JP5374109B2 - Heating vacuum processing method - Google Patents

Heating vacuum processing method Download PDF

Info

Publication number
JP5374109B2
JP5374109B2 JP2008268587A JP2008268587A JP5374109B2 JP 5374109 B2 JP5374109 B2 JP 5374109B2 JP 2008268587 A JP2008268587 A JP 2008268587A JP 2008268587 A JP2008268587 A JP 2008268587A JP 5374109 B2 JP5374109 B2 JP 5374109B2
Authority
JP
Japan
Prior art keywords
temperature
processed
heating
processing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008268587A
Other languages
Japanese (ja)
Other versions
JP2010097854A (en
Inventor
剛 吉元
克己 山根
貴浩 溝口
哲宏 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008268587A priority Critical patent/JP5374109B2/en
Publication of JP2010097854A publication Critical patent/JP2010097854A/en
Application granted granted Critical
Publication of JP5374109B2 publication Critical patent/JP5374109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Control Of Resistance Heating (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise a temperature of a heating lamp without generating an inrush current and noise. <P>SOLUTION: When the temperature of the heating lamp 15 is raised from room temperature, it is raised by using a phase control from the room temperature up to a change temperature and by using a cycle control from the change temperature up to a treatment temperature. When the temperature of the heating lamp 15 is lowered from the treatment temperature to the minimum temperature lower than the change temperature, it is raised up to the treatment temperature by the cycle control. When a filament of the heating lamp is at the room temperature wherein it has a low resistance, the inrush current is not generated since the phase control is used, and when the filament of the heating lamp is at a higher temperature than the change temperature, the noise is not generated since the cycle control is used. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、スパッタリング処理、蒸着処理、エッチング処理等の、処理対象物を真空雰囲気内で加熱しながら処理する加熱真空処理方法に関し、特に、加熱ランプで処理対象物を加熱する技術に関する。   The present invention relates to a heating vacuum processing method for processing a processing target object in a vacuum atmosphere, such as a sputtering process, a vapor deposition process, and an etching process, and more particularly to a technique for heating the processing target object with a heating lamp.

半導体ウェハや液晶ガラス基板を処理対象物とし、スパッタリングや蒸着によって処理対象物に薄膜を形成したり、又はエッチング等によって処理対象物上の薄膜をパターニングするようなことが行われている。   A semiconductor wafer or a liquid crystal glass substrate is used as a processing target, and a thin film is formed on the processing target by sputtering or vapor deposition, or a thin film on the processing target is patterned by etching or the like.

このような処理をする際、処理対象物は加熱され、加熱真空処理が行われるが、通電によって発熱する抵抗発熱体を加熱装置として用いる他、処理対象物として離れた位置に配置できる加熱ランプが加熱装置として用いられている。   When such treatment is performed, the object to be treated is heated and subjected to heat vacuum treatment. In addition to using a resistance heating element that generates heat by energization as a heating device, a heating lamp that can be disposed as a treatment object is provided. It is used as a heating device.

加熱ランプの場合、180度全期間導通している半波と180度全期間遮断されている半波とを組み合わせたサイクル制御によって通電量を制御し、処理対象物を所定の処理温度に加熱して加熱真空処理を行っている。   In the case of a heating lamp, the energization amount is controlled by cycle control that combines a half-wave that is conductive for the entire period of 180 degrees and a half-wave that is blocked for the entire period of 180 degrees, and the object to be processed is heated to a predetermined processing temperature. Heat vacuum processing is performed.

しかしながら、加熱真空処理が行われる真空槽内で処理対象物を保持する保持具を含み、それらの他に加熱ランプが室温にある状態でサイクル制御を行うと大きな突入電流が流れてしまい、制御装置や加熱電源が破壊したりすることがある。
尚、抵抗加熱コイルの通電量を制御する加熱方法としては下記特許文献1が公知であり、加熱ランプで加熱する加熱方法としては下記特許文献2が公知である。
特開平10−294285号公報 特開2002−190452号公報
However, including a holder for holding the object to be processed in a vacuum chamber in which heat vacuum processing is performed, and in addition to those, if a cycle control is performed while the heating lamp is at room temperature, a large inrush current flows, and the control device Or the heating power supply may be destroyed.
The following Patent Document 1 is known as a heating method for controlling the energization amount of the resistance heating coil, and the following Patent Document 2 is known as a heating method for heating with a heating lamp.
JP-A-10-294285 JP 2002-190552 A

加熱ランプが加熱されていて熱線が放射されている場合は加熱ランプの抵抗値は高いが、加熱ランプの温度が室温にある状態では加熱ランプの抵抗値が低いため、室温にある加熱ランプの温度を上昇させる場合に突入電流が発生する原因は、このような抵抗値が低いためであり、特に、交流電圧の半波を加熱ランプに印加するサイクル制御を行っている場合、半波の電圧のピーク位置の大きな電圧が印加されるときに突入電流が生じることが分かった。   When the heating lamp is heated and heat rays are radiated, the resistance value of the heating lamp is high, but when the temperature of the heating lamp is at room temperature, the resistance value of the heating lamp is low, so the temperature of the heating lamp at room temperature The reason why the inrush current is generated when the voltage is increased is that such a resistance value is low. Particularly, when the cycle control in which the half wave of the AC voltage is applied to the heating lamp is performed, the voltage of the half wave is reduced. It was found that an inrush current occurs when a large voltage at the peak position is applied.

他方、半波の一部を導通させる位相制御を行う場合、半波のピーク位置以降を部分的に導通させると突入電流は発生しないが、電圧が印加されている状態で遮断から導通に転じるため、ノイズが生じてしまう不都合があった。
このノイズは高調波として、供給電源側に影響を与え、当装置のみならず、他の機器への影響を与える懸念がある。
On the other hand, when performing phase control for conducting a part of the half-wave, inrush current does not occur if the part after the peak position of the half-wave is partially conducted, but the circuit switches from interruption to conduction while voltage is applied. There was a disadvantage that noise was generated.
This noise, as a harmonic, affects the supply power supply side, and there is a concern of affecting not only this apparatus but also other devices.

上記課題を解決するため、本発明は、真空槽内に処理対象物を搬入し、前記真空槽内で保持具によって処理対象物を保持し、加熱電源が出力する交流電圧を制御装置によって制御して加熱ランプに印加し、前記加熱ランプから熱線を放射させ、真空雰囲気にされた前記真空槽内に配置された前記処理対象物と前記保持具に照射して加熱し、前記処理対象物を真空処理する加熱真空処理方法であって、予め、室温より高い最低温度と、前記最低温度よりも高い処理温度と、前記最低温度と前記処理温度の間の変更温度とを設定しておき、前記処理対象物の温度をセンサによって測定し、測定した前記処理対象物の温度が室温にある場合は、前記処理対象物が前記変更温度に達するまで、180度の途中から導通させる半波長の一部を組み合わせた位相制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させ、測定した前記処理対象物の温度が前記変更温度に達した後は、180度全期間導通している半波と180度全期間遮断されている半波とを組み合わせたサイクル制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させて変更温度以上に昇温させ、前記処理温度にして真空処理を行う加熱真空処理方法である。
また、本発明は、前記位相制御では、前記加熱ランプの通電時間が長くなるようにし、前記サイクル制御では、180度全期間導通している半波の割合が増加するようにする加熱真空処理方法である。
また、本発明は、真空槽内に処理対象物を搬入し、前記真空槽内で保持具によって処理対象物を保持し、加熱電源が出力する交流電圧を制御装置によって制御して加熱ランプに印加し、前記加熱ランプから熱線を放射させ、真空雰囲気にされた前記真空槽内に配置された前記処理対象物と前記保持具に照射して加熱し、前記処理対象物を真空処理する加熱真空処理方法であって、予め、室温より高い最低温度と、前記最低温度よりも高い処理温度と、前記最低温度と前記処理温度の間の変更温度とを設定しておき、前記処理対象物の温度をセンサによって測定し、前記処理対象物の温度が室温にある場合は、前記処理対象物が前記変更温度に達するまで、180度の途中から導通させる半波長の一部を組み合わせた位相制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させ、変更温度に達した後は、180度全期間導通している半波と180度全期間遮断されている半波とを組み合わせたサイクル制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させて変更温度以上に昇温させ、前記処理温度にして真空処理を行う加熱真空処理方法であり、前記処理対象物が前記最低温度よりも高い温度から前記最低温度よりも低い温度に降温したことが前記センサによって測定されると、前記サイクル制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させる加熱真空処理方法である。
また、本発明は、前記センサを前記保持具又は前記真空槽に取り付けておき、前記保持具又は前記真空槽の温度を測定して前記処理対象物の温度とする加熱真空処理方法である。
In order to solve the above-described problems, the present invention carries a processing object into a vacuum chamber, holds the processing target with a holder in the vacuum chamber, and controls the AC voltage output from the heating power source by a control device. Applied to the heating lamp, radiates heat rays from the heating lamp, irradiates and heats the object to be processed and the holder disposed in the vacuum chamber in a vacuum atmosphere, and vacuums the object to be processed. A heating vacuum processing method for processing, wherein a minimum temperature higher than room temperature, a processing temperature higher than the minimum temperature, and a change temperature between the minimum temperature and the processing temperature are set in advance, and the processing measuring the temperature of the object by the sensor, when the temperature of the processing object was measured in room temperature, until said processing object reaches the changing temperature, some of the half-wave for conducting the middle of 180 degrees combination Allowed to warm to the processing object by controlling the radiation of heat rays of the heating lamp by phase control, after the temperature of the processing object of measurement has reached the change temperature, 180 degrees entire period conductive to have half The temperature of the object to be processed is increased by controlling the radiation of the heat rays of the heating lamp by cycle control combining a wave and a half-wave that is cut off for a whole period of 180 degrees, and the processing temperature is increased. This is a heating vacuum processing method for performing vacuum processing.
Further, the present invention provides a heating vacuum processing method in which the energizing time of the heating lamp is lengthened in the phase control, and the ratio of a half wave that is conductive for 180 degrees in the cycle control is increased in the cycle control. It is.
In the present invention, the object to be processed is carried into the vacuum chamber, the object to be processed is held by the holder in the vacuum chamber, and the AC voltage output from the heating power source is controlled by the control device and applied to the heating lamp. The heating lamp radiates heat rays from the heating lamp, irradiates and heats the object to be processed and the holder disposed in the vacuum chamber in a vacuum atmosphere, and heats and vacuums the object to be processed In this method, a minimum temperature higher than room temperature, a processing temperature higher than the minimum temperature, and a change temperature between the minimum temperature and the processing temperature are set in advance, and the temperature of the processing object is set. When the temperature of the object to be processed is measured at a sensor and the temperature of the object to be processed is room temperature, the heating is performed by phase control that combines a part of a half wavelength that conducts from the middle of 180 degrees until the object to be processed reaches the change temperature. The temperature of the object to be processed is controlled by controlling the radiation of the heat rays of the amplifier, and after the change temperature is reached, the half wave that is conducted for the entire period of 180 degrees and the half wave that is blocked for the entire period of 180 degrees are combined A heating vacuum processing method for controlling the radiation of the heat rays of the heating lamp by cycle control to raise the temperature of the object to be processed to a temperature higher than the change temperature, and performing vacuum treatment at the treatment temperature, When the sensor determines that the object has fallen from a temperature higher than the minimum temperature to a temperature lower than the minimum temperature, the processing object is controlled by controlling the radiation of the heat ray of the heating lamp by the cycle control. This is a heating vacuum processing method for raising the temperature.
Moreover, this invention is the heating vacuum processing method which attaches the said sensor to the said holder or the said vacuum chamber, measures the temperature of the said holder or the said vacuum chamber, and makes it the temperature of the said process target object.

加熱ランプの温度が低く、低抵抗の場合に位相制御によって加熱されるため、突入電流が発生せず、加熱ランプが昇温した後はサイクル制御によって加熱ランプを昇温させるため、ノイズが生じなくなる。   Since the heating lamp is heated by phase control when the temperature is low and the resistance is low, no inrush current is generated, and after the heating lamp is heated, the heating lamp is heated by cycle control, so noise is not generated. .

先ず、加熱ランプを使用する本発明方法を説明する。
図1の符号1は成膜装置であり、搬入室11と、加熱室12と、処理室13と、搬出室14を有している。
各室11〜14は、真空槽51〜54を有しており、各真空槽51〜54には真空排気系21〜24が接続され、それぞれ個別に真空排気できるようにされている。
First, the method of the present invention using a heating lamp will be described.
Reference numeral 1 in FIG. 1 denotes a film forming apparatus, which includes a carry-in chamber 11, a heating chamber 12, a processing chamber 13, and a carry-out chamber 14.
Each chamber 11-14 has vacuum tanks 51-54, and the vacuum exhaust systems 21-24 are connected to each vacuum tank 51-54 so that each vacuum exhaust can be carried out individually.

この成膜装置1では、真空雰囲気中で、半導体基板や液晶ガラス基板等の処理対象物を加熱室12の真空槽内で加熱した後、処理室13の真空槽53内で表面に薄膜を形成するようになっている。   In the film forming apparatus 1, a processing target such as a semiconductor substrate or a liquid crystal glass substrate is heated in a vacuum chamber of the heating chamber 12 in a vacuum atmosphere, and then a thin film is formed on the surface in the vacuum chamber 53 of the processing chamber 13. It is supposed to be.

そのような加熱真空処理方法を説明すると、先ず、予め加熱室12の真空槽52内と処理室13の真空槽53内を真空排気しておき、搬入室11の真空槽51内に処理対象物を搬入した後、搬入室11の真空槽51を真空排気し、搬入室11と加熱室12の真空槽51、52を接続し、処理対象物を加熱室12の真空槽52内に搬入する。   The heating vacuum processing method will be described. First, the inside of the vacuum chamber 52 of the heating chamber 12 and the vacuum chamber 53 of the processing chamber 13 are evacuated in advance, and the object to be processed is placed in the vacuum chamber 51 of the carry-in chamber 11. Then, the vacuum chamber 51 in the carry-in chamber 11 is evacuated, the vacuum chambers 51 and 52 in the heating chamber 12 are connected, and the object to be processed is carried into the vacuum chamber 52 in the heating chamber 12.

加熱室12の真空槽52内では、加熱ランプ15が天井側と底面側に複数ずつ配置されており、天井側と底面側の加熱ランプ15の間の位置に処理対象物を保持する保持具18が配置されている。搬入された処理対象物は保持具18に保持させる。   In the vacuum chamber 52 of the heating chamber 12, a plurality of heating lamps 15 are arranged on the ceiling side and the bottom surface side, and the holder 18 that holds the object to be processed at a position between the heating lamps 15 on the ceiling side and the bottom surface side. Is arranged. The loaded processing object is held by the holder 18.

図1の符号7は、処理対象物であり、加熱ランプ15は処理対象物7の表面側と裏面側に平行に配置されている。
加熱ランプ15の構成は図3に示す。加熱ランプ15は細長いガラス管31と、ガラス管31内に配置されたフィラメント32を有しており、細長いガラス管31の両端には個別電極33が配置され、フィラメント32の両端はそれぞれ個別電極33に結線されている。
Reference numeral 7 in FIG. 1 is a processing object, and the heating lamp 15 is arranged in parallel on the front surface side and the back surface side of the processing object 7.
The configuration of the heating lamp 15 is shown in FIG. The heating lamp 15 includes an elongated glass tube 31 and a filament 32 disposed in the glass tube 31, and individual electrodes 33 are disposed at both ends of the elongated glass tube 31, and the individual electrodes 33 are disposed at both ends of the filament 32. It is connected to.

図4に示すように、複数の規定本数(ここでは4本)の加熱ランプ15の個別電極33は、それぞれ共通電極34に結線され、並列にまとめられてモジュール16が構成されている。
このモジュール16は加熱室12内に複数配置されており、複数本配置された加熱ランプ15と処理対象物7の位置関係は図2に示す。加熱ランプ15によって処理対象物7の両面が覆われるように複数のモジュール16が配置されている。
As shown in FIG. 4, the individual electrodes 33 of a plurality of prescribed numbers (here, 4) of heating lamps 15 are respectively connected to a common electrode 34 and are arranged in parallel to constitute a module 16.
A plurality of modules 16 are arranged in the heating chamber 12, and the positional relationship between the plurality of heating lamps 15 arranged and the processing object 7 is shown in FIG. A plurality of modules 16 are arranged so that both surfaces of the processing object 7 are covered by the heating lamp 15.

モジュール16を二個一組とし、この一組に二台の制御装置17と、一台の電圧変換装置27が設けられている。
電圧変換装置27は一次巻線41と二次巻線42を有しており、加熱電源29は一次巻線41の両端に結線され、加熱電源29が出力する交流電圧は一次巻線41の両端に印加されている。
Two modules 16 are made into one set, and two sets of control devices 17 and one set of voltage converters 27 are provided in this set.
The voltage converter 27 has a primary winding 41 and a secondary winding 42, the heating power supply 29 is connected to both ends of the primary winding 41, and the AC voltage output from the heating power supply 29 is applied to both ends of the primary winding 41. Is applied.

一次巻線41と二次巻線42は磁気結合されており、一次巻線41に印加された交流電圧によって二次巻線42に交流電圧が誘起される。
二次巻線42の両端は、別の制御装置17を介して、一台のモジュール16の一方の共通電極34にそれぞれ接続されている。
The primary winding 41 and the secondary winding 42 are magnetically coupled, and an AC voltage is induced in the secondary winding 42 by the AC voltage applied to the primary winding 41.
Both ends of the secondary winding 42 are respectively connected to one common electrode 34 of one module 16 via another control device 17.

各モジュール16の他方の共通電極34は、各モジュール16が制御装置17を介して接続された端子とは反対側の二次巻線42の端子に結線されており、モジュール16と制御装置17との直列回路が二次巻線42の両端に接続され、二次巻線42に誘起された電圧が、モジュール16と制御装置17との直列回路に印加されるように構成されている。   The other common electrode 34 of each module 16 is connected to the terminal of the secondary winding 42 opposite to the terminal to which each module 16 is connected via the control device 17. Is connected to both ends of the secondary winding 42, and the voltage induced in the secondary winding 42 is applied to the series circuit of the module 16 and the control device 17.

二次巻線42はセンタータップ(二次巻線42の中央部分)28が取り出され、該センタータップ28は接地電位に接続されている。
センタータップ28の電圧は、二次巻線42の両端の間の電圧の1/2の電圧になるようにされており、従って、二次巻線42の両端に電圧Vが誘起されたときには、二次巻線42の一端は+V/2の電位になり、他端は−V/2の電位なるように構成されている。
A center tap (center portion of the secondary winding 42) 28 is taken out from the secondary winding 42, and the center tap 28 is connected to the ground potential.
The voltage of the center tap 28 is set to be half the voltage across the secondary winding 42. Therefore, when the voltage V is induced across the secondary winding 42, One end of the secondary winding 42 is configured to have a potential of + V / 2, and the other end is configured to have a potential of −V / 2.

制御装置17内には両方向スイッチ43が設けられており、後述するようにこの両方向スイッチ43が導通したときに、加熱電源29が出力した交流電圧の全部又は一部が電圧変換装置27で変換され、加熱ランプ15の両端には、+V/2と−V/2の電圧が印加される。   A bidirectional switch 43 is provided in the control device 17, and all or part of the AC voltage output from the heating power supply 29 is converted by the voltage conversion device 27 when the bidirectional switch 43 is turned on as will be described later. The voltages of + V / 2 and -V / 2 are applied to both ends of the heating lamp 15.

加熱室12の真空槽52は接地電位に接続されており、加熱ランプ15や制御装置17と真空槽52の間には、大きさがVの電位差は発生せず、最大±V/2の電位差であるので、真空槽52と加熱ランプ15等の間に放電が発生しないようになっている。   The vacuum chamber 52 of the heating chamber 12 is connected to the ground potential, and no potential difference of magnitude V occurs between the heating lamp 15 or the control device 17 and the vacuum chamber 52, and a maximum potential difference of ± V / 2. Therefore, no discharge is generated between the vacuum chamber 52 and the heating lamp 15 or the like.

両方向スイッチ43の動作を説明すると、両方向スイッチ43は、二個のサイリスタ45a、45bが逆方向に向けて並列に結線されて構成されており、制御装置17内には、両方向スイッチ43を構成する二個のサイリスタ45a、45bのゲート端子に結線されたスイッチコントローラー44がそれぞれ設けられている。   The operation of the bidirectional switch 43 will be described. The bidirectional switch 43 is configured by connecting two thyristors 45 a and 45 b in parallel in the opposite direction, and the bidirectional switch 43 is configured in the control device 17. A switch controller 44 connected to the gate terminals of the two thyristors 45a and 45b is provided.

スイッチコントローラー44は、ゲート端子に電流を流し(ゲート端子に電流を流入させるか、又はゲート端子から電流を流出させる)、ゲート端子に電流が流れたサイリスタ45a、45bのアノード端子とカソード端子の間を導通させ、アノード端子からカソード端子に向けて電流を流させる。   The switch controller 44 allows current to flow through the gate terminal (current flows into the gate terminal or current flows out from the gate terminal), and between the anode terminal and the cathode terminal of the thyristors 45a and 45b where the current flows through the gate terminal. And conducting current from the anode terminal to the cathode terminal.

二次巻線42の制御装置17に結線された端部は、両方向スイッチ43素子のアノード端子とカソード端子が結線された部分に結線されている。他方、両方向スイッチ43素子の反対側のアノード端子とカソード端子が結線された部分は、加熱ランプ15の共通電極34に結線されている。   The end portion of the secondary winding 42 connected to the control device 17 is connected to a portion where the anode terminal and the cathode terminal of the bidirectional switch 43 element are connected. On the other hand, the portion where the anode terminal and the cathode terminal on the opposite side of the bidirectional switch 43 element are connected is connected to the common electrode 34 of the heating lamp 15.

加熱ランプ15は導通したサイリスタ45a、45bを介して二次巻線42に接続されると、各加熱ランプ15には、二次巻線42の両端に誘起された電圧が印加され、各モジュール16内の加熱ランプ15のフィラメント32に電流が流れる。
この電流によりフィラメント32が加熱され、高温になると熱線(赤外線)が放射され、処理対象物7に照射される。この熱線により、処理対象物7の温度が上昇する。
When the heating lamp 15 is connected to the secondary winding 42 via the conductive thyristors 45a and 45b, a voltage induced at both ends of the secondary winding 42 is applied to each heating lamp 15, and each module 16 A current flows through the filament 32 of the heating lamp 15.
The filament 32 is heated by this electric current, and when it reaches a high temperature, heat rays (infrared rays) are radiated to irradiate the processing object 7. Due to the heat rays, the temperature of the processing object 7 rises.

保持具18の近くにはセンサ19が取り付けられており、各モジュール16の加熱ランプ15から熱線が放出されると、保持具18の温度が上昇するようになっている。センサ19によってその温度変化が感知される。   A sensor 19 is attached in the vicinity of the holder 18, and the temperature of the holder 18 rises when heat rays are emitted from the heating lamp 15 of each module 16. The temperature change is detected by the sensor 19.

保持具18の温度と、保持具18が保持する処理対象物7の温度はほぼおなじであり、センサ19によって保持具18の温度が検出され、温度測定器20によって温度が求められると、センサ19が検出した保持具18の温度が処理対象物7の温度とされ、スイッチコントローラー44が両方向スイッチ43を下記のように制御する。   The temperature of the holder 18 and the temperature of the processing object 7 held by the holder 18 are substantially the same. When the temperature of the holder 18 is detected by the sensor 19 and the temperature is obtained by the temperature measuring device 20, the sensor 19. The temperature of the holding tool 18 detected by the above is set as the temperature of the processing object 7, and the switch controller 44 controls the bidirectional switch 43 as follows.

図5の符号Lの折線は、加熱室12内部で加熱した処理対象物7の温度(縦軸)と時間(横軸)の関係を示しており、先ず、加熱室12内に配置された処理対象物7を、処理室13で維持される温度と同程度の温度であって、室温よりも高い処理温度dまで上昇させ、加熱室12の後段の処理室13内で、処理温度dを維持したまま成膜等の真空処理が行われる。   5 indicates the relationship between the temperature (vertical axis) and the time (horizontal axis) of the processing object 7 heated in the heating chamber 12. First, the processing disposed in the heating chamber 12. The object 7 is raised to a processing temperature d that is similar to the temperature maintained in the processing chamber 13 and higher than the room temperature, and the processing temperature d is maintained in the processing chamber 13 subsequent to the heating chamber 12. A vacuum process such as film formation is performed as it is.

成膜装置1の使用が停止されていて、加熱室12の真空槽52や保持具18が室温a(図5)にある状態では、先ず、処理対象物7を加熱室12内に搬入する前、又は搬入した後に、加熱室12の真空槽や保持具18を処理温度dまで上昇させる。   In a state where the use of the film forming apparatus 1 is stopped and the vacuum chamber 52 and the holder 18 of the heating chamber 12 are at room temperature a (FIG. 5), first, before the processing object 7 is carried into the heating chamber 12. Or after carrying in, the vacuum chamber and the holder 18 of the heating chamber 12 are raised to the processing temperature d.

制御装置17による加熱ランプ15への通電方法は、二次巻線42に生じた交流電圧のゼロVとゼロVの間の半波長の期間を180度とすると、両方向スイッチ43内の電流が流れる方のサイリスタ45a、45b(又は両方のサイリスタ)を180度全期間導通させ、その間加熱ランプ15に印加する半波長と、電流が流れるサイリスタ45a、45b(又は両方のサイリスタ)を180度全期間遮断させ、その間には加熱ランプ15に印加しない交流電圧の半波長とを組み合わせるサイクル制御により加熱ランプ15に電流を流すか、又は、半波長の途中から両方向スイッチ43内の電流が流れる方のサイリスタ45a、45b(又は両方のサイリスタ)を二次巻線42に生じた交流電圧の半波長を180度の途中から導通させ、半波長の一部を組み合わせる位相制御を行うことのいずれかの制御を行うことができる。   The method for energizing the heating lamp 15 by the control device 17 is such that the current in the bidirectional switch 43 flows when the half-wavelength period between zero V and zero V of the AC voltage generated in the secondary winding 42 is 180 degrees. One thyristor 45a, 45b (or both thyristors) is turned on for the entire 180 degrees, and the half-wave applied to the heating lamp 15 and the thyristors 45a, 45b (or both thyristors) through which current flows are cut off for the entire 180 degrees. In the meantime, a current is caused to flow through the heating lamp 15 by cycle control combining with a half wavelength of the AC voltage not applied to the heating lamp 15, or a thyristor 45a in which the current in the bidirectional switch 43 flows from the middle of the half wavelength. , 45b (or both thyristors), the half-wave of the AC voltage generated in the secondary winding 42 is conducted from the middle of 180 degrees, and a part of the half-wave is It is possible to perform any of the control of carrying out the phase control to match viewing.

サイクル制御によって二次巻線42の交流電圧の半波長が加熱ランプ15に印加されると、半波長の中央位置の電圧も加熱ランプ15に印加される。
半波長の中央位置の電圧は、交流電圧のうちの最も大きいピーク電圧であるため、加熱ランプ15が室温であり、フィラメント32の抵抗値が低い場合、ピーク電圧が印加されると突入電流が発生してしまう。
When the half wavelength of the AC voltage of the secondary winding 42 is applied to the heating lamp 15 by cycle control, the voltage at the center position of the half wavelength is also applied to the heating lamp 15.
Since the voltage at the center position of the half wavelength is the largest peak voltage among the AC voltages, when the heating lamp 15 is at room temperature and the resistance value of the filament 32 is low, an inrush current is generated when the peak voltage is applied. Resulting in.

そこで、加熱ランプ15を室温から昇温させる場合、ピーク電圧よりも後の位置で両方向スイッチ43を導通させ(両方向スイッチ43内の電流が流れる方のサイリスタ45a、45b、又は両方のサイリスタ45a、45bを導通させ)、その後の交流電圧がゼロVの時に(自動的に)遮断する位相制御方法によって加熱ランプ15に電流を流すと突入電流が生じない。   Therefore, when the temperature of the heating lamp 15 is raised from room temperature, the bidirectional switch 43 is turned on at a position after the peak voltage (the thyristors 45a and 45b on which the current in the bidirectional switch 43 flows, or both thyristors 45a and 45b). When a current is passed through the heating lamp 15 by a phase control method that interrupts (automatically) when the subsequent AC voltage is zero V, no inrush current occurs.

このような位相制御方法の場合に、加熱ランプ15に電圧を印加する期間を長くしてゆくと、加熱ランプ15の温度は上昇する。図6(a)、(b)の符号Vは、二次巻線42に生じた電圧であり、s1、s2は、位相制御を行っている際に、それぞれ加熱ランプ15に印加された電圧期間である。s1<s2であるから、電圧Vが期間s1中に加熱ランプ15に印加されている場合よりも、期間s2中に印加されている場合の方が、加熱ランプ15は高温になる。 In the case of such a phase control method, the temperature of the heating lamp 15 rises as the period during which the voltage is applied to the heating lamp 15 is lengthened. 6 (a) and 6 (b) is a voltage generated in the secondary winding 42, and s 1 and s 2 are applied to the heating lamp 15 during phase control, respectively. It is a voltage period. Since s 1 <s 2 , the heating lamp 15 has a higher temperature when applied during the period s 2 than when the voltage V is applied to the heating lamp 15 during the period s 1. .

しかし、二次巻線42に電圧が生じているとき導通するため、ノイズが発生してしまう。
そのため、加熱ランプ15への電圧印加を、位相制御からサイクル制御に変更する必要がある。
However, when the voltage is generated in the secondary winding 42, conduction occurs, and noise is generated.
Therefore, it is necessary to change the voltage application to the heating lamp 15 from phase control to cycle control.

処理温度dより低く、室温aよりも高い変更温度cが、加熱ランプ15が昇温する場合に位相制御からサイクル制御に移行する温度として予め設定されており、加熱ランプ15の温度が位相制御によって上昇し、室温aから昇温し、変更温度cに達したことがセンサ19によって検出されたら、位相制御を終了させ、サイクル制御によって導通と遮断の半波長を組み合わせ、導通する半波長の割合を増やしてゆくことで加熱ランプ15の温度を上昇させる。例えば、図6(c)は導通期間が40%であり、同図(d)は60%であり、同図(d)の方が熱線の放射量が多い。   A change temperature c lower than the processing temperature d and higher than the room temperature a is set in advance as a temperature to shift from phase control to cycle control when the heating lamp 15 is heated, and the temperature of the heating lamp 15 is changed by phase control. When the sensor 19 detects that the temperature has risen, raised from room temperature a, and reached the change temperature c, the phase control is terminated, and the half wavelength of conduction and cutoff is combined by cycle control, and the ratio of the half wavelength to conduct is determined. The temperature of the heating lamp 15 is increased by increasing the temperature. For example, FIG. 6 (c) shows a conduction period of 40%, FIG. 6 (d) shows 60%, and FIG.

図5に示されるように、時刻t0で位相制御により室温aにある加熱ランプ15の昇温が開始され、時刻t1で変更温度cになってサイクル制御に変わり、時刻t2で処理温度cに達している。
加熱室12内に処理対象物7が配置されていなかった場合、処理温度cに達したことがセンサ19によって検出されたときに、加熱室12内に処理対象物7が搬入される。
As shown in FIG. 5, the heating of the heating lamp 15 at room temperature a is started by phase control at time t 0 , changes to temperature c at time t 1 and changes to cycle control, and the processing temperature at time t 2. c has been reached.
When the processing object 7 is not arranged in the heating chamber 12, the processing object 7 is carried into the heating chamber 12 when the sensor 19 detects that the processing temperature c has been reached.

この場合、加熱室12内に搬入される処理対象物7の温度は室温aであるから、周囲の保持具18や真空槽52の温度は低下する。
従って、加熱室12の真空槽52の温度や保持具18の温度をセンサ19によって検出すると、その温度は処理温度dよりも低くなっているので、サイクル制御の導通半波長を増やし、処理温度dに復帰させる。処理温度dよりも高くなると、導通半波長を減少させる。
In this case, since the temperature of the processing object 7 carried into the heating chamber 12 is the room temperature a, the temperatures of the surrounding holder 18 and the vacuum chamber 52 are lowered.
Therefore, when the temperature of the vacuum chamber 52 of the heating chamber 12 or the temperature of the holder 18 is detected by the sensor 19, the temperature is lower than the processing temperature d, so the conduction half wavelength of cycle control is increased and the processing temperature d is increased. Return to. When the temperature is higher than the processing temperature d, the conduction half wavelength is decreased.

次に、加熱室12内への処理対象物7の搬入が長期間停止されると、加熱ランプ15への通電が停止される。この通電が停止された時刻t3から、保持具18や真空槽52の温度が低下し、センサ19の検出する温度が低下してゆく。 Next, when the carrying of the processing object 7 into the heating chamber 12 is stopped for a long time, the energization to the heating lamp 15 is stopped. From the time t 3 when the energization is stopped, the temperature of the holder 18 and vacuum chamber 52 is lowered, the temperature detected by the sensor 19 slide into reduced.

室温aよりも高いが変更温度cよりも低い最低温度bが予め設定されており、処理対象物7や他の部材である保持具18や真空槽52の温度降下により、センサ19が検出する温度が最低温度bに達すると、その時刻t4でサイクル制御を再開し、処理温度dに戻し(時刻t5)、加熱ランプ15から熱線を放射させる。例えば、図6(d)のように、100%の導通にすることもできる。 The minimum temperature b that is higher than the room temperature a but lower than the change temperature c is set in advance, and the temperature detected by the sensor 19 due to the temperature drop of the processing object 7 and other members such as the holder 18 and the vacuum chamber 52. When the temperature reaches the minimum temperature b, the cycle control is resumed at the time t 4 , the cycle temperature is returned to the processing temperature d (time t 5 ), and the heat ray is emitted from the heating lamp 15. For example, as shown in FIG. 6D, 100% conduction can be achieved.

加熱ランプ15が最低温度bにあっても、加熱ランプ15のフィルタ32の抵抗値は室温aの状態よりも高いため、突入電流は発生しない。
なお、加熱室12内で処理温度dに昇温された処理対象物7は処理室13に移動され、処理室13内に配置されたヒータ25の表面に配置され、ヒータ25の発熱によって処理温度dが維持されながら、処理室13内のターゲット26がスパッタリングされ、処理対象物7の表面に薄膜が形成される。
Even when the heating lamp 15 is at the minimum temperature b, the resistance value of the filter 32 of the heating lamp 15 is higher than that at the room temperature a, so that no inrush current is generated.
The processing object 7 heated to the processing temperature d in the heating chamber 12 is moved to the processing chamber 13 and is disposed on the surface of the heater 25 disposed in the processing chamber 13. While d is maintained, the target 26 in the processing chamber 13 is sputtered, and a thin film is formed on the surface of the processing object 7.

薄膜が形成された処理対象物7は、真空雰囲気にされた搬出室14に移行され、処理室13との間が閉じられ、搬出室14の真空槽54内に大気が導入され、処理対象物7が大気中に取り出される。   The processing object 7 on which the thin film is formed is transferred to the unloading chamber 14 in a vacuum atmosphere, the space between the processing chamber 13 and the processing chamber 13 is closed, and the atmosphere is introduced into the vacuum chamber 54 of the unloading chamber 14. 7 is taken out into the atmosphere.

なお、制御装置17がサイクル制御の動作をする場合、一次、二次巻線41、42に、正電圧の半波長期間だけ連続して電流が流れるか、又は、負電圧の半波長期間だけ連続して電流が流れる場合には、一次、二次巻線41、42に正又は負の同一方向の電流しか流れず、同一方向の磁束しか生じないため、コイル焼損する恐れがある。   When the control device 17 performs cycle control operation, current flows through the primary and secondary windings 41 and 42 continuously for a half-wavelength period of positive voltage, or continuously for only a half-wavelength period of negative voltage. When current flows, only positive or negative current in the same direction flows in the primary and secondary windings 41 and 42, and only magnetic flux in the same direction is generated, which may cause coil burning.

従って、本発明の制御装置17は、正電圧の半波長期間と負電圧の半波長期間を交互に導通し、±V/2の交流電圧が一次、二次巻線41、42に印加されるように動作すると、一次、二次巻線41、42には交流電流が流れ、コイル焼損しないようになっている。   Accordingly, the control device 17 of the present invention alternately conducts the positive half-wave period and the negative half-wave period, and an AC voltage of ± V / 2 is applied to the primary and secondary windings 41 and 42. When operated in this manner, an alternating current flows through the primary and secondary windings 41 and 42 so that the coil is not burned out.

上記実施例では、真空処理として、スパッタリングによる成膜処理を説明したが、スパッタリングではなく、CVDや蒸着の他の成膜処理も真空処理に含まれる。また、エッチング等の成膜処理でない処理や、加熱室12で行うアニール処理についての真空処理も含まれる。   In the above embodiment, the film formation process by sputtering has been described as the vacuum process. However, the vacuum process includes not only sputtering but also other film formation processes such as CVD and vapor deposition. In addition, a vacuum process such as a process that is not a film forming process such as etching or an annealing process performed in the heating chamber 12 is also included.

更にまた、上記実施例ではセンサ19が保持具18の近くに取り付けられ、保持具18の温度を処理対象物7の温度としていたが、処理対象物7の温度を直接測定することや、真空槽の温度を測定して処理対象物7の温度とすることもできる。   Furthermore, in the above embodiment, the sensor 19 is mounted near the holder 18 and the temperature of the holder 18 is set as the temperature of the processing object 7. However, the temperature of the processing object 7 can be directly measured or a vacuum chamber can be used. It is also possible to measure the temperature of the object 7 to be the temperature of the processing object 7.

本願発明が適用される成膜装置を説明するための図The figure for demonstrating the film-forming apparatus with which this invention is applied モジュールと処理対象物の位置関係を説明するための図Diagram for explaining the positional relationship between modules and processing objects 加熱ランプHeating lamp 加熱ランプに電圧を印加するブロック図Block diagram for applying voltage to heating lamp 加熱ランプの温度を示すグラフGraph showing the temperature of the heating lamp (a)、(b):位相制御 (c)〜(e):サイクル制御(a), (b): Phase control (c)-(e): Cycle control

符号の説明Explanation of symbols

7……処理対象物
15……加熱ランプ
18……保持具
19……センサ
29……加熱電源
52……真空槽
7 ... Processing object 15 ... Heating lamp 18 ... Holder 19 ... Sensor 29 ... Heating power source 52 ... Vacuum chamber

Claims (4)

真空槽内に処理対象物を搬入し、
前記真空槽内で保持具によって処理対象物を保持し、
加熱電源が出力する交流電圧を制御装置によって制御して加熱ランプに印加し、前記加熱ランプから熱線を放射させ、真空雰囲気にされた前記真空槽内に配置された前記処理対象物と前記保持具に照射して加熱し、前記処理対象物を真空処理する加熱真空処理方法であって、
予め、室温より高い最低温度と、前記最低温度よりも高い処理温度と、前記最低温度と前記処理温度の間の変更温度とを設定しておき、
前記処理対象物の温度をセンサによって測定し、測定した前記処理対象物の温度が室温にある場合は、前記処理対象物が前記変更温度に達するまで、180度の途中から導通させる半波長の一部を組み合わせた位相制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させ、
測定した前記処理対象物の温度が前記変更温度に達した後は、180度全期間導通している半波と180度全期間遮断されている半波とを組み合わせたサイクル制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させて変更温度以上に昇温させ、前記処理温度にして真空処理を行う加熱真空処理方法。
Bring the object to be processed into the vacuum chamber,
Holding the object to be processed by a holder in the vacuum chamber,
The AC voltage output from the heating power source is controlled by a control device, applied to the heating lamp, radiates heat rays from the heating lamp, and the processing object and the holder arranged in the vacuum chamber in a vacuum atmosphere A heating vacuum processing method in which the object to be processed is vacuum processed,
Preliminarily set a minimum temperature higher than room temperature, a processing temperature higher than the minimum temperature, and a change temperature between the minimum temperature and the processing temperature,
The measured by the sensor temperature of the processing object, if the temperature of the processing object was measured in room temperature, until said processing object reaches the change temperature, one half wavelength for conducting the middle of 180 degrees The temperature of the object to be processed is controlled by controlling the radiation of the heat rays of the heating lamp by phase control combining the parts,
After the measured temperature of the object to be processed reaches the change temperature, the heating lamp is controlled by a cycle control that combines a half-wave that is on for 180 degrees and a half-wave that is off for 180 degrees. A heating vacuum processing method in which radiation of heat rays is controlled to raise the temperature of the object to be processed to a temperature higher than the change temperature and to perform vacuum treatment at the treatment temperature.
前記位相制御では、前記加熱ランプの通電時間が長くなるようにし、In the phase control, the energization time of the heating lamp is lengthened,
前記サイクル制御では、180度全期間導通している半波の割合が増加するようにする請求項1記載の加熱真空処理方法。The heating vacuum processing method according to claim 1, wherein in the cycle control, a ratio of a half-wave that is conductive for a full period of 180 degrees is increased.
真空槽内に処理対象物を搬入し、
前記真空槽内で保持具によって処理対象物を保持し、
加熱電源が出力する交流電圧を制御装置によって制御して加熱ランプに印加し、前記加熱ランプから熱線を放射させ、真空雰囲気にされた前記真空槽内に配置された前記処理対象物と前記保持具に照射して加熱し、前記処理対象物を真空処理する加熱真空処理方法であって、
予め、室温より高い最低温度と、前記最低温度よりも高い処理温度と、前記最低温度と前記処理温度の間の変更温度とを設定しておき、
前記処理対象物の温度をセンサによって測定し、前記処理対象物の温度が室温にある場合は、前記処理対象物が前記変更温度に達するまで、180度の途中から導通させる半波長の一部を組み合わせた位相制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させ、
変更温度に達した後は、180度全期間導通している半波と180度全期間遮断されている半波とを組み合わせたサイクル制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させて変更温度以上に昇温させ、前記処理温度にして真空処理を行う加熱真空処理方法であり、
前記処理対象物が前記最低温度よりも高い温度から前記最低温度よりも低い温度に降温したことが前記センサによって測定されると、前記サイクル制御によって前記加熱ランプの熱線の放射を制御して前記処理対象物を昇温させる加熱真空処理方法。
Bring the object to be processed into the vacuum chamber,
Holding the object to be processed by a holder in the vacuum chamber,
The AC voltage output from the heating power source is controlled by a control device, applied to the heating lamp, radiates heat rays from the heating lamp, and the processing object and the holder arranged in the vacuum chamber in a vacuum atmosphere A heating vacuum processing method in which the object to be processed is vacuum processed,
Preliminarily set a minimum temperature higher than room temperature, a processing temperature higher than the minimum temperature, and a change temperature between the minimum temperature and the processing temperature,
When the temperature of the object to be processed is measured by a sensor and the temperature of the object to be processed is at room temperature, a part of the half wavelength that conducts from the middle of 180 degrees until the object to be processed reaches the change temperature. Control the radiation of the heat rays of the heating lamp by combined phase control to raise the temperature of the object to be processed,
After reaching the change temperature, the processing object is controlled by controlling the radiation of the heat rays of the heating lamp by cycle control that combines a half-wave that is conductive for the entire period of 180 degrees and a half-wave that is blocked for the entire period of 180 degrees. It is a heating vacuum processing method in which the temperature of the product is increased to a temperature higher than the change temperature, and vacuum processing is performed at the processing temperature ,
When the sensor measures that the object to be processed has fallen from a temperature higher than the minimum temperature to a temperature lower than the minimum temperature, the process control is performed by controlling the radiation of the heat rays of the heating lamp by the cycle control. vacuum processing method pressurized heat Ru warmed objects.
前記センサを前記保持具又は前記真空槽に取り付けておき、前記保持具又は前記真空槽の温度を測定して前記処理対象物の温度とする請求項1乃至のいずれか1項記載の加熱真空処理方法。 The heating vacuum according to any one of claims 1 to 3 , wherein the sensor is attached to the holder or the vacuum chamber, and the temperature of the holder or the vacuum chamber is measured to obtain the temperature of the object to be processed. Processing method.
JP2008268587A 2008-10-17 2008-10-17 Heating vacuum processing method Active JP5374109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268587A JP5374109B2 (en) 2008-10-17 2008-10-17 Heating vacuum processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268587A JP5374109B2 (en) 2008-10-17 2008-10-17 Heating vacuum processing method

Publications (2)

Publication Number Publication Date
JP2010097854A JP2010097854A (en) 2010-04-30
JP5374109B2 true JP5374109B2 (en) 2013-12-25

Family

ID=42259392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268587A Active JP5374109B2 (en) 2008-10-17 2008-10-17 Heating vacuum processing method

Country Status (1)

Country Link
JP (1) JP5374109B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9338871B2 (en) 2010-01-29 2016-05-10 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
US8916793B2 (en) 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
US8880227B2 (en) 2010-05-27 2014-11-04 Applied Materials, Inc. Component temperature control by coolant flow control and heater duty cycle control
JP2013008494A (en) * 2011-06-23 2013-01-10 Ulvac Japan Ltd Substrate heating apparatus
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
WO2023112233A1 (en) * 2021-12-15 2023-06-22 住友電気工業株式会社 Heater control device and power control method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307787A (en) * 1988-06-06 1989-12-12 Nec Niigata Ltd Heater current control circuit for electrophotographic printer
JPH03266008A (en) * 1990-03-16 1991-11-27 Tokyo Electric Co Ltd Heater controller
JPH06158314A (en) * 1992-11-24 1994-06-07 Hitachi Ltd Vacuum treatment device and method therefor
JP3313044B2 (en) * 1997-01-17 2002-08-12 株式会社三社電機製作所 Cycle control method
JP2000077345A (en) * 1998-09-02 2000-03-14 Kokusai Electric Co Ltd Electrical furnace control apparatus
JP4004765B2 (en) * 2000-10-10 2007-11-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2004191710A (en) * 2002-12-12 2004-07-08 Kyocera Mita Corp Fixation device and image forming device equipped with the same

Also Published As

Publication number Publication date
JP2010097854A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5374109B2 (en) Heating vacuum processing method
TWI677049B (en) Azimuthally tunable multi-zone electrostatic chuck
EP2573798A2 (en) Microwave processing apparatus and method for processing object
US9337001B2 (en) Microwave processing apparatus and control method thereof
US8623750B2 (en) Heat treatment method for promoting crystallization of high dielectric constant film
TWI707379B (en) Temperature control method and plasma processing device
JP6296787B2 (en) Substrate processing apparatus and substrate processing method
JP6075555B2 (en) Electrostatic chuck system and semiconductor manufacturing apparatus
US9312105B2 (en) Method for etching insulation film
JP5642359B2 (en) Heat treatment method and heat treatment apparatus
JP2011119562A (en) Heat treatment method and apparatus
JP5202723B2 (en) Vacuum heating device, vacuum heat treatment method
US20150144621A1 (en) Matching method and microwave heating method
JP5646864B2 (en) Heat treatment method and heat treatment apparatus
JP2010192663A (en) Heat treatment device
US20130075389A1 (en) Microwave processing apparatus and method for processing object to be processed
JP2014093471A (en) Induction heating furnace, and sic substrate annealing method
JP5372430B2 (en) Heat treatment equipment
JP5483710B2 (en) Applied voltage setting method, heat treatment method and heat treatment apparatus
JP7277144B2 (en) Method and apparatus for heat treating a substrate
JP6087874B2 (en) Heat treatment method and heat treatment apparatus
JP6093136B2 (en) Heat treatment method and heat treatment apparatus
JP2014135338A (en) Heat treatment apparatus
JP2011082439A (en) Heat treatment method and heat treatment apparatus
JP2016115830A (en) Heat treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130218

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5374109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250