JP5373695B2 - Sulfur online analyzer - Google Patents

Sulfur online analyzer Download PDF

Info

Publication number
JP5373695B2
JP5373695B2 JP2010107055A JP2010107055A JP5373695B2 JP 5373695 B2 JP5373695 B2 JP 5373695B2 JP 2010107055 A JP2010107055 A JP 2010107055A JP 2010107055 A JP2010107055 A JP 2010107055A JP 5373695 B2 JP5373695 B2 JP 5373695B2
Authority
JP
Japan
Prior art keywords
sulfur
automatic sampling
sampling valve
sample
online analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010107055A
Other languages
Japanese (ja)
Other versions
JP2011237204A (en
Inventor
薫 藤原
貴之 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010107055A priority Critical patent/JP5373695B2/en
Publication of JP2011237204A publication Critical patent/JP2011237204A/en
Application granted granted Critical
Publication of JP5373695B2 publication Critical patent/JP5373695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sulfur on-line analyzer which suppresses adhesion of thermally decomposable polymers to an automatic sampling valve and which can measure sulfur concentration stably in the long term, and can minimize analysis errors. <P>SOLUTION: In the sulfur on-line analyzer, a sulfur-containing organic sample is sampled by an automatic sampling valve, the sample is combusted and decomposed in the presence of oxygen-containing gas in a heating furnace, and fluorescence intensity of sulfur dioxide in the combusted and decomposed gas is detected by an ultraviolet fluorescence detector. The temperature of the automatic sampling valve is kept at 35&deg;C or lower. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、自動サンプリング装置により硫黄含有有機試料を採取し、前記試料を加熱炉において酸素含有ガスの存在下で燃焼分解し、当該燃焼分解ガス中の二酸化硫黄の蛍光強度を紫外蛍光検出器により検出する硫黄オンライン分析装置に関する。   In the present invention, a sulfur-containing organic sample is collected by an automatic sampling device, the sample is combusted and decomposed in the presence of an oxygen-containing gas in a heating furnace, and the fluorescence intensity of sulfur dioxide in the combustion-decomposed gas is detected by an ultraviolet fluorescence detector. The present invention relates to a sulfur online analyzer for detection.

ガソリンや軽油などに含まれる硫黄の分析方法の一つとして、酸素で試料を燃焼分解し、燃焼排ガスに紫外線を照射すると共に、放出される蛍光の強度から燃焼排ガス中の二酸化硫黄の含有量を測定するいわゆる紫外蛍光測定法が知られている。上記の分析方法は、例えば、沸点が25〜400℃の留分で、室温における動粘度が0.2〜10mm2/sのナフサ、自動車ガソリン、灯油、軽油中の硫黄の含有量が、3〜500ppmを越える試料の分析に採用されている(非特許文献1)。 As one of the methods for analyzing sulfur contained in gasoline, light oil, etc., the sample is burned and decomposed with oxygen, the exhaust gas is irradiated with ultraviolet rays, and the sulfur dioxide content in the exhaust gas is determined from the intensity of the emitted fluorescence. A so-called ultraviolet fluorescence measurement method for measuring is known. The above analysis method is, for example, a fraction having a boiling point of 25 to 400 ° C. and a kinematic viscosity at room temperature of 0.2 to 10 mm 2 / s, naphtha, automobile gasoline, kerosene, and diesel oil containing 3 sulfur. It is employed for analysis of samples exceeding ˜500 ppm (Non-patent Document 1).

石油精製プロセスにおいては、日常の運転管理のために、上記分析方法を応用して、これに自動サンプリング装置を設けた、例えば図1に概略を示したような硫黄オンライン分析装置が用いられている。
図1において、石油精製プロセスからの試料は、常時、採取管1から自動サンプリングバルブ2に導入され、非測定時は排出管3から排出されている。測定時には、自動サンプリングバルブ2の切り替えにより、所定量(1.2μL程度)の試料がミキシングチャンバー4に導入され、空気などの酸素含有ガス5と混合されて、1100℃程度に加熱された加熱炉6に導入され、燃焼分解される。ここで、試料中の硫黄化合物は二酸化硫黄に、炭化水素は二酸化炭素や水などの燃焼分解ガスとなり、測定セル7に導入される。紫外線ランプ8から発光された紫外線がミラーアセンブリ9を介して、この測定セル7において、燃焼分解ガスに照射されると、二酸化硫黄は蛍光を発する。この蛍光発光の強度を光電子増倍管10で測定し、演算制御器11で処理して、硫黄濃度を表示する。なお、紫外線ランプ8を正常にコントロールするために光検出器12が設けられている。
In the oil refining process, for the daily operation management, a sulfur on-line analyzer as schematically shown in FIG. 1, for example, is used in which the above analysis method is applied and an automatic sampling device is provided. .
In FIG. 1, a sample from an oil refining process is always introduced from an extraction pipe 1 into an automatic sampling valve 2 and discharged from an exhaust pipe 3 when not measured. At the time of measurement, by switching the automatic sampling valve 2, a predetermined amount (about 1.2 μL) of sample is introduced into the mixing chamber 4, mixed with an oxygen-containing gas 5 such as air, and heated to about 1100 ° C. 6 is burned and decomposed. Here, the sulfur compound in the sample is converted into sulfur dioxide, and the hydrocarbon is converted into a combustion cracked gas such as carbon dioxide or water and introduced into the measurement cell 7. When the ultraviolet light emitted from the ultraviolet lamp 8 is irradiated to the combustion decomposition gas in the measurement cell 7 through the mirror assembly 9, the sulfur dioxide emits fluorescence. The intensity of the fluorescence emission is measured by the photomultiplier tube 10 and processed by the arithmetic controller 11 to display the sulfur concentration. A photodetector 12 is provided to control the ultraviolet lamp 8 normally.

上述のような硫黄オンライン分析装置は、サンプリング部13、燃焼分解部14、検出部15に、それぞれ区切られたボックス内に一体として収納され、燃焼分解部14は、加熱炉6に熱を付与するためにエアーオーブンとなっており、通常、自動サンプリングバルブ2表面は、その輻射熱によって、150℃程度に予熱されている。 The sulfur on-line analyzer as described above is housed in the sampling unit 13 , the combustion decomposition unit 14 , and the detection unit 15 as a single unit in each partitioned box, and the combustion decomposition unit 14 applies heat to the heating furnace 6. Therefore, the surface of the automatic sampling valve 2 is preheated to about 150 ° C. by the radiant heat.

日本規格協会、2007年確認、K 2541‐6Japanese Standards Association, 2007 confirmation, K 2541-6

上記硫黄オンライン分析装置は、長時間測定し続けていると分析誤差が生じるという課題があり、本発明は、かかる課題を解決するものである。   The sulfur online analyzer has a problem that an analysis error occurs if measurement is continued for a long time, and the present invention solves such a problem.

本発明者は、上記課題を解決するために、鋭意検討を加えた結果、自動サンプリングバルブで、試料の熱分解が生じ、自動サンプリングバルブの採取孔に微量の熱分解重合物が付着し、試料採取量が1.2μL程度と僅かなため、採取量に変動を与え、分析誤差が生じていること、及び自動サンプリングバルブの温度を35℃以下にすることにより、自動サンプリングバルブで熱分解重合物の付着を抑え、長期に亘って安定して硫黄濃度を測定できることを見出し、本発明に想到した。   As a result of diligent investigations to solve the above problems, the present inventors have resulted in thermal decomposition of the sample with the automatic sampling valve, and a small amount of pyrolysis polymer adheres to the sampling hole of the automatic sampling valve. Since the sampled amount is as small as about 1.2μL, the sampled amount varies, and there is an analytical error. By setting the temperature of the automatic sampling valve to 35 ° C or less, the pyrolysis polymer is obtained with the automatic sampling valve. The inventors have found that the sulfur concentration can be measured stably over a long period of time, and the present invention has been conceived.

すなわち、本発明は、自動サンプリングバルブにより硫黄含有有機試料を採取し、前記試料を加熱炉で酸素含有ガスの存在下に燃焼分解し、当該燃焼分解ガス中の二酸化硫黄の蛍光強度を紫外蛍光検出器により検出する硫黄オンライン分析装置において、前記自動サンプリングバルブの温度を35℃以下に保持するものである。なお、前記有機硫黄含有試料はガソリン又はナフサであることが好ましい。   That is, the present invention collects a sulfur-containing organic sample with an automatic sampling valve, burns and decomposes the sample in the presence of an oxygen-containing gas in a heating furnace, and detects the fluorescence intensity of sulfur dioxide in the combustion-decomposed gas by ultraviolet fluorescence detection. In the sulfur on-line analyzer detected by a vessel, the temperature of the automatic sampling valve is maintained at 35 ° C. or lower. The organic sulfur-containing sample is preferably gasoline or naphtha.

本発明は、自動サンプリングバルブでの熱分解重合物の付着を抑え、長期に亘って安定して硫黄濃度を測定でき、分析誤差を非常に小さくできるという効果を奏する。   The present invention has the effect of suppressing the adhesion of the pyrolysis polymer in the automatic sampling valve, allowing the sulfur concentration to be measured stably over a long period of time, and reducing the analysis error.

硫黄オンライン分析装置の概略図である。It is the schematic of a sulfur online analyzer.

以下、本発明の実施形態について、詳細に説明する。
本発明の硫黄オンライン分析装置は、自動サンプリングバルブにより試料を採取し、前記試料を加熱炉で酸素含有ガスの存在下に燃焼分解し、当該燃焼分解ガス中の二酸化硫黄の蛍光強度を紫外蛍光検出器により検出するものであれば、特に制限するものではなく、一般に市販されている硫黄オンライン分析装置に適用できる。
なお、自動サンプリングバルブとしては、市販のスライダー式バルブやロータリー式バルブなどが好適に用いられる。
Hereinafter, embodiments of the present invention will be described in detail.
The sulfur online analyzer of the present invention collects a sample by an automatic sampling valve, burns and decomposes the sample in the presence of an oxygen-containing gas in a heating furnace, and detects the fluorescence intensity of sulfur dioxide in the combustion cracked gas by ultraviolet fluorescence detection. If it detects with a detector, it will not restrict | limit in particular, It can apply to the sulfur online analyzer generally marketed.
In addition, as an automatic sampling valve, a commercially available slider type valve, a rotary type valve, etc. are used suitably.

本発明の測定対象である硫黄含有有機試料としては、硫黄を含有する有機化合物があれば、特に支障はないが、石油精製プロセスにおける中間生成物及び最終製品などで、LPG、ガソリン、ナフサ、灯油、軽油などが好適である。特には、沸点が25〜220℃、硫黄濃度が0.5〜20ppm、臭素価が20〜35gBr2/100gのガソリン、ナフサが好ましい。 As the sulfur-containing organic sample to be measured in the present invention, there is no particular problem as long as there is an organic compound containing sulfur, but it is an intermediate product and final product in the petroleum refining process, such as LPG, gasoline, naphtha, kerosene. Gas oil and the like are preferred. In particular, the boiling point of 25-220 ° C., the sulfur concentration is 0.5 to 20, gasoline bromine number 20~35gBr 2 / 100g, naphtha are preferred.

本発明においては、自動サンプリングバルブを35℃以下に保持するものである。35℃を超える温度では熱分解重合物の付着を十分に抑制できない。好ましくは30℃以下、より好ましくは10〜30℃に保持する。   In the present invention, the automatic sampling valve is maintained at 35 ° C. or lower. If the temperature exceeds 35 ° C., adhesion of the pyrolytic polymer cannot be sufficiently suppressed. Preferably it is 30 degrees C or less, More preferably, it maintains at 10-30 degreeC.

また、自動サンプリングバルブを上記温度に保持する方法としては、燃焼分解部からの輻射熱を断熱層を設けて断熱する方法、例えば自動サンプリングバルブと燃焼分解部との間に断熱部材として断熱板を設ける方法でも良いが、この方法では、一般的に50℃程度までしか下げることができない。このため、さらに冷却により所定温度に保持することが好ましい。   In addition, as a method of maintaining the automatic sampling valve at the above temperature, a method of insulating the radiant heat from the combustion decomposition portion by providing a heat insulating layer, for example, providing a heat insulating plate as a heat insulating member between the automatic sampling valve and the combustion decomposition portion. Although a method may be used, this method can generally lower the temperature only to about 50 ° C. For this reason, it is preferable to hold | maintain to predetermined temperature by further cooling.

この冷却方法としては、自動サンプリングバルブの表面に冷却管を巻きつけ、冷却水などの冷却剤を流す方法や、圧縮空気により空気を暖冷させるボルテックスチューブを用いて、その冷気を自動サンプリングバルブの表面に噴出させる方法などを用いることができる。特には、後者のボルテックスチューブによる冷却が簡便で好ましい。なお、この自動サンプリングバルブの温度は、その表面温度を測定し、冷却剤の流量或いは圧縮空気の供給圧をコントロールして、一定温度になるように制御しても良いが、多くは、冷却剤の流量や供給圧を一度決定すれば、特に制御しなくても所定の温度に保持できる。   As a cooling method, a cooling pipe is wound around the surface of the automatic sampling valve and a coolant such as cooling water is flown, or a vortex tube that heats and cools the air using compressed air is used. A method of ejecting to the surface can be used. In particular, cooling by the latter vortex tube is simple and preferable. The temperature of the automatic sampling valve may be controlled to be a constant temperature by measuring the surface temperature and controlling the flow rate of the coolant or the supply pressure of the compressed air. Once the flow rate and supply pressure are determined, they can be maintained at a predetermined temperature without any particular control.

以下、本発明を実施例、比較例により詳細に説明するが、本発明はこれらにより限定して解釈されるものではない。
(加熱による重合確認試験)
沸点91.5〜207℃、硫黄濃度20ppm、臭素価26gBr2/100gの脱硫重質ガソリン留分の200mlを、#150研磨紙で湿式研磨後、脱水乾燥処理した金属試験片(炭素鋼SS400、サイズ25×25×6mm)と共に、耐圧ガラスオートクレーブの500mlガラス容器に入れ、25℃、50℃、150℃で、7日間加熱した。加熱終了後に、金属試験片に析出した重合物の重量及び試料をろ過して、金属試験上と試料中に生成した重合物を0.45μmの樹脂フッルターを用いて減圧ろ過し、ヘキサン不溶解分を重合物量として測定した。また、試料中に生成したガム分(不揮発性残渣分)の測定は、JIS K2261に規定された方法で測定した。この結果を表1に示した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is limited to these and is not interpreted.
(Polymerization confirmation test by heating)
Boiling point 91.5 to 207 ° C., the sulfur concentration 20 ppm, a bromine number 26gBr 2 / 100g of desulfurization heavy gasoline fraction 200 ml, after the wet grinding with # 150 abrasive paper, dehydrated and dried treated metal specimens (carbon steel SS400, Together with a size 25 × 25 × 6 mm) and placed in a pressure-resistant glass autoclave 500 ml glass container and heated at 25 ° C., 50 ° C. and 150 ° C. for 7 days. After heating, the weight of the polymer deposited on the metal test piece and the sample are filtered, and the polymer formed on the metal test and in the sample is filtered under reduced pressure using a 0.45 μm resin filter to dissolve the hexane insoluble matter. Was measured as the amount of polymer. Moreover, the measurement of the gum part (nonvolatile residue part) produced | generated in the sample was measured by the method prescribed | regulated to JISK2261. The results are shown in Table 1.

ガソリン脱硫プロセスの脱硫重質ガソリン留分中の硫黄濃度を測定するために設置した図1に示したような硫黄オンライン分析装置を用いて、硫黄濃度を測定すると同時に試料を採取して試験室で、JIS K2541、同K2605及びK2254に規定された方法により硫黄濃度、臭素価及び留出温度(初留点と終点)を測定した。
測定は、硫黄オンライン分析装置に何もしていない状態で、自動サンプリングバルブの表面が150℃の場合、自動サンプリングバルブの燃焼分解部側に断熱板を設けた状態で、同表面温度を50℃にした場合、これにさらにボルテックスチューブ(トラスコ中山株式会社製エアージェット;AJ-C)を設置して自動サンプリングバルブの表面温度を25℃に冷却した場合について、それぞれ4ヶ月間測定を行った。試験開始直後と開始1か月後毎の硫黄濃度、臭素価及び留出温度の測定結果を表2に示した。
Using a sulfur online analyzer as shown in Fig. 1 installed to measure the sulfur concentration in the desulfurized heavy gasoline fraction of the gasoline desulfurization process, a sample was taken at the same time as measuring the sulfur concentration. The sulfur concentration, bromine number, and distillation temperature (initial boiling point and end point) were measured by the methods specified in JIS K2541, K2605 and K2254.
When the surface of the automatic sampling valve is 150 ° C with nothing in the sulfur online analyzer, the surface temperature is set to 50 ° C with a heat insulating plate provided on the combustion decomposition part side of the automatic sampling valve. In this case, a vortex tube (air jet manufactured by TRUSCO NAKAYAMA Co., Ltd .; AJ-C) was further installed, and the surface temperature of the automatic sampling valve was cooled to 25 ° C., and measurement was performed for 4 months. Table 2 shows the measurement results of the sulfur concentration, bromine number, and distillation temperature immediately after the start of the test and every month after the start of the test.

上記結果から、自動サンプリングバルブの温度を35℃以下にすることにより、長期に亘って、硫黄濃度を精度よく測定できることが分かる。   From the above results, it can be seen that the sulfur concentration can be accurately measured over a long period of time by setting the temperature of the automatic sampling valve to 35 ° C. or lower.

本発明は、石油精製プロセスにおける各種留分の硫黄濃度をオンラインで、長期に亘って、継続的に測定するために利用できる。   The present invention can be used to continuously measure the sulfur concentration of various fractions in an oil refining process online, over a long period of time.

1 採取管
2 自動サンプリングバルブ
4 ミキシングチャンバー
6 加熱炉
7 測定セル7
8 紫外線ランプ
10 光電子増倍管
1 sampling tube 2 automatic sampling valve 4 mixing chamber 6 heating furnace 7 measuring cell 7
8 UV lamp 10 Photomultiplier tube

Claims (2)

スライダー式バルブ又はロータリー式バルブからなる自動サンプリングバルブにより硫黄含有有機試料を採取し、前記試料を加熱炉で酸素含有ガスの存在下に燃焼分解し、当該燃焼分解ガス中の二酸化硫黄の蛍光強度を紫外蛍光検出器により検出する硫黄オンライン分析装置において、前記自動サンプリングバルブの表面温度を35℃以下に保持することを特徴とする硫黄オンライン分析装置。 A sulfur-containing organic sample is collected by an automatic sampling valve consisting of a slider valve or a rotary valve , and the sample is combusted and decomposed in the presence of an oxygen-containing gas in a heating furnace. The sulfur online analyzer which detects with an ultraviolet fluorescence detector, The sulfur online analyzer which keeps the surface temperature of the said automatic sampling valve below 35 degreeC. 硫黄含有有機試料がガソリン又はナフサである請求項1に記載の硫黄オンライン分析装置。   The sulfur online analyzer according to claim 1, wherein the sulfur-containing organic sample is gasoline or naphtha.
JP2010107055A 2010-05-07 2010-05-07 Sulfur online analyzer Active JP5373695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107055A JP5373695B2 (en) 2010-05-07 2010-05-07 Sulfur online analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107055A JP5373695B2 (en) 2010-05-07 2010-05-07 Sulfur online analyzer

Publications (2)

Publication Number Publication Date
JP2011237204A JP2011237204A (en) 2011-11-24
JP5373695B2 true JP5373695B2 (en) 2013-12-18

Family

ID=45325365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107055A Active JP5373695B2 (en) 2010-05-07 2010-05-07 Sulfur online analyzer

Country Status (1)

Country Link
JP (1) JP5373695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651750A (en) * 2016-01-26 2016-06-08 张继勇 Ultraviolet fluorescence on-line total sulfur analysis control system and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101579011B1 (en) 2011-08-12 2015-12-18 제이에프이 스틸 가부시키가이샤 Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP5177263B2 (en) 2011-08-12 2013-04-03 Jfeスチール株式会社 Hot metal desulfurization method
WO2013044229A1 (en) * 2011-09-23 2013-03-28 Lucas Milhaupt, Inc. Luminescent braze preforms
JP6089445B2 (en) * 2012-05-17 2017-03-08 株式会社島津製作所 Component analysis apparatus and component analysis method
JP2014020812A (en) * 2012-07-13 2014-02-03 Taiyo Nippon Sanso Corp Oxidation method for sulfur compound in gas and analyzer for sulfur compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184467U (en) * 1986-05-14 1987-11-24
JPH081138B2 (en) * 1987-08-04 1996-01-10 住友重機械工業株式会社 Lubricating oil adjusting and supplying device for internal combustion engine
JP3814973B2 (en) * 1997-09-16 2006-08-30 石川島播磨重工業株式会社 Exhaust gas sampling structure of pressurized fluidized bed boiler
JP2003065958A (en) * 2001-08-30 2003-03-05 Dia Instr:Kk Method and apparatus for analysing sulfur
JP3831671B2 (en) * 2002-02-19 2006-10-11 株式会社堀場製作所 Method and apparatus for injecting liquid sample into horizontal combustion tube
JP3840128B2 (en) * 2002-03-15 2006-11-01 株式会社堀場製作所 Elemental analyzer and measuring method using this device
JP4486837B2 (en) * 2004-03-22 2010-06-23 株式会社堀場製作所 Device for measuring the concentration of specific components in fuel oil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651750A (en) * 2016-01-26 2016-06-08 张继勇 Ultraviolet fluorescence on-line total sulfur analysis control system and method
CN105651750B (en) * 2016-01-26 2018-09-25 张继勇 The online analysis of total sulfur control system of Ultraluminescence and method

Also Published As

Publication number Publication date
JP2011237204A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5373695B2 (en) Sulfur online analyzer
US8796035B2 (en) Method and device for fast sulfur characterization and quantification in sedimentary rocks and petroleum products
Haarlemmer et al. Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood
Liu et al. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy
Zhou et al. Effects of oxygen element and oxygen‐containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment
Balabin et al. Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study
Di Stasio et al. Comparative NEXAFS study on soot obtained from an ethylene/air flame, a diesel engine, and graphite
Li et al. Oxidative pyrolysis of kraft lignin in a bubbling fluidized bed reactor with air
Teixeira et al. Spontaneous aerosol ejection: origin of inorganic particles in biomass pyrolysis
US9029160B2 (en) Method for determining the content of hydrogen sulfide in crude and residual oils
JP5684675B2 (en) Analysis method and analyzer
JP4905823B2 (en) Method for measuring petroleum hydrocarbon content in soil and measuring device used therefor
JP4928656B2 (en) Method for measuring the content of the component contained in soil
Dhir et al. Single particle asphaltene pyrolysis in a drop-tube furnace
Pourabdollah Fouling propensity of pyrolytic coke particles in aqueous phase: Thermal and spectral analysis
KR101097874B1 (en) Total organic carbon measuring device without using of catalyst by adopting of ceramic ball and heat combustion
JP2007263814A (en) Combustion type water quality measuring instrument
US7993930B2 (en) Method and device for determining the phosphorus content of an aqueous sample
EP3087158A1 (en) A system for producing modified bitumen
Roncolatto et al. XPS study of spent FCC catalyst regenerated under different conditions
Ying-Fang et al. In-situ temperature dependent Raman spectra of coal
Grosch Optical absorption spectroscopy for gas analysis in biomass gasification
JP2021011518A (en) Method for determining mixing ratio of raw oil and device for determining mixing ratio of raw oil
Simone et al. Biomass tar: assessment of a sampling device and characterization methodology
Nazari Determination of Soluble Water Content in Organic Oil Study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250