JP3743150B2 - Granular gel production apparatus and method - Google Patents

Granular gel production apparatus and method Download PDF

Info

Publication number
JP3743150B2
JP3743150B2 JP35934597A JP35934597A JP3743150B2 JP 3743150 B2 JP3743150 B2 JP 3743150B2 JP 35934597 A JP35934597 A JP 35934597A JP 35934597 A JP35934597 A JP 35934597A JP 3743150 B2 JP3743150 B2 JP 3743150B2
Authority
JP
Japan
Prior art keywords
water
oil
tank
gel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35934597A
Other languages
Japanese (ja)
Other versions
JPH11187830A (en
Inventor
憲輔 古山
加州男 竹村
敏文 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP35934597A priority Critical patent/JP3743150B2/en
Publication of JPH11187830A publication Critical patent/JPH11187830A/en
Application granted granted Critical
Publication of JP3743150B2 publication Critical patent/JP3743150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粒状ゲル体の製造装置及び方法に関し、詳しくは、ゼリー,寒天等のゲル体食品を、外観や食感に優れた粒状に効率よく成型することができる粒状ゲル体の製造装置及び方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
粒状のゲル体食品は、一般に、ゼラチン等のゲル体を加熱溶融して球状の型に流し込み、冷却固化した後、型から取出すことによって製造されている。この製造方法は、所望の大きさのものが均一に得られるという利点はあるものの、型の開閉,成型品の冷却,ゲル体食品の取出し等に手間や時間がかかり、製造コストが高くなっていた。特に、直径2〜12mm程度の小さな球状のゲル体食品を作る場合には労力がかかり、生産効率が悪かった。さらに、球状の型は高価であり、コストが高くなる要因となっていた。
【0003】
また、型を使用しないで粒状のゲル体食品を製造する方法として、例えば、特開昭48−103770号公報には、加熱した溶融原料ゲルを流出孔から所定温度の油中に滴下し、油中で冷却して球状ゲル化物とした後、静置水中に落下させて付着した油類を除去することにより球状ゲル食品を製造する方法が記載されている。この方法は、労力があまりかからず、球形のゲル体を均一に連続して生産することができるという利点はあるが、従来の方法・装置は、生産性が悪いという問題があった。
【0004】
すなわち、加熱溶融されたゲルを油中で球状化させるには、溶融状態で油中に落下したゲルが、油中を落下する間に球状化しながら固化することが必要となる。つまり、加熱溶融されたゲルが冷めない一定時間内に、一定量が断続的に滴下されて油中で球状化する必要がある。ところが、自然落下による滴下の場合、滴下量を多くするために流量を増加させると、ゲルが連続的に流下する状態となってしまい、円柱状の固形化物が形成されてしまうことがあった。また、滴下量を増やした断続的な滴下であっても、滴下速度が遅くなると、油中で球状化する前に固化してしまい、品質の低い異形のゲル体が形成されてしまうことがあった。このため、自然落下による滴下で品質の高い球形の粒を製造できる範囲は、直径が4mm程度か、それ以下のものに限られていた。
【0005】
また、ゲルを冷却するための油は、所定の温度範囲に冷却しておく必要があるとともに、球状の成形品を得るためには、対流等の乱れのない状態が好ましい。しかし、油を充填した槽の外周をジャケットで覆うのみの従来のものでは、油層全体に大きな対流が発生するため、形状の安定性が損なわれていた。さらに、成形したゲル体食品から油分を除去する水層は、成形したゲル体食品が水層内を自由落下することによって脱油されるので、深い静水層が必要となり、装置が大型化していた。
【0006】
一方、特開昭63−12253号公報には、ゼリー原液を硬化液(固化剤)中に流出させ、これを所定の時間間隔で切断することにより、所定の体積のゼリー粒を製造する方法が記載されている。この方法は、比較的小さい球体でも連続的に製造することができるが、固化剤が大量にゲル体食品に入り込むため、食感が本来のものとはかけ離れたものとなり、品質の低下を招くおそれがあった。特に、保存や流通のために氷結させた場合や急速凍結させた場合は、その食感の変化が著しくなる欠点があった。
【0007】
そこで本発明は、高品質の粒状ゲル体を低コストで量産することができ、その成形寸法の自由度も高い粒状ゲル体の製造装置及び方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の粒状ゲル体の製造装置は、所定温度の冷却油を充填した成型槽と、前記成型槽に溶融原料ゲルを搬送するためのチューブ式ローラーポンプを有する搬送経路と、前記搬送経路から前記冷却油中に溶融原料ゲルを滴下させるノズルとを備え、前記成型槽は、前記冷却油中に、冷却油を所定温度に維持するための複数枚の冷却プレートが浸漬配置されるとともに、前記ノズルは、隣接する冷却プレート間に溶融原料ゲルを滴下させる位置に設けられていることを特徴としている。
【0009】
さらに、本発明の粒状ゲル体の製造装置は、前記成型槽内の冷却油の下部に水が充填されていること、前記成型槽が断熱構造を有していることを特徴としている。加えて、前記成型槽の底部から水と共に前記冷却油中で固化した成形品を抜き出す回収経路と、前記回収経路に抜き出された成形品と水とを分離する固液分離部と、前記固液分離部で分離した成形品を回収する製品回収槽と、前記固液分離部で分離した水を回収する水回収槽と、前記水回収槽内の水を前記成型槽の水層部分に戻す水循環経路と、前記水回収槽の上部に比重差で浮上した油分を前記成型槽の油層部分上方に戻す油循環経路とを備えたことを特徴としている。
【0010】
また、本発明の粒状ゲル体の製造方法は、冷却油と水とを上下二層に充填した成型槽上部の油層中に、複数枚の冷却プレートを浸漬配置して前記冷却油を所定温度に維持するとともに、隣接する冷却プレート間に位置させたノズルから、チューブ式ローラーポンプにより搬送された溶融原料ゲルを間欠的に滴下し、前記油層中で球状に固化させて成型槽下部の水層に沈降させた後、前記成型槽底部から固化した成形品を水と共に抜き出して固液分離を行い、分離した成形品を製品として回収するとともに、分離した水を前記成型槽に戻して循環させることを特徴としている。
【0011】
【発明の実施の形態】
図1及び図2は、本発明の粒状ゲル体の製造装置の一形態例を示すもので、図1は概略系統図、図2は要部の断面側面図である。
【0012】
この粒状ゲル体の製造装置は、冷却油Aと水Wとを充填した成型槽1と、ゼリー,寒天等のゲル体に、必要に応じて甘味成分をはじめとする各種添加剤や果肉等の固形分を加えた原料を調製する原料調製槽2と、該原料槽2で調製した溶融原料ゲルを一次貯留する原料貯留槽3と、該原料貯留槽3内の溶融原料ゲルを前記成型槽1に搬送するためのチューブ式ローラーポンプ4を有する搬送経路5と、該搬送経路5により搬送された溶融原料ゲルを成型槽1の油層中に滴下するノズル6と、成型槽内の冷却油Aを所定温度に維持するための複数枚の冷却プレート7と、成型槽1の底部から水と共に成形品(製品)Bを抜き出すための回収経路8と、回収経路8に抜き出された成形品Bと水とを分離するための固液分離部9と、該固液分離部9で分離した成形品Bを回収する製品回収槽10と、固液分離部9で分離した水を回収する水回収槽11と、該水回収槽11内の水を前記成型槽1の水層部分に戻す水循環経路12と、水回収槽11の上部に比重差で浮上した油分を成型槽1の油層部分上方に戻す油循環経路13と、前記冷却プレート7に冷媒を導入・導出するために冷媒経路14a,14bとを有している。
【0013】
以下、球状ゲル体を製造する方法に基づいて前記装置を詳しく説明する。まず、ゲル原料や所望の添加剤が原料調製槽2に投入され、所定温度に加熱されるとともに撹拌機15によって撹拌され、溶融原料ゲルが調製される。溶融原料ゲルは、ポンプ16によって経路17を通り、前記原料貯留槽3に一次貯留された後、前記チューブ式ローラーポンプ4によって吸引され、搬送経路5を通って前記ノズル6に導かれる。前記原料調製槽2からノズル6に至る間の原料貯留槽3及びチューブ式ローラーポンプ4を含む経路は、溶融原料ゲルの温度やその固化温度、経路における温度低下等を考慮し、全体を所定温度の室内に設置したり、適宜な加温手段や保温手段、例えば、原料調製槽2や原料貯留槽3の外周に保温ジャケット2a,3aを設けたりして、経路内で溶融原料ゲルが固化しないようにする。
【0014】
前記チューブ式ローラーポンプ4は、可撓性を有するチューブをロータリー素子の回転で蠕動運動させることによってチューブ内の流体を間欠的に搬送するポンプであって、このチューブ式ローラーポンプ4で溶融原料ゲルをノズル6に向けて搬送することにより、ノズル6から溶融原料ゲルを間欠的に滴下することができる。前記チューブには、弾力性を有するとともに耐熱性を有する素材のもの、例えばシリコンゴム製のチューブが用いられる。また、チューブ式ローラーポンプ4は、チューブの径やロータリー素子の回転数を適当に設定することにより、ノズル6からの滴下量や滴下間隔を任意に設定することが可能である。
【0015】
溶融原料ゲルを冷却油A内に滴下投入するノズル6は、製品粒状ゲル体、即ち成形品Bに求められる大きさや、原料の種類,組成及び温度、チューブ式ローラーポンプ4の吐出量及び吐出速度等の条件に応じて最適な径や肉厚のものが用いられる。なお、ノズル6は、搬送経路5の先端に別体のノズル部品を装着するようにしてもよく、搬送経路5の先端をそのままノズルとして用いるようにしてもよい。また、ノズル6は、冷却油Aの中に没していても、油面から離れていてもよいが、良好な球状ゲル体を得るためには、油面上から10〜50mm離して設置することが好ましい。
【0016】
ノズル6から滴下した溶融原料ゲルは、隣接する冷却プレート7,7間の冷却油中を比重差によって降下する間に、表面張力によって粒状となり、冷却されて固化し、冷却油中から水中に落下する。このノズル6は、図2に示すように、隣接する冷却プレート7,7間に複数個を並べて設けることができる。これらのノズル6に接続される搬送経路5は、チューブ式ローラーポンプ4の下流で各ノズル6に対応させて分岐させてもよいが、安定した状態で溶融原料ゲルを滴下させるためには、各ノズル6毎にそれぞれ搬送経路5を設けることが好ましい。
【0017】
図2に示すように、冷却油Aを所定温度に維持する冷却プレート7は、2枚の金属薄板間に冷媒流路7aを設けたものであって、各冷却プレート7は、所定間隔で平行に配置されている。前記冷媒流路7aには、導入側の冷媒経路14aから導出側の冷媒経路14bに向かって流れる冷媒が供給されており、この冷媒によって冷却プレート7の表面が所定温度に冷却されている。このように、冷却油Aを複数枚の冷却プレート7で所定温度に維持するように形成することにより、従来のように成型槽1の外周に設けた冷却ジャケットで冷却油Aを所定温度に維持するものに比べて、冷却油Aの全体を効率よく冷却できるとともに、油層全体の温度を均一にすることができる。さらに、ノズル6から冷却油Aの中に落下した溶融原料ゲルが、各冷却プレート7により区画された部分を降下するので、溶融原料ゲル同士が付着する確率も少なくなる。
【0018】
冷却油Aの温度は、溶融原料ゲルの種類や滴下温度等によって適当に設定することができるが、通常は、−2〜35℃、好ましくは0〜25℃の範囲に設定され、冷却プレート7に供給する冷媒の温度及び流量は、冷却油Aを設定温度に維持できるように設定すればよい。また、冷媒には、任意のものを使用することができるが、通常は、冷水を用いることができる。
【0019】
また、成型槽1の外周、少なくとも油層に相当する部分に、二重構造の断熱壁18を設けておくことが好ましい。この断熱壁18には、冷却プレート7と同様の冷媒を供給して油層の冷却効果を促進することもできるが、空気断熱,真空断熱あるいはウレタン発泡樹脂等を充填した断熱構造を採用することができる。このような断熱構造に形成することにより、成型槽1の壁面からの熱侵入を抑えることができるので、油層温度を均一に保ち易く、外周面に結露が発生することも防止できる。
【0020】
成型槽1の冷却油中で球状に固化したゲル体(成形品B)は、冷却油Aから成型槽下部の水Wの中に降下していく。成形品Bに付着している油分の一部は、水層中で成形品Bの表面から離れて水中に移行し、さらに、比重差で上部の油層に上昇する。成型槽1の底部に沈降した成形品Bは、水Wと共に回収経路8に抜き出され、ポンプ19によって固液分離部9に送られる。このように回収経路8を介して水Wと共に成形品Bを固液分離部9に送ることにより、回収経路中でも成形品表面の油分を除去できるので、成型槽1内の水層の長さ(深さ)を小さくすることができ、設備の小型化が図れる。
【0021】
固液分離部9は、成形品Bより小さな間隔のすだれ状あるいは細かい網目のフィルター9aを有しており、このフィルター9aで分離した成形品Bは、シュート9bを経て製品回収槽10のざる状容器10a内に回収される。また、フィルター9aを通過した水及び少量の油は、水回収槽11内に流下する。
【0022】
水回収槽11内の水Wは、水回収槽11と成型槽1とのヘッド差により、水循環経路12を通って成型槽1の下部に戻り、水回収槽11の上部に浮上した冷却油Aは、油循環経路13を通って成型槽1の上部に戻される。このように冷却油Aや水Wを循環使用することにより、冷却油や水が無駄に排出されることがなくなり、運転コストの低減が図れる。なお、油循環経路13の成型槽1側の接続部は、成型槽1内の冷却油が油循環経路13を通って水回収槽11に逆流しないように、成型槽1の油面より僅かに上方に位置させておく。
【0023】
製品回収槽10は、底部の配管20から水洗水を供給して槽上部からオーバーフローさせることにより、成形品Bの表面に残存する油分を必要に応じて水洗することができるように形成されている。ざる状容器10a内の成形品Bは、適宜取出されて次の工程に送られる。すなわち、そのままの状態で梱包したり、シロップ溶液に浸漬したり、凍結したりする工程を経て保存され、出荷される。
【0024】
このようにして粒状ゲル体を製造することにより、ゼリー,寒天等のゲル体食品を効率よく粒状に成型することができる。特に、チューブ式ローラーポンプ4を使用して溶融原料ゲルを脈動状態で搬送するようにしたので、自然落下方式に比べて滴下量を任意に設定することが可能となり、所望量の溶融原料ゲルをノズル6から冷却油A中に間欠的に滴下させることができる。これにより、チューブ式ローラーポンプ4の送液能力やノズル6の形状を適当に設定することにより、直径が0.5〜30mmの粒状ゲル体を効率よく製造することができる。また、従来よりも大粒のものを得ることができるので、溶融原料ゲルに果肉等の固形物を添加することにより、例えばイチゴ様の菓子を製造することも可能である。さらに、溶融原料ゲルに氷砂糖の粉末を添加し、氷砂糖がゲル中に溶解する前に成型することにより、歯応えのある菓子を製造することもできる。
【0025】
【実施例】
実施例1
増粘多糖類からなるゲル化剤と砂糖と水とを、重量比で1:10:30程度の割合で混合した主原料をパステライザーで高速撹拌して分散させ、80℃に加熱した後、酸味料,香料,着色料及び果汁を重量比で30:1:1:30程度の割合で混合した添加物を、主原料6重量部に対して1重量部程度添加し、溶融ゼリー(溶融原料ゲル)とした。この溶融ゼリーを、保温ジャケットに80℃の湯を供給して保温した内容量80リットルの原料貯留槽に貯留した。
【0026】
チューブ式ローラーポンプは、3本のロータリー素子を有するととに、内径4mmのシリコン製チューブを20本有するものを2台使用し、毎分約100ショットの速さで回転するように設定した。ノズルは、内径4mmであり、その先端を油面から約20mm上方にして5mm間隔でセットした。
【0027】
成型槽は、600mm×300mmの箱型で、下部を角錐台状に絞った形状のものを使用し、油層の深さは約800mm、水層の深さは約400mmとした。冷却油には、いわゆるサラダ油を使用し、温度は約4℃に設定した。冷却プレートは、500mm×750mmの大きさのものを30mm間隔で5枚設置し、各冷却プレートには、1〜4℃の水を流して冷却油を前記温度に維持できるようにした。なお、水層の温度は室温(約20℃)とした。また、成型槽の側面は断熱構造とした。
【0028】
上記条件で運転を行った結果、固液分離部から製品回収槽に回収した成形品(粒状ゼリー)に付着している油分は、従来の自然落下方式と変わらない0.1重量%程度であった。この成形品を、製品回収槽で毎分2リットルの流量の水で洗浄し、表面の油分を除去した。得られた成形品は、直径が約8mmの略球形であり、1時間当たり約24万個を製造することができた。なお、内径4mmのノズルを使用した従来の自然落下方式の場合は、直径3〜4mm程度のものしかできず、20本のノズルでの生産量も1時間当たり6万個程度が限界である。
【0029】
水洗後の成形品(製品)に残留した油分は僅かに0.02重量%程度であり、実際に食したときにも、サラダ油の臭いや味は全く感じられなかった。さらに、従来のカルシウム製法による同種のゼリーとは比較にならないほど、食感,食味,外観のいずれも優れていた。また、急速凍結させて保管し、解凍した後の食感,食味,外観のいずれも、製造時の品質を保っていた。
【0030】
実施例2
ゲル化剤(増粘多糖類)と砂糖と水とを、重量比で1:20:60程度の割合で混合し、80℃加熱にした主原料を70℃に冷却した後、酸味料,香料,着色料,果汁及び果肉を重量比で30:1:1:30:5程度の割合で混合した添加物を、主原料6重量部に対して1重量部程度加え、溶融ゼリーとした。この溶融ゼリーを使用し、滴下温度を60℃とした以外は、実施例1と同じ条件で粒状ゼリーを製造した。得られた粒状ゼリーは、歯応えがあり、味もよいものであった。
【0031】
実施例3
ゲル化剤としてゼラチンを使用し、このゲル化剤と砂糖と水とを重量比で1:20:60程度の割合で混合した主原料を70℃に加熱し、香料及び粉乳を重量比で2:15程度の割合で混合した添加物を、主原料8重量部に対して2重量部程度加えて溶融ゼリーとし、原料貯留槽で60℃に保温した。
【0032】
チューブ式ローラーポンプには、内径6mmのシリコン製チューブを16本有するものを2台使用し、毎分約100ショットの速さで回転するように設定した。ノズルの内径も6mmとした。
【0033】
以下、実施例1と同様の条件で操作を行ったところ、直径13mmの白い球形のゼリーが得られた。実際に食したところ、ミルク味であり、油の味等を感じることはなく、味覚,食感共に良好なものであった。なお、生産量は、1時間当たり18万個であった。
【0034】
【発明の効果】
以上説明したように、本発明は、チューブ式ローラーポンプを使用して溶融原料ゲルを搬送・滴下するようにしたので、直径が0.5〜30mm程度の球形のゲル体を効率よく製造することができる。
【図面の簡単な説明】
【図1】 本発明の粒状ゲル体の製造装置の一形態例を示す概略系統図である。
【図2】 要部の断面側面図である。
【符号の説明】
1…成型槽、2…原料調製槽、3…原料貯留槽、4…チューブ式ローラーポンプ、5…搬送経路、6…ノズル、7…冷却プレート、8…回収経路、9…固液分離部、10…製品回収槽、11…水回収槽、12…水循環経路、13…油循環経路、14a,14b…冷媒経路、18…断熱壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and a method for producing a granular gel body, and more specifically, an apparatus for producing a granular gel body capable of efficiently molding gel food such as jelly and agar into a granule excellent in appearance and texture, and Regarding the method.
[0002]
[Prior art and problems to be solved by the invention]
A granular gel food is generally produced by heating and melting a gel body such as gelatin, pouring it into a spherical mold, cooling and solidifying it, and then removing it from the mold. Although this manufacturing method has the advantage that a product of a desired size can be obtained uniformly, it takes time and effort to open and close the mold, cool the molded product, take out the gel food, and the manufacturing cost is high. It was. In particular, when making a small spherical gel food having a diameter of about 2 to 12 mm, labor is required and the production efficiency is poor. Furthermore, the spherical mold is expensive, which has been a factor of increasing the cost.
[0003]
Further, as a method for producing a granular gel food without using a mold, for example, in Japanese Patent Laid-Open No. 48-103770, a heated molten raw material gel is dropped into oil at a predetermined temperature from an outflow hole. A method is described in which a spherical gel food product is produced by cooling it in a spherical gelled product and then dropping it into still water to remove the attached oils. Although this method does not require much labor and has an advantage that a spherical gel body can be produced uniformly and continuously, the conventional method and apparatus have a problem of poor productivity.
[0004]
That is, in order to spheroidize the heated and melted gel in oil, it is necessary for the gel that has fallen into the oil in a molten state to solidify while being spheroidized while falling in the oil. In other words, a certain amount needs to be dropped intermittently and spheroidized in oil within a certain period of time during which the heated and melted gel does not cool. However, in the case of dripping by natural dropping, if the flow rate is increased in order to increase the amount of dripping, the gel may flow continuously, and a columnar solidified product may be formed. Even if the dropping rate is intermittent, even if the dropping rate is slow, if the dropping rate is slow, it may solidify before being spheroidized in oil, resulting in the formation of a low-quality deformed gel. It was. For this reason, the range in which high quality spherical particles can be produced by dropping by natural fall is limited to those having a diameter of about 4 mm or less.
[0005]
In addition, the oil for cooling the gel needs to be cooled to a predetermined temperature range, and in order to obtain a spherical molded product, a state free from disturbance such as convection is preferable. However, in the conventional apparatus in which the outer periphery of the tank filled with oil is only covered with a jacket, large convection is generated in the entire oil layer, and thus the stability of the shape is impaired. Furthermore, since the water layer that removes oil from the molded gel food is deoiled by the free fall of the molded gel food in the water layer, a deep hydrostatic layer is required and the apparatus has been enlarged. .
[0006]
On the other hand, Japanese Patent Application Laid-Open No. 63-12253 discloses a method for producing jelly grains having a predetermined volume by flowing a jelly stock solution into a hardening liquid (solidifying agent) and cutting it at predetermined time intervals. Are listed. This method can be produced continuously even with relatively small spheres, but since the solidifying agent enters a large amount of gel food, the texture is far from the original one, and the quality may be degraded. was there. In particular, when frozen for storage or distribution, or when rapidly frozen, there is a drawback that the texture changes significantly.
[0007]
Accordingly, an object of the present invention is to provide an apparatus and a method for producing a granular gel body, which can mass-produce high quality granular gel bodies at low cost and have a high degree of freedom in molding dimensions.
[0008]
[Means for Solving the Problems]
To achieve the above object, the manufacturing apparatus of the particulate gel of the present invention, the conveyance path having a molded tank filled with cooling oil of a predetermined temperature, the tube type roller pump for conveying molten material gel to the molding tank When, and a nozzle for dropping a molten raw material gel in the cooling oil from the transport path, wherein the molding vessel, in the cooling oil, a plurality of cooling plates for maintaining the cooling oil to a predetermined temperature is immersed The nozzle is disposed at a position where the molten raw material gel is dropped between adjacent cooling plates .
[0009]
Furthermore, the manufacturing apparatus of the particulate gel of the present invention, the water in the lower part of the cooling oil before Symbol molding tank is filled, the molding tank is characterized by having a heat insulating structure. In addition, a collecting path for extracting the molded product solidified in the cooling oil with water from the bottom of the molding vessel, a solid-liquid separating section for separating the water moldings withdrawn to the recovery path, the solid a product collection tank for collecting the molded products separated by liquid separation unit, returning the solid-liquid and water recovery tank for collecting the separated water in the separation section, the water in the water recovery tank to the aqueous portion of the molding chamber and water circulation route, is characterized in that the oil was floated difference in specific gravity between the upper portion of the water recovery tank with an oil circulation path for returning the oil layer portion above the molding chamber.
[0010]
In the method for producing a granular gel body according to the present invention, a plurality of cooling plates are immersed in an oil layer at the upper part of a molding tank filled with cooling oil and water in two layers, and the cooling oil is brought to a predetermined temperature. while maintaining the nozzle is located between the cooling plate adjacent to intermittently dropping a molten raw material gel conveyed by tube type roller pump, the water layer of the molded tank bottom and solidified into a spherical shape by the oil layer after settling, the molded article has solidified from the molding tank bottom subjected to solid-liquid separation is extracted with water, thereby recovering the separated molded article as a product, the separated water circulating back to the molding tank It is a feature.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an embodiment of the granular gel body production apparatus of the present invention. FIG. 1 is a schematic system diagram, and FIG. 2 is a cross-sectional side view of the main part.
[0012]
This granular gel body manufacturing apparatus includes a molding tank 1 filled with cooling oil A and water W, gel bodies such as jelly and agar, and various additives such as sweetening ingredients and pulp as required. A raw material preparation tank 2 for preparing a raw material to which a solid content is added, a raw material storage tank 3 for primarily storing a molten raw material gel prepared in the raw material tank 2, and a molten raw material gel in the raw material storage tank 3 for the molding tank 1 A conveying path 5 having a tube-type roller pump 4 for conveying the liquid, a nozzle 6 for dropping the molten raw material gel conveyed by the conveying path 5 into the oil layer of the molding tank 1, and a cooling oil A in the molding tank. A plurality of cooling plates 7 for maintaining a predetermined temperature, a recovery path 8 for extracting a molded product (product) B together with water from the bottom of the molding tank 1, and a molded product B extracted to the recovery path 8 A solid-liquid separator 9 for separating water, and the solid-liquid separator 9 A product recovery tank 10 for recovering the separated molded product B, a water recovery tank 11 for recovering the water separated by the solid-liquid separator 9, and water in the water recovery tank 11 into the water layer portion of the molding tank 1 A water circulation path 12 for returning, an oil circulation path 13 for returning the oil component that has floated to the upper part of the water recovery tank 11 due to the difference in specific gravity to the upper part of the oil layer of the molding tank 1, and a refrigerant path for introducing and extracting the refrigerant to the cooling plate 14a, 14b.
[0013]
Hereinafter, the apparatus will be described in detail based on a method for producing a spherical gel body. First, a gel raw material and a desired additive are put into the raw material preparation tank 2, heated to a predetermined temperature and stirred by a stirrer 15 to prepare a molten raw material gel. The melted raw material gel passes through the path 17 by the pump 16, is primarily stored in the raw material storage tank 3, and then is sucked by the tube roller pump 4 and guided to the nozzle 6 through the transport path 5. The path including the raw material storage tank 3 and the tube-type roller pump 4 between the raw material preparation tank 2 and the nozzle 6 takes into consideration the temperature of the molten raw material gel, its solidification temperature, the temperature drop in the path, etc. The heated raw material gel is not solidified in the path by installing the heat insulating jackets 2a and 3a on the outer periphery of the raw material preparation tank 2 and the raw material storage tank 3, for example, Like that.
[0014]
The tube-type roller pump 4 is a pump that intermittently conveys the fluid in the tube by peristaltic movement of the flexible tube by the rotation of the rotary element. Can be intermittently dripped from the nozzle 6 by conveying toward the nozzle 6. The tube is made of a material having elasticity and heat resistance, for example, a tube made of silicon rubber. Moreover, the tube-type roller pump 4 can set arbitrarily the dripping amount and dripping space | interval from the nozzle 6 by setting the diameter of a tube and the rotation speed of a rotary element suitably.
[0015]
The nozzle 6 for dropping the molten raw material gel into the cooling oil A is the size required for the product granular gel body, that is, the molded product B, the type, composition and temperature of the raw material, the discharge amount and the discharge speed of the tube roller pump 4. The one having the optimum diameter and thickness is used depending on the conditions such as the above. The nozzle 6 may be mounted with a separate nozzle component at the tip of the transport path 5, or the tip of the transport path 5 may be used as a nozzle as it is. The nozzle 6 may be submerged in the cooling oil A or may be separated from the oil surface. However, in order to obtain a good spherical gel body, the nozzle 6 is installed 10 to 50 mm away from the oil surface. It is preferable.
[0016]
The melted raw material gel dripped from the nozzle 6 is granulated by the surface tension while falling in the cooling oil between the adjacent cooling plates 7 and 7 due to the difference in specific gravity, cooled and solidified, and dropped from the cooling oil into the water. To do. As shown in FIG. 2, a plurality of nozzles 6 can be provided side by side between adjacent cooling plates 7 and 7. The conveyance path 5 connected to these nozzles 6 may be branched corresponding to each nozzle 6 downstream of the tube-type roller pump 4, but in order to drop the molten raw material gel in a stable state, It is preferable to provide a transport path 5 for each nozzle 6.
[0017]
As shown in FIG. 2, the cooling plate 7 that maintains the cooling oil A at a predetermined temperature is provided with a refrigerant flow path 7a between two thin metal plates, and each cooling plate 7 is parallel at a predetermined interval. Is arranged. Refrigerant flowing from the inlet-side refrigerant path 14a toward the outlet-side refrigerant path 14b is supplied to the refrigerant flow path 7a, and the surface of the cooling plate 7 is cooled to a predetermined temperature by this refrigerant. In this way, by forming the cooling oil A so as to be maintained at a predetermined temperature by a plurality of cooling plates 7, the cooling oil A is maintained at a predetermined temperature by a cooling jacket provided on the outer periphery of the molding tank 1 as in the prior art. Compared with what to do, while being able to cool the whole cooling oil A efficiently, the temperature of the whole oil layer can be made uniform. Furthermore, since the molten raw material gel that has fallen into the cooling oil A from the nozzle 6 descends the portion partitioned by each cooling plate 7, the probability that the molten raw material gels adhere to each other is reduced.
[0018]
The temperature of the cooling oil A can be appropriately set depending on the kind of molten raw material gel, the dropping temperature, etc., but is usually set in the range of −2 to 35 ° C., preferably 0 to 25 ° C. What is necessary is just to set the temperature and flow volume of the refrigerant | coolant supplied to so that the cooling oil A can be maintained at preset temperature. In addition, any refrigerant can be used, but usually cold water can be used.
[0019]
In addition, it is preferable to provide a double-structured heat insulating wall 18 on the outer periphery of the molding tank 1, at least in a portion corresponding to the oil layer. The heat insulation wall 18 can be supplied with the same refrigerant as the cooling plate 7 to promote the cooling effect of the oil layer, but it is possible to adopt a heat insulation structure filled with air insulation, vacuum insulation, urethane foam resin or the like. it can. By forming such a heat insulating structure, heat intrusion from the wall surface of the molding tank 1 can be suppressed, so that the oil layer temperature can be easily maintained uniformly, and condensation can be prevented from occurring on the outer peripheral surface.
[0020]
The gel body (molded product B) solidified spherically in the cooling oil of the molding tank 1 descends from the cooling oil A into the water W at the lower part of the molding tank. A part of the oil adhering to the molded product B moves away from the surface of the molded product B in the water layer and moves into the water, and further rises to the upper oil layer due to the difference in specific gravity. The molded product B that has settled to the bottom of the molding tank 1 is extracted together with the water W into the recovery path 8 and sent to the solid-liquid separation unit 9 by the pump 19. By sending the molded product B together with the water W to the solid-liquid separator 9 through the recovery path 8 in this way, oil on the surface of the molded product can be removed even in the recovery path, so the length of the water layer in the molding tank 1 ( (Depth) can be reduced, and the equipment can be downsized.
[0021]
The solid-liquid separation unit 9 has a comb-like or fine mesh filter 9a having a smaller interval than the molded product B, and the molded product B separated by the filter 9a passes through the chute 9b and is shaped like a product collection tank 10. It is collected in the container 10a. The water and a small amount of oil that have passed through the filter 9 a flow down into the water recovery tank 11.
[0022]
The water W in the water recovery tank 11 returns to the lower part of the molding tank 1 through the water circulation path 12 due to the head difference between the water recovery tank 11 and the molding tank 1 and floats on the upper part of the water recovery tank 11. Is returned to the upper part of the molding tank 1 through the oil circulation path 13. Thus, by circulating and using the cooling oil A and the water W, the cooling oil and water are not discharged wastefully, and the operation cost can be reduced. In addition, the connection part by the side of the molding tank 1 of the oil circulation path | route 13 is slightly from the oil level of the molding tank 1 so that the cooling oil in the molding tank 1 may not flow back into the water recovery tank 11 through the oil circulation path | route 13. Keep it at the top.
[0023]
The product recovery tank 10 is formed so that the oil remaining on the surface of the molded product B can be washed with water as needed by supplying flush water from the pipe 20 at the bottom and overflowing the tank from the top. . The molded product B in the zigzag container 10a is taken out as appropriate and sent to the next step. That is, it is stored and shipped through a process of packing as it is, dipping in a syrup solution, or freezing.
[0024]
Thus, by manufacturing a granular gel body, gel body foods, such as jelly and agar, can be shape | molded efficiently to a granular form. In particular, the tube-type roller pump 4 is used to convey the molten raw material gel in a pulsating state, so that the amount of dripping can be arbitrarily set as compared with the natural dropping method, and a desired amount of molten raw material gel can be obtained. It can be dropped intermittently into the cooling oil A from the nozzle 6. Thereby, the granular gel body whose diameter is 0.5-30 mm can be efficiently manufactured by setting the liquid feeding capability of the tube type roller pump 4 and the shape of the nozzle 6 appropriately. Moreover, since a larger-sized thing can be obtained than before, it is also possible to manufacture a strawberry-like confectionery, for example, by adding solids, such as a pulp, to a molten raw material gel. Furthermore, a crunchy confectionery can be produced by adding powdered rock sugar to the melted raw material gel and molding it before the molten sugar is dissolved in the gel.
[0025]
【Example】
Example 1
After the gelling agent composed of thickening polysaccharide, sugar and water are mixed at a weight ratio of about 1:10:30, the main raw material is dispersed by stirring at high speed with a pasteurizer, and heated to 80 ° C., About 1 part by weight of an additive prepared by mixing acidulant, flavor, colorant and fruit juice in a ratio of about 30: 1: 1: 30 by weight is added to 6 parts by weight of the main raw material, and molten jelly (melted raw material) Gel). This molten jelly was stored in a raw material storage tank having an internal volume of 80 liters which was kept warm by supplying hot water at 80 ° C. to a heat insulation jacket.
[0026]
The tube type roller pump was set to have three rotary elements and two units having 20 silicon tubes with an inner diameter of 4 mm, and to rotate at a speed of about 100 shots per minute. The nozzle had an inner diameter of 4 mm, and its tip was set about 5 mm above the oil level and set at 5 mm intervals.
[0027]
The molding tank was a box shape of 600 mm × 300 mm, and the lower part was shaped into a truncated pyramid shape. The depth of the oil layer was about 800 mm, and the depth of the water layer was about 400 mm. As the cooling oil, so-called salad oil was used, and the temperature was set to about 4 ° C. Five cooling plates having a size of 500 mm × 750 mm were installed at intervals of 30 mm, and water at 1 to 4 ° C. was allowed to flow through each cooling plate so that the cooling oil could be maintained at the above temperature. The temperature of the aqueous layer was room temperature (about 20 ° C.). In addition, the side surface of the molding tank has a heat insulating structure.
[0028]
As a result of operation under the above conditions, the oil adhering to the molded product (granular jelly) collected in the product collection tank from the solid-liquid separation part was about 0.1% by weight which is not different from the conventional natural fall method. It was. This molded product was washed with water at a flow rate of 2 liters per minute in a product recovery tank to remove oil on the surface. The obtained molded product was substantially spherical with a diameter of about 8 mm, and about 240,000 pieces could be produced per hour. In the case of the conventional natural drop method using a nozzle having an inner diameter of 4 mm, only a diameter of about 3 to 4 mm can be obtained, and the production amount with 20 nozzles is limited to about 60,000 per hour.
[0029]
The oil remaining in the molded product (product) after washing with water was only about 0.02% by weight, and the odor and taste of salad oil were not felt at all even when actually eaten. Furthermore, the texture, taste, and appearance were all superior compared to the same type of jelly produced by the conventional calcium manufacturing method. In addition, the texture, taste, and appearance after thawing, freezing, and thawing maintained the quality at the time of manufacture.
[0030]
Example 2
A gelling agent (thickening polysaccharide), sugar and water are mixed at a weight ratio of about 1:20:60, the main raw material heated at 80 ° C. is cooled to 70 ° C., and then a sour and flavoring agent. , Colorant, fruit juice, and pulp were mixed at a weight ratio of about 30: 1: 1: 30: 5, and about 1 part by weight was added to 6 parts by weight of the main raw material to obtain a molten jelly. A granular jelly was produced under the same conditions as in Example 1 except that this molten jelly was used and the dropping temperature was 60 ° C. The obtained granular jelly was crunchy and had good taste.
[0031]
Example 3
Gelatin is used as the gelling agent, the main raw material in which the gelling agent, sugar and water are mixed at a weight ratio of about 1:20:60 is heated to 70 ° C., and the flavor and milk powder are mixed at a weight ratio of 2 : About 2 parts by weight of the additive mixed at a ratio of about 15 to 8 parts by weight of the main raw material was added to form a molten jelly, which was kept at 60 ° C. in the raw material storage tank.
[0032]
Two tube-type roller pumps having 16 silicon tubes having an inner diameter of 6 mm were used, and were set to rotate at a speed of about 100 shots per minute. The inner diameter of the nozzle was also 6 mm.
[0033]
Hereinafter, when the operation was performed under the same conditions as in Example 1, a white spherical jelly having a diameter of 13 mm was obtained. When actually eaten, it had a milk taste and did not feel the taste of oil, and the taste and texture were both good. The production amount was 180,000 pieces per hour.
[0034]
【The invention's effect】
As described above, the present invention uses a tube-type roller pump to transport and drop the molten raw material gel, so that a spherical gel body having a diameter of about 0.5 to 30 mm can be efficiently produced. Can do.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic system diagram showing an example of an apparatus for producing a granular gel body of the present invention.
FIG. 2 is a sectional side view of an essential part.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Molding tank, 2 ... Raw material preparation tank, 3 ... Raw material storage tank, 4 ... Tube type roller pump, 5 ... Conveyance path, 6 ... Nozzle, 7 ... Cooling plate, 8 ... Recovery path, 9 ... Solid-liquid separation part, DESCRIPTION OF SYMBOLS 10 ... Product collection tank, 11 ... Water collection tank, 12 ... Water circulation path, 13 ... Oil circulation path, 14a, 14b ... Refrigerant path, 18 ... Heat insulation wall

Claims (5)

所定温度の冷却油を充填した成型槽と、前記成型槽に溶融原料ゲルを搬送するためのチューブ式ローラーポンプを有する搬送経路と、前記搬送経路から前記冷却油中に溶融原料ゲルを滴下させるノズルとを備え、前記成型槽は、前記冷却油中に、冷却油を所定温度に維持するための複数枚の冷却プレートが浸漬配置されるとともに、前記ノズルは、隣接する冷却プレート間に溶融原料ゲルを滴下させる位置に設けられていることを特徴とする粒状ゲル体の製造装置。A molding tank filled with cooling oil at a predetermined temperature, a nozzle for dropping a conveying path having a tube type roller pump for conveying molten material gel to the molding tank, the molten raw material gel in the cooling oil from the transport path A plurality of cooling plates for maintaining the cooling oil at a predetermined temperature are immersed in the cooling oil, and the nozzle is a molten raw material gel between adjacent cooling plates. An apparatus for producing a granular gel body, characterized in that the apparatus is provided at a position to drop the liquid. 前記成型槽内には、前記冷却油の下部に水が充填されていることを特徴とする請求項1記載の粒状ゲル体の製造装置。2. The apparatus for producing a granular gel body according to claim 1, wherein the molding tank is filled with water below the cooling oil . 前記成型槽は、断熱構造を有していることを特徴とする請求項1又は2記載の粒状ゲル体の製造装置。The apparatus for producing a granular gel body according to claim 1 or 2 , wherein the molding tank has a heat insulating structure . 成型槽の底部から水と共に前記冷却油中で固化した成形品を抜き出す回収経路と、前記回収経路に抜き出した成形品と水とを分離する固液分離部と、前記固液分離部で分離した成形品を回収する製品回収槽と、前記固液分離部で分離した水を回収する水回収槽と、前記水回収槽内の水を前記成型槽の水層部分に戻す水循環経路と、前記水回収槽の上部に比重差で浮上した油分を成型槽の油層部分上方に戻す油循環経路とを備えたことを特徴とする請求項2記載の粒状ゲル体の製造装置。 Separated by a recovery path for extracting the molded product solidified in the cooling oil together with water from the bottom of the molding tank, a solid-liquid separation unit for separating the molded product extracted from the recovery path and water, and the solid-liquid separation unit A product recovery tank for recovering the molded product, a water recovery tank for recovering the water separated by the solid-liquid separator, a water circulation path for returning the water in the water recovery tank to the water layer portion of the molding tank, and the water The apparatus for producing a granular gel body according to claim 2, further comprising an oil circulation path for returning an oil component floated due to a difference in specific gravity to an upper portion of the recovery tank to an upper part of the oil layer of the molding tank . 冷却油と水とを上下二層に充填した成型槽上部の油層中に、複数枚の冷却プレートを浸漬配置して前記冷却油を所定温度に維持するとともに、隣接する冷却プレート間に位置させたノズルから、チューブ式ローラーポンプにより搬送された溶融原料ゲルを間欠的に滴下し、前記油層中で球状に固化させて前記成型槽下部の水層に沈降させた後、前記成型槽底部から固化した成形品を水と共に抜き出して固液分離を行い、分離した成形品を製品として回収するとともに、分離した水を前記成型槽に戻して循環させることを特徴とする粒状ゲル体の製造方法 A plurality of cooling plates are immersed in an oil layer in the upper part of the molding tank filled with cooling oil and water in two upper and lower layers to maintain the cooling oil at a predetermined temperature and positioned between adjacent cooling plates. From the nozzle, the melted raw material gel conveyed by the tube roller pump is dropped intermittently, solidified in a spherical shape in the oil layer and settled in the water layer at the bottom of the molding tank, and then solidified from the bottom of the molding tank. A method for producing a granular gel , wherein the molded product is extracted together with water to perform solid-liquid separation, the separated molded product is recovered as a product, and the separated water is returned to the molding tank and circulated .
JP35934597A 1997-12-26 1997-12-26 Granular gel production apparatus and method Expired - Lifetime JP3743150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35934597A JP3743150B2 (en) 1997-12-26 1997-12-26 Granular gel production apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35934597A JP3743150B2 (en) 1997-12-26 1997-12-26 Granular gel production apparatus and method

Publications (2)

Publication Number Publication Date
JPH11187830A JPH11187830A (en) 1999-07-13
JP3743150B2 true JP3743150B2 (en) 2006-02-08

Family

ID=18464041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35934597A Expired - Lifetime JP3743150B2 (en) 1997-12-26 1997-12-26 Granular gel production apparatus and method

Country Status (1)

Country Link
JP (1) JP3743150B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319507B1 (en) * 1997-05-02 2001-11-20 Kobo Products, Inc. Agar gel bead composition and method
JP4546631B2 (en) * 2000-09-26 2010-09-15 功 横山 Method and apparatus for producing granular gel body
JP5375044B2 (en) * 2008-11-18 2013-12-25 新神戸電機株式会社 Control valve type monoblock type lead acid battery manufacturing method
JP5293377B2 (en) * 2009-04-23 2013-09-18 味の素株式会社 Method for producing spherical jelly
JP5593267B2 (en) * 2011-04-27 2014-09-17 森永乳業株式会社 Manufacturing method of granular cheese, manufacturing method of food / beverage products containing granular cheese, and manufacturing apparatus of granular cheese

Also Published As

Publication number Publication date
JPH11187830A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
US4551159A (en) Ice making machine and method
US4796441A (en) Ice making machine
US4548045A (en) Method for continuously producing pop-shaped frozen confections
CN1197637C (en) Freeze concentration for aqueous solutions
WO1991018519A1 (en) Combination popsicle, method of making the same, and device therefor
CN1477932A (en) Foods comprising gel coposition and process of manufacture
CA1276475C (en) Ice making machine (mark i & mark ii)
JP3743150B2 (en) Granular gel production apparatus and method
GB2092880A (en) Freezing a liquid
CN102159088A (en) Fat-based confectionery material and process for production thereof
JPS6316104B2 (en)
JPH06296803A (en) Device for producing seed crystal in melt and crystallizing plant having said device
JPS6222553A (en) Production of icing
JP2003265150A (en) Method of freeze concentration for vegetable/fruit juice and freeze concentrated product and equipment for the same
JPH06189686A (en) Preparation of ice cream
US4291550A (en) Fluidized bed crystallization apparatus and method
JPS6129701B2 (en)
JPS6129700B2 (en)
CA1208027A (en) Ice making machine and method
JPS6129702B2 (en)
AU583051B2 (en) Ice making machine (mark i & ii)
JPS63276473A (en) Capsule maker
TWI837856B (en) Jelly bobas and apparatus and method for forming same
JP3039991B2 (en) Combined frozen dessert, method for producing the same, and apparatus used therefor
JP3440613B2 (en) Ice dessert and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term