JP5375044B2 - Control valve type monoblock type lead acid battery manufacturing method - Google Patents

Control valve type monoblock type lead acid battery manufacturing method Download PDF

Info

Publication number
JP5375044B2
JP5375044B2 JP2008294865A JP2008294865A JP5375044B2 JP 5375044 B2 JP5375044 B2 JP 5375044B2 JP 2008294865 A JP2008294865 A JP 2008294865A JP 2008294865 A JP2008294865 A JP 2008294865A JP 5375044 B2 JP5375044 B2 JP 5375044B2
Authority
JP
Japan
Prior art keywords
gel electrolyte
control valve
lead
type
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008294865A
Other languages
Japanese (ja)
Other versions
JP2010123351A (en
Inventor
久喜 竹内
茂孝 北森
昌時 宮田
祐一朗 三代
伸長 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008294865A priority Critical patent/JP5375044B2/en
Publication of JP2010123351A publication Critical patent/JP2010123351A/en
Application granted granted Critical
Publication of JP5375044B2 publication Critical patent/JP5375044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、制御弁式モノブロック型鉛蓄電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a control valve type monoblock type lead-acid battery.

制御弁式モノブロック型鉛蓄電池は、複数の極板群が直列に接続された構造をしている。そして、通常12V又は24Vの高い電圧を得ることができるという特徴を有するために、自動車用バッテリをはじめとして、電気自動車や無停電電源装置などの用途においても幅広く採用されている。   The control valve type monoblock type lead-acid battery has a structure in which a plurality of electrode plate groups are connected in series. And since it has the characteristic that a high voltage of 12V or 24V can be normally obtained, it is widely used in applications such as electric vehicles and uninterruptible power supplies, including automobile batteries.

従来のモノブロック式の鉛蓄電池は、図3〜図5に示すようにして製造されていた。すなわち、ペースト式の正極板1及び負極板2を用い、セパレータ3を介して積層をした後に、それら電極板の耳部を溶接して、溶接用突起16を有する正極ストラップ9、負極ストラップ6等を形成した極板群12を作製する。そして、電槽13に極板群12を挿入した後に、隣接する溶接用突起16どうしを抵抗溶接によって直列接続をし、図示されていない中蓋や上蓋を付けて密封するものである。   Conventional monoblock lead-acid batteries have been manufactured as shown in FIGS. That is, using paste-type positive electrode plate 1 and negative electrode plate 2 and laminating through separator 3, the electrode plate is welded at the ears, and positive electrode strap 9 having negative electrode protrusion 16, negative electrode strap 6, etc. The electrode plate group 12 formed with is produced. Then, after inserting the electrode plate group 12 into the battery case 13, the adjacent welding projections 16 are connected in series by resistance welding, and are sealed with an unillustrated inner lid or upper lid.

なお、上記したように抵抗溶接による方式は、電槽隔壁4の上部に貫通孔10を設けておき、該貫通孔10を挟んで溶接用突起16を近接させて加圧し、抵抗溶接にて抵抗溶接部14(図5)を形成してセル間を接続する方法であるために、いわゆるオーバーブリッジ接続方式に比べて製造コストが安価であり、かつ製造タクトを短くできることや、鉛蓄電池の内部抵抗も小さくできるという利点がある。   As described above, in the resistance welding method, the through hole 10 is provided in the upper part of the battery case partition 4, and the welding projections 16 are pressed close to each other with the through hole 10 interposed therebetween, and resistance welding is performed by resistance welding. Since it is a method of connecting the cells by forming the welded portion 14 (FIG. 5), the manufacturing cost is lower than that of the so-called overbridge connection method, the manufacturing tact can be shortened, and the internal resistance of the lead storage battery There is an advantage that can be reduced.

しかしながら、上述した抵抗溶接方式を用いると、電槽隔壁4と溶接用突起16との隙間から希硫酸電解液が這い上がり、時間の経過とともに抵抗溶接部14の付近で腐食し、最終的には、この部分で切断される場合も認められている。なお、抵抗溶接部14の正極側では酸化により、負極側では硫酸鉛化による腐食が認められている。   However, when the resistance welding method described above is used, the dilute sulfuric acid electrolyte crawls up from the gap between the battery case partition 4 and the welding projection 16, and corrodes near the resistance weld 14 over time, and eventually It is also accepted when cut at this part. Corrosion due to oxidation is recognized on the positive electrode side of the resistance weld 14 and lead sulfate on the negative electrode side.

そこで、溶接用突起16にあらかじめ樹脂封口用の溝を掘っておき、該樹脂封口用の溝に耐酸性の樹脂を埋めてシールして、希硫酸電解液の這い上がりを防止する方式の検討がされている(例えば、特許文献1参照。)。   Therefore, a method for preventing the scooping up of the dilute sulfuric acid electrolytic solution by digging a resin sealing groove in the welding projection 16 in advance and filling the resin sealing groove with acid-resistant resin is sealed. (For example, refer to Patent Document 1).

また、負極ストラップ6の部分は、硫酸鉛化による腐食を生じることが知られている。そこで、負極ストラップ6の部分を希硫酸にシリカ微粉末を添加してゲル化したゲル電解液で被覆する検討がされている(例えば、特許文献2参照。)。   Further, it is known that the negative electrode strap 6 portion is corroded by lead sulfate. Therefore, studies have been made to cover the negative electrode strap 6 with a gel electrolyte obtained by adding silica fine powder to dilute sulfuric acid to form a gel (see, for example, Patent Document 2).

特開2001−266833号公報JP 2001-266833 A 特開2001−273882号公報JP 2001-273882 A

しかしながら、上述した特許文献1に記載されているような方法では、溶接条件等によって溶接用突起16と電槽隔壁4と隙間にバラツキが生じる。その結果、硬化する前の一部の耐酸性樹脂が、溶接用突起16の樹脂封口用の溝から染み出して、下方の極板群12に付着するという問題点が認められている。一方、使用する耐酸性樹脂の粘度を高くすると、流れにくくなるために、溶接用突起16の樹脂封口用の溝に充填しにくくなるという問題点も認められている。   However, in the method described in Patent Document 1 described above, the gap between the welding projection 16 and the battery case partition wall 4 varies depending on the welding conditions and the like. As a result, there has been recognized a problem that a part of the acid-resistant resin before curing oozes out from the resin sealing groove of the welding projection 16 and adheres to the lower electrode plate group 12. On the other hand, when the viscosity of the acid-resistant resin to be used is increased, it is difficult to flow, so that it is difficult to fill the resin sealing groove of the welding projection 16.

また、上述した特許文献2に記載されているような方法では、正極ストラップ9の腐食を防止できないという問題点や、時間の経過とともに、一旦はゲル化したゲル電解液が流動化して下方に流れ出し、その効果が失われるという問題点が認められている。加えて、希硫酸にシリカ微粉末を添加してゲル化したゲル電解液は、チキソ性が高いために、ゲル電解液の製造が困難であるという問題点や、ゲル電解液の鉛蓄電池21への充填が難しいという製造上の問題点が認められている。   Further, in the method described in Patent Document 2 described above, the problem that the positive electrode strap 9 cannot be prevented from corroding, and the gel electrolyte that once gelled fluidized and flowed downward with the passage of time. The problem that the effect is lost is recognized. In addition, the gel electrolyte obtained by adding silica fine powder to dilute sulfuric acid has high thixotropy, so that it is difficult to produce the gel electrolyte, or the lead electrolyte battery 21 of the gel electrolyte The manufacturing problem that it is difficult to fill is recognized.

本発明の目的は、前記した課題を解決するものであり、製造が容易であるとともに、電槽隔壁4と溶接用突起16との隙間から希硫酸電解液が這い上がりを防止することができる制御弁式モノブロック型鉛蓄電池の製造方法を提供することである。   The object of the present invention is to solve the above-mentioned problems, and is easy to manufacture and can control the dilute sulfuric acid electrolyte from creeping up from the gap between the battery case partition wall 4 and the welding projection 16 It is providing the manufacturing method of a valve-type monoblock type lead acid battery.

上記した課題を解決するために、本発明では、制御弁式モノブロック型鉛蓄電池に電解液を注液して電槽化成をした後に、ゲル電解液を極板群の上部に充填して製造することを特徴とするものである。   In order to solve the above-described problems, in the present invention, the electrolytic solution is injected into a control valve type monoblock lead-acid battery to form a battery case, and then the gel electrolyte is filled in the upper part of the electrode plate group. It is characterized by doing.

すなわち、請求項1の発明は、電槽に極板群を挿入し、該極板群の溶接用突起を抵抗溶接し、安全弁筒から希硫酸電解液を注液した後、電槽化成をし、ゲル電解液を充填して製造する制御弁式モノブロック型鉛蓄電池の製造方法において、
前記ゲル電解液は、希硫酸にシリカ微粉末を添加し、プラネタリ式攪拌機を用いて攪拌して製造し、秤量後、ポンプを用いて、前記安全弁筒から前記極板群の上部に充填し、前記安全弁筒の開口上縁には切欠き部を設けてあることを特徴とするものである。
That is, the invention of claim 1 inserts the electrode plate group into the battery case, resistance welds the welding projections of the electrode plate group, injects the dilute sulfuric acid electrolyte from the safety valve tube, and then forms the battery case. In the manufacturing method of the control valve type monoblock type lead storage battery manufactured by filling the gel electrolyte solution,
The gel electrolyte is prepared by adding silica fine powder to dilute sulfuric acid, stirring using a planetary stirrer, and after weighing, filling the upper part of the electrode plate group from the safety valve cylinder using a pump , the opening upper edge of the safety valve cylinder is characterized in Oh isosamples provided notches.

請求項の発明は、請求項1に記載の発明において、前記ポンプは、ローラ式ポンプであることを特徴とするものである。 According to a second aspect of the present invention, in the first aspect of the present invention, the pump is a roller type pump.

本発明を用いると、希硫酸電解液の這い上がりを防止することができるために、長寿命で信頼性の高い制御弁式モノブロック型鉛蓄電池を提供することができる。   By using the present invention, it is possible to prevent the dilute sulfuric acid electrolyte from creeping up, and thus it is possible to provide a control valve type monoblock lead-acid battery having a long life and high reliability.

以下において、本発明の実施をするための最良の形態について、図1〜図5を用いて詳細に説明する。
1.制御弁式モノブロック型鉛蓄電池の製造及び電槽化成
まず図3に示すように、最初にペースト式の正極板1と負極板2をセパレータ3を介して積層をした後に、それぞれの耳部をバーナ溶接して正極ストラップ9、負極ストラップ6、溶接用突起16等を有する極板群12を製造する。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS.
1. Production of control valve type monoblock type lead-acid battery and formation of battery case First, as shown in FIG. 3, after pasting the paste type positive electrode plate 1 and the negative electrode plate 2 through the separator 3, The electrode plate group 12 having the positive electrode strap 9, the negative electrode strap 6, the welding protrusion 16, and the like is manufactured by burner welding.

ポリフェニルエチレン樹脂を成形して5枚の電槽隔壁4を有する電槽13を製造し、電槽隔壁4の上部にはあらかじめパンチングによって貫通孔10をあけておく(図3)。次に、上述した極板群12を電槽13に挿入し、電槽隔壁4を介して隣接する極板群12のストラップに形成した溶接用突起16の抵抗溶接面17を対向させる(図4)。   A polyphenylethylene resin is molded to produce a battery case 13 having five battery case partitions 4, and a through hole 10 is previously punched in the upper part of the battery case partition 4 (FIG. 3). Next, the electrode plate group 12 is inserted into the battery case 13, and the resistance welding surface 17 of the welding projection 16 formed on the strap of the electrode plate group 12 adjacent to the battery case partition 4 is made to face (FIG. 4). ).

そして、対向する抵抗溶接面17どうしを加圧し、接触させた状態で、この部分に大電流を流して抵抗加熱して溶接し、抵抗溶接部14を形成して極板群12を電気的に直列に接続する(図5)。なお、正極ストラップ9、負極ストラップ6、溶接用突起16は、それぞれ鉛合金製である。   Then, in a state in which the resistance welding surfaces 17 facing each other are pressurized and brought into contact with each other, a large current is passed through this portion to perform resistance heating and welding to form a resistance welding portion 14 to electrically connect the electrode plate group 12 Connect in series (FIG. 5). The positive strap 9, the negative strap 6, and the welding projection 16 are each made of a lead alloy.

その後、電槽13の上部に中蓋32を接着して固定し、安全弁筒17から希硫酸電解液を注液し、従来からの手法で充電をして電槽化成をする。
2.ゲル電解液の製造及び制御弁式モノブロック型鉛蓄電池への充填
ゲル電解液20の製造及び鉛蓄電池21への充填方法について、図1及び図2を用いて説明する。本発明に係わる制御弁式モノブロック型鉛蓄電池の製造方法では、図1に示すように、ゲル電解液を攪拌して製造するための(a)ゲル電解液製造部、製造したゲル電解液を秤量するための(b)秤量部、秤量したゲル電解液をモノブロック式の鉛蓄電池に充填するための(c)充填部の3つの製造工程で構成されている。
(a)ゲル電解液製造部
ステンレス製の容器35に、あらかじめ比重が1.30の希硫酸22を入れておき、プラネタリ式攪拌機27で攪拌をしながら、少しずつシリカ微粉末25(商品名:アエロジル、日本アエロジル社製)を加えていく。本実施例では、希硫酸22の質量に対して、シリカ微粉末25を6質量%加えてゲル電解液20を製造した(図1(a))。
Thereafter, the inner lid 32 is adhered and fixed to the upper part of the battery case 13, and a dilute sulfuric acid electrolyte solution is injected from the safety valve cylinder 17, and charged by a conventional method to form a battery case.
2. Production of Gel Electrolyte and Filling of Control Valve Type Monoblock Lead Acid Battery A method of producing the gel electrolyte 20 and filling the lead acid battery 21 will be described with reference to FIGS. In the method for manufacturing a control valve type monoblock type lead-acid battery according to the present invention, as shown in FIG. 1, (a) a gel electrolyte manufacturing section for stirring and manufacturing a gel electrolyte, and the manufactured gel electrolyte It consists of three manufacturing steps: (b) a weighing unit for weighing, and (c) a filling unit for filling the weighed gel electrolyte into a monoblock lead-acid battery.
(A) Gel Electrolyte Production Department In a stainless steel container 35, dilute sulfuric acid 22 having a specific gravity of 1.30 is put in advance, and while stirring with a planetary stirrer 27, silica fine powder 25 (trade name: Aerosil, made by Nippon Aerosil Co., Ltd.). In this example, 6 mass% of silica fine powder 25 was added to the mass of dilute sulfuric acid 22 to produce gel electrolyte 20 (FIG. 1A).

ここで、プラネタリ式攪拌機27は、図示しているように攪拌羽根28が自転と公転とをしながらゲル電解液20を攪拌することができるために、攪拌されない領域(いわゆる、デッド・ゾーン。)をきわめて少なくすることができる。したがって、プロペラ式攪拌機(図なし。)に比べて攪拌力が高く、シリカ微粉末25の含有量(質量%)を多くすることができ、その結果、粘度の高いゲル電解液20でも、安定した状態で製造することができる(図1(a))。
(b)秤量部
ゲル電解液製造装置34で製造したゲル電解液20は、ポンプ29aで秤量部に送られて充填する鉛蓄電池21の公称容量や使用の目的等に応じて秤量をする(図1(b))。このように鉛蓄電池21ごとに、充填するゲル電解液20の質量を正確に秤量しているために、信頼性が高く、バラツキの少ない鉛蓄電池21を製造することができる。
Here, in the planetary stirrer 27, the gel electrolyte solution 20 can be stirred while the stirring blade 28 rotates and revolves as shown in the drawing, so that the region where stirring is not performed (so-called dead zone). Can be extremely reduced. Therefore, the stirring force is higher than that of the propeller type stirrer (not shown), and the content (mass%) of the silica fine powder 25 can be increased. As a result, even the gel electrolyte solution 20 having a high viscosity is stable. It can be manufactured in a state (FIG. 1A).
(B) Weighing unit The gel electrolyte 20 produced by the gel electrolyte production device 34 is weighed according to the nominal capacity of the lead storage battery 21 to be filled by being sent to the weighing unit by the pump 29a, the purpose of use, etc. 1 (b)). Thus, since the mass of the gel electrolyte solution 20 to be filled is accurately weighed for each lead storage battery 21, the lead storage battery 21 with high reliability and little variation can be manufactured.

なお、ゲル電解液20を搬送するポンプ29aとして、回転するローラによってチューブ31を圧縮する方式のローラ式ポンプ(7518−10型、コール・パーマー社製)を用いた。なお、ローラ式ポンプを用いると、インペラ方式のポンプに比べて、粘度の高いゲル電解液20でも安定した量の搬送が短時間で可能になることや、搬送中にチューブ31内でゲル電解液20が固化しにくく、その内部に詰まりにくいという特徴がある。
(c)充填部
秤量されたゲル電解液20は、上述したローラ式ポンプ(7518−10型、コール・パーマー社製)を用いて、鉛蓄電池21の安全弁筒17の部分から、極板群12の上部に充填するようにした(図1(c)、図2)。ここで、安全弁筒17には、あらかじめ中央に穴を有する冶具36を被せておき、その穴の部分にチューブ31を差し込むようにしてゲル電解液20を充填するようにした。
As the pump 29a for transporting the gel electrolyte solution 20, a roller type pump (7518-10 type, manufactured by Cole Palmer) that compresses the tube 31 with a rotating roller was used. If a roller pump is used, a stable amount of gel electrolyte 20 can be transported in a short time even with a gel electrolyte 20 having a higher viscosity than an impeller pump, and the gel electrolyte in the tube 31 during transport can be used. There is a feature that 20 is hard to solidify and hard to clog.
(C) Filling section The weighed gel electrolyte 20 is fed from the portion of the safety valve cylinder 17 of the lead storage battery 21 to the electrode plate group 12 using the roller pump (7518-10 type, manufactured by Cole Palmer). It was made to fill in the upper part (FIG. 1 (c), FIG. 2). Here, the safety valve cylinder 17 was covered with a jig 36 having a hole in the center in advance, and the tube 31 was inserted into the hole so that the gel electrolyte solution 20 was filled.

ここで、冶具36を用いることによって、チューブ31が安全弁筒17から簡単に外れるようなこともない。なお、安全弁筒17の上部には、切り欠き部19を設けることにより(図2)、ゲル電解液20の充填に伴って、鉛蓄電池21の内部の空気37との置換が容易に進むようにした。   Here, by using the jig 36, the tube 31 is not easily detached from the safety valve cylinder 17. In addition, by providing a notch 19 in the upper part of the safety valve cylinder 17 (FIG. 2), the replacement with the air 37 inside the lead storage battery 21 easily proceeds with the filling of the gel electrolyte 20. did.

ゲル電解液20を充填した後に、安全弁筒17から冶具36及びチューブ31を抜き(図1)、安全弁筒17に上方からキャップ形の安全弁18を被せ、中蓋32の上部に上蓋33を挿入して本発明に係わる制御弁式モノブロック型鉛蓄電池が完成する(図2)。   After the gel electrolyte 20 is filled, the jig 36 and the tube 31 are removed from the safety valve cylinder 17 (FIG. 1), the safety valve cylinder 17 is covered with a cap-shaped safety valve 18 from above, and an upper cover 33 is inserted above the inner cover 32. Thus, the control valve type monoblock type lead-acid battery according to the present invention is completed (FIG. 2).

本発明に係わる制御弁式モノブロック型鉛蓄電池の製造方法を用いると、粘度の高いゲル電解液20を製造することができるとともに、短時間で安定して鉛蓄電池21の内部に一定の質量を充填することができる。したがって、作業性に優れた制御弁式モノブロック型鉛蓄電池の製造方法を提供することができる。   By using the control valve type monoblock type lead acid battery manufacturing method according to the present invention, it is possible to produce a gel electrolyte solution 20 having a high viscosity, and to stably provide a constant mass inside the lead acid battery 21 in a short time. Can be filled. Therefore, the manufacturing method of the control valve type monoblock type lead acid battery excellent in workability | operativity can be provided.

加えて、粘度の高いゲル電解液20を鉛蓄電池21の内部に充填しているために、充填後は、しっかりと極板群12の上部に固定される。目視による観察ではあるが、電槽隔壁4と溶接用突起16との隙間からの希硫酸電解液の這い上がりを防止することができた。したがって、抵抗溶接部14の付近の腐食を防止することができるために、長寿命で信頼性の高い制御弁式モノブロック型鉛蓄電池を提供することができる。また、大電流で放電されて、発熱するような場合でも、ゲル電解液20が充填されているために熱容量を大きくすることができ、電池温度の上昇を抑えることができる。   In addition, since the gel electrolyte 20 having a high viscosity is filled in the lead storage battery 21, it is firmly fixed to the upper part of the electrode plate group 12 after filling. Although it was a visual observation, it was possible to prevent the dilute sulfuric acid electrolyte from creeping up from the gap between the battery case partition wall 4 and the projection 16 for welding. Therefore, since corrosion near the resistance welded portion 14 can be prevented, a long-life and highly reliable control valve type monoblock lead-acid battery can be provided. Further, even when the battery is discharged with a large current and generates heat, the gel electrolyte solution 20 is filled, so that the heat capacity can be increased and an increase in battery temperature can be suppressed.

本発明は、制御弁式モノブロック型鉛蓄電池の製造方法に用いることができる。   The present invention can be used in a method for manufacturing a control valve type monoblock type lead-acid battery.

本発明品に係わる制御弁式モノブロック型鉛蓄電池の製造方法の概略図である。It is the schematic of the manufacturing method of the control valve type monoblock type lead acid battery concerning this invention goods. 本発明品に係わる制御弁式モノブロック型鉛蓄電池の断面概略図である。It is a section schematic diagram of a control valve type monoblock type lead acid battery concerning the present invention article. 極板群の挿入工程の概略図である。It is the schematic of the insertion process of an electrode group. 抵抗溶接方式を用いる制御弁式モノブロック型鉛蓄電池の要部概略図である。It is a principal part schematic of the control valve type monoblock type lead acid battery using a resistance welding system. 抵抗溶接部の断面概略図である。It is a section schematic diagram of a resistance welding part.

符号の説明Explanation of symbols

1:正極板、2:負極板、3:セパレータ、4:電槽隔壁、5:負極耳部、
6:負極ストラップ、8:正極耳部、9:正極ストラップ、10:貫通孔、
11:負極端子用極柱、12:極板群、13:電槽、14:抵抗溶接部、
16:溶接用突起、17:安全弁筒、18:安全弁、19:切り欠き部、
20:ゲル電解液、21:鉛蓄電池、22:希硫酸、23:希硫酸タンク、24:バルブ、
25:シリカ微粉末、26a,b:モータ、27:プラネタリ式攪拌機、28:攪拌羽根、
29a,b:ポンプ、30:質量計、31:チューブ、32:中蓋、33:上蓋、
34:ゲル電解液製造装置、35:容器、36:冶具、37:空気
1: positive electrode plate, 2: negative electrode plate, 3: separator, 4: battery case partition, 5: negative electrode ear,
6: negative electrode strap, 8: positive electrode ear, 9: positive electrode strap, 10: through hole,
11: Electrode column for negative electrode terminal, 12: Electrode plate group, 13: Battery case, 14: Resistance welding part,
16: welding projection, 17: safety valve cylinder, 18: safety valve, 19: notch,
20: gel electrolyte, 21: lead acid battery, 22: dilute sulfuric acid, 23: dilute sulfuric acid tank, 24: valve,
25: Silica fine powder, 26a, b: motor, 27: planetary stirrer, 28: stirring blade,
29a, b: pump, 30: mass meter, 31: tube, 32: inner lid, 33: upper lid,
34: Gel electrolyte production apparatus, 35: Container, 36: Jig, 37: Air

Claims (2)

電槽に極板群を挿入し、該極板群の溶接用突起を抵抗溶接し、安全弁筒から希硫酸電解液を注液し、電槽化成をした後、ゲル電解液を充填して製造する制御弁式モノブロック型鉛蓄電池の製造方法において、
前記ゲル電解液は、希硫酸にシリカ微粉末を添加し、プラネタリ式攪拌機を用いて攪拌して製造し、秤量後、ポンプを用いて、前記安全弁筒から前記極板群の上部に充填し、前記安全弁筒の開口上縁には切欠き部を設けてあることを特徴とする制御弁式モノブロック型鉛蓄電池の製造方法。
Manufacture by inserting electrode plates into the battery case, resistance welding the welding projections of the electrode plate group, injecting dilute sulfuric acid electrolyte from the safety valve barrel, forming the battery case, and then filling the gel electrolyte In the manufacturing method of the control valve type monoblock type lead-acid battery,
The gel electrolyte is prepared by adding silica fine powder to dilute sulfuric acid, stirring using a planetary stirrer, and after weighing, filling the upper part of the electrode plate group from the safety valve cylinder using a pump , method for producing a valve regulated monobloc type lead-acid battery in the opening upper edge of the safety valve cylinder, characterized in Oh isosamples provided notches.
前記ポンプは、ローラ式ポンプであることを特徴とする請求項1記載の制御弁式モノブ
ロック型鉛蓄電池の製造方法。
2. The method of manufacturing a control valve type monoblock lead-acid battery according to claim 1, wherein the pump is a roller type pump.
JP2008294865A 2008-11-18 2008-11-18 Control valve type monoblock type lead acid battery manufacturing method Active JP5375044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294865A JP5375044B2 (en) 2008-11-18 2008-11-18 Control valve type monoblock type lead acid battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294865A JP5375044B2 (en) 2008-11-18 2008-11-18 Control valve type monoblock type lead acid battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2010123351A JP2010123351A (en) 2010-06-03
JP5375044B2 true JP5375044B2 (en) 2013-12-25

Family

ID=42324522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294865A Active JP5375044B2 (en) 2008-11-18 2008-11-18 Control valve type monoblock type lead acid battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5375044B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548485B2 (en) 2011-05-02 2017-01-17 Gs Yuasa International Ltd. Valve regulated lead-acid battery
RU2582657C1 (en) * 2015-03-17 2016-04-27 Открытое акционерное общество "Тюменский аккумуляторный завод" Method of filling sealed accumulator with gel-like sulphuric acid electrolyte

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3521200A1 (en) * 1985-06-13 1986-12-18 Otto 6470 Büdingen Jache LEAD ACCUMULATOR WITH A THIXOTROPIC GEL AS AN ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF
JPH0249352A (en) * 1988-08-11 1990-02-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH0644030Y2 (en) * 1989-08-08 1994-11-14 古河電池株式会社 Liquid injection device for battery case lid
JPH0426072A (en) * 1990-05-21 1992-01-29 Matsushita Electric Ind Co Ltd Manufacture of sealed-type lead battery
JPH04138665A (en) * 1990-09-28 1992-05-13 Matsushita Electric Ind Co Ltd Structure for injecting liquid for storage battery
JPH04328268A (en) * 1991-04-26 1992-11-17 Japan Storage Battery Co Ltd Sealed type lead-acid battery
JPH0586249A (en) * 1991-09-30 1993-04-06 Nippon Zeon Co Ltd Plastigel composition and molded body using the same
JPH0864228A (en) * 1994-08-25 1996-03-08 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and manufacture thereof
JPH09190820A (en) * 1996-01-05 1997-07-22 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP3743150B2 (en) * 1997-12-26 2006-02-08 味の素株式会社 Granular gel production apparatus and method
JP3059915U (en) * 1998-12-16 1999-07-13 サンスター技研株式会社 High viscosity liquid filling container
JP5000799B2 (en) * 1999-12-24 2012-08-15 古河電池株式会社 Lead acid battery
JP2001266833A (en) * 2000-03-15 2001-09-28 Yuasa Corp Cell connection structure for lead acid battery
JP3774104B2 (en) * 2000-03-28 2006-05-10 古河電池株式会社 Lead acid battery
JP3944892B2 (en) * 2000-06-28 2007-07-18 株式会社ジーエス・ユアサコーポレーション Control valve type multi-cell lead battery
JP3957965B2 (en) * 2000-10-30 2007-08-15 古河電池株式会社 Sealed lead acid battery
JP4244622B2 (en) * 2001-11-30 2009-03-25 Dic株式会社 Kneaded material for aqueous pigment dispersion and method for producing aqueous pigment dispersion and ink composition using the same
JP4403911B2 (en) * 2004-07-30 2010-01-27 新神戸電機株式会社 Control valve type lead storage battery manufacturing method

Also Published As

Publication number Publication date
JP2010123351A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
KR101205885B1 (en) Battery system for a vehicle with severable connections
KR101196376B1 (en) Construction of electrochemical storage cell
JP6177312B2 (en) Bushings and associated storage batteries forming terminals for lithium storage batteries
US20150287970A1 (en) Cell and assembled battery
CN106537651B (en) Secondary cell
JPH09120801A (en) Sealed alkaline storage battery
CN100420084C (en) Battery pack
KR102137697B1 (en) Battery Cell Comprising Protection Circuit Module Assembly Having Lead Plate
CN104781952A (en) Battery cell comprising housing cover plate with riveted filling opening
JP5375044B2 (en) Control valve type monoblock type lead acid battery manufacturing method
US20150236328A1 (en) Secondary battery
JP4304715B2 (en) How to install the battery pack
US3764393A (en) Storage battery and a method of producing the same
CN216872177U (en) Battery box upper cover, battery box, battery and consumer
JP2013033660A (en) Secondary battery
KR101236620B1 (en) Secondary Battery with Means for Supplying Electrolyte
JP2011100661A (en) Battery pack
JP2008140578A (en) Manufacturing method of mono block type lead acid storage battery
JP2012169089A (en) Manufacturing method of control valve type lead-acid storage battery
CN114830384A (en) Active material holding member, electrode, and lead-acid battery
US20240030524A1 (en) Battery
CN221427922U (en) Battery and electricity utilization device
US20230402689A1 (en) Battery cell and battery, apparatus, preparation method and preparation apparatus related to same
JPH06267529A (en) Monoblock storage battery
JP4403795B2 (en) Control valve type lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250