JP5376914B2 - Radiation transmission test apparatus and test method for plant equipment - Google Patents

Radiation transmission test apparatus and test method for plant equipment Download PDF

Info

Publication number
JP5376914B2
JP5376914B2 JP2008300600A JP2008300600A JP5376914B2 JP 5376914 B2 JP5376914 B2 JP 5376914B2 JP 2008300600 A JP2008300600 A JP 2008300600A JP 2008300600 A JP2008300600 A JP 2008300600A JP 5376914 B2 JP5376914 B2 JP 5376914B2
Authority
JP
Japan
Prior art keywords
cylindrical member
radiation transmission
transmission test
support means
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008300600A
Other languages
Japanese (ja)
Other versions
JP2010127677A (en
Inventor
晶 紀 油
瀬 金 三 広
井 芳 郎 松
高 幸 昭 日
辺 祐 介 渡
藤 裕 美 加
岳 小茂鳥
本 浩 一 松
口 康 弘 湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008300600A priority Critical patent/JP5376914B2/en
Publication of JP2010127677A publication Critical patent/JP2010127677A/en
Application granted granted Critical
Publication of JP5376914B2 publication Critical patent/JP5376914B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、プラント設備の補修時に放射線透過試験を行うための装置およびそれを用いた試験方法に関し、より詳しくは、蒸気発生器のノズルあるいはエルボ等の筒状部材の新規周溶接線の放射線透過試験を効率よく行うことができるように改良する技術に関する。   The present invention relates to an apparatus for performing a radiation transmission test when repairing plant equipment and a test method using the same, and more particularly, to radiation transmission of a new circumferential weld line of a tubular member such as a nozzle or an elbow of a steam generator. The present invention relates to a technique for improving a test so that it can be performed efficiently.

加圧水型原子炉の1次冷却設備系統の概略を図10に、蒸気発生器下部の概略を図11に、原子炉容器2の概略を図12にそれぞれ示す。原子炉格納容器1の内部に設けられている原子炉容器2には、蒸気発生器3、1次冷却材ポンプ4および加圧器5からなるループが、原子炉の出力に応じて2〜4ループ設けられている。そして、原子炉容器2内で加熱された1次冷却材は、原子炉容器2の出口ノズル6より送り出され、蒸気発生器3の入口ノズル7から、蒸気発生器3の水室内に送り込まれる。   An outline of the primary cooling equipment system of the pressurized water reactor is shown in FIG. 10, an outline of the lower part of the steam generator is shown in FIG. 11, and an outline of the reactor vessel 2 is shown in FIG. The reactor vessel 2 provided inside the reactor containment vessel 1 has a loop composed of a steam generator 3, a primary coolant pump 4 and a pressurizer 5 depending on the output of the reactor. Is provided. Then, the primary coolant heated in the reactor vessel 2 is sent out from the outlet nozzle 6 of the reactor vessel 2, and is sent from the inlet nozzle 7 of the steam generator 3 into the water chamber of the steam generator 3.

蒸気発生器3の水室は入口側8と出口側9とに仕切られており、入口側8に送り込まれた1次冷却水は、多数の伝熱管10に送り込まれて二次冷却水と熱交換を行った後に出口側9に至り、蒸気発生器3の出口ノズル11から1次冷却ポンプ4を経て、原子炉容器2の入口ノズル12から原子炉容器2の内部に戻る。   The water chamber of the steam generator 3 is partitioned into an inlet side 8 and an outlet side 9, and the primary cooling water sent to the inlet side 8 is sent to a number of heat transfer pipes 10 to receive secondary cooling water and heat. After exchanging, it reaches the outlet side 9, returns from the outlet nozzle 11 of the steam generator 3 through the primary cooling pump 4, and returns from the inlet nozzle 12 of the reactor vessel 2 to the inside of the reactor vessel 2.

ところで、加圧水型原子炉においては、原子炉容器2の出口ノズル管台や蒸気発生器3の入口ノズル管台部に、600系インコネル基合金を使用した溶接部があり、点検を行ったときにき裂が発見される場合がある。この場合に行われる補修工事には、き裂を除去して肉盛溶接をする方法や、当該溶接部を切断して新規管に取替える方法がある。   By the way, in the pressurized water reactor, there are welded parts using 600-series inconel-based alloy at the outlet nozzle nozzle base of the reactor vessel 2 and the inlet nozzle nozzle base part of the steam generator 3, and when the inspection is performed Cracks may be found. The repair work performed in this case includes a method of removing the crack and performing overlay welding, and a method of cutting the weld and replacing it with a new pipe.

取替えによる補修工事の一例を図13および図14に示す。この取替えによる補修工事は、図13示すように、き裂発見部位を含む入口ノズル7の一部7aを切断してエルボ13を取外す。なお、図13の切断位置は一例を示すもので、本発明が図示の切断位置に限定されるものではない。   An example of repair work by replacement is shown in FIGS. In the repair work by this replacement, as shown in FIG. 13, the elbow 13 is removed by cutting a part 7 a of the inlet nozzle 7 including the crack detection site. In addition, the cutting position of FIG. 13 shows an example, and this invention is not limited to the cutting position of illustration.

次に、入口ノズル7や、新規エルボ14、新規ノズル15の開先加工を行う。そして、図14に示すように新規エルボ14や新規ノズル15を取付け、溶接を実施して最終仕上げを行う。   Next, groove processing of the inlet nozzle 7, the new elbow 14, and the new nozzle 15 is performed. And as shown in FIG. 14, the new elbow 14 and the new nozzle 15 are attached, welding is performed, and a final finish is performed.

最終仕上げを完了した新規周溶接線16、17、18には、放射線透過試験が要求される。このとき、これらの周溶接線16,17,18の部分は板厚が厚いため、内部に線源を置き、外周部にフィルムを貼って放射線透過試験を行うことが望ましい。しかしながら、当該部分は放射線量が高く、かつ蒸気発生器3の水室の内部は作業性の悪い箇所であることから被ばく線量が多く、特に新規周溶接線18については困難を伴う。   A radiographic test is required for the new circumferential weld lines 16, 17, and 18 that have completed the final finish. At this time, since these peripheral weld lines 16, 17, and 18 are thick, it is desirable to place a radiation source inside and paste a film on the outer peripheral portion to perform a radiation transmission test. However, since the radiation dose is high in the portion and the inside of the water chamber of the steam generator 3 is a poor workability, the exposure dose is large, and the new circumferential weld line 18 is particularly difficult.

そこで本発明の目的は、補修作業を実施した加圧水型原子炉において放射線透過試験を実施する際に、作業者の被ばく線量を低減しつつ作業性を向上させることができる放射線透過試験装置および試験方法を提供することにある。   Accordingly, an object of the present invention is to provide a radiation transmission test apparatus and a test method capable of improving workability while reducing the exposure dose of an operator when performing a radiation transmission test in a pressurized water reactor in which repair work has been performed. Is to provide.

上記の課題を解決するための請求項1に記載した放射線透過試験装置は、
プラント設備における筒状部材の周溶接部分に放射線透過試験を施すための装置であって、
試験用の放射線源を前記筒状部材の中心に支持する、前記筒状部材の内部に着脱自在に装着される支持手段と、
前記筒状部材の外部から前記筒状部材を通って前記支持手段へと延びる、その内部で前記放射線源が移動可能なガイドパイプと、を備えることを特徴とする。
The radiation transmission test apparatus according to claim 1 for solving the above-mentioned problem is as follows.
An apparatus for performing a radiation transmission test on a circumferential welded portion of a cylindrical member in a plant facility,
A support means for detachably mounting the inside of the cylindrical member, supporting a radiation source for testing at the center of the cylindrical member;
A guide pipe extending from the outside of the cylindrical member to the support means through the cylindrical member, to which the radiation source is movable.

また、上記の課題を解決するための請求項10に記載した手段は、
請求項1乃至9のいずれかに記載した放射線透過試験装置を用いて前記筒状部材の周溶接部分に放射線透過試験を施す方法であって、
前記筒状部材の内側に前記支持手段および前記ガイドパイプを装着し、
前記筒状部材を所定の位置に移動させてその端部に周溶接を施し、
前記筒状部材の外部から前記ガイドパイプの内部に試験用の放射線源を挿入し、
前記ガイドパイプのうち前記周溶接部分に対して半径方向に対向する位置まで前記放射線源を移動させ、
前記筒状部材の外部から放射線を観測することにより前記周溶接部の健全性を試験することを特徴とする。
The means described in claim 10 for solving the above problem is as follows.
A method for performing a radiation transmission test on a circumferential welded portion of the tubular member using the radiation transmission test apparatus according to any one of claims 1 to 9,
Mounting the support means and the guide pipe inside the cylindrical member,
The cylindrical member is moved to a predetermined position, and circumferential welding is performed on its end,
Insert a test radiation source into the guide pipe from the outside of the cylindrical member,
Moving the radiation source to a position facing the circumferential welded portion of the guide pipe in a radial direction;
The soundness of the circumferential welded portion is tested by observing radiation from the outside of the cylindrical member.

すなわち、本発明の放射線透過試験装置およびそれを用いる試験方法は、筒状部材の内側に支持手段およびガイドパイプを予め装着しておき、筒状部材の新規周溶接が完了してからガイドパイプの内部に試験用の放射線源を挿入して新規周溶接部分の放射線透過試験を行うものである。
これにより、放射線透過試験を実施する作業員が長時間にわたって筒状部材の内部に居続ける必要がないから、作業員の被爆線量を低減できるばかりでなく、放射線透過試験の作業性を大幅に向上させることができる。
That is, in the radiation transmission test apparatus and the test method using the same of the present invention, the support means and the guide pipe are mounted in advance inside the cylindrical member, and after the new circumferential welding of the cylindrical member is completed, the guide pipe A test radiation source is inserted inside, and a radiation transmission test of a new circumferential weld is performed.
This eliminates the need for workers performing the radiation transmission test to remain inside the cylindrical member for a long time, which not only reduces the exposure dose of the worker but also greatly improves the workability of the radiation transmission test. Can be made.

なお、請求項1に記載した放射線透過試験装置には、前記支持手段を牽引して前記筒状部材の外部に回収するための牽引手段をさらに設けることができる。   In addition, the radiation transmission test apparatus according to claim 1 may further include a pulling means for pulling the support means and collecting the support means outside the cylindrical member.

また、前記支持手段には、前記筒状部材の内壁面に当接する装着状態と、前記内壁面から離間した取り外し状態との間で揺動自在な複数の支持脚を設けることができる。
このとき、前記複数の支持脚の一部を伸縮自在に構成するとともに、伸縮自在な前記支持脚の先端を前記筒状部材の内壁面に押圧する付勢手段をさらに設けることができる。
また、前記支持脚には、前記筒状部材の内壁面上を転動する転動部材をその先端に設けることができる。
また、前記支持脚には、前記筒状部材の内壁面上を滑らかに摺動可能な摺動部材をその先端に設けることができる。
さらに、前記支持脚は、前記支持手段が前記牽引手段によって牽引されたときに取り外し状態に揺動するように構成することができる。
Further, the support means may be provided with a plurality of support legs that can swing between a mounted state in contact with the inner wall surface of the cylindrical member and a detached state spaced from the inner wall surface.
At this time, a part of the plurality of support legs can be configured to be extendable and a biasing unit that presses the distal ends of the extendable support legs against the inner wall surface of the cylindrical member can be further provided.
The support leg may be provided with a rolling member that rolls on the inner wall surface of the cylindrical member at the tip thereof.
In addition, the support leg can be provided with a sliding member that can slide smoothly on the inner wall surface of the cylindrical member at the tip thereof.
Further, the support leg can be configured to swing in a detached state when the support means is pulled by the pulling means.

また、請求項1に記載した放射線透過試験装置における前記支持手段は、前記筒状部材の内壁面に向かって伸張した装着状態と、収縮して前記内壁面から離間した取り外し状態との間で伸縮自在な複数の支持脚を有することができる。   Further, in the radiation transmission test apparatus according to claim 1, the support means expands and contracts between a mounted state that extends toward the inner wall surface of the cylindrical member and a detached state that contracts and separates from the inner wall surface. It can have a plurality of flexible support legs.

また、請求項1に記載した放射線透過試験装置には、前記周溶接部の裏波を監視するためのカメラをさらに設けることができる。   Further, the radiation transmission test apparatus according to claim 1 may further include a camera for monitoring a back wave of the circumferential weld.

また、請求項10に記載した放射線透過試験方法においては、前記筒状部材を、蒸気発生器のノズルあるいはそれに接続するエルボ若しくは冷却配管とすることができる。
そして、前記支持手段は、前記ノズル、前記エルボ、あるいは前記冷却配管の内側に装着することができる。
このとき、前記蒸気発生器の水室の内部に入った作業員が前記支持手段を装着することができる。
さらに、前記筒状部材の複数箇所にそれぞれ前記支持手段を取り付けることもできる。
加えて、前記支持手段に接続したロープを牽引することによって前記放射線透過試験装置を前記筒状部材の外部に回収することができる。
In the radiation transmission test method described in claim 10, the cylindrical member can be a nozzle of a steam generator, an elbow connected to the nozzle, or a cooling pipe.
And the said support means can be mounted | worn inside the said nozzle, the said elbow, or the said cooling piping.
At this time, a worker who has entered the water chamber of the steam generator can wear the support means.
Furthermore, the support means can be attached to a plurality of locations of the cylindrical member, respectively.
In addition, the radiation transmission test apparatus can be recovered outside the tubular member by pulling a rope connected to the support means.

本発明によれば、例えば補修作業を実施した加圧水型原子炉等のプラントにおいて放射線透過試験を実施する際に、作業者の被ばく線量を低減しつつ作業性を向上させることができる放射線透過試験装置および試験方法を提供することができる。   According to the present invention, for example, when performing a radiation transmission test in a plant such as a pressurized water reactor that has undergone repair work, a radiation transmission test apparatus that can improve workability while reducing the exposure dose of the worker. And a test method can be provided.

以下、図1〜図9を参照し、本発明に係る放射線透過試験装置および試験方法の一実施形態について詳細に説明する。   Hereinafter, an embodiment of a radiation transmission test apparatus and a test method according to the present invention will be described in detail with reference to FIGS.

図1に示した本第1実施形態の放射線透過試験装置100は、RT受け台30、ガイドパイプ、接続金具、その他を備えている。図1にRT受け台30の正面図、図2および図3にその部分斜視図、図4に脚部を折りたたんだ状態が示されている。   The radiation transmission test apparatus 100 according to the first embodiment shown in FIG. 1 includes an RT cradle 30, a guide pipe, a connection fitting, and the like. FIG. 1 is a front view of the RT cradle 30, FIGS. 2 and 3 are partial perspective views thereof, and FIG. 4 shows a state in which the legs are folded.

図1に示したRT受け台30は、内筒31、外筒32、一対の固定脚33,一対の伸縮脚34を有している。内筒31の外周面には溝31aが凹設されており、外筒32に取付けられるガイド35の凸部を嵌挿することにより、内筒31と外筒32はスムーズに相対スライドできる構造となっている。また、内筒31にはハンドル36が取付けられている。   The RT cradle 30 shown in FIG. 1 has an inner cylinder 31, an outer cylinder 32, a pair of fixed legs 33, and a pair of telescopic legs 34. A groove 31a is recessed in the outer peripheral surface of the inner cylinder 31, and the inner cylinder 31 and the outer cylinder 32 can be smoothly slid relative to each other by inserting a convex portion of a guide 35 attached to the outer cylinder 32. It has become. A handle 36 is attached to the inner cylinder 31.

一対の固定脚33および一対の伸縮脚34は、それそれベース部、脚部、ヘッド部を有し、固定脚33はその長さが固定となっているが、伸縮脚34はその長さが伸縮可能となっている。   Each of the pair of fixed legs 33 and the pair of extendable legs 34 has a base portion, a leg portion, and a head portion. The length of the fixed leg 33 is fixed, but the length of the extendable leg 34 has a length. It can be expanded and contracted.

固定脚33は、図4に示したように、その第1のベース部38が内筒31に、その第2のベース部39が外筒32にそれぞれ取付けられている。   As shown in FIG. 4, the fixed base 33 has a first base portion 38 attached to the inner cylinder 31 and a second base portion 39 attached to the outer cylinder 32.

伸縮脚34は、図4に示したように、その第1のベース部38が内筒31に、その第2のベース部39が外筒32にそれぞれ取付けられている。また、図3に示したように、そのヘッド部37には、シリンダまたはバネ等を使用し、RT受け台30を取付ける新規エルボ14、新規ノズル15の内壁を押圧することにより、RT受け台30を固定できるようになっている。このとき、RT受け台30を取り付ける部分の内径をあらかじめ測定し、RT受け台30の中心と取付け部の中心とが一致するように一対の固定脚33の長さを予め調整しておくことで、放射線源を取付け部の中心に配置することができる。   As shown in FIG. 4, the telescopic legs 34 have a first base portion 38 attached to the inner cylinder 31 and a second base portion 39 attached to the outer cylinder 32. Further, as shown in FIG. 3, a cylinder or a spring is used for the head portion 37, and the new elbow 14 to which the RT cradle 30 is attached and the inner wall of the new nozzle 15 are pressed, thereby the RT cradle 30. Can be fixed. At this time, the inner diameter of the portion to which the RT cradle 30 is attached is measured in advance, and the lengths of the pair of fixed legs 33 are adjusted in advance so that the center of the RT cradle 30 coincides with the center of the mounting portion. The radiation source can be arranged in the center of the mounting part.

これにより、内筒31に取り付けられているハンドル36を引くと、内筒31がハンドル36と共に外筒32に対して相対的に軸線方向にスライドし、固定脚33および伸縮脚34を折りたたむことができるので、RT受け台30を配管15、ノズル16、エルボ17から取り外して水室8から取り出すことができる。
なお、固定脚33および伸縮脚34のヘッド部37の先端部分にローラまたは車輪を取付けることにより、固定脚33を折りたたんで取外す際に、配管15、ノズル16、エルボ17の内面に傷付きが発生することを防止できる。
Accordingly, when the handle 36 attached to the inner cylinder 31 is pulled, the inner cylinder 31 slides in the axial direction relative to the outer cylinder 32 together with the handle 36, and the fixed leg 33 and the extendable leg 34 can be folded. Therefore, the RT cradle 30 can be removed from the pipe 15, the nozzle 16, and the elbow 17 and taken out from the water chamber 8.
By attaching a roller or a wheel to the tip of the head portion 37 of the fixed leg 33 and the telescopic leg 34, the inner surface of the pipe 15, the nozzle 16, and the elbow 17 is damaged when the fixed leg 33 is folded and removed. Can be prevented.

内筒31は、例えばコレットチャックを組込むことでガイドパイプとの組立てが可能な構造となっている。外筒32の外周部または内筒31の正面に、溶接裏波監視用カメラを取付けることで、新規周溶接の初層溶接後に裏波を確認することができる。   The inner cylinder 31 has a structure that can be assembled with a guide pipe by incorporating a collet chuck, for example. By attaching a welding back wave monitoring camera to the outer peripheral portion of the outer cylinder 32 or the front surface of the inner cylinder 31, the back wave can be confirmed after the first layer welding of the new peripheral welding.

なお、上述したRT受け台30は、その一例を示すもので、本発明を限定するものではなく、例えば脚は3本あるいは5本でもあっても同様の作用効果を得ることができる。   The above-described RT cradle 30 shows an example thereof, and does not limit the present invention. For example, even if there are three or five legs, the same effect can be obtained.

また、図5に示したように、RT受け台40の中央部分に、単段式または多段式の伸縮可能な脚41を組合せることによっても同様の作用効果を得ることができる。   In addition, as shown in FIG. 5, a similar effect can be obtained by combining a single-stage or multi-stage extendable / contractible leg 41 with the central portion of the RT cradle 40.

次に図6〜図9を参照し、蒸気発生器3の入口ノズル7およびエルボ13を切断し、新規エルボ14および新規ノズル15を取付ける場合について説明する。   Next, with reference to FIGS. 6-9, the case where the inlet nozzle 7 and the elbow 13 of the steam generator 3 are cut | disconnected and the new elbow 14 and the new nozzle 15 are attached is demonstrated.

図6に示したように、新規エルボ14および新規ノズル15を蒸気発生器3の入口ノズル7に取付ける際には、まず最初に新規エルボ14および新規ノズル15の内部にあらかじめ一対のRT受け台30A,30Bを設置しておく。そして、放射線源は、これらのRT受け台30A,30Bによって支持されるガイドパイプ51,52の中を通して新規周溶接線16、17および18の位置に移動させる。   As shown in FIG. 6, when the new elbow 14 and the new nozzle 15 are attached to the inlet nozzle 7 of the steam generator 3, first, a pair of RT cradles 30 </ b> A are placed inside the new elbow 14 and the new nozzle 15 in advance. , 30B is installed. Then, the radiation source is moved to the positions of the new circumferential weld lines 16, 17 and 18 through the guide pipes 51 and 52 supported by these RT cradles 30A and 30B.

具体的には、新規エルボ14および新規ノズル15を取り付ける前に、一対のRT受け台30A,30Bおよびガイドパイプ51を予め組立て、新規エルボ14の両端部の内側にそれぞれ設置しておく。そして、新規エルボ14を、1次冷却材配管19と半分重なる程度まで移動させる。次いで、ガイドパイプ52を水室8の開口部より挿入して入口ノズル7の部分に送り、RT受け台30Bによって支持されているガイドパイプ51の端部に継手53を介して接続する。その後、新規エルボ14をさらに移動させ、入口ノズル7および1次冷却材配管19との周溶接16,18を実施する。   Specifically, before attaching the new elbow 14 and the new nozzle 15, the pair of RT cradles 30 </ b> A and 30 </ b> B and the guide pipe 51 are assembled in advance and installed inside both ends of the new elbow 14. And the new elbow 14 is moved to the extent which overlaps with the primary coolant piping 19 half. Next, the guide pipe 52 is inserted through the opening of the water chamber 8 and sent to the inlet nozzle 7, and is connected to the end of the guide pipe 51 supported by the RT cradle 30 </ b> B via the joint 53. Thereafter, the new elbow 14 is further moved, and circumferential weldings 16 and 18 between the inlet nozzle 7 and the primary coolant pipe 19 are performed.

周溶接16,18を実施後、ガイドパイプ52の端部から放射線源を挿入、移送し、放射線透過試験を行う。このとき、一対のRT受け台30A,30Bを設置する位置は、新規エルボ14の開先面から決められた寸法位置とし、ガイドパイプ51,52の長さおよび新規エルボ14の寸法は、あらかじめ計測しておく。これにより、新規周溶接線16、17、18の位置を算出できるので、放射線源の移送距離を決定することができる。   After carrying out the circumferential welding 16, 18, a radiation source is inserted and transferred from the end of the guide pipe 52, and a radiation transmission test is performed. At this time, the position where the pair of RT cradle 30A, 30B is installed is a dimension position determined from the groove surface of the new elbow 14, and the length of the guide pipes 51, 52 and the dimension of the new elbow 14 are measured in advance. Keep it. Thereby, since the position of the new circumference welding lines 16, 17, and 18 can be calculated, the transfer distance of a radiation source can be determined.

放射線透過試験を終了した後、RT受け台30A,30Bのハンドル36を引き、固定脚33および伸縮脚34を折り畳んでから蒸気発生器3の外部に搬出する。   After completing the radiation transmission test, the handle 36 of the RT cradle 30A, 30B is pulled, the fixed leg 33 and the extendable leg 34 are folded, and then carried out of the steam generator 3.

なお、RT受け台30A,30Bの取外しは、作業者が蒸気発生器3の水室8内に入り、図7に示すようにフック61等をハンドル36に引掛けて行うことができる。また、RT受け台30A,30Bを新規エルボ14内に設置するときに予めロープ等の一端をハンドル36に取付け、その他端を蒸気発生器3の開口部から外部に引き出しておくことで、蒸気発生器3の外部からこのロープを引き、取外しおよび搬出を行うことも可能である。   The RT cradle 30A, 30B can be removed by an operator entering the water chamber 8 of the steam generator 3 and hooking the hook 61 or the like on the handle 36 as shown in FIG. Further, when the RT cradle 30A, 30B is installed in the new elbow 14, one end of a rope or the like is attached to the handle 36 in advance, and the other end is pulled out from the opening of the steam generator 3 to generate steam. It is also possible to pull this rope from the outside of the vessel 3 to remove and carry it out.

すなわち、本実施形態の放射線透過試験装置100を使用することにより、作業者の被ばく線量の低減と作業時間の短縮が可能となる。   That is, by using the radiation transmission test apparatus 100 of the present embodiment, it is possible to reduce the exposure dose of the worker and shorten the work time.

次に図8を参照し、放射線透過試験装置の異なる据付状態について説明する。
図6に示した据付状態と相違する点は、蒸気発生器3の入口ノズル7の一部のみを切断して、新規ノズル15を溶接する点である。
Next, with reference to FIG. 8, different installation states of the radiation transmission test apparatus will be described.
The difference from the installed state shown in FIG. 6 is that only a part of the inlet nozzle 7 of the steam generator 3 is cut and a new nozzle 15 is welded.

図8に示したように、蒸気発生器3の入口ノズル7の内側にRT受け台30を設置し、ガイドパイプ54を水室8の開口部分から挿入し、RT受け台30に組立てる。その後、新規ノズル15を据付け、新規周溶接16,17を実施して放射線透過試験を行う。放射線源の移送については、図6の場合と同一である。この場合も、図6に示した場合と同様の作用効果を得ることができる。   As shown in FIG. 8, the RT cradle 30 is installed inside the inlet nozzle 7 of the steam generator 3, and the guide pipe 54 is inserted from the opening of the water chamber 8 and assembled to the RT cradle 30. Thereafter, a new nozzle 15 is installed, and new circumferential welds 16 and 17 are performed to perform a radiation transmission test. The transfer of the radiation source is the same as in FIG. In this case, the same effect as that shown in FIG. 6 can be obtained.

次に図9を参照し、放射線透過試験装置の異なる据付状態について説明する。図6に示した据付状態と相違する点は、RT受け台30を1次冷却材配管19および蒸気発生器3の入口ノズル7の内側に設置する点である。   Next, the different installation states of the radiation transmission test apparatus will be described with reference to FIG. The difference from the installation state shown in FIG. 6 is that the RT cradle 30 is installed inside the primary coolant pipe 19 and the inlet nozzle 7 of the steam generator 3.

図9に示したように、1次冷却材配管19および蒸気発生器3の入口ノズル7の内側に一対のRT受け台30A,30Bを設置する。ガイドパイプ51を予め水室8または入口ノズル7の内側に配置し、新規エルボ14を1次冷却材配管19と半分重なる程度まで移動する。
次いで、ガイドパイプ51を一対のRT受け台30A,30Bに組立て、新規エルボ14をさらに移動させる。
そして、新規エルボ14を入口ノズル7および1次冷却材配管19とそれぞれ周溶接し、放射線透過試験を行う。線源の移送については、図6に示した場合と同一である。この場合においても同様の作用効果を得ることができる。
As shown in FIG. 9, a pair of RT cradles 30 </ b> A and 30 </ b> B are installed inside the primary coolant pipe 19 and the inlet nozzle 7 of the steam generator 3. The guide pipe 51 is previously disposed inside the water chamber 8 or the inlet nozzle 7, and the new elbow 14 is moved to the extent that it overlaps with the primary coolant pipe 19.
Next, the guide pipe 51 is assembled into the pair of RT cradles 30A and 30B, and the new elbow 14 is further moved.
Then, the new elbow 14 is circumferentially welded to the inlet nozzle 7 and the primary coolant pipe 19, respectively, and a radiation transmission test is performed. The transfer of the radiation source is the same as that shown in FIG. Even in this case, the same effect can be obtained.

なお、図6〜図9に示した場合においては、蒸気発生器3の側のRT受け台30Bやガイドパイプ52等の放射線透過試験装置100の一部は、作業者が水室8の内部に入って設置することができる。このときに作業員が受ける被ばく線量は増加するが、放射線透過試験装置100の一部の設置および放射線源の移送を蒸気発生器3の外部から行うことで、作業者の被ばく線量の低減と作業時間の短縮を図ることができる。   In the case shown in FIGS. 6 to 9, a part of the radiation transmission test apparatus 100 such as the RT cradle 30B and the guide pipe 52 on the steam generator 3 side is placed inside the water chamber 8 by the operator. Can be installed. Although the exposure dose received by the worker at this time increases, the radiation exposure test apparatus 100 is partially installed and the radiation source is transferred from the outside of the steam generator 3 to reduce the exposure dose of the worker and work. Time can be shortened.

RT受け台を示す正面図。The front view which shows RT cradle. RT受け台の中央部を示す分解斜視図。The disassembled perspective view which shows the center part of RT cradle. RT受け台の脚部を示す分解斜視図。The disassembled perspective view which shows the leg part of RT cradle. RT受け台の脚部を折りたたんだ状態を示す側面図。The side view which shows the state which folded the leg part of RT cradle. RT受け台の他の実施形態を示す正面図。The front view which shows other embodiment of RT cradle. 放射線透過試験装置の使用状態を示す図。The figure which shows the use condition of a radiation transmission test apparatus. RT受け台の取外しを説明する図。The figure explaining removal of RT cradle. 放射線透過試験装置の使用状態を示す図。The figure which shows the use condition of a radiation transmission test apparatus. 放射線透過試験装置の使用状態を示す図。The figure which shows the use condition of a radiation transmission test apparatus. 加圧水型原子炉の1次冷却設備系統を示す概略図。Schematic which shows the primary cooling equipment system | strain of a pressurized water reactor. 蒸気発生器の下部構造を示す概略図。Schematic which shows the lower structure of a steam generator. 原子炉容器の構造を示す概略図。Schematic which shows the structure of a reactor vessel. 蒸気発生器ノズルの取替補修工事を説明する図。The figure explaining replacement repair work of a steam generator nozzle. 蒸気発生器ノズルの取替補修工事を説明する図。The figure explaining replacement repair work of a steam generator nozzle.

符号の説明Explanation of symbols

1 原子炉格納容器
2 原子炉容器
3 蒸気発生器
4 一次冷却材ポンプ
5 加圧器
6 出口ノズル
7 入口ノズル
8 水室
10 伝熱管
11 出口ノズル
12 入口ノズル
13 エルボ
14 新規エルボ
15 新規ノズル
16,17,18 新規周溶接線
19 一次冷却配管
30 RT受け台
31 内筒
32 外筒
33 固定脚
34 伸縮脚
35 ガイド
36 ハンドル
37 ヘッド部
38 第1のベース部
39 第2のベース部
40 RT受け台
41 伸縮脚
51,52 ガイドパイプ
53 継手
54 ガイドパイプ
61 フック
100 一実施形態の放射線透過試験装置
110 変形例の放射線透過試験装置
DESCRIPTION OF SYMBOLS 1 Reactor containment vessel 2 Reactor vessel 3 Steam generator 4 Primary coolant pump 5 Pressurizer 6 Outlet nozzle 7 Inlet nozzle 8 Water chamber 10 Heat transfer tube 11 Outlet nozzle 12 Inlet nozzle 13 Elbow 14 New elbow 15 New nozzle 16, 17 , 18 New circumferential weld line 19 Primary cooling pipe 30 RT cradle 31 Inner tube 32 Outer tube 33 Fixed leg 34 Telescopic leg 35 Guide 36 Handle 37 Head part 38 First base part 39 Second base part 40 RT cradle 41 Telescopic legs 51, 52 Guide pipe 53 Joint 54 Guide pipe 61 Hook 100 Radiation transmission test apparatus 110 of one embodiment Radiation transmission test apparatus of a modification

Claims (12)

プラント設備における筒状部材の周溶接部分に放射線透過試験を施すための装置であって、
試験用の放射線源を前記筒状部材の中心に支持する複数の支持脚であって、複数の固定脚と、先端を前記筒状部材の内壁面に押圧する付勢手段を含む伸縮自在な複数の伸縮脚と、からなる複数の支持脚と、複数の前記支持脚が揺動自在に取り付けられた内筒と、前記内筒に対して軸線方向に相対スライド可能な外筒と、前記外筒と前記支持脚のそれぞれとを接続するリンクと、前記内筒に取り付けられたハンドルと、を有し、前記筒状部材の内部に着脱自在に装着される支持手段と、
前記筒状部材の外部から前記筒状部材を通って前記支持手段へと延びる、その内部で前記放射線源が移動可能なガイドパイプと、
前記支持手段を牽引して前記筒状部材の外部に回収するための牽引手段と、を備え、
前記支持手段の前記支持脚が、前記付勢手段により押圧されて前記筒状部材の内壁面に当接する装着状態と、前記牽引手段により前記ハンドルが牽引されることにより前記内壁面から離間した取り外し状態との間で揺動ることを特徴とする放射線透過試験装置。
An apparatus for performing a radiation transmission test on a circumferential welded portion of a cylindrical member in a plant facility,
A plurality of support legs for supporting a test radiation source at the center of the cylindrical member , including a plurality of fixed legs and a biasing means for pressing a tip against an inner wall surface of the cylindrical member. A plurality of support legs, an inner cylinder to which the plurality of support legs are swingably attached, an outer cylinder that is slidable relative to the inner cylinder in the axial direction, and the outer cylinder And a support unit that is detachably mounted inside the cylindrical member , and a link that connects each of the support legs and a handle attached to the inner cylinder ,
A guide pipe that extends from the outside of the cylindrical member to the support means through the cylindrical member, in which the radiation source is movable,
Traction means for pulling the support means and collecting it outside the tubular member,
A mounting state in which the support leg of the support means is pressed against the inner wall surface of the cylindrical member by being pressed by the urging means, and a detachment separated from the inner wall surface by the handle being pulled by the pulling means. radiographic examination apparatus according to claim swing to Rukoto between the states.
前記支持脚は、前記筒状部材の内壁面上を転動する転動部材をその先端に有していることを特徴とする請求項1に記載した放射線透過試験装置。   The radiation transmission test apparatus according to claim 1, wherein the support leg has a rolling member that rolls on an inner wall surface of the cylindrical member at a tip thereof. 前記支持脚は、前記筒状部材の内壁面上を滑らかに摺動可能な摺動部材をその先端に有していることを特徴とする請求項1に記載した放射線透過試験装置。   2. The radiation transmission test apparatus according to claim 1, wherein the support leg has a sliding member that can slide smoothly on an inner wall surface of the cylindrical member at a tip thereof. 前記周溶接部の裏波を監視するためのカメラをさらに備えることを特徴とする請求項1乃至のいずれかに記載した放射線透過試験装置。 Radiographic examination apparatus as claimed in any one of claims 1 to 3, further comprising a camera for monitoring the penetration bead of the peripheral weld. 請求項1乃至のいずれかに記載した放射線透過試験装置を用いて前記筒状部材の周溶接部分に放射線透過試験を施す方法であって、
前記伸縮脚の前記付勢手段により押圧し前記筒状部材の内側に前記支持手段を装着状態で設置して当該支持手段に前記ガイドパイプを装着し、
前記筒状部材を所定の位置に移動させてその端部に周溶接を施し、
前記筒状部材の外部から前記ガイドパイプの内部に試験用の放射線源を挿入し、
前記ガイドパイプのうち前記周溶接部分に対して半径方向に対向する位置まで前記放射線源を移動させ、
前記筒状部材の外部から放射線を観測することにより前記周溶接部の健全性を試験し、
試験後に前記牽引手段によって前記ハンドルを牽引することにより前記支持手段を取り外し状態として前記筒状部材から取り出すことを特徴とする放射線透過試験方法。
A method for performing a radiation transmission test on a circumferential welded portion of the cylindrical member using the radiation transmission test apparatus according to any one of claims 1 to 4 ,
Pressing the urging means of the telescopic leg and installing the support means in an installed state inside the cylindrical member and attaching the guide pipe to the support means,
The cylindrical member is moved to a predetermined position, and circumferential welding is performed on its end,
Insert a test radiation source into the guide pipe from the outside of the cylindrical member,
Moving the radiation source to a position facing the circumferential welded portion of the guide pipe in a radial direction;
Test the soundness of the circumferential weld by observing radiation from the outside of the tubular member,
A radiation transmission test method, wherein the support means is removed from the tubular member by pulling the handle by the pulling means after the test.
前記筒状部材が、蒸気発生器のノズルあるいはそれに接続するエルボ若しくは冷却配管であることを特徴とする請求項に記載した放射線透過試験方法。 6. The radiation transmission test method according to claim 5 , wherein the cylindrical member is a nozzle of a steam generator, an elbow connected to the nozzle, or a cooling pipe. 前記支持手段を前記ノズルの内側に装着することを特徴とする請求項に記載した放射線透過試験方法。 The radiation transmission test method according to claim 6 , wherein the support means is mounted inside the nozzle. 前記支持手段を前記エルボの内側に装着することを特徴とする請求項に記載した放射線透過試験方法。 The radiation transmission test method according to claim 6 , wherein the support means is mounted inside the elbow. 前記支持手段を前記冷却配管の内側に装着することを特徴とする請求項に記載した放射線透過試験方法。 The radiation transmission test method according to claim 6 , wherein the support means is mounted inside the cooling pipe. 前記蒸気発生器の水室の内部に入った作業員が前記支持手段を装着することを特徴とする請求項乃至のいずれかに記載した放射線透過試験方法。 Radiographic examination method described in any one of claims 7 to 9 workers entering the interior of the water chamber of the steam generator is characterized in that mounting the support means. 前記筒状部材の複数箇所にそれぞれ前記支持手段を取り付けることを特徴とする請求項に記載した放射線透過試験方法。 The radiation transmission test method according to claim 5 , wherein the support means is attached to each of a plurality of locations of the cylindrical member. 前記支持手段に接続したロープを牽引することによって前記放射線透過試験装置を前記筒状部材の外部に回収することを特徴とする請求項に記載した放射線透過試験方法。 6. The radiation transmission test method according to claim 5 , wherein the radiation transmission test device is recovered outside the cylindrical member by pulling a rope connected to the support means.
JP2008300600A 2008-11-26 2008-11-26 Radiation transmission test apparatus and test method for plant equipment Expired - Fee Related JP5376914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300600A JP5376914B2 (en) 2008-11-26 2008-11-26 Radiation transmission test apparatus and test method for plant equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300600A JP5376914B2 (en) 2008-11-26 2008-11-26 Radiation transmission test apparatus and test method for plant equipment

Publications (2)

Publication Number Publication Date
JP2010127677A JP2010127677A (en) 2010-06-10
JP5376914B2 true JP5376914B2 (en) 2013-12-25

Family

ID=42328199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300600A Expired - Fee Related JP5376914B2 (en) 2008-11-26 2008-11-26 Radiation transmission test apparatus and test method for plant equipment

Country Status (1)

Country Link
JP (1) JP5376914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749340B (en) * 2012-06-07 2014-08-06 中国石油天然气第一建设公司 Adjustable pipe center transillumination device
CN104569007B (en) * 2015-01-30 2018-02-02 广东华泰检测科技有限公司 Posted sides pipeline butt weld center exposure device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835082B1 (en) * 1978-08-10 1980-01-24 Kraftwerk Union Ag Nuclear power plant with a cooling circuit
JPS6131803A (en) * 1984-07-24 1986-02-14 三菱重工業株式会社 Address marking method
US5174164A (en) * 1991-09-16 1992-12-29 Westinghouse Electric Corp. Flexible cable
JP2582702Y2 (en) * 1992-07-27 1998-10-08 三菱重工業株式会社 Foreign matter collection device in pipe
JP3072690B2 (en) * 1993-04-13 2000-07-31 富士電機株式会社 Forced folding device for pantograph mechanism of refueling machine
JPH0687857U (en) * 1993-06-01 1994-12-22 石川島播磨重工業株式会社 In-pipe inspection tool positioning device
JP3327792B2 (en) * 1996-11-12 2002-09-24 三菱重工業株式会社 Lid fixing device for pipe nozzle in water chamber of vertical steam generator and its mounting device
JP2000035495A (en) * 1998-07-17 2000-02-02 Toshiba Corp Intra-pipe apparatus setter
JP2002040186A (en) * 2000-07-19 2002-02-06 Toshiba Corp Inside reactor piping checking device
JP2003276594A (en) * 2002-03-20 2003-10-02 Rigaku Corp Intra-pipe traveling device and pipe inspecting device

Also Published As

Publication number Publication date
JP2010127677A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4865334B2 (en) Tip tool guide device and method for loading tip tool guide device
CZ247294A3 (en) Device for checking a supporting plate
JP2006349596A (en) Grinding method and grinding system of nozzle inside of reactor vessel
JP5376914B2 (en) Radiation transmission test apparatus and test method for plant equipment
WO2011004540A1 (en) Intra-tube work system for nuclear reactor container
EP3100276B1 (en) Apparatus and method to remotely inspect piping and piping attachment welds
TWI470648B (en) Repair method of piping for jet pump
US20150158125A1 (en) Method for producing a welded joint and creating an image of the welded joint by means of cooled x-ray tubes
US5483033A (en) Apparatus and method for sequentially registering tool modules for a welding operation of a tube
CN108871941A (en) A kind of structure for pressure test of pipe fitting
JP6845412B2 (en) Water pressure test equipment
JP2012159473A (en) Inspection device and inspection method of heat transfer pipe
CN107790947A (en) A kind of clamping tooling with cigarette smoking system
KR100453630B1 (en) An apparatus using both for hydraulic expansion and leak test of sleeve for repairing a steam generator tube
CN109163862A (en) A kind of pressure-measuring method of pipe fitting
CN106353116B (en) The experimental cabin preparation method of closed thermal strength test system
CN201728453U (en) On-site butt-welding device of skid-mounted type coiled tubing
RU2655553C1 (en) Method of connecting pipes with tubular grids and manifolds heat exchangers equipment
JP3167188U (en) Ultrasonic wall thickness measuring device
JP2007107979A (en) Tube inner surface decontamination system
JP5822806B2 (en) Heat transfer tube insertion jig and method of manufacturing heat transfer tube insertion jig
JP6066682B2 (en) Back shield device and method for pipe welds and support member for seal gas pipe
WO2011148731A1 (en) Working device for inside of water chamber, and installation method for working device for inside of water chamber
CN213121679U (en) Quick flaw detection device for pipeline welded junction
CN207318063U (en) A kind of experiment porch for being used to confirm pilot operated safety valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R151 Written notification of patent or utility model registration

Ref document number: 5376914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees