JP5376110B2 - High-purity carboxylic alcohol ester purification method and apparatus - Google Patents

High-purity carboxylic alcohol ester purification method and apparatus Download PDF

Info

Publication number
JP5376110B2
JP5376110B2 JP2008114965A JP2008114965A JP5376110B2 JP 5376110 B2 JP5376110 B2 JP 5376110B2 JP 2008114965 A JP2008114965 A JP 2008114965A JP 2008114965 A JP2008114965 A JP 2008114965A JP 5376110 B2 JP5376110 B2 JP 5376110B2
Authority
JP
Japan
Prior art keywords
reaction
ester
porous body
alcohol ester
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008114965A
Other languages
Japanese (ja)
Other versions
JP2009263277A (en
Inventor
聡 笹村
Original Assignee
聡 笹村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聡 笹村 filed Critical 聡 笹村
Priority to JP2008114965A priority Critical patent/JP5376110B2/en
Publication of JP2009263277A publication Critical patent/JP2009263277A/en
Application granted granted Critical
Publication of JP5376110B2 publication Critical patent/JP5376110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carboxylic acid ester in a high reaction efficiency in simple separation by transesterification reaction of a carboxylic acid glyceride and an alcohol. <P>SOLUTION: An alcohol necessary for a reaction and an alkali catalyst are supported on glycerol impregnated into a porous body and a crude carboxylic acid alcohol ester after a primary reaction is passed through the porous body. Glycerol is supported on a porous body and the carboxylic acid alcohol ester after the primary reaction is passed through the porous body. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、カルボン酸グリセリドとアルコールのエステル置換反応における高純度カルボン酸アルコールエステル精製方法及びその装置に関する。 The present invention relates to a high-purity carboxylic alcohol ester purification method and an apparatus thereof in an ester substitution reaction of a carboxylic acid glyceride and an alcohol.

アルカリ触媒を用いたカルボン酸グリセリドとアルコールのエステル置換反応装置において、反応過程で発生するグリセリンがアルカリ触媒を吸着・偏在を促し、エステル置換反応の持続性を急速に阻害し、反応収束が95〜98%で停止してしまう。 In the ester substitution reaction equipment of carboxylic acid glyceride and alcohol using an alkali catalyst, glycerin generated during the reaction promotes adsorption and uneven distribution of the alkali catalyst, rapidly impairing the persistence of the ester substitution reaction, and the reaction convergence is 95 ~ Stops at 98%.

反応促進のため、とられる手法の一部に、反応槽を高温・高圧にする設備もあるが、反応槽が耐圧型になる為、気密性、耐圧性(高強度)が求められ、槽自体が高価になってしまう。 Some of the measures taken to accelerate the reaction include equipment that raises the reaction tank to high temperature and pressure, but because the reaction tank is pressure-resistant, airtightness and pressure resistance (high strength) are required. Becomes expensive.

その他手法の一部に、2次反応を促すため、大量のアルコールと僅かなアルカリ触媒を混入させる工程を設けるものがあるが、その後に、アルコールの回収の為の分留など設備が大掛かりになると同時に、大量のエネルギー消費を余儀なくされる。 Some of the other methods include a step of mixing a large amount of alcohol and a small amount of an alkali catalyst in order to promote the secondary reaction. After that, when equipment such as fractional distillation for alcohol recovery becomes large At the same time, a large amount of energy is consumed.

このように高反応収束が困難なため、反応の中間体のモノグリセリド等が低温性能(フィルター目詰まり点等)を阻害する。 Since high reaction convergence is difficult in this way, the reaction intermediate monoglyceride or the like inhibits low-temperature performance (filter clogging point and the like).

アルカリ触媒を除去する手法の一部に静置保管があるが、除去効率が悪く数百PPM前後のアルカリ触媒を残留させる。 Part of the method of removing the alkali catalyst is stationary storage, but the removal efficiency is poor and the alkali catalyst of around several hundred PPM remains.

その他のアルカリ触媒の吸着に活性白土を用いる技法があるが、活性白土がグリセリン等粘性の高い液体をも取り込み、ユニット内に堆積し易く、頻繁なメンテナンスを要する。 Although there is a technique using activated clay for adsorption of other alkali catalysts, the activated clay also takes in a highly viscous liquid such as glycerin and easily accumulates in the unit, requiring frequent maintenance.

反応槽を終えた粗カルボン酸アルコールエステルの触媒を取り除く技術の多くが水洗いに求められているが、アルカリ触媒残存量が多く、歩留まり低下等の不具合を生じている。 Many techniques for removing the catalyst of the crude carboxylic acid alcohol ester after completion of the reaction tank are required for washing with water, but the remaining amount of the alkali catalyst is large, resulting in problems such as a decrease in yield.

この際、水と石鹸とカルボン酸アルコールエステルが乳濁し、分離が困難になる為、様々な薬剤の投入等、コストアップと共に、石鹸中の脂肪酸やアルコールが触媒を水洗いすることで更に発生させ、水質を汚染する要因となる。
なお、脂肪酸メチルエステルの製造方法として、特許文献1,2が知られている。
特開2007-211139 特開2008-024841
At this time, water, soap, and carboxylic alcohol ester are emulsified, making separation difficult, and with the addition of various chemicals, along with cost increase, fatty acids and alcohol in the soap are further generated by washing the catalyst with water, It becomes a factor that pollutes water quality.
Patent Documents 1 and 2 are known as methods for producing fatty acid methyl esters.
JP2007-211139 JP2008-024841

アルカリ触媒を用いたカルボン酸グリセリドとアルコールのエステル置換反応装置において、反応過程で発生するグリセリンがアルカリ触媒を吸着・偏在を促し、反応の持続性を急速に阻害し、反応収束が95〜98%で停止してしまう。 In the ester substitution reaction equipment of carboxylic acid glyceride and alcohol using alkali catalyst, glycerin generated in the reaction process adsorbs and disperses the alkali catalyst, rapidly inhibits the persistence of the reaction, and the reaction convergence is 95-98% Will stop at.

また、反応槽の大型化により、油脂分子、アルカリ触媒、アルコール分子を均質に分散することが攪拌翼のみではより困難になる現状がある。 In addition, due to the increase in the size of the reaction tank, it is more difficult to uniformly disperse oil and fat molecules, alkali catalyst, and alcohol molecules with only a stirring blade.

反応直後のカルボン酸アルコールエステルにおいてアルカリ触媒が数百〜数千PPM残留する。 In the carboxylic alcohol ester immediately after the reaction, several hundred to several thousand PPM of an alkali catalyst remains.

そのため、水洗い時、これらエステルとアルカリ触媒が水と反応し一部がアルコールと石鹸に変化して歩留まりを落とすと共に、カルボン酸アルコールエステルと石鹸、水とで乳濁し、分離を困難にすると共に洗浄排水のCODを著しく悪化させる。 Therefore, at the time of washing with water, these esters and alkali catalyst react with water, and some of them change into alcohol and soap to reduce the yield, and the carboxylic acid alcohol ester, soap and water become milky, making separation difficult and washing. Significantly worsens the wastewater COD.

手法1;メタノール、アルカリ触媒を任意の割合で含んだグリセリンをセルロース系フィルター等の多孔質体に含浸させ、エステル置換一次反応を終えた粗カルボン酸アルコールエステルに、反応に必要な熱エネルギーを持たせ、その多孔質体へ誘導する。 Method 1: Impregnating a porous body such as a cellulose filter with glycerin containing methanol and an alkali catalyst in an arbitrary ratio, and the crude carboxylic alcohol ester having undergone the ester substitution primary reaction has the thermal energy necessary for the reaction. To the porous body.

手法2;グリセリンをフィルターのような多孔質体に含浸させ、手法1を終えた粗カルボン酸アルコールエステルを常温以下にし、この多孔質体へ誘導する。 Method 2: impregnating a porous body such as a filter with glycerin, and bringing the crude carboxylic alcohol ester, which has completed the method 1, to a room temperature or less, and guiding it to the porous body.

手法1の効果;未反応のトリカルボン酸グリセリド又は、中間体のモノ・ジカルボン酸グリセリドの残留する粗カルボン酸アルコールエステルが多孔質体を通過する際、ミクロンオーダーの空隙には、グリセリンと共にグリセリンが吸着・保持するメタノール、アルカリ触媒が存在し、更なるエステル置換反応を促す。(二次反応) Effect of Method 1; When the unreacted tricarboxylic acid glyceride or the remaining crude carboxylic acid alcohol ester of the intermediate mono-dicarboxylic acid glyceride passes through the porous material, glycerin is adsorbed together with glycerin in the micron-order voids. -There is methanol and alkali catalyst to be retained, which promotes further ester substitution reaction. (Secondary reaction)

反応時に発生した新たなグリセリンは先に含浸させたグリセリンにその高い粘性により吸着される。 New glycerin generated during the reaction is adsorbed to the previously impregnated glycerin due to its high viscosity.

多孔質体に含浸したグリセリンは、エステル置換反応で新たに発生したグリセンを吸着しながら、粗カルボン酸アルコールエステルに残留する数Vol%のメタノール、数百〜数千PPMのアルカリ触媒を飽和状態まで吸着し、エステル置換反応に必要な環境を持続させる事を可能とする。 The glycerin impregnated in the porous body adsorbs the glycene newly generated by the ester substitution reaction, while saturating several vol% methanol remaining in the crude carboxylic alcohol ester and several hundred to several thousand PPM alkaline catalyst to saturation. Adsorption makes it possible to maintain the environment necessary for the ester substitution reaction.

ミクロンオーダーの空隙において吸着したグリセリン分子は余剰になると、多孔質体より油滴として分離し、沈降する。 When the glycerin molecules adsorbed in the micron-order voids become excessive, they are separated as oil droplets from the porous body and settled.

手法1の結果として高効率のカルボン酸アルコールエステル反応が得られると同時に、アルカリ触媒量を数十PPMにまで下げられる。 As a result of Method 1, a highly efficient carboxylic alcohol ester reaction can be obtained, and at the same time, the amount of alkali catalyst can be reduced to several tens of PPM.

手法2の効果;手法1で液体中に僅かに残るグリセリンが低温化で更に粘度が増す事により継続的に多孔質体内に含浸させたグリセリンに吸着され、カルボン酸アルコールエステル中から更なるアルカリ触媒を吸着除去する。 Effect of Method 2; The glycerin slightly remaining in the liquid in Method 1 is further adsorbed by the glycerin impregnated in the porous body as the viscosity further increases at low temperature, and further alkali catalyst from the carboxylic alcohol ester Is removed by adsorption.

これにより、カルボン酸アルコールエステル中に残存するグリセリン量・アルカリ触媒量は、0〜数PPMに下げられる。 Thereby, the amount of glycerol remaining in the carboxylic acid alcohol ester and the amount of alkali catalyst are reduced to 0 to several PPM.

グリセリンがアルカリ触媒を飽和状態まで吸着した時、アルカリ触媒成分を含有する液を漏洩することになるが、後設の水素置換型のイオン交換樹脂がアルカリ触媒を吸着して水を吐き出す。 When glycerin adsorbs the alkali catalyst to a saturated state, the liquid containing the alkali catalyst component leaks, but the subsequent hydrogen-substituted ion exchange resin adsorbs the alkali catalyst and discharges water.

水の発生を目視等により確認し、予備のフィルターMF2に切り替えられ、継続的にアルカリ触媒の除去が可能となる。 The generation of water is confirmed by visual observation or the like, and is switched to the spare filter MF2, so that the alkali catalyst can be removed continuously.

図1において手法1を説明すると、反応後の反応槽、又は反応後の粗カルボン酸アルコールエステルの保管容器T1から、ポンプを介してプレフィルターPF、メインフィルターMF1に粗カルボン酸アルコールエステルを通液させ、容器T2に保管する。 Method 1 will be explained with reference to FIG. 1. From the reaction tank after the reaction or the storage container T1 of the crude carboxylic alcohol ester after the reaction, the crude carboxylic alcohol ester is passed through the prefilter PF and the main filter MF1 through the pump. And store in container T2.

粗カルボン酸アルコールエステルを通液前にKOH等のアルカリ触媒をアルコールに溶かし込み、これにグリセリンを混ぜ込ませた液体を、フィルターMF1に含浸させておく。 Prior to passing the crude carboxylic acid alcohol ester, an alkali catalyst such as KOH is dissolved in alcohol, and a liquid in which glycerin is mixed is impregnated in the filter MF1.

フィルター内部の小さなセルには、グリセリンと共に、アルコールとアルカリ触媒が存在する。 In a small cell inside the filter, alcohol and an alkali catalyst are present together with glycerin.

ここに、粗カルボン酸アルコールエステルに含まれる未反応油脂(トリカルボン酸グリセリド)、モノ・ジカルボン酸グリセリドを誘導し反応せしめる。 Here, unreacted fats and oils (tricarboxylic acid glycerides) and mono-dicarboxylic acid glycerides contained in the crude carboxylic acid alcohol ester are induced and reacted.

容器T1に貯めた粗カルボン酸アルコールエステルにエステル置換反応に必要な温度を温度計TIを監視しながら加熱装置HTで与える。 The temperature required for the ester substitution reaction is given to the crude carboxylic alcohol ester stored in the container T1 by the heating device HT while monitoring the thermometer TI.

反応に必要な熱エネルギーは、反応槽における反応直後の液体を保温して置く事で得られる。 The heat energy required for the reaction can be obtained by keeping the liquid immediately after the reaction in the reaction tank warm.

図1のユニットの液温が必要温度に達するまでの間は、フィルターMF1を通った液は容器T1に戻される。 Until the liquid temperature of the unit in FIG. 1 reaches the required temperature, the liquid that has passed through the filter MF1 is returned to the container T1.

粗カルボン酸アルコールエステルが反応槽におけるエステル置換反応後の余熱として必要熱エネルギーを持っていれば、加熱の必要は無い。 If the crude carboxylic alcohol ester has the necessary heat energy as the residual heat after the ester substitution reaction in the reaction vessel, there is no need for heating.

ポンプPで流量計FIを監視しながらフィルターMF1に対して一定流量の粗カルボン酸アルコールエステルを送液する。 While monitoring the flow meter FI with the pump P, the crude carboxylic alcohol ester having a constant flow rate is sent to the filter MF1.

フィルター面積(セル数)と流量調整は比例関係にあり、流量調整と温度は粘度の関係から反比例に似た関係を示す。 The filter area (number of cells) and the flow rate adjustment are in a proportional relationship, and the flow rate adjustment and temperature show a relationship similar to an inverse proportion from the relationship of viscosity.

ポンプPで送液された粗カルボン酸アルコールエステルは、狭雑物をプレフィルターPFで除去し、フィルターMF1が目詰まりを起こすことを防止する。 The crude carboxylic alcohol ester fed by the pump P removes the clogs with the pre-filter PF and prevents the filter MF1 from being clogged.

プレフィルターPFの目詰まりは圧力計PIで監視する。 The clogging of the prefilter PF is monitored with the pressure gauge PI.

温度計TIにおいて必要温度に達したら、フィルターMF1を通った液は、容器T2へ送られる。 When the required temperature is reached in the thermometer TI, the liquid that has passed through the filter MF1 is sent to the container T2.

図2において、手法2を説明すると手法1を終えた粗カルボン酸アルコールエステルから、グリセリンとアルカリ触媒を除去する装置 In FIG. 2, Method 2 will be explained. An apparatus for removing glycerin and an alkali catalyst from the crude carboxylic alcohol ester after Method 1 is completed.

予め、フィルターMF2にはグリセリンを含浸させて置く。 The filter MF2 is impregnated with glycerin in advance.

先ず始めに図2において、僅かに沈降したグリセリンを容器T2から除去する。 First, in FIG. 2, the slightly settled glycerin is removed from the container T2.

温度計TIで常温以下の温度になるよう、熱交換器(又は冷却器)HTで、手法1を終えた粗カルボン酸アルコールエステルを冷却する。 The crude carboxylic alcohol ester after finishing the method 1 is cooled with a heat exchanger (or a cooler) HT so that the temperature becomes equal to or lower than normal temperature with a thermometer TI.

ポンプPで流量計FIを監視しながら流量を調整し、フィルターMF2に容器T2の液を送液する。 The flow rate is adjusted while monitoring the flow meter FI with the pump P, and the liquid in the container T2 is sent to the filter MF2.

液温が常温以下に安定するまで、フィルターMF2を通った液は容器T2に戻される。 The liquid that has passed through the filter MF2 is returned to the container T2 until the liquid temperature is stabilized at room temperature or lower.

温度が常温以下に安定したら、容器T3に送液する。 When the temperature stabilizes below room temperature, the solution is sent to the container T3.

フィルターMF2のアルカリ触媒除去能力が無くなった際には水素系イオン交換樹脂が入った樹脂塔IMFの底部に水が溜まる。 When the ability of the filter MF2 to remove the alkali catalyst is lost, water accumulates at the bottom of the resin tower IMF containing the hydrogen ion exchange resin.

水が観察されたら、すぐさま、予備のフィルターMF2に回路を切り替える。 As soon as water is observed, switch the circuit to the spare filter MF2.

温度が常温以下に安定するまで、容器T2に液を戻し、温度が常温以下に安定したら再び容器T3へ送液する。 The liquid is returned to the container T2 until the temperature is stabilized at room temperature or lower, and when the temperature is stabilized at room temperature or lower, the liquid is fed again to the container T3.

反応を高率に維持するためには液温と送液速度は反比例する傾向を持ち、フィルター面積と送液速度は比例する傾向がある。 In order to maintain the reaction at a high rate, the liquid temperature and the liquid feeding speed tend to be inversely proportional, and the filter area and the liquid feeding speed tend to be proportional.

監視用に送液圧力、液温、送液流量を計測し、フィルターに詰まりや、機能低下が認められた際は、バイパス弁を切り替える。 Measure the pressure, temperature, and flow rate for monitoring, and switch the bypass valve when clogging or functional degradation is observed.

一次反応から(温)水洗浄に移行する脂肪酸メチルエステル(FAME)製造において、図1又は図2のユニットを後付できる。 In the production of fatty acid methyl ester (FAME) that moves from primary reaction to (warm) water washing, the unit of FIG. 1 or FIG. 2 can be retrofitted.

図1の熱交換器HTとフィルターMF1のユニットを複数連結し、トリグリセリド、モノ・ジグリセリドに対する反応適温をそれぞれに熱交換器HTで与え、通液する。 A plurality of units of the heat exchanger HT and the filter MF1 in FIG. 1 are connected, and the appropriate temperature for the reaction with respect to triglyceride and mono-diglyceride is given to each by the heat exchanger HT, and the liquid is passed.

又、図2において、グリセリン含浸フィルターMF2を複数連結しても良い。 In FIG. 2, a plurality of glycerin-impregnated filters MF2 may be connected.

脂肪酸メチルエステル(FAME)燃料製造 Fatty acid methyl ester (FAME) fuel production

カルボン酸アルコールエステル高反応率を促す装置の概念図Conceptual diagram of a device that promotes high reaction rate of carboxylic alcohol ester カルボン酸アルコールエステル中のグリセリン・アルカリ触媒除去装置の概念図Conceptual diagram of equipment for removing glycerol / alkali catalyst from carboxylic alcohol ester

符号の説明Explanation of symbols

T1;反応槽もしくは、反応直後の粗アルコールカルボン酸エステルの貯槽容器
HT;熱交換器又はヒーターなどの加温・冷却装置
P ;ポンプ
PI;圧力計
PF;プレフィルター
MF1;メインフィルター(グリセリン・アルカリ触媒・アルコール含浸、又はアルカリ触媒・アルコール含浸)
MF2;メインフィルター(グリセリン・アルコール含浸、又はグリセリン含浸)
IMF;イオン交換樹脂塔(水素置換タイプの樹脂)
TI;温度計
FI;流量計
T2;貯槽容器
T3;貯槽容器
T1: Reaction tank or storage tank for crude alcohol carboxylic acid ester immediately after reaction
HT: Heating / cooling device such as heat exchanger or heater
P: Pump
PI: Pressure gauge
PF; Pre-filter
MF1: Main filter (glycerin / alkaline catalyst / alcohol impregnation or alkali catalyst / alcohol impregnation)
MF2: Main filter (glycerin / alcohol impregnation or glycerin impregnation)
IMF: ion exchange resin tower (hydrogen-substituted resin)
TI: Thermometer
FI; flow meter
T2; storage container
T3; Storage container

Claims (4)

グリセリンに反応に必要なアルコール・アルカリ触媒を保持させ多孔質体に含浸させて、エステル置換一次反応を終えた粗カルボン酸アルコールエステルに、反応に必要な熱エネルギー持たせ、上記多孔質体に通液する事を特徴とした、高率にエステル置換反応を収束させる製造方法。 The crude carboxylic alcohol ester, which has been subjected to the primary reaction of ester substitution, is impregnated in the porous body by holding the alcohol / alkaline catalyst necessary for the reaction in glycerin, and the thermal energy necessary for the reaction is given to the porous body. A production method that converges an ester substitution reaction at a high rate, characterized by being liquidated. グリセリンに反応に必要なアルコール・アルカリ触媒を保持させ多孔質体に含浸させて、エステル置換一次反応を終えた粗カルボン酸アルコールエステルに、反応に必要な熱エネルギー持たせ、上記多孔質体に通液する事を特徴とした、高率にエステル置換反応を収束させる装置。 The crude carboxylic alcohol ester, which has been subjected to the primary reaction of ester substitution, is impregnated in the porous body by holding the alcohol / alkaline catalyst necessary for the reaction in glycerin, and the thermal energy necessary for the reaction is given to the porous body. A device that converges the ester substitution reaction at a high rate, characterized by being liquid. グリセリンを多孔質体に含浸させて請求項1で処理した粗カルボン酸アルコールエステル又はエステル置換一次反応を終えた粗カルボン酸アルコールエステルを上記多孔質体に通液する事を特徴としたアルカリ触媒吸着・除去方法。 Adsorption of alkali catalyst characterized in that the crude carboxylic alcohol ester treated in claim 1 by impregnating glycerin into the porous body or the crude carboxylic alcohol ester after the ester substitution primary reaction is passed through the porous body. -Removal method. グリセリンを多孔質体に含浸させて請求項1で処理した粗カルボン酸アルコールエステル又はエステル置換一次反応を終えた粗カルボン酸アルコールエステルを上記多孔質体に通液する事を特徴としたアルカリ触媒吸着・除去装置。
Adsorption of alkali catalyst characterized in that the crude carboxylic alcohol ester treated in claim 1 by impregnating glycerin into the porous body or the crude carboxylic alcohol ester after the ester substitution primary reaction is passed through the porous body. -Removal device.
JP2008114965A 2008-04-25 2008-04-25 High-purity carboxylic alcohol ester purification method and apparatus Expired - Fee Related JP5376110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114965A JP5376110B2 (en) 2008-04-25 2008-04-25 High-purity carboxylic alcohol ester purification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114965A JP5376110B2 (en) 2008-04-25 2008-04-25 High-purity carboxylic alcohol ester purification method and apparatus

Publications (2)

Publication Number Publication Date
JP2009263277A JP2009263277A (en) 2009-11-12
JP5376110B2 true JP5376110B2 (en) 2013-12-25

Family

ID=41389601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114965A Expired - Fee Related JP5376110B2 (en) 2008-04-25 2008-04-25 High-purity carboxylic alcohol ester purification method and apparatus

Country Status (1)

Country Link
JP (1) JP5376110B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3325066A1 (en) * 1983-07-12 1985-01-24 Metallgesellschaft Ag, 6000 Frankfurt Continuous alcoholysis process
JP3227006B2 (en) * 1993-02-04 2001-11-12 花王株式会社 Method for producing fatty acid ester
JP5124764B2 (en) * 2006-07-21 2013-01-23 国立大学法人 鹿児島大学 Method for producing biodiesel fuel

Also Published As

Publication number Publication date
JP2009263277A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
Stojković et al. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification
US10967354B1 (en) Method of manufacturing bio-diesel and reactor
Gomes et al. Separation of biodiesel and glycerol using ceramic membranes
Atadashi et al. Biodiesel separation and purification: a review
Park et al. Production and characterization of biodiesel from trap grease
Gomes et al. Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane
US20060293533A1 (en) Systems and methods for esterification and transesterification of fats and oils
KR101626733B1 (en) gas phase and liquid phase dual circulation type bio heavy fuel oil production system
CA2599499A1 (en) Apparatus and method for bio-fuel production
Malani et al. Mechanistic analysis of ultrasound-assisted biodiesel synthesis with Cu2O catalyst and mixed oil feedstock using continuous (packed bed) and batch (slurry) reactors
CN204999869U (en) Triethylene glycol dewatering device
Savaliya et al. Current trends in separation and purification of fatty acid methyl ester
ZA200408018B (en) Method and system for the esterification of fatty acids.
KR101670936B1 (en) Method for manufacturing bio fuel using animal and vegetable fats of high acid value
US20140171673A1 (en) Systems and methods of removing impurities from fatty acid methyl esters
JP5376110B2 (en) High-purity carboxylic alcohol ester purification method and apparatus
Nadeem et al. Conventional and advanced purification techniques for crude biodiesel–a critical review
Reis et al. Biodiesel production and purification using membrane technology
Pal et al. Glycerol purification using membrane technology
JP2011026394A (en) Process and apparatus for producing biodiesel fuel
TWI387646B (en) Reverse flow esterification reactor for producing biomass diesel and its
JP2009131749A (en) Dehydration apparatus
KR101811947B1 (en) bio heavy fuel oil production system with water removal trap kit
KR101769710B1 (en) bio heavy fuel oil production system with temperature controller using dry air
Mohammadi et al. Quality control in biodiesel production plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5376110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees