JP5374441B2 - Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method - Google Patents

Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method Download PDF

Info

Publication number
JP5374441B2
JP5374441B2 JP2010113805A JP2010113805A JP5374441B2 JP 5374441 B2 JP5374441 B2 JP 5374441B2 JP 2010113805 A JP2010113805 A JP 2010113805A JP 2010113805 A JP2010113805 A JP 2010113805A JP 5374441 B2 JP5374441 B2 JP 5374441B2
Authority
JP
Japan
Prior art keywords
gas treatment
exhaust gas
treatment catalyst
exhaust
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010113805A
Other languages
Japanese (ja)
Other versions
JP2011240236A (en
Inventor
良昭 尾林
正志 清澤
昌則 出本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010113805A priority Critical patent/JP5374441B2/en
Publication of JP2011240236A publication Critical patent/JP2011240236A/en
Application granted granted Critical
Publication of JP5374441B2 publication Critical patent/JP5374441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating a used exhaust-gas treatment catalyst by which the durability of the regenerated exhaust-gas treatment catalyst can surely be kept satisfactorily over a long period of time, and to provide the exhaust-gas treatment catalyst. <P>SOLUTION: The method for regenerating the used exhaust-gas treatment catalyst 11 having the ash-stuck surface includes: a coarsely crushing step S1 of coarsely crushing the exhaust-gas treatment catalyst 11 to produce coarse chips 12 which accounts for 70-95 wt.% of the total weight of the exhaust-gas treatment catalyst 11 and each of which has the size exceeding the threshold size S (the optional value within 0.105-1.0 mm); a separation step S2 of separating the coarsely-crushed material of the exhaust-gas treatment catalyst 11 into the coarse chips 12 each having the size exceeding the threshold size S and fine powder 13 of the size equal to or smaller than the threshold size S; a finely pulverizing step S3 of finely pulverizing the separated coarse chips 12 into fine powder of &le;0.1 mm average particle size; a kneading step S4 of kneading the fine powder with another raw material; a molding step S5 of molding the obtained kneaded material into the exhaust-gas treatment catalyst; a drying step S6 of drying a green molding of the exhaust-gas treatment catalyst; and a firing step S7 of firing the dried green molding at 615-700&deg;C to obtain the regenerated exhaust-gas treatment catalyst 14. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、表面に灰分が付着した排ガス処理触媒の再生方法及びこの方法を使用した排ガス処理触媒に関し、特に、酸化チタンを主成分として、燃焼した石炭からの排ガス中の窒素酸化物を除去する排ガス処理触媒を再生する場合に適用すると、極めて有効である。   The present invention relates to a method for regenerating an exhaust gas treatment catalyst having ash attached to the surface and an exhaust gas treatment catalyst using this method, and in particular, removing nitrogen oxides in exhaust gas from burned coal with titanium oxide as a main component. It is extremely effective when applied to the regeneration of an exhaust gas treatment catalyst.

例えば、石炭焚きボイラ等のような石炭を燃焼させる機器からの排ガスの排出ラインには、当該排ガス中の窒素酸化物(NOx)を処理する排ガス処理触媒が配設されている。この排ガス処理触媒は、酸化チタン(TiO2)を主成分として、さらに、酸化タングステン(WO3)や酸化バナジウム(V25)等をバインダと共に練りあげて、孔を多数有するようにハニカム形に成型して焼成したものであり、上記孔の内部に上記排ガスと共にアンモニア(NH3)等の還元剤を流通させて、当該排ガス中の上記窒素酸化物と共に上記還元剤を当該孔の壁面に接触させることにより、当該窒素酸化物の分解除去を可能にしている。 For example, an exhaust gas treatment line for treating nitrogen oxides (NO x ) in the exhaust gas is disposed in an exhaust gas exhaust line from an apparatus that burns coal such as a coal-fired boiler. This exhaust gas treatment catalyst is composed of titanium oxide (TiO 2 ) as a main component, and further, honeycomb oxide (WO 3 ), vanadium oxide (V 2 O 5 ), etc. are kneaded together with a binder to have a large number of pores. A reducing agent such as ammonia (NH 3 ) is circulated along with the exhaust gas inside the hole, and the reducing agent is placed on the wall surface of the hole together with the nitrogen oxide in the exhaust gas. By contacting, the nitrogen oxide can be decomposed and removed.

このような排ガス処理触媒においては、石炭の燃焼に伴って発生した灰分(フライアッシュ)が排ガスと共に前記孔内を流通すると、使用していくにしたがって、当該フライアッシュ中のカルシウム(Ca)等の成分が当該孔の内壁表面に次第に付着して(厚さ:数十μm)、当該触媒表面における前記窒素酸化物と前記還元剤との接触反応を阻害してしまうと共に、当該フライアッシュ自身が上記孔の内部に部分的に堆積して、当該孔内に排ガスを次第に流通させにくくしてしまい、最後には当該孔を完全に閉塞して目詰まりさせてしまい、脱硝性能の低下を引き起こしてしまっている。   In such an exhaust gas treatment catalyst, when the ash (fly ash) generated by the combustion of coal circulates in the hole together with the exhaust gas, as it is used, calcium (Ca) and the like in the fly ash are used. The component gradually adheres to the inner wall surface of the hole (thickness: several tens of μm), which inhibits the contact reaction between the nitrogen oxide and the reducing agent on the catalyst surface, and the fly ash itself is It partially accumulates inside the hole and gradually makes it difficult for the exhaust gas to flow through the hole. Finally, the hole is completely blocked and clogged, resulting in a decrease in denitration performance. ing.

このため、所定期間使用された上記排ガス処理触媒においては、例えば、下記特許文献1に記載されているように、排ガス処理触媒の全重量に対して70〜95重量%の範囲で閾値サイズS(0.105〜1.0mmの範囲内の任意のある値)超の粗片を生じさせるように、排ガス処理触媒を粗粉砕して(粗粉砕工程)、排ガス処理触媒の粗粉砕物を閾値サイズS超の粗片と閾値サイズS以下の細粉とに分離し(分離工程)、分離された粗片を平均粒径0.1mm以下の微粉体とするように微粉砕して(微粉砕工程)、微粉体を他の原料と混練りして排ガス処理触媒に成型加工した後(混練工程及び成型工程)、成型された原型を乾燥して焼成処理(500℃前後)することにより(乾燥工程及び焼成工程)、排ガス処理触媒を再生するようにしている。   For this reason, in the said exhaust gas treatment catalyst used for the predetermined period, as described in the following patent document 1, for example, the threshold size S (in the range of 70 to 95% by weight with respect to the total weight of the exhaust gas treatment catalyst) The exhaust gas treatment catalyst is coarsely pulverized (coarse pulverization step) so as to produce an excessive coarse piece (any value within the range of 0.105 to 1.0 mm), and the coarsely pulverized product of the exhaust gas treatment catalyst is a threshold size. Separating into coarse particles exceeding S and fine powder having a threshold size S or less (separation step), and finely pulverizing the separated coarse particles into fine powder having an average particle size of 0.1 mm or less (fine pulverization step) ) After fine powder is kneaded with other raw materials and molded into an exhaust gas treatment catalyst (kneading process and molding process), the molded prototype is dried and fired (around 500 ° C.) (drying process) And firing step) to regenerate the exhaust gas treatment catalyst It is.

特開2009−226388号公報JP 2009-226388 A 特開平3−016646号公報JP-A-3-016646 特開平9−276659号公報Japanese Patent Laid-Open No. 9-276659

ところで、前記特許文献1に記載されている再生方法においては、特に問題を生じることがない排ガス処理触媒を多くの場合で得ることができるが、長期的な耐久性に難点を生じてしまう場合が稀に発生することが判明した。   By the way, in the regeneration method described in Patent Document 1, an exhaust gas treatment catalyst that does not cause a problem can be obtained in many cases, but there may be a problem in long-term durability. It was found to occur rarely.

このような耐久性に難点があると、フライアッシュが排ガス処理触媒に衝突することにより、当該排ガス処理触媒が摩耗して減肉してしまい、長期の使用に耐えられなくなってしまうおそれがある。   If there is a difficulty in such durability, the fly ash collides with the exhaust gas treatment catalyst, so that the exhaust gas treatment catalyst is worn and thinned, and there is a possibility that it cannot be used for a long time.

このようなことから、本発明は、一旦粉砕した後に再び成型して焼成することにより再生する場合であっても、耐久性を長期にわたって十分に維持することが確実にできる排ガス処理触媒の再生方法及びこの方法を使用した排ガス処理触媒を提供することを目的とする。   For this reason, the present invention provides a method for regenerating an exhaust gas treatment catalyst that can reliably maintain durability for a long period of time even when regenerated by pulverizing and then remolding and firing. And it aims at providing the exhaust-gas-treatment catalyst which uses this method.

前述した課題を解決するための、第一番目の発明に係る排ガス処理触媒の再生方法は、表面に灰分が付着した排ガス処理触媒の再生方法であって、使用済みの前記排ガス処理触媒の全重量に対して70〜95重量%の範囲で閾値サイズS超の粗片を生じさせるように、使用済みの当該排ガス処理触媒を粗粉砕する粗粉砕工程と、粗粉砕された前記排ガス処理触媒を前記粗片と前記閾値サイズS以下の細粉とに分離する分離工程と、分離された前記粗片を微粉体とするように微粉砕する微粉砕工程と、微粉砕された前記微粉体を原料として排ガス処理触媒に成型加工する成型工程と、成型された上記排ガス処理触媒の原型を615〜700℃の温度で焼成処理する焼成工程とを行うことを特徴とする。
ただし、前記閾値サイズSは、0.105mm以上1.0mm以下のある値である。
The method for regenerating an exhaust gas treatment catalyst according to the first invention for solving the above-described problem is a method for regenerating an exhaust gas treatment catalyst having ash adhered to the surface, wherein the total weight of the used exhaust gas treatment catalyst is relative to produce a crude piece of threshold size S more than in the range of 70 to 95 wt%, a coarse crushing step for coarse crushing the used of the exhaust gas treatment catalyst, the crude crushed the exhaust gas treatment catalyst wherein the coarse pieces and the separation step of separating the said threshold size S less fine powder, a milling step of the separated the coarse pieces pulverized to a fine powder, the fine powder pulverized as raw materials A molding step of molding into an exhaust gas treatment catalyst and a firing step of firing the molded exhaust gas treatment catalyst at a temperature of 615 to 700 ° C. are performed.
However, the threshold size S is a certain value between 0.105 mm and 1.0 mm .

第二番目の発明に係る排ガス処理触媒の再生方法は、第一番目の発明において、前記排ガス処理触媒が、酸化チタンを主原料とするものであることを特徴とする。   A method for regenerating an exhaust gas treatment catalyst according to a second invention is characterized in that, in the first invention, the exhaust gas treatment catalyst comprises titanium oxide as a main raw material.

第三番目の発明に係る排ガス処理触媒の再生方法は、第二番目の発明において、前記排ガス処理触媒が、燃焼した石炭からの排ガスを処理するものであることを特徴とする。   The regeneration method for an exhaust gas treatment catalyst according to a third aspect of the invention is characterized in that, in the second aspect of the invention, the exhaust gas treatment catalyst treats exhaust gas from burned coal.

第四番目の発明に係る排ガス処理触媒の再生方法は、第三番目の発明において、前記排ガス処理触媒が、前記排ガス中の窒素酸化物を処理するものであることを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for regenerating an exhaust gas treatment catalyst according to the third aspect, wherein the exhaust gas treatment catalyst treats nitrogen oxides in the exhaust gas.

番目の発明に係る排ガス処理触媒の再生方法は、第一番目から第番目の発明のいずれかにおいて、前記微粉砕工程が、前記微粉体の平均粒径を0.1mm以下とするように、前記粗片を微粉砕する工程であることを特徴とする。 According to a fifth aspect of the present invention, there is provided a method for regenerating an exhaust gas treatment catalyst according to any one of the first to fourth aspects, wherein the fine pulverization step sets the average particle size of the fine powder to 0.1 mm or less. And the step of pulverizing the coarse pieces.

また、前述した課題を解決するための、第番目の発明に係る排ガス処理触媒は、第一番目から第番目の発明のいずれかの排ガス処理触媒の再生方法により再生されたものであることを特徴とする。 In addition, the exhaust gas treatment catalyst according to the sixth invention for solving the above-mentioned problems is one that has been regenerated by the exhaust gas treatment catalyst regeneration method of any one of the first to fifth inventions. It is characterized by.

本発明に係る排ガス処理触媒の再生方法によれば、使用済みの排ガス処理触媒を一旦粉砕した後に再び成型して焼成するときに、新規に排ガス処理触媒を製造するときよりも高い温度(615〜700℃)で行うことにより、焼結度合をより確実に進行させることができる。このため、本発明に係る排ガス処理触媒によれば、全体にわたって十分な強度を発現することができ、十分な脱硝性能を維持しながらフライアッシュの衝突による摩耗減肉を十分に抑制することができるので、耐久性を長期にわたって十分に維持することが確実にできる。   According to the method for regenerating an exhaust gas treatment catalyst according to the present invention, when a used exhaust gas treatment catalyst is once pulverized and then molded and fired again, the temperature (615 to 615) is higher than when a new exhaust gas treatment catalyst is produced. (700 ° C.), the degree of sintering can be more reliably advanced. For this reason, according to the exhaust gas treatment catalyst of the present invention, sufficient strength can be exhibited throughout, and wear thinning due to fly ash collision can be sufficiently suppressed while maintaining sufficient denitration performance. Therefore, it can be ensured that the durability is sufficiently maintained over a long period of time.

本発明に係る排ガス処理触媒の再生方法の主な実施形態で用いた排ガス処理触媒の概略構成図である。It is a schematic block diagram of the exhaust gas treatment catalyst used in the main embodiment of the regeneration method of the exhaust gas treatment catalyst according to the present invention. 本発明に係る排ガス処理触媒の再生方法の主な実施形態の手順を表すフロー図である。It is a flowchart showing the procedure of main embodiment of the regeneration method of the exhaust gas treatment catalyst which concerns on this invention. 本発明に係る排ガス処理触媒の再生方法の実施例での試験例2における焼成温度と摩耗率との関係を求めたグラフである。It is the graph which calculated | required the relationship between the calcination temperature and the abrasion rate in Test Example 2 in the Example of the regeneration method of the exhaust gas treatment catalyst according to the present invention.

本発明に係る排ガス処理触媒の再生方法及びこの方法を使用した排ガス処理触媒を図面に基づいて以下に説明するが、本発明は以下に説明する実施形態のみに限定されるものではない。   An exhaust gas treatment catalyst regeneration method and an exhaust gas treatment catalyst using this method according to the present invention will be described below with reference to the drawings. However, the present invention is not limited to only the embodiments described below.

[主な実施形態]
本発明に係る排ガス処理触媒の再生方法及びこの方法を使用した排ガス処理触媒の主な実施形態を図1,2に基づいて説明する。
[Main embodiments]
A main embodiment of an exhaust gas treatment catalyst regeneration method and an exhaust gas treatment catalyst using this method according to the present invention will be described with reference to FIGS.

図1に示すように、本実施形態に係る排ガス処理触媒10は、酸化チタン(TiO2)を主成分として、さらに、酸化タングステン(WO3)や酸化バナジウム(V25)等をバインダと共に練りあげて、多数の孔10aを有するようにハニカム形に成型して焼成したものである。 As shown in FIG. 1, an exhaust gas treatment catalyst 10 according to this embodiment includes titanium oxide (TiO 2 ) as a main component, and tungsten oxide (WO 3 ), vanadium oxide (V 2 O 5 ), and the like together with a binder. It is kneaded, formed into a honeycomb shape so as to have a large number of holes 10a, and fired.

このような排ガス処理触媒10は、石炭焚きボイラ等のような石炭を燃焼させる機器からの排ガスの排出ラインに配設され、上記孔10aの内部に上記排ガスと共にアンモニア(NH3)等の還元剤を流通させて、当該排ガス中の上記窒素酸化物(NOx)と共に上記還元剤を当該孔10aの壁面に接触させることにより、当該窒素酸化物の分解除去が可能となっている。 Such an exhaust gas treatment catalyst 10 is disposed in an exhaust gas exhaust line from an apparatus that burns coal such as a coal-fired boiler, and a reducing agent such as ammonia (NH 3 ) together with the exhaust gas inside the hole 10a. The nitrogen oxide can be decomposed and removed by bringing the reducing agent into contact with the wall surface of the hole 10a together with the nitrogen oxide (NO x ) in the exhaust gas.

上記排ガス処理触媒10においては、石炭の燃焼に伴って発生した灰分(フライアッシュ)が排ガスと共に前記孔10a内を流通すると、使用していくにしたがって、当該フライアッシュ中のカルシウム(Ca)等の成分が当該孔10aの内壁表面に次第に付着して(厚さ:数十μm)、当該孔10aの表面における前記窒素酸化物と前記還元剤との接触反応を阻害してしまうと共に、当該フライアッシュ自身が上記孔10aの内部に部分的に堆積して、当該孔内に排ガスを次第に流通させにくくしてしまい、最後には当該孔を完全に閉塞して目詰まりさせてしまい、脱硝性能の低下を引き起こしてしまうようになるため、所定期間使用後に排ガスラインから取り出されて、再生処理設備へ搬送される。   In the exhaust gas treatment catalyst 10, when ash (fly ash) generated with coal combustion flows through the hole 10 a together with the exhaust gas, as it is used, calcium (Ca) and the like in the fly ash are used. The component gradually adheres to the inner wall surface of the hole 10a (thickness: several tens of μm) to inhibit the contact reaction between the nitrogen oxide and the reducing agent on the surface of the hole 10a, and the fly ash The self deposits partially inside the hole 10a, making it difficult for the exhaust gas to gradually flow through the hole, and finally clogging the hole completely, resulting in a decrease in denitration performance. Therefore, after use for a predetermined period, it is taken out from the exhaust gas line and transported to the regeneration treatment facility.

そして、再生処理設備に搬入された使用済みの排ガス処理触媒11は、水等の洗浄液による洗浄処理工程を施されることなく、クラッシャ等の粗粉砕機に投入され、全重量に対して70〜95重量%の範囲で閾値サイズS(0.105mm〜1.0mmの範囲内の任意のある値)超の粗片12を生じるように、粗粉砕される(図2中、粗粉砕工程S1)。   The used exhaust gas treatment catalyst 11 carried into the regeneration treatment facility is put into a coarse pulverizer such as a crusher without being subjected to a washing treatment step with a washing liquid such as water, and is 70 to 70% of the total weight. Roughly pulverized so as to produce a coarse piece 12 exceeding a threshold size S (an arbitrary value within a range of 0.105 mm to 1.0 mm) in a range of 95% by weight (in FIG. 2, coarsely pulverized step S1). .

粗粉砕された上記排ガス処理触媒11の粗粉砕物は、メッシュサイズが上記閾値サイズSの篩上に供給され、当該閾値サイズS超の粗片12と当該閾値サイズS以下の細粉13とに分離される(図2中、分離工程S2)。   The coarsely pulverized coarsely pulverized product of the exhaust gas treatment catalyst 11 is supplied on a sieve having a mesh size of the threshold size S, and the coarse particles 12 exceeding the threshold size S and fine powders 13 having the threshold size S or less are used. Separated (in FIG. 2, separation step S2).

上記篩のメッシュを通過した上記細粉13は、廃棄処理される。他方、上記篩のメッシュ上に残った粗片12は、ハンマーミル等の微粉砕機に投入され、平均粒径が0.1mm(好ましくは70μm)以下の微粉体となるように、微粉砕される(図2中、微粉砕工程S3)。   The fine powder 13 that has passed through the mesh of the sieve is discarded. On the other hand, the coarse piece 12 remaining on the mesh of the sieve is put into a fine pulverizer such as a hammer mill and finely pulverized so as to become a fine powder having an average particle size of 0.1 mm (preferably 70 μm) or less. (In FIG. 2, fine pulverization step S3).

そして、上記微粉体は、バインダ及び水等の他の配合物と共にニーダ等の混練機に原料として供給されて均一に混練りされる(図2中、混練工程S4)。この混練物は、押出成型機に供給されてハニカム状に成型加工される(図2中、成型工程S5)。この成型された原型を自然乾燥してから熱風(100℃)等により乾燥した後(図2中、乾燥工程S6)、焼成炉内で焼成(615〜700℃)することにより(図2中、焼成工程S7)、再生された排ガス処理触媒14となる。   The fine powder is supplied as a raw material to a kneader such as a kneader together with another compound such as a binder and water and kneaded uniformly (in FIG. 2, kneading step S4). This kneaded material is supplied to an extrusion molding machine and molded into a honeycomb shape (in FIG. 2, molding step S5). The molded prototype is naturally dried and then dried with hot air (100 ° C.) or the like (in FIG. 2, drying step S6), and then baked in a firing furnace (615 to 700 ° C.) (in FIG. 2, The calcination step S7) becomes the regenerated exhaust gas treatment catalyst 14.

つまり、前記特許文献1に記載された排ガス処理触媒の再生方法においては、焼成処理を500℃前後で行う、すなわち、新規(新品)の排ガス処理触媒を製造するときと同程度の温度で焼成処理するようにしたが、本実施形態に係る排ガス処理触媒の再生方法においては、焼成温度を615〜700℃で行う、すなわち、新規(新品)の排ガス処理触媒を製造するときよりも高い温度で焼成処理するようにしたのである。この理由について、以下に説明する。   That is, in the regeneration method of the exhaust gas treatment catalyst described in Patent Document 1, the calcination treatment is performed at around 500 ° C., that is, the calcination treatment at the same temperature as when producing a new (new) exhaust gas treatment catalyst. However, in the regeneration method of the exhaust gas treatment catalyst according to the present embodiment, the firing temperature is 615 to 700 ° C., that is, the firing is performed at a higher temperature than when a new (new) exhaust gas treatment catalyst is manufactured. It was made to process. The reason for this will be described below.

前記特許文献1に記載されている従来の排ガス処理触媒の再生方法においては、先に説明したように、特に問題を生じることがない排ガス処理触媒を多くの場合で得ることができるものの、長期的な耐久性に難点を生じてしまう場合が稀に発生してしまっていた。   In the conventional method for regenerating an exhaust gas treatment catalyst described in Patent Document 1, as described above, an exhaust gas treatment catalyst that does not cause a problem can be obtained in many cases. In some rare cases, it would be difficult to achieve durability.

この理由について、本発明者らが鋭意検討を重ねた結果、詳細は定かではないが、主原料の酸化チタン(TiO2)が、多種多様な熱履歴(原料として製造されるときの加熱処理(詳細な温度は不明)、新品として製造されるときの焼成処理(500℃前後)、排ガス処理するときの排ガス雰囲気暴露(約300〜400℃中に数万時間)等)を受けていることから、酸化チタン(TiO2)の熱履歴の程度によっては、酸化チタン(TiO2)の焼結度合がかなり進行してしまい、新品を製造するときと同じ温度(500℃前後)で焼成したのでは十分な強度を有するまでに焼結させることが難しくなってしまっているためではないかと推察された。 As a result of extensive investigations by the present inventors, the details are not clear, but the main raw material titanium oxide (TiO 2 ) has a wide variety of thermal histories (heating treatment when manufactured as a raw material ( Detailed temperature is unknown), firing treatment when manufactured as a new article (around 500 ° C), exhaust gas atmosphere exposure when treating exhaust gas (tens of thousands of hours at about 300-400 ° C), etc.) depending on the degree of thermal history of titanium oxide (TiO 2), sintering degree of titanium oxide (TiO 2) causes considerably advanced, than were fired at the same temperature as the manufacture of the new (500 ° C. so) is It was inferred that it was difficult to sinter until it had sufficient strength.

そこで、本発明者らは、使用済みの排ガス処理触媒を一旦粉砕した後に再び成型して焼成するときに、新規に排ガス処理触媒を製造するときよりも高い温度(615〜700℃)で行うことにより、焼結度合をより確実に進行させるようにしたのである。   Therefore, the inventors of the present invention perform the exhaust gas treatment catalyst at a higher temperature (615 to 700 ° C.) than when a new exhaust gas treatment catalyst is newly produced when it is once pulverized and then molded and fired again. As a result, the degree of sintering proceeds more reliably.

これにより、本実施形態に係る排ガス処理触媒10においては、後述する実施例からわかるように、全体にわたって十分な強度を発現することができるようになり、十分な脱硝性能を維持しながらフライアッシュの衝突による摩耗減肉を十分に抑制することが可能となった。   Thereby, in the exhaust gas treatment catalyst 10 according to the present embodiment, as can be seen from the examples described later, it becomes possible to express a sufficient strength over the whole, and fly ash while maintaining sufficient denitration performance. It has become possible to sufficiently suppress wear loss due to collision.

したがって、本実施形態によれば、一旦粉砕した後に再び成型して焼成することにより再生する場合であっても、耐久性を長期にわたって十分に維持することが確実にできる。   Therefore, according to the present embodiment, it is possible to ensure that the durability is sufficiently maintained over a long period of time even when the powder is once pulverized and then re-molded and fired.

なお、上記焼成温度が615℃未満であると、先に説明したように、酸化チタン(TiO2)の熱履歴によっては、全体にわたって十分な強度を発現することができない場合を生じてしまう一方、上記焼成温度が700℃を超えると、主原料の酸化チタン(TiO2)がアナターゼ型からルチル型への結晶構造の変化を生じるようになり、排ガス処理触媒が収縮して脱硝性能の低下を引き起こすようになってしまうことから、上記焼成を615〜700℃で行うことが好ましい。 In addition, as described above, when the firing temperature is less than 615 ° C., depending on the thermal history of titanium oxide (TiO 2 ), there may be cases where sufficient strength cannot be expressed throughout. When the calcination temperature exceeds 700 ° C., the main raw material titanium oxide (TiO 2 ) is changed in crystal structure from anatase type to rutile type, and the exhaust gas treatment catalyst contracts, thereby deteriorating the denitration performance. Therefore, it is preferable to perform the firing at 615 to 700 ° C.

また、上記粗粉砕工程S1においては、上述したように、使用済みの排ガス処理触媒11の全重量に対して70〜95重量%の範囲で上記粗片12を生じさせるように粗粉砕すると好ましい。なぜなら、粗粉砕により生じる上記粗片12が、使用済みの排ガス処理触媒11の全重量に対して70重量%未満であると、フライアッシュ等と共に廃棄処分してしまう排ガス処理触媒量が多過ぎて再生効率の低下を招いてしまい、再生コストが高くついてしまう一方、粗粉砕により生じる上記粗片12が、使用済みの排ガス処理触媒11の全重量に対して95重量%を超えると、再生された排ガス処理触媒14の内部に取り込まれてしまうフライアッシュ等の混在量が多くなってしまうおそれがあるからである。   In the coarse pulverization step S1, as described above, it is preferable to coarsely pulverize the coarse pieces 12 in a range of 70 to 95% by weight with respect to the total weight of the used exhaust gas treatment catalyst 11. This is because if the coarse pieces 12 produced by coarse pulverization are less than 70% by weight with respect to the total weight of the used exhaust gas treatment catalyst 11, the amount of exhaust gas treatment catalyst that is discarded together with fly ash or the like is too large. Regeneration efficiency is reduced, and the regeneration cost is increased. On the other hand, when the coarse pieces 12 generated by coarse pulverization exceed 95% by weight with respect to the total weight of the used exhaust gas treatment catalyst 11, the regeneration is performed. This is because the amount of fly ash or the like mixed into the exhaust gas treatment catalyst 14 may increase.

[他の実施形態]
なお、前述した実施形態においては、ハニカム形に成型した排ガス処理触媒10の場合について説明したが、本発明はこれに限らず、他の実施形態として、例えば、ペレット形やパイプ形等に成型した排ガス処理触媒の場合であっても、前述した実施形態の場合と同様にして適用することが可能である。
[Other Embodiments]
In the above-described embodiment, the case of the exhaust gas treatment catalyst 10 molded into a honeycomb shape has been described. However, the present invention is not limited to this, and as another embodiment, for example, a pellet shape or a pipe shape is molded. Even in the case of an exhaust gas treatment catalyst, it can be applied in the same manner as in the above-described embodiment.

また、前述した実施形態においては、石炭焚きボイラ等のような石炭を燃焼させる機器からの排ガスの排出ラインに配設される排ガス処理触媒10の場合について説明したが、本発明はこれに限らず、排ガス中の灰分が表面に付着や堆積してしまう排ガス処理触媒の場合であれば、前述した実施形態の場合と同様にして適用することが可能である。   Further, in the above-described embodiment, the case of the exhaust gas treatment catalyst 10 disposed in the exhaust line of exhaust gas from a device that burns coal such as a coal-fired boiler has been described, but the present invention is not limited thereto. In the case of an exhaust gas treatment catalyst in which ash in the exhaust gas adheres to or accumulates on the surface, it can be applied in the same manner as in the above-described embodiment.

本発明に係る排ガス処理触媒の再生方法及びこの方法を使用した排ガス処理触媒の効果を確認するために行った確認試験を以下に説明するが、本発明は以下に説明する確認試験のみに限定されるものではない。   The exhaust gas treatment catalyst regeneration method according to the present invention and the confirmation test conducted to confirm the effect of the exhaust gas treatment catalyst using this method will be described below. However, the present invention is limited only to the confirmation test described below. It is not something.

[試験例1]
〈試験体の作製〉
《試験体A1》
石炭焚きボイラの排ガスラインで約70000時間使用されたハニカム形(縦=150mm,横=150mm,長さ=800mm,壁の厚さ=1.15mm,ピッチ(隣り合う壁の中心同士の間の長さ)=7.4mm,目数(n)=20×20)の脱硝用の排ガス処理触媒A(TiO2=77.3%,WO3=9.00%,V25=0.55%,その他=13.15%)をクラッシャで粗粉砕して粗粉砕物aを得る。
[Test Example 1]
<Preparation of specimen>
<< Specimen A1 >>
Honeycomb shape used in an exhaust gas line of a coal fired boiler (length = 150 mm, width = 150 mm, length = 800 mm, wall thickness = 1.15 mm, pitch (length between adjacent wall centers) ) = 7.4 mm, scale (n) = 20 × 20) denitration exhaust gas treatment catalyst A (TiO 2 = 77.3%, WO 3 = 9.00%, V 2 O 5 = 0.55) %, Others = 13.15%) is roughly pulverized with a crusher to obtain a coarsely pulverized product a.

次に、上記粗粉砕物aを篩(メッシュサイズ(日本工業規格(JIS)で規定された呼び寸法)=0.5mm)で篩い分けし、篩上に残った粗片をハンマーミルで微粉砕(平均粒径=約20μm)し、得られた微粉体(15kg)と有機バインダ(0.7kg)とガラス繊維(1.5kg(直径=11μm,長さ=3mm))と水(適量)とをニーダで混練りして均一に混合し、得られた混練物を押出成形機に供給してハニカム形(縦=69mm,横=69mm,長さ=800mm,目ピッチ=7.4mm、目開き=6.25mm,目数(n)=9×9)の排ガス処理触媒の原型を作製し、この原型を充分に自然乾燥させてから熱風乾燥(100℃×5時間)して、焼成炉で焼成処理(500℃×3時間)することにより、再生した排ガス処理触媒の試験体A1を得た。   Next, the coarsely pulverized product a is sieved with a sieve (mesh size (nominal size specified in Japanese Industrial Standard (JIS)) = 0.5 mm), and the coarse pieces remaining on the sieve are finely pulverized with a hammer mill. (Average particle size = about 20 μm), the obtained fine powder (15 kg), organic binder (0.7 kg), glass fiber (1.5 kg (diameter = 11 μm, length = 3 mm)) and water (appropriate amount) Are kneaded with a kneader and mixed uniformly, and the obtained kneaded product is supplied to an extrusion molding machine to form a honeycomb (length = 69 mm, width = 69 mm, length = 800 mm, mesh pitch = 7.4 mm, mesh opening) = 6.25 mm, scale (n) = 9 x 9) prototype of exhaust gas treatment catalyst was prepared, and this prototype was sufficiently air-dried and then dried with hot air (100 ° C x 5 hours). Regenerated exhaust gas treatment catalyst by firing treatment (500 ° C x 3 hours) The test body A1 of the medium was obtained.

《試験体B1》
石炭焚きボイラの排ガスラインで約45000時間使用されたハニカム形(縦=150mm,横=150mm,長さ=800mm,壁の厚さ=1.15mm,ピッチ(隣り合う壁の中心同士の間の長さ)=7.4mm,目数(n)=20×20)の脱硝用の排ガス処理触媒B(TiO2=79.0%,WO3=8.10%,V25=0.40%,その他=12.50%)をクラッシャで粗粉砕して粗粉砕物bを得る。
<< Specimen B1 >>
Honeycomb shape (length = 150 mm, width = 150 mm, length = 800 mm, wall thickness = 1.15 mm, pitch (length between adjacent wall centers) used for about 45,000 hours in a coal fired boiler exhaust line ) = 7.4 mm, scale (n) = 20 × 20) exhaust gas treatment catalyst B for denitration (TiO 2 = 79.0%, WO 3 = 8.10%, V 2 O 5 = 0.40) %, Other = 12.50%) is roughly pulverized with a crusher to obtain a coarsely pulverized product b.

次に、上記粗粉砕物bを上記試験体A1の上記粗粉砕物aと同様に処理することにより、再生した排ガス処理触媒の試験体B1を得た。   Next, the coarsely pulverized product b was treated in the same manner as the coarsely pulverized product a of the test body A1, thereby obtaining a regenerated exhaust gas treatment catalyst test body B1.

《試験体C1》
石炭焚きボイラの排ガスラインで約40000時間使用されたハニカム形(縦=150mm,横=150mm,長さ=800mm,壁の厚さ=1.15mm,ピッチ(隣り合う壁の中心同士の間の長さ)=7.4mm,目数(n)=20×20)の脱硝用の排ガス処理触媒C(TiO2=81.0%,WO3=8.00%,V25=0.60%,その他=10.40%)をクラッシャで粗粉砕して粗粉砕物cを得る。
<< Specimen C1 >>
Honeycomb shape used for about 40,000 hours in a coal-fired boiler exhaust line (length = 150 mm, width = 150 mm, length = 800 mm, wall thickness = 1.15 mm, pitch (length between adjacent wall centers) ) = 7.4 mm, scale (n) = 20 × 20) exhaust gas treatment catalyst C for denitration (TiO 2 = 81.0%, WO 3 = 8.00%, V 2 O 5 = 0.60) %, Others = 10.40%) is roughly pulverized with a crusher to obtain a coarsely pulverized product c.

次に、上記粗粉砕物cを上記試験体A1の上記粗粉砕物aと同様に処理することにより、再生した排ガス処理触媒の試験体C1を得た。   Next, the coarsely pulverized product c was treated in the same manner as the coarsely pulverized product a of the test body A1, thereby obtaining a regenerated exhaust gas treatment catalyst test body C1.

〈試験方法〉
《脱硝率》
上記試験体A1〜C1からそれぞれ切断した(目数(n)=6×7,長さ=800mm)2本を反応器に充填して、下記に示す条件で脱硝率をそれぞれ求めた。
<Test method>
《Denitration rate》
Two reactors (number of eyes (n) = 6 × 7, length = 800 mm) cut from the specimens A1 to C1 were filled in the reactor, and the denitration rate was determined under the conditions shown below.

*試験条件
・排ガス組成−NOx:150ppm
NH3:150ppm
SO2:800ppm
2:4%
CO2:12.5%
2O:11.5%
2:バランス
・排ガス温度:380℃
・排ガス量:19.63Nm3/hr
・Ugs:2.3Nm/sec
・AV:11.63Nm3/m2・hr
* Test conditions, exhaust gas composition -NO x: 150ppm
NH 3 : 150 ppm
SO 2 : 800 ppm
O 2 : 4%
CO 2 : 12.5%
H 2 O: 11.5%
N 2 : Balance, exhaust gas temperature: 380 ° C
・ Exhaust gas amount: 19.63 Nm 3 / hr
・ U gs : 2.3 Nm / sec
・ AV: 11.63Nm 3 / m 2・ hr

・脱硝率(%)={1−(触媒出口NOx濃度/触媒入口NOx濃度)}×100 NOx removal rate (%) = {1− (catalyst outlet NO x concentration / catalyst inlet NO x concentration)} × 100

《摩耗率》
上記試験体A1〜C1からそれぞれ切断した(目数(n)=6×6,長さ=100mm)1本を横型の反応器に充填し、硅砂(平均粒子径=37μm)を含ませたガス(含有濃度=70g/m3)を下記に示す条件で水平方向に向けて流通させることにより、摩耗率をそれぞれ求めた。
《Abrasion rate》
One gas (number (n) = 6 × 6, length = 100 mm) cut from each of the specimens A1 to C1 was filled in a horizontal reactor, and gas containing dredged sand (average particle size = 37 μm) was contained. The wear rate was determined by circulating (concentration = 70 g / m 3 ) in the horizontal direction under the following conditions.

*試験条件
・温度:20℃
・圧力:大気圧
・流速(触媒断面当り):40m/sec
・流通時間:30分間
* Test conditions and temperature: 20 ° C
・ Pressure: Atmospheric pressure ・ Flow velocity (per catalyst cross section): 40 m / sec
・ Distribution time: 30 minutes

・摩耗率(%)={(W0−W)/W0}×100
ただし、W0は試験前の触媒重量、Wは試験後の触媒重量である。
Wear rate (%) = {(W 0 −W) / W 0 } × 100
However, W 0 is the catalyst weight before the test, and W is the catalyst weight after the test.

〈試験結果〉
上記脱硝率試験及び上記摩耗率試験の試験結果を下記の表1に示す。
<Test results>
The test results of the denitration rate test and the wear rate test are shown in Table 1 below.

Figure 0005374441
Figure 0005374441

上記表1からわかるように、脱硝率は、すべての試験体A1〜C1において十分な性能を発現することができた。これに対し、摩耗率は、試験体A1において十分な性能(基準値:15%以下)を発現することができたものの、試験体B1,C1において十分な性能(基準値:15%以下)を発現することができなかった。この理由は、先にも説明したように定かではないが、主原料の酸化チタン(TiO2)のトータルとしての熱履歴の相違に基づくものではないかと推察している。 As can be seen from Table 1 above, the denitration rate was able to express sufficient performance in all the specimens A1 to C1. On the other hand, the wear rate was able to express sufficient performance (reference value: 15% or less) in the specimen A1, but sufficient performance (reference value: 15% or less) in the specimens B1 and C1. It could not be expressed. Although this reason is not certain as explained above, it is presumed that it is based on the difference in the thermal history as a total of the main raw material titanium oxide (TiO 2 ).

[試験例2]
〈試験体の作製〉
前記試験例1で得られた前記粗粉砕物b,cを用いて、焼成条件を変更(温度:550℃、600℃、650℃、700℃、750℃の各温度、焼成時間:5時間)する以外は前記試験例1と同様に処理することにより、試験体B2〜B6,C2〜C6をそれぞれ作製した。
[Test Example 2]
<Preparation of specimen>
Using the coarsely pulverized products b and c obtained in Test Example 1, the firing conditions were changed (temperatures: 550 ° C., 600 ° C., 650 ° C., 700 ° C., and 750 ° C., firing time: 5 hours). Specimens B2 to B6 and C2 to C6 were produced by treating in the same manner as in Test Example 1 except that.

〈試験方法〉
前記試験例1の場合と同様にして上記試験体B2〜B6,C2〜C6の脱硝率及び摩耗率をそれぞれ求めた。
<Test method>
In the same manner as in Test Example 1, the denitration rate and the wear rate of the specimens B2 to B6 and C2 to C6 were determined.

〈試験結果〉
上記脱硝率試験及び上記摩耗率試験の試験結果を下記の表2に示すと共に、焼成温度と摩耗率との関係を求めたグラフを図3に示す。
<Test results>
The test results of the denitration rate test and the wear rate test are shown in Table 2 below, and a graph showing the relationship between the firing temperature and the wear rate is shown in FIG.

Figure 0005374441
Figure 0005374441

上記表2からわかるように、試験体B6,C6は、焼成温度が高過ぎて(750℃)、主原料の酸化チタン(TiO2)がアナターゼ型からルチル型への結晶構造の変化を生じることにより、焼結度合が進み過ぎて収縮してしまい、触媒としての機能を発現できる状態ではなかった。 As can be seen from Table 2 above, the specimens B6 and C6 have a firing temperature that is too high (750 ° C.), and the main raw material titanium oxide (TiO 2 ) causes a change in crystal structure from anatase type to rutile type. As a result, the degree of sintering progressed too much and contracted, and it was not in a state where the function as a catalyst could be expressed.

他方、試験体B2〜B5,C2〜C5は、脱硝率において十分な性能を発現できることが確認された。   On the other hand, it was confirmed that the test bodies B2 to B5 and C2 to C5 can express sufficient performance in the denitration rate.

そして、図3の記載からわかるように、焼成温度が615℃以上であると、摩耗率において十分な性能(15%以下)を発現できることが確認された。   As can be seen from the description of FIG. 3, it was confirmed that sufficient performance (15% or less) in terms of wear rate could be exhibited when the firing temperature was 615 ° C. or higher.

本発明に係る排ガス処理触媒の再生方法及びこの方法を使用した排ガス処理触媒は、各種産業において極めて有益に利用することができる。   The method for regenerating an exhaust gas treatment catalyst according to the present invention and the exhaust gas treatment catalyst using this method can be used extremely beneficially in various industries.

10 排ガス処理触媒
10a 孔
10 Exhaust gas treatment catalyst 10a Hole

Claims (6)

表面に灰分が付着した排ガス処理触媒の再生方法であって、
使用済みの前記排ガス処理触媒の全重量に対して70〜95重量%の範囲で閾値サイズS超の粗片を生じさせるように、使用済みの当該排ガス処理触媒を粗粉砕する粗粉砕工程と、
粗粉砕された前記排ガス処理触媒を前記粗片と前記閾値サイズS以下の細粉とに分離する分離工程と、
分離された前記粗片を微粉体とするように微粉砕する微粉砕工程と、
微粉砕された前記微粉体を原料として排ガス処理触媒に成型加工する成型工程と、
成型された上記排ガス処理触媒の原型を615〜700℃の温度で焼成処理する焼成工程と
を行うことを特徴とする排ガス処理触媒の再生方法。
ただし、前記閾値サイズSは、0.105mm以上1.0mm以下のある値である。
A method for regenerating an exhaust gas treatment catalyst with ash on the surface,
Range of 70 to 95% by weight relative to the total weight of the used of the exhaust gas treatment catalyst to produce a threshold size S than the coarse pieces, and coarse grinding step for coarse crushing the used of the exhaust gas treatment catalyst,
A separation step of separating the crude crushed the exhaust gas treatment catalyst and the coarse pieces and the threshold size S less fine powder,
A pulverizing step of pulverizing the separated coarse pieces into fine powder;
A molding step of molding the finely pulverized fine powder as a raw material into an exhaust gas treatment catalyst;
A method for regenerating an exhaust gas treatment catalyst, comprising: performing a calcining step of calcining the molded prototype of the exhaust gas treatment catalyst at a temperature of 615 to 700 ° C.
However, the threshold size S is a certain value between 0.105 mm and 1.0 mm .
請求項1に記載の排ガス処理触媒の再生方法において、
前記排ガス処理触媒が、酸化チタンを主原料とするものである
ことを特徴とする排ガス処理触媒の再生方法。
In the regeneration method of the exhaust gas treatment catalyst according to claim 1,
The method for regenerating an exhaust gas treatment catalyst, wherein the exhaust gas treatment catalyst is mainly composed of titanium oxide.
請求項2に記載の排ガス処理触媒の再生方法において、
前記排ガス処理触媒が、燃焼した石炭からの排ガスを処理するものである
ことを特徴とする排ガス処理触媒の再生方法。
In the regeneration method of the exhaust gas treatment catalyst according to claim 2,
A method for regenerating an exhaust gas treatment catalyst, wherein the exhaust gas treatment catalyst treats exhaust gas from burned coal.
請求項3に記載の排ガス処理触媒の再生方法において、
前記排ガス処理触媒が、前記排ガス中の窒素酸化物を処理するものである
ことを特徴とする排ガス処理触媒の再生方法。
In the regeneration method of the exhaust gas treatment catalyst according to claim 3,
The exhaust gas treatment catalyst treats nitrogen oxides in the exhaust gas. A method for regenerating an exhaust gas treatment catalyst.
請求項1から請求項のいずれか一項に記載の排ガス処理触媒の再生方法において、
前記微粉砕工程が、前記微粉体の平均粒径を0.1mm以下とするように、前記粗片を微粉砕する工程である
ことを特徴とする排ガス処理触媒の再生方法。
In the regeneration method of the exhaust gas treatment catalyst according to any one of claims 1 to 4 ,
The method for regenerating an exhaust gas treatment catalyst, wherein the fine pulverization step is a step of finely pulverizing the coarse pieces so that an average particle size of the fine powder is 0.1 mm or less.
請求項1から請求項のいずれか一項に記載の排ガス処理触媒の再生方法により再生されたものである
ことを特徴とする排ガス処理触媒。
An exhaust gas treatment catalyst regenerated by the method for regenerating an exhaust gas treatment catalyst according to any one of claims 1 to 5 .
JP2010113805A 2010-05-18 2010-05-18 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method Active JP5374441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113805A JP5374441B2 (en) 2010-05-18 2010-05-18 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113805A JP5374441B2 (en) 2010-05-18 2010-05-18 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method

Publications (2)

Publication Number Publication Date
JP2011240236A JP2011240236A (en) 2011-12-01
JP5374441B2 true JP5374441B2 (en) 2013-12-25

Family

ID=45407461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113805A Active JP5374441B2 (en) 2010-05-18 2010-05-18 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method

Country Status (1)

Country Link
JP (1) JP5374441B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722559A (en) * 2015-03-05 2015-06-24 无锡华光新动力环保科技股份有限公司 Recovering treatment method of waste-flue-gas denitration catalyst
CN104889143A (en) * 2015-06-02 2015-09-09 无锡华光新动力环保科技股份有限公司 Improved recycling method for waste flue gas denitrification catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038037A (en) * 1983-08-11 1985-02-27 Nippon Shokubai Kagaku Kogyo Co Ltd Regeneration of denitrification catalyst
US6872679B2 (en) * 2002-09-20 2005-03-29 Arco Chemical Technology, L.P. Heterogeneous catalyst regeneration
JP2005342623A (en) * 2004-06-03 2005-12-15 Osada Giken Co Ltd Method for reactivating titanium oxide catalyst
JP5308083B2 (en) * 2008-02-29 2013-10-09 三菱重工業株式会社 Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method

Also Published As

Publication number Publication date
JP2011240236A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5308083B2 (en) Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method
KR101420199B1 (en) Pluggage removal method for scr catalysts and systems
JP5535769B2 (en) Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method
JP5374441B2 (en) Exhaust gas treatment catalyst regeneration method and exhaust gas treatment catalyst using this method
JP6441140B2 (en) Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder
EP2384807B1 (en) Nox reduction catalyst for high-temperature exhaust gas, method for producing same, and method for reducing nox in high-temperature exhaust gas
KR101246271B1 (en) Method of recycling waste denitrification catalyst
EP3256236B1 (en) Method for purifying exhaust gases during the thermal processing of mineral materials
JP2002119858A (en) Method for manufacturing catalyst for selective catalytic reduction of nitrogen oxide at high temperature
JP2005126317A (en) Method for manufacturing honeycomb structure and honeycomb structure
JP2005342711A (en) Denitration method of diesel engine exhaust gas
CN1771300A (en) Titanium dioxide scouring media and method of production
CN107262106A (en) A kind of catalyst and its preparation method and application
KR102081628B1 (en) A Method for Manufacturing SCR Catalyst Using Waste SCR Catalyst
JP4177661B2 (en) Method for producing exhaust gas treatment catalyst
JP4084658B2 (en) Method for producing exhaust gas treatment catalyst
JP2006075834A (en) Exhaust gas treatment method and catalyst carrying ceramic filter
JP2004130179A (en) Catalyst and method for decomposing chlorinated organic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R151 Written notification of patent or utility model registration

Ref document number: 5374441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350