuous casting mold of any one of Claims 1-5 WHEREIN: The thickness of the said short side exists in the range of 10-30 mm, The short side edge part of the continuous casting mold characterized by the above-mentioned. Construction.
JP2009064773A 2009-03-17 2009-03-17 Short side structure of continuous casting mold Active JP5377013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064773A JP5377013B2 (en) 2009-03-17 2009-03-17 Short side structure of continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064773A JP5377013B2 (en) 2009-03-17 2009-03-17 Short side structure of continuous casting mold

Publications (2)

Publication Number Publication Date
JP2010214427A JP2010214427A (en) 2010-09-30
JP5377013B2 true JP5377013B2 (en) 2013-12-25

Family

ID=42973829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064773A Active JP5377013B2 (en) 2009-03-17 2009-03-17 Short side structure of continuous casting mold

Country Status (1)

Country Link
JP (1) JP5377013B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632536A (en) * 1986-06-19 1988-01-07 Nippon Steel Corp Mold with changeable width
JPH084189Y2 (en) * 1990-11-14 1996-02-07 住友金属工業株式会社 Variable width mold for continuous casting
JP3570374B2 (en) * 2000-11-21 2004-09-29 Jfeスチール株式会社 Variable width mold for continuous casting

Also Published As

Publication number Publication date
JP2010214427A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP2012511433A (en) Wedge drive unit
JP5377013B2 (en) Short side structure of continuous casting mold
EP2979777B1 (en) Sliding nozzle device
EP1276579B1 (en) Clamping device for a refractory- made plate of a sliding gate
JP6194269B2 (en) Sliding nozzle device
WO2009087884A1 (en) Dipped nozzle supporting-replacing mechanism, and lower-nozzle/dipped-nozzle sealing method
AU2001246254A1 (en) Clamping device for a refractory-made plate of a sliding gate
JP3935461B2 (en) Vertical injection molding machine
JPH08229658A (en) Metallic mold casting device
JP2017039615A (en) Glass melting furnace, temperature raising method for the same, and production method of glass article
JP7332314B2 (en) Sliding nozzle plate and method of reusing the metal strip of the sliding nozzle plate
WO2015151600A1 (en) Sliding nozzle device, and nozzle plate securing structure and securing method
JP2005138161A (en) Metallic pattern for die casting, and vertical die casting apparatus
EP0995524A1 (en) Self-clamping refractory plate
JP6323244B2 (en) High temperature mold
JP2010188399A (en) Mold for continuous casting
CN114761155B (en) Foaming plate for sliding nozzle
KR20110039515A (en) Method for manufacturing a cooling element and a cooling element
JP2017110464A (en) Method of manufacturing structural material
JPWO2018116784A1 (en) Plate for sliding nozzle device
JPS5916654A (en) Mold for continuous casting
KR20150020944A (en) Twin roll strip caster
JPS61209749A (en) Mold for continuous casting
JPS632536A (en) Mold with changeable width
JP3000397B2 (en) Casting mold equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Ref document number: 5377013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350