JP5372826B2 - Method for producing microorganism group-supporting carrier, substance treatment method and substance production method using microorganism - Google Patents

Method for producing microorganism group-supporting carrier, substance treatment method and substance production method using microorganism Download PDF

Info

Publication number
JP5372826B2
JP5372826B2 JP2010083327A JP2010083327A JP5372826B2 JP 5372826 B2 JP5372826 B2 JP 5372826B2 JP 2010083327 A JP2010083327 A JP 2010083327A JP 2010083327 A JP2010083327 A JP 2010083327A JP 5372826 B2 JP5372826 B2 JP 5372826B2
Authority
JP
Japan
Prior art keywords
potential
electrode
carrier
methane fermentation
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010083327A
Other languages
Japanese (ja)
Other versions
JP2011062195A (en
Inventor
建吾 佐々木
仁彦 森田
伯夫 松本
伸一 平野
直也 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2010083327A priority Critical patent/JP5372826B2/en
Publication of JP2011062195A publication Critical patent/JP2011062195A/en
Application granted granted Critical
Publication of JP5372826B2 publication Critical patent/JP5372826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a microorganism group-carrying carrier exhibiting an excellent treating capacity even under a high loading condition. <P>SOLUTION: This method for preparing the microorganism group-carrying carrier includes bringing an electroconductive carrier capable of carrying the microorganisms in contact with a microorganism population at least containing an objective microorganism group to be carried and culturing liquid, and controlling the electric potential of the electroconductive carrier in an optimum range of the objective microorganism group to be carried so as to preferentially carry and activate the objective microorganism group to be carried on the electroconductive carrier. Also, the method for preparing the microorganism group-carrying carrier includes bringing a hydrophobic electroconductive carrier capable of carrying the microorganisms in contact with methane fermenting liquid containing an organic substrate material and controlling the electric potential of the electroconductive carrier to an electric potential capable of starting a reducing reaction at the electroconductive carrier, or to +0.3 V based on a silver-silver chloride electrode potential so as to preferentially carry and activate the microorganism group associated with the methane fermentation on the electroconductive carrier. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、微生物群担持担体の作製方法並びに微生物を利用した物質処理方法及び物質生産方法に関する。さらに詳述すると、本発明は、メタン発酵処理等に用いて好適な微生物群担持担体の作製方法並びに微生物を利用した物質処理方法及び物質生産方法に関する。   The present invention relates to a method for producing a microorganism group-carrying carrier, a substance processing method and a substance production method using microorganisms. More specifically, the present invention relates to a method for producing a microorganism group-supporting carrier suitable for use in a methane fermentation treatment and the like, a substance treatment method and a substance production method using microorganisms.

微生物を利用した物質処理方法及び物質生産方法は、環境負荷が少なく、低コストに実施できる方法として近年注目が集められており、各種研究・開発が進められつつある。   Substance treatment methods and substance production methods using microorganisms have attracted attention in recent years as methods that have low environmental impact and can be carried out at low cost, and various researches and developments are being promoted.

その代表的なものとして、生ゴミ等の有機性廃棄物をメタン発酵処理する技術が挙げられる。メタン発酵処理とは、有機性廃棄物を発酵液に投入し、嫌気性条件下でメタン生成菌等により発酵処理して有機性廃棄物をメタンガス等のバイオガスに分解する方法である。メタン発酵処理は、有機性廃棄物を大幅に減容できることから、近年の埋め立て処分地の逼迫の問題を解決することができ、しかもメタンガスをエネルギーとして回収できる極めて有益性の高い技術として注目されている。   A typical example is a technology for methane fermentation of organic waste such as garbage. The methane fermentation treatment is a method in which organic waste is introduced into a fermentation broth and subjected to fermentation treatment with an anaerobic condition using a methane-producing bacterium to decompose the organic waste into biogas such as methane gas. Since methane fermentation treatment can greatly reduce the volume of organic waste, it has been attracting attention as an extremely useful technology that can solve the recent problems of landfill disposal and that can recover methane gas as energy. Yes.

そこで、近年、メタン発酵処理に関する技術が各種提案されている。例えば、特許文献1では、生ごみ等の有機性廃棄物をメタン発酵法で効率的に処理するシステムとして、有機性廃棄物をペースト状に粉砕して、50〜60℃で大きな活性を示す高温メタン菌で処理するシステムが開示されている。具体的には、高温メタン菌が、36〜38℃の中温で活性が大きくなる中温菌に比べて2〜3倍の活性を持っていることを利用し、高温メタン菌でメタン発酵を行うことで分解速度の向上と消化率の向上を図るようにしている。   Therefore, in recent years, various technologies related to methane fermentation treatment have been proposed. For example, in Patent Document 1, as a system for efficiently treating organic waste such as garbage with a methane fermentation method, the organic waste is pulverized into a paste and heated at a high temperature of 50 to 60 ° C. A system for treating with methane bacteria is disclosed. Specifically, using the fact that thermophilic methane bacteria are 2-3 times more active than mesophilic bacteria whose activity is increased at medium temperatures of 36 to 38 ° C., methane fermentation is performed with high temperature methane bacteria In order to improve the decomposition rate and digestibility.

特開平10−137730号公報Japanese Patent Laid-Open No. 10-137730

一般に、微生物を利用して物質を変換(分解、酸化、還元等)により処理する場合、高負荷条件、例えば微生物により処理される被処理物の濃度が一定値以上の高濃度になると、微生物の機能が低下し、処理能力が低下してしまうことが知られている。メタン発酵処理においてもこのことは例外ではなく、有機物負荷速度や水理学的滞留時間が高い高負荷条件下では、メタン発酵槽の酸敗等が生じて、メタン発酵処理能が著しく低下する場合がある。このような状況に陥ると、メタン発酵槽を再生する必要が生じ、メタン発酵処理が滞ることになる。そこで、高負荷条件下においても処理能力を低下させることなく、連続して処理を行うことのできる方法の確立が望まれる。   In general, when a substance is processed by conversion (decomposition, oxidation, reduction, etc.) using microorganisms, if the concentration of an object to be processed that is processed by microorganisms reaches a certain level or higher, It is known that the function is lowered and the processing capacity is lowered. This is no exception in methane fermentation treatment, and under high load conditions with high organic matter loading rate and hydraulic residence time, methane fermentation tanks may suffer from rancidity and the like, and the methane fermentation treatment ability may be significantly reduced. . If it falls into such a situation, it will be necessary to reproduce | regenerate a methane fermentation tank, and a methane fermentation process will be overdue. Therefore, it is desired to establish a method capable of performing continuous processing without reducing processing capacity even under high load conditions.

本発明は、かかる要望に鑑みてなされたものであって、高負荷条件下においても優れた処理能力を発揮する微生物群担持担体を作製する方法を提供することを目的とする。   This invention is made | formed in view of this request, Comprising: It aims at providing the method of producing the microorganisms group carrying | support carrier which exhibits the outstanding processing capacity also under high load conditions.

また、本発明は、高負荷条件下においても優れた処理能力を発揮して効率よく実施することのできる微生物を利用した物質処理方法及び物質生産方法を提供することを目的とする。   Another object of the present invention is to provide a substance treatment method and a substance production method using a microorganism that can exhibit an excellent treatment capacity even under high load conditions and can be efficiently carried out.

かかる課題を解決するため、本願発明者等が鋭意検討を行ったところ、有機性廃棄物を発酵液に投入してメタン発酵を行うメタン発酵方法において、微生物を担持し得る導電性担体である炭素製の担体を有機性廃棄物と共に発酵液に接触させ、導電性担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8Vまたは+0.3Vに制御しながらメタン発酵を行うことで、メタン発酵処理において有用な微生物群を導電性担体に優占的に担持させて活性化させることができることを知見した。そして、メタン発酵処理において有用な微生物群を導電性担体に優占的に担持させて活性化させることで、高負荷運転条件下においても優れた処理能力を発揮して効率よくメタン生成が行われることを知見し、本発明を完成するに至ったIn order to solve this problem, the inventors of the present application have made extensive studies and found that carbon is a conductive carrier capable of supporting microorganisms in a methane fermentation method in which organic waste is introduced into a fermentation broth to perform methane fermentation. the manufacturing of the carrier is brought into contact with the fermentation broth with organic waste, carried out methane fermentation while controlling the -0.6V~ -0.8 V or + 0.3V the potential of the conductive carrier with silver, the silver electrode potential reference chloride Thus, it has been found that a group of microorganisms useful in methane fermentation treatment can be preferentially supported on a conductive carrier and activated . Their to, by activation dominant manner is supported useful microorganisms on the conductive support in the methane fermentation process, even if excellent capacity efficiently methanogenesis in high-load operating conditions As a result , the present invention has been completed .

即ち、本発明の微生物群担持担体の作製方法は、サーモトガ(Thermotogae)門に属する細菌を含む細菌群並びに水素資化性メタン菌及び酢酸資化性メタン菌を含むメタン菌群を含み、且つ有機性基質を含む50℃〜60℃のメタン発酵液を、微生物を担持し得る炭素製の導電性担体と接触させ、導電性担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8V又は+0.3Vに制御し、導電性担体に通電しない場合よりも、細菌群及びメタン菌群の導電性担体への担持量を増加させると共に、導電性担体に担持される細菌群をサーモトガ(Thermotogae)門に属する細菌で優占化させるようにしている。 That is, the method for producing a microorganism group-supporting carrier of the present invention includes a group of bacteria including bacteria belonging to Thermotogae, and a group of methane bacteria including hydrogen-utilizing methane bacteria and acetic acid-assimilating methane bacteria. A methane fermentation broth containing 50 to 60 ° C. containing a conductive substrate is brought into contact with a carbon conductive support capable of supporting microorganisms, and the potential of the conductive support is −0.6 V to − on the basis of the silver / silver chloride electrode potential. Control the voltage to 0.8V or + 0.3V, and increase the amount of bacteria and methane bacteria on the conductive carrier, compared to the case where the conductive carrier is not energized. It is made dominant by bacteria belonging to Thermotogae .

本発明の微生物群担持担体の作製方法においては、酢酸資化性メタン菌をMethanosarcina thermophilaとし、導電性担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8Vに制御することで、導電性担体に通電しない場合よりも、導電性担体に担持されるメタン菌群におけるMethanosarcina thermophilaの占有割合を高めることができる。In the method for producing a microbial group-supporting carrier of the present invention, the acetic acid-assimilating methane bacterium is Methanosarcina thermophila, and the potential of the conductive carrier is controlled to -0.6 V to -0.8 V based on the silver / silver chloride electrode potential reference. Thereby, the occupation ratio of Methanosarcina thermophila in the group of methane bacteria supported on the conductive carrier can be increased as compared with the case where the conductive carrier is not energized.
また、本発明の微生物群担持担体の作製方法においては、水素資化性メタン菌をMethanothermobacter thermautotrophicusとし、導電性担体の電位を銀・塩化銀電極電位基準で+0.3Vに制御することで、導電性担体に通電しない場合よりも、導電性担体に担持されるメタン菌群におけるMethanothermobacter thermautotrophicusの占有割合を高めることができる。Further, in the method for producing a microorganism-group-supporting carrier of the present invention, the hydrogen-assimilating methane bacterium is Methanothermobacter thermautotrophicus, and the electric potential of the conductive carrier is controlled to +0.3 V on the basis of the silver / silver chloride electrode potential reference. The proportion of Methanothermobacter thermautotrophicus in the group of methane bacteria supported on the conductive carrier can be increased as compared with the case where the conductive carrier is not energized.

また、本発明の微生物群担持担体の作製方法においては、最終的な有機物負荷量が20gCOD/l/日となるように有機物負荷量を徐々に増加させて少なくとも40日間馴養を行うことが好ましい。 In the method for preparing a microorganism group-carrying carrier of the present invention, it is preferable to acclimate for at least 40 days by gradually increasing the organic load so that the final organic load is 20 g COD / l / day.

ここで、本発明の微生物群担持担体の作製方法においては、導電性担体を作用電極とし、作用電極と対電極と参照電極とを定電位設定装置に結線し、メタン発酵液または培養液と電解液とをイオン交換膜を介して接触させ、メタン発酵液または培養液に作用電極と参照電極とを接触させ、電解液に対電極を接触させ、作用電極の電位を3電極方式で制御することが好ましい。また、導電性担体を作用電極とし、作用電極と対電極と参照電極とを定電位設定装置に結線し、メタン発酵液または培養液と対電極とをイオン交換膜を介して接触させ、メタン発酵液または培養液に作用電極と参照電極とを接触させ、作用電極の電位を3電極方式で制御することが好ましい Here, in the method for producing the microorganism group-supporting carrier of the present invention, the conductive carrier is used as a working electrode, the working electrode, the counter electrode, and the reference electrode are connected to a constant potential setting device, and the methane fermentation broth or culture solution is electrolyzed. A liquid is brought into contact with an ion exchange membrane, the working electrode and the reference electrode are brought into contact with the methane fermentation broth or the culture liquid, the counter electrode is brought into contact with the electrolytic solution, and the potential of the working electrode is controlled by a three-electrode system. Is preferred. In addition, the conductive carrier is used as a working electrode, the working electrode, the counter electrode, and the reference electrode are connected to a constant potential setting device, and the methane fermentation broth or culture solution and the counter electrode are brought into contact with each other through an ion exchange membrane, thereby It is preferable that the working electrode and the reference electrode are brought into contact with the solution or the culture solution, and the potential of the working electrode is controlled by a three-electrode system .

尚、本明細書における「活性化」とは、担持対象微生物が増殖することにより担体に担持された担持対象微生物群全体としての機能が高まることと、担持対象微生物群自体の機能が高められることにより担体に担持された担持対象微生物群全体としての機能が高まることとのいずれか一方あるいは両方を意味している。   In this specification, “activation” means that the function of the entire target microorganism group supported on the carrier is increased by the proliferation of the target target microorganism, and the function of the target target microorganism group itself is enhanced. This means that one or both of the functions of the entire group of microorganisms to be supported supported by the carrier are enhanced.

次に、本発明のメタン発酵方法は、本発明の微生物群担持担体の作製方法により作製された微生物群担持担体をメタン発酵液に浸漬し、微生物群担持担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8V又は+0.3Vに制御しながらメタン発酵処理を行うようにしている。 Next, in the methane fermentation method of the present invention, the microorganism group-supported carrier produced by the method for producing the microorganism group-supported carrier of the present invention is immersed in a methane fermentation solution, and the potential of the microorganism group-supported carrier is set to the silver / silver chloride electrode potential. The methane fermentation treatment is performed while controlling to -0.6V to -0.8V or + 0.3V on the basis.

ここで、本発明のメタン発酵方法において、微生物群担持担体を作用電極とし、作用電極と対電極と参照電極とを定電位設定装置に結線し、メタン発酵液と電解液とをイオン交換膜を介して接触させ、メタン発酵液に作用電極と参照電極とを接触させ、電解液に対電極を接触させ、作用電極の電位を3電極方式で制御することが好ましい。また、微生物群担持担体を作用電極とし、作用電極と対電極と参照電極とを定電位設定装置に結線し、メタン発酵液と対電極とをイオン交換膜を介して接触させ、メタン発酵液に前記作用電極と参照電極とを接触させ、作用電極の電位を3電極方式で制御することが好ましい Here, in the methane fermentation method of the present invention , the microorganism group-supported carrier is used as a working electrode, the working electrode, the counter electrode, and the reference electrode are connected to a constant potential setting device, and the methane fermentation solution and the electrolytic solution are connected to an ion exchange membrane. It is preferable that the working electrode and the reference electrode are brought into contact with the methane fermentation solution, the counter electrode is brought into contact with the electrolytic solution, and the potential of the working electrode is controlled by a three-electrode system. In addition, the microorganism group-supported carrier is used as a working electrode, the working electrode, the counter electrode, and the reference electrode are connected to a constant potential setting device, and the methane fermentation broth and the counter electrode are brought into contact with each other through an ion exchange membrane. It is preferable that the working electrode and the reference electrode are brought into contact with each other and the potential of the working electrode is controlled by a three-electrode system .

本発明の微生物群担持担体の作製方法によれば、メタン発酵処理において有用な微生物群を導電性担体に優占的に担持させて活性化させた微生物群担持担体を作製することができ、この微生物群担持担体をメタン発酵処理に供することで、優れたメタン発酵処理能を発揮し、その能力は有機性廃棄物等を大量投入した高負荷条件下においても発揮され得るものとなり、長期に亘り効率よくメタン発酵処理を行うことが可能となる。また、メタン生成菌群を導電性担体に優占的に担持させて活性化させた微生物群担持担体を作製することで、効率よくメタン生成を行うことが可能となる。 According to the manufacturing method of the microorganisms supporting carrier of the present invention, it is possible to produce microorganisms loaded support were activated by dominant manner is supported useful microorganisms on the conductive carrier in methane fermentation treatment, By providing this microbial group-supported carrier for methane fermentation treatment, it exhibits excellent methane fermentation treatment performance, which can be demonstrated even under high load conditions in which a large amount of organic waste is added, It becomes possible to perform methane fermentation treatment efficiently over a long time. In addition, it is possible to efficiently generate methane by preparing a microorganism group-supporting carrier in which a methanogenic bacteria group is preferentially supported on a conductive carrier and activated.

また、本発明のメタン発酵方法によれば、微生物群担持担体の電位を制御して活性化させながら、メタン発酵処理を行うことができるので、優れたメタン発酵処理能を発揮させ、その能力は有機性廃棄物等を大量投入した高負荷条件下においても発揮され得るものとなり、長期に亘り効率よくメタン発酵処理を行うことが可能となる。   In addition, according to the methane fermentation method of the present invention, the methane fermentation treatment can be performed while controlling the potential of the microorganism group-supporting carrier and activating it. It can be exhibited even under high load conditions in which a large amount of organic waste or the like is introduced, and it is possible to efficiently perform methane fermentation treatment over a long period of time.

実施例A−1において使用した実験装置の断面図である。It is sectional drawing of the experimental apparatus used in Example A-1. 実施例A−1におけるメタン発酵槽の運転条件(負荷条件)を示す図である。It is a figure which shows the driving | running condition (load condition) of the methane fermenter in Example A-1. 実施例A−1において得られた設定電位とガス生成速度の関係を示す図である。It is a figure which shows the relationship between the setting potential obtained in Example A-1, and a gas production rate. 実施例A−1において得られた設定電位と化学的酸素要求量(COD)除去速度の関係を示す図である。It is a figure which shows the relationship between the setting electric potential obtained in Example A-1, and a chemical oxygen demand (COD) removal rate. 実施例A−1において得られた設定電位と浮遊固形分(SS)除去速度の関係を示す図である。It is a figure which shows the relationship between the setting electric potential obtained in Example A-1, and floating solid content (SS) removal rate. 実施例A−1において得られた設定電位と低級脂肪酸濃度の関係を示す図である。It is a figure which shows the relationship between the setting potential obtained in Example A-1, and a lower fatty acid concentration. 実施例A−2において得られた発酵液画分の全菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of all the microbes of the fermented liquid fraction obtained in Example A-2. 実施例A−2において得られた発酵液画分のメタン生成菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of the methanogen of the fermented liquid fraction obtained in Example A-2. 実施例A−2において得られた担体付着画分の全菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of all the microbes of the carrier adhesion fraction obtained in Example A-2. 実施例A−2において得られた担体付着画分のメタン生成菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of the methanogen of the support | carrier adhesion fraction obtained in Example A-2. 実施例A−2において、T−RFLPにより細菌群集構造を解析した結果を示す図である。In Example A-2, it is a figure which shows the result of having analyzed the bacterial community structure by T-RFLP. 実施例A−2において、設定電位が−0.6Vの場合の炭素板上の細菌群集構造をTAクローニングにより解析した結果を示す図である。In Example A-2, it is a figure which shows the result of having analyzed the bacterial community structure on the carbon plate by TA cloning in case setting potential is -0.6V. 実施例A−2において、T−RFLPにより古細菌群集構造を解析した結果を示す図である。In Example A-2, it is a figure which shows the result of having analyzed the archaeal community structure by T-RFLP. 実施例A−2において、設定電位が−0.6Vの場合の炭素板上の古細菌群集構造をTAクローニングにより解析した結果を示す図である。In Example A-2, it is a figure which shows the result of having analyzed the archaea community structure on the carbon plate in case a setting electric potential is -0.6V by TA cloning. 実施例A−3において、メタン生成菌のメタン生成活性の電位依存性を示す図である。In Example A-3, it is a figure which shows the electric potential dependence of the methanogenic activity of a methanogen. 実施例Aー4において、担体の種類等によるガス生成速度の違いについて実験した結果を示す図である。In Example A-4, it is a figure which shows the result of having experimented about the difference in the gas production rate by the kind etc. of support | carrier. 実施例A−3において使用した実験装置の断面図である。It is sectional drawing of the experimental apparatus used in Example A-3. 実施例B−1におけるメタン発酵槽の運転条件(負荷条件)を示す図である。It is a figure which shows the driving | running condition (load condition) of the methane fermenter in Example B-1. 実施例B−1において得られた設定電位とガス生成速度の関係を示す図である。It is a figure which shows the relationship between the setting electric potential obtained in Example B-1, and a gas production rate. 実施例B−1において得られた設定電位と化学的酸素要求量(COD)除去速度の関係を示す図である。It is a figure which shows the relationship between the setting electric potential obtained in Example B-1, and a chemical oxygen demand (COD) removal rate. 実施例B−1において得られた設定電位と浮遊固形分(SS)除去速度の関係を示す図である。It is a figure which shows the relationship between the setting electric potential obtained in Example B-1, and floating solid content (SS) removal rate. 実施例B−1において得られた設定電位と低級脂肪酸濃度の関係を示す図である。It is a figure which shows the relationship between the setting electric potential obtained in Example B-1, and a lower fatty acid density | concentration. 実施例B−2において得られた発酵液画分の全菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of all the microbe of the fermented liquor fraction obtained in Example B-2. 実施例B−2において得られた発酵液画分のメタン生成菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of the methanogen of the fermented liquid fraction obtained in Example B-2. 実施例B−2において得られた担体付着画分の全菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of all the microbes of the carrier adhesion fraction obtained in Example B-2. 実施例B−2において得られた担体付着画分のメタン生成菌の定量PCR結果を示す図である。It is a figure which shows the quantitative PCR result of the methanogen of the support | carrier adhesion fraction obtained in Example B-2. 模擬有機性廃棄物のボルタンメトリー測定を行った結果を示す図である。It is a figure which shows the result of having performed the voltammetric measurement of the simulated organic waste. 実施例B−2において、T−RFLPにより細菌群集構造を解析した結果を示す図である。In Example B-2, it is a figure which shows the result of having analyzed the bacterial community structure by T-RFLP. 実施例B−2において、T−RFLPにより古細菌群集構造を解析した結果を示す図である。In Example B-2, it is a figure which shows the result of having analyzed the archaeal community structure by T-RFLP. 第一の実施形態Aにかかる処理装置の一例を示す断面図である。It is sectional drawing which shows an example of the processing apparatus concerning 1st Embodiment A. 第一の実施形態Bにかかる処理装置の一例を示す断面図である。It is sectional drawing which shows an example of the processing apparatus concerning 1st Embodiment B. 第一の実施形態Cにかかる処理装置の一例を示す断面図である。It is sectional drawing which shows an example of the processing apparatus concerning 1st Embodiment C. 第一の実施形態Dにかかる処理装置の一例を示す断面図である。It is sectional drawing which shows an example of the processing apparatus concerning 1st Embodiment D. 第二の実施形態にかかる処理装置の一例を示す断面図である。It is sectional drawing which shows an example of the processing apparatus concerning 2nd embodiment. 処理装置の他の形態の一例を示す断面図である。It is sectional drawing which shows an example of the other form of a processing apparatus.

以下、本発明を実施するための形態について、図面に基づいて詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本発明の微生物群担持担体の作製方法は、微生物を担持し得る導電性担体と導電性担体への担持対象微生物群を少なくとも含む微生物群集と培養液とを接触させ、導電性担体の電位を担持対象微生物群の至適範囲に制御し、導電性担体に担持対象微生物群を優占的に担持させて活性化させるようにしている。したがって、目的の処理に応じた微生物群を担持対象微生物群として導電性担体に担持させて活性化をさせることができ、高負荷条件下においても優れた処理能力を発揮させて、長期間にわたり効率よく微生物群による物質の処理や生産を行うことができる。   The method for producing a microbial group-supporting carrier according to the present invention comprises contacting a microbial population including at least a microbial group to be supported on a conductive carrier capable of supporting microorganisms and a culture solution, and supporting the potential of the conductive carrier. The target microorganism group is controlled within the optimum range, and the support target microorganism group is preferentially supported on the conductive carrier to be activated. Therefore, the microorganism group corresponding to the target treatment can be activated by supporting it on the conductive carrier as the microorganism group to be supported, and it exhibits an excellent treatment capacity even under high load conditions, and is efficient over a long period of time. Often, substances can be processed and produced by microorganisms.

また、本発明の物質処理方法は、微生物を担持し得る導電性担体と導電性担体への担持対象微生物群を少なくとも含む微生物群集と担持対象微生物群により変換処理される被処理物を含む培養液とを接触させ、導電性担体の電位を担持対象微生物群の至適範囲に制御し、導電性担体に担持対象微生物群を優占的に担持させて活性化させながら、被処理物を変換処理するようにしている。また、本発明の物質生産方法は、微生物を担持し得る導電性担体と導電性担体への担持対象微生物群を少なくとも含む微生物群集と担持対象微生物群の生産物の生成源物質を含む培養液とを接触させ、導電性担体の電位を担持対象微生物群の至適範囲に制御し、導電性担体に担持対象微生物群を優占的に担持させて活性化させながら、生産物を生産するようにしている。つまり、導電性担体への担持対象微生物群の担持を行いつつ、物質の処理や生産を行うこともできるという利点がある。   In addition, the material treatment method of the present invention includes a culture solution containing a conductive carrier capable of supporting microorganisms, a microbial community including at least a microorganism group to be supported on the conductive carrier, and an object to be treated that is converted by the microorganism group to be supported. The substrate, and the potential of the conductive carrier is controlled within the optimum range of the target microorganism group, and the target object is preferentially supported on the conductive carrier and activated to convert the object to be treated. Like to do. The substance production method of the present invention includes a conductive carrier capable of supporting microorganisms, a microbial community including at least a microorganism group to be supported on the conductive carrier, and a culture solution including a source material for a product of the microorganism group to be supported. To control the potential of the conductive carrier within the optimum range of the target microorganism group, and to produce the product while preferentially supporting and activating the target microorganism group on the conductive carrier. ing. In other words, there is an advantage that the substance can be processed and produced while supporting the target microorganism group on the conductive carrier.

本発明では、被処理物に対し、分解、酸化、還元などの変換処理を行うことのできる微生物群全般、あるいはある生成源物質を利用して物質を生産する能力を有する微生物群全般を担持対象微生物群とすることができる。   In the present invention, the entire microorganism group that can perform conversion treatment such as decomposition, oxidation, reduction, etc. on the object to be processed or the entire microorganism group that has the ability to produce a substance using a certain source material is supported. It can be a microorganism group.

例えば、SS(固形浮遊物)の分解、COD(化学的酸素要求量)の分解除去、TOC(全有機炭素)の分解除去、テトラクロロエチレン(PCE)、ジクロロエチレン(DCE)及びビニルクロライド(VC)の脱塩素化処理等を行う機能を有する公知あるいは新規の微生物を担持対象微生物群とすることができる。例えば、SS(固形浮遊物)の分解、COD(化学的酸素要求量)の分解除去、TOC(全有機炭素)の分解除去には、メタン発酵槽から取得される汚泥に含まれる微生物群を使用することができる。また、テトラクロロエチレン(PCE)の脱塩素化には例えばDesulfitobacterium, Dehalococcoides, Dehalobacter, Geobacter等、ジクロロエチレン(DCE)及びビニルクロライド(VC)の脱塩素化には例えばDehalococcoides等の微生物群を使用することができる。   For example, decomposition of SS (solid suspended matter), decomposition removal of COD (chemical oxygen demand), decomposition removal of TOC (total organic carbon), removal of tetrachlorethylene (PCE), dichloroethylene (DCE) and vinyl chloride (VC) A known or new microorganism having a function of performing a chlorination treatment or the like can be used as a supported microorganism group. For example, microorganisms contained in sludge obtained from methane fermenters are used for SS (solid suspended solids) decomposition, COD (chemical oxygen demand) decomposition removal, and TOC (total organic carbon) decomposition removal. can do. Further, for the dechlorination of tetrachlorethylene (PCE), for example, Desulfitobacterium, Dehalococcoides, Dehalobacter, Geobacter and the like, and for the dechlorination of dichloroethylene (DCE) and vinyl chloride (VC), a microorganism group such as Dehalococcoides can be used. .

また、例えば、メタンガス、水素、アミノ酸、各種有機物を生産する機能を有する公知あるいは新規の微生物を担持対象微生物群とすることができる。例えば、水素と二酸化炭素を生成源としてメタンガスを生成する水素資化性メタン生成菌(例えば、Methanothermobacter thermautotrophicus等)、酢酸を生成源としてメタンガスを生成する酢酸資化性メタン生成菌(例えば、Methanosarcina thermophila)、グルコースからエタノールやブタノール、アセトンを生産するClostridium acetobutylicum等が挙げられるが、これらに限定されるものではない。   Further, for example, known or novel microorganisms having a function of producing methane gas, hydrogen, amino acids, and various organic substances can be used as the supported microorganism group. For example, hydrogen-utilizing methanogens that produce methane gas using hydrogen and carbon dioxide as sources (for example, Methanothermobacter thermautotrophicus), acetic acid-assimilating methanogens that produce methane gas using acetic acid as a source (for example, Methanosarcina thermophila ), Clostridium acetobutylicum that produces ethanol, butanol, and acetone from glucose, but is not limited thereto.

本願発明者等の実験によると、メタン生成菌群を担持対象微生物群とした場合、導電性担体の電位を、銀・塩化銀電極電位基準で−0.8Vとすることで、導電性担体に優占的にメタン生成菌群を担持させて活性化させることができ、メタン生成活性(メタンガス生産能)を通電しない場合の3.5倍に向上できることが確認されている   According to the experiments by the inventors of the present application, when the methanogenic bacteria group is the target microorganism group, the conductive carrier is set to -0.8 V on the basis of the silver / silver chloride electrode potential, It has been confirmed that it can preferentially support and activate the methanogenic bacteria group, and can improve the methanogenic activity (methane gas production ability) to 3.5 times that when not energized.

本発明において用いられる微生物を担持し得る導電性担体は、微生物反応プロセスに合わせて、その性質を親水性、疎水性とすればよい。例えば、メタン発酵処理またはメタンガス生成を実施する場合には炭素製担体などの疎水性の導電性担体の使用が好ましいが、微生物反応プロセスによっては、白金製担体等の親水性担体の使用が好ましい場合もある。また、導電性担体は通電性が確保される範囲内で繊維状や多孔質体等の三次元構造として表面積を増大させ、微生物の担持量を増大することのできる形態としてもよい。   The conductive carrier capable of supporting the microorganism used in the present invention may be hydrophilic or hydrophobic in accordance with the microorganism reaction process. For example, when conducting methane fermentation treatment or methane gas production, it is preferable to use a hydrophobic conductive carrier such as a carbon carrier, but depending on the microbial reaction process, it is preferable to use a hydrophilic carrier such as a platinum carrier. There is also. In addition, the conductive carrier may have a three-dimensional structure such as a fibrous or porous body within a range in which electric conductivity is ensured, and may have a form capable of increasing the amount of microorganisms supported.

培養液は、微生物の培養の際に使用される通常の培養液を用いればよく、微生物のエネルギー源となる物質や、pH等の培養環境を制御するための物質等を適宜添加して使用すればよい。尚、培養液には通常、水素イオン、ナトリウムイオン(Na)、カリウムイオン(K)などの一価の陽イオンが含まれていることから、培養液自体に通電性があり、導電性担体自体の電位制御は容易に行うことができる。 As the culture solution, a normal culture solution used for culturing microorganisms may be used, and a substance that serves as an energy source for microorganisms, a substance for controlling the culture environment such as pH, and the like may be appropriately added. That's fine. The culture solution usually contains monovalent cations such as hydrogen ions, sodium ions (Na + ), and potassium ions (K + ), so that the culture solution itself is electrically conductive and conductive. The potential control of the carrier itself can be easily performed.

尚、導電性担体と担持対象微生物群と培養液との接触方法は特に限定されるものではない。例えば、培養液に導電性担体と担持対象微生物群とを別々に入れるようにしてもよいし、担持対象微生物群あるいは担持対象微生物群を含む微生物群集を例えばバイオフィルムのような形態で導電性担体に予め担持しておき、これを培養液に入れるようにしてもよい。いずれの場合にも、導電性担体に担持対象微生物群を優占的に担持させて活性化させることができる。本発明によれば、担持対象微生物群を優占的に担持させて活性化させることができるのは勿論のこと、担持対象微生物群を含む微生物群集のうち、担持対象微生物群のみを優占的に担持させて活性化させることができる。つまり、複数種の微生物群を含む微生物群集から所望の微生物群のみを選択的に担体に担持させて活性化させることができる。   The contact method between the conductive carrier, the target microorganism group and the culture solution is not particularly limited. For example, the conductive carrier and the target microorganism group may be separately added to the culture solution, or the microorganism group including the target microorganism group or the target microorganism group in the form of, for example, a biofilm It may be carried in advance and placed in the culture medium. In either case, the target microorganism group can be preferentially supported on the conductive carrier and activated. According to the present invention, it is possible to preferentially support and activate the supported target microorganism group, and of the microorganism group including the supported target microorganism group, only the supported target microorganism group is dominant. It can be activated by being supported on the surface. That is, only a desired microorganism group can be selectively carried on a carrier from a microorganism group including a plurality of types of microorganism groups and activated.

担持対象微生物群の至適範囲は、以下に説明する実験方法により導かれる。即ち、被処理物を変換処理する能力を有する微生物群を担持対象とする場合、一定量の被処理物を培養液に添加し、この培養液に導電性担体と担持対象微生物群を少なくとも含む微生物群集とを接触させて、導電性担体を各種電位に一定期間制御し、培養液に含まれる被処理物の量が大幅に低減している電位範囲を至適範囲とすることができる。また、生産物を生産する微生物群を担持対象とする場合、一定量の生成源物質を培養液に添加し、この培養液に導電性担体と担持対象微生物群を少なくとも含む微生物群集とを接触させて、導電性担体を各種電位に一定期間制御し、生産物の生成量が多い電位範囲を至適範囲とすることができる。   The optimum range of the microorganism group to be supported is derived by the experimental method described below. That is, when a microorganism group having an ability to convert the object to be treated is to be supported, a certain amount of the object to be treated is added to the culture solution, and the microorganism includes at least a conductive carrier and the object microorganism group to be supported in the culture solution. By contacting the crowd and controlling the conductive carrier at various potentials for a certain period of time, the potential range in which the amount of the object to be treated contained in the culture solution is greatly reduced can be made the optimum range. When a microorganism group that produces a product is to be supported, a certain amount of a source material is added to the culture solution, and the culture solution is brought into contact with a microbial community that includes at least the microorganism group to be supported. Thus, the conductive carrier can be controlled at various potentials for a certain period of time, and the potential range in which the amount of product produced is large can be made the optimum range.

本発明によれば、導電性担体に担持対象微生物群を優占的に担持させて活性化することができる。したがって、高負荷条件下で微生物を利用した物質処理方法や物質生産方法を実施しても、優れた処理能力を発揮させて効率よく実施することができる。また、本発明によれば、目的の処理を阻害する微生物群を失活させたり、あるいは除去することで、目的の処理を効率よく実施することも可能となる場合もある。さらには、担持対象微生物群を優占的に担持させて活性化した導電性担体を被処理物や物質生成源を含む培養液等の液体と接触させることで、担持対象微生物群が液体に供給される効果も期待できる。即ち、導電性担体の電位を担持対象微生物群の至適範囲に制御して、導電性担体に極めて高効率に担持対象微生物群を担持させて活性化させると、導電性担体上で増殖した担持対象微生物群の一部が液体に供給される。したがって、導電性担体に担持対象微生物群を優占的に活性化させながらも、同時に被処理物や物質生成源を含む培養液等の液体に担持対象微生物群を供給して生息させることで、担持対象微生物群の物質処理能力や物質生産能力を極めて効率よく利用する効果が発揮される。   According to the present invention, the target microorganism group can be preferentially supported on the conductive carrier and activated. Therefore, even if a material processing method or a material production method using microorganisms is performed under high load conditions, it can be efficiently performed with its excellent processing capacity. Moreover, according to the present invention, it may be possible to efficiently carry out the target treatment by inactivating or removing the microorganism group that inhibits the target treatment. Furthermore, the target support microorganism group is supplied to the liquid by bringing the conductive carrier activated by preferentially supporting the support target microorganism group into contact with a liquid such as a culture solution containing an object to be processed or a substance generation source. Can be expected. That is, when the potential of the conductive carrier is controlled within the optimum range of the microorganism group to be loaded, and the microorganism to be loaded is loaded on the conductive carrier and activated, the loaded carrier grown on the conductive carrier is activated. Part of the target microorganism group is supplied to the liquid. Therefore, while preferentially activating the target microorganism group on the conductive carrier, at the same time supplying the target target microorganism group to a liquid such as a culture solution containing an object to be processed or a substance generation source, and inhabiting it, The effect of using the substance processing capacity and substance production capacity of the microorganism group to be supported extremely efficiently is exhibited.

以下、本発明の物質処理方法及び物質生産方法をメタン発酵処理に適用した場合について具体的に説明する。   Hereinafter, the case where the material treatment method and the material production method of the present invention are applied to methane fermentation treatment will be described in detail.

メタン発酵処理は、有機性廃棄物をメタン発酵して減容化し、その過程でメタンガスを含むバイオガスを生成させて回収するものである。   In the methane fermentation process, organic waste is reduced in volume by methane fermentation, and biogas containing methane gas is generated and recovered in the process.

メタン発酵液には、有機性廃棄物等のメタン発酵処理が行われているメタン発酵槽のメタン発酵液やメタン発酵汚泥を添加した培養液を用いることができる。また、メタン発酵を行うための微生物群を人工的に培養した微生物群集を添加した培養液を用いることもできる。   As the methane fermentation liquid, a methane fermentation liquid in a methane fermentation tank in which methane fermentation treatment such as organic waste is performed or a culture liquid to which methane fermentation sludge is added can be used. Moreover, the culture solution which added the microorganism community which cultured the microorganism group for performing methane fermentation artificially can also be used.

メタン発酵液には、有機性基質として有機性廃棄物が投入される。有機性廃棄物としては、畜産廃棄物、生ゴミ、廃水処理汚泥、稲藁や麦藁等の藁類、紙ごみ、各種バイオマス等などが挙げられるが、これらに限定されるものではない。また、有機性廃棄物は、その性状により、必要に応じて、破砕や分別などの前処理を行ってからメタン発酵処理に供される。   Organic waste is introduced into the methane fermentation broth as an organic substrate. Examples of the organic waste include, but are not limited to, livestock waste, raw garbage, wastewater treatment sludge, rice cakes such as rice straw and wheat straw, paper waste, various biomass, and the like. In addition, the organic waste is subjected to a methane fermentation treatment after performing pretreatment such as crushing and fractionation, if necessary, depending on its properties.

微生物を担持し得る導電性担体としては、上記の通り、疎水性の導電性担体、例えば炭素板などの炭素製の担体がメタン発酵液に浸される。   As described above, as the conductive carrier capable of supporting microorganisms, a hydrophobic conductive carrier, for example, a carbon carrier such as a carbon plate is immersed in the methane fermentation broth.

導電性担体の電位は、導電性担体にて還元反応が生じ得る電位または銀・塩化銀電極電位基準で+0.3Vに制御する。これにより、メタン発酵処理に関与する微生物群が導電性担体に優占的に担持されて増殖し、メタン発酵処理の一連の微生物反応である、SS分解処理、COD分解除去処理、低級脂肪酸分解処理及びメタン生成が効率よく進行する。尚、本願発明者等の実験によれば、導電性担体の電位を導電性担体にて還元反応が生じ得る電位に制御することで、メタン発酵処理に関与する微生物群が導電性担体に優占的に担持されて増殖する傾向が見られたが、設定電位をマイナス側に大きくし過ぎると、水の電気分解が激しく生じてメタン発酵が停止する虞があると共に、メタン発酵から水素発酵への移行が生じる虞もあるので、それよりも小さな電位とすることが好適である。具体的には−1.0Vを含んで−1.0Vよりもマイナス側に大きくすると、メタン発酵から水素発酵への移行が生じる可能性があるので、−1.0Vよりも絶対値基準で小さくすることが好適である。因みに、−1.2V程度であれば水の電気分解が激しく生じることはない。尚、後述するイオン交換膜を備えた形態の場合には、−1.0Vよりもマイナス側に大きくしても水素発酵への移行は生じないので、−1.0Vよりもマイナス側に大きくしてもよい。このように導電性担体の電位を制御することにより、メタン発酵処理に関与する微生物群が担体保持電極の担体に優占的に担持されて増殖し、メタン発酵処理の一連の微生物反応である、SS分解処理、COD分解除去処理、低級脂肪酸分解処理及びメタン生成が効率よく進行する。また、本願発明者等の実験によれば、有機物負荷量を徐々に増加させながら電位を上記値に40日間制御し続けることで、最終的に有機物負荷量を26.9gCOD/l/日として20日間近くメタン発酵を行っても、メタン生成が問題なく進行することが確認され、特に、設定電位を−0.6V〜−0.8Vとした場合については、有機物負荷量を徐々に増加させながら電位を60日間制御し続けることで、最終的に有機物負荷量を31.8gCOD/l/日として15日間近くメタン発酵を行っても、メタン生成が問題なく進行することが確認された。このことから、設定電位を銀・塩化銀電極電位基準で−0.6V〜−0.8Vまたは+0.3V、好適には−0.6V〜−0.8Vに制御して、例えば最終的な有機物負荷量が20gCOD/l/日となるように有機物負荷量を徐々に増加させて少なくとも40日間馴養を行うことで、少なくとも有機物負荷量26.9gCOD/l/日という極めて高負荷な運転条件下においてもメタン発酵処理を進行させることができる微生物群担持担体を作製することができる。   The potential of the conductive carrier is controlled to +0.3 V based on the potential at which a reduction reaction can occur in the conductive carrier or the silver / silver chloride electrode potential standard. As a result, a group of microorganisms involved in the methane fermentation treatment is predominately supported on the conductive carrier and grows, and a series of microbial reactions of the methane fermentation treatment, SS decomposition treatment, COD decomposition removal treatment, lower fatty acid decomposition treatment And methane production proceeds efficiently. According to the experiments by the inventors of the present application, by controlling the potential of the conductive carrier to a potential at which a reduction reaction can occur on the conductive carrier, the microbial group involved in the methane fermentation treatment predominates over the conductive carrier. However, if the set potential is increased too much to the negative side, water electrolysis may occur vigorously and methane fermentation may be stopped, and methane fermentation to hydrogen fermentation may be stopped. Since there is a possibility that the transition occurs, it is preferable to set a potential lower than that. Specifically, if -1.0V is included and it is made larger than -1.0V to the minus side, there is a possibility that the transition from methane fermentation to hydrogen fermentation may occur, so it is smaller than -1.0V on an absolute value basis. It is preferable to do. Incidentally, if it is about -1.2V, electrolysis of water does not occur vigorously. In the case of an embodiment provided with an ion exchange membrane, which will be described later, even if it is increased to the minus side from -1.0 V, the shift to hydrogen fermentation does not occur. May be. By controlling the potential of the conductive carrier in this way, the microbial group involved in the methane fermentation treatment is predominately supported on the carrier of the carrier holding electrode and proliferates, which is a series of microbial reactions in the methane fermentation treatment. SS decomposition treatment, COD decomposition removal treatment, lower fatty acid decomposition treatment and methane production proceed efficiently. Further, according to the experiment by the inventors of the present application, the organic substance load amount is finally set to 26.9 g COD / l / day by continuously controlling the potential to the above value for 40 days while gradually increasing the organic substance load amount. Even if methane fermentation is carried out for nearly a day, it is confirmed that methane production proceeds without any problem. Especially, when the set potential is -0.6V to -0.8V, the organic load is gradually increased. By continuing to control the potential for 60 days, it was confirmed that methane production progressed without problems even when methane fermentation was carried out for nearly 15 days with an organic load of 31.8 g COD / l / day. From this, the set potential is controlled to -0.6 V to -0.8 V or +0.3 V, preferably -0.6 V to -0.8 V on the basis of the silver / silver chloride electrode potential. By gradually increasing the organic load amount so that the organic load amount becomes 20 g COD / l / day and acclimatizing for at least 40 days, the organic load amount is at least 26.9 g COD / l / day under extremely high load operating conditions. It is possible to produce a microorganism group-supporting carrier capable of proceeding with methane fermentation.

尚、炭素製の担体とメタン発酵槽から発生する汚泥を含むメタン発酵液とを接触させ、導電性担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8Vまたは+0.3Vに制御することで、メタン発酵処理において極めて優れた機能を発揮する微生物群担持担体、例えば、サーモトガ(Thermotogae)門に属する微生物、水素資化性メタン生成菌、酢酸資化性メタン生成菌を優占的に担持させて増殖させた担体を作製することができる。この担体は、担体に通電せずに行われる通常のメタン発酵処理に用いた場合にも優れた処理能力を発揮するのは勿論のこと、これを本発明のメタン発酵方法に適用することで極めて優れた処理能力を発揮させることができる。   The carbon carrier and a methane fermentation solution containing sludge generated from the methane fermentation tank are brought into contact with each other, and the potential of the conductive carrier is -0.6 V to -0.8 V or +0. By controlling to 3V, a microorganism group-supporting carrier that exhibits extremely excellent functions in methane fermentation treatment, such as microorganisms belonging to the Thermotoga gate, hydrogen-utilizing methanogens, and acetic acid-assimilating methanogens Carriers that are preferentially supported and propagated can be made. This carrier, when used in a normal methane fermentation process carried out without energizing the carrier, of course exhibits excellent processing capability, and it can be extremely applied by applying it to the methane fermentation method of the present invention. Excellent processing capability can be exhibited.

ここで、本発明の微生物群担持担体の作製方法は、例えば図30〜図34に示す装置により実施される。以下、第一の実施形態にかかる微生物群担持担体の作製方法を図30〜図33に基づいて説明し、第二の実施形態にかかる微生物群担持担体の作製方法を図34に基づいて説明する。   Here, the method for producing the microorganism group-supporting carrier of the present invention is carried out by the apparatus shown in FIGS. 30 to 34, for example. Hereinafter, a method for producing a microbial group carrying carrier according to the first embodiment will be described based on FIGS. 30 to 33, and a method for producing a microbial group carrying carrier according to the second embodiment will be described based on FIG. .

<第一の実施形態>
第一の実施形態にかかる微生物群担持担体の作製方法は、微生物を担持し得る担体を作用電極とし、作用電極と対電極と参照電極とを定電位設定装置に結線し、メタン発酵液と電解液とをイオン交換膜を介して接触させ、メタン発酵液と作用電極と参照電極とを接触させ、電解液に対電極を接触させ、作用電極の電位を3電極方式で制御するようにしている。
<First embodiment>
The method for producing a microorganism-group-supporting carrier according to the first embodiment uses a carrier capable of supporting microorganisms as a working electrode, connects the working electrode, the counter electrode, and the reference electrode to a constant-potential setting device, and combines the methane fermentation solution and the electrolytic solution. The liquid is brought into contact through an ion exchange membrane, the methane fermentation liquid, the working electrode and the reference electrode are brought into contact, the counter electrode is brought into contact with the electrolytic solution, and the potential of the working electrode is controlled by a three-electrode system. .

第一の実施形態にかかる微生物群担持担体の作製方法は、例えば図30〜図33に示す装置1により実施される。即ち、図30〜図33に示す処理装置1は、イオン交換膜6によって仕切られた二つの槽のうちの一方の槽を処理槽7とし、他方の槽を対電極槽8とし、処理槽7にはメタン発酵液4が収容されると共に作用電極9と参照電極11が浸され、対電極槽8には電解液4aが収容されると共に対電極10が浸され、作用電極9と対電極10は定電位設定装置12に結線され、作用電極9の電位を3電極方式で制御するようにしている。   The method for producing a microorganism-group-supporting carrier according to the first embodiment is performed by, for example, the apparatus 1 shown in FIGS. That is, in the processing apparatus 1 shown in FIGS. 30 to 33, one of the two tanks partitioned by the ion exchange membrane 6 is used as the processing tank 7, and the other tank is used as the counter electrode tank 8. The methane fermentation liquid 4 is accommodated in the working electrode 9 and the reference electrode 11, and the counter electrode tank 8 is filled with the electrolytic solution 4a and the counter electrode 10 is immersed in the working electrode 9 and the counter electrode 10. Is connected to the constant potential setting device 12, and the potential of the working electrode 9 is controlled by a three-electrode system.

このように、3電極方式で作用電極9の電位を制御することで、作用電極9の電位を厳密に設定電位に制御することができる。詳細には、定電位設定装置(ポテンシオスタット)12により、作用電極9と参照電極11との間の電位差を測定し、この電位差が設定電位に達するように作用電極9と対電極10との間に電流を流し、基準となる参照電極11には一切電流が流れないようにしている。尚、3電極方式による電位制御については、例えば、電気化学測定法(上)、技報動出版株式会社、第1版15刷、2004年6月発行の6〜9ページにその詳細が記載されている。   In this way, by controlling the potential of the working electrode 9 by the three-electrode method, the potential of the working electrode 9 can be strictly controlled to the set potential. Specifically, a potential difference between the working electrode 9 and the reference electrode 11 is measured by a constant potential setting device (potentiostat) 12, and the working electrode 9 and the counter electrode 10 are adjusted so that the potential difference reaches the set potential. A current is passed between them so that no current flows through the reference electrode 11 serving as a reference. The details of the potential control by the three-electrode method are described in, for example, pages 6 to 9 of Electrochemical Measurement Method (above), Technical Bulletin Publishing Co., Ltd., 1st edition 15 printing, published in June 2004. ing.

但し、作用電極9と対電極10の極間電圧のみで作用電極9の電位を制御できる場合には、3電極方式とせずともよい。   However, when the potential of the working electrode 9 can be controlled only by the voltage between the working electrode 9 and the counter electrode 10, the three-electrode system may not be used.

また、図30〜図33に示す処理装置1では、処理槽7内のメタン発酵液4の液面よりも上部の空間(ヘッドスペース)に滞留するメタンガスを含むバイオガスを処理槽7の外(処理装置1の外)へ導くガス排出管15aを備え、このガス排出管15aをバルブ15bにより開閉可能としたガス回収手段15により、処理槽7内のバイオガスを回収するようにしている。つまり、微生物群担持担体を作製しながら、バイオガスの回収を行うことができる。但し、バイオガスの回収方法は、この方法に限定されない。例えば、ガス回収手段15を備えることなく、処理槽7の上部に開口部を設けて合成ゴム等(例えばシリコーンゴム)の弾性材料でこの開口部を塞ぎ、開口部を塞ぐ弾性材料に注射器の注射針を刺してヘッドスペースからバイオガスを回収するようにしてもよい。合成ゴム等の弾性材料は、注射針を引き抜くと孔が塞がる。したがって、バイオガスの回収を行わないときには、注射針を引き抜いておいても、処理槽7からバイオガスが漏れ出すことがない。   Moreover, in the processing apparatus 1 shown in FIGS. 30-33, the biogas containing the methane gas which retains in the space (head space) above the liquid level of the methane fermentation liquid 4 in the processing tank 7 is outside the processing tank 7 ( A gas exhaust pipe 15a leading to the outside of the processing apparatus 1 is provided, and the biogas in the processing tank 7 is recovered by a gas recovery means 15 that can be opened and closed by a valve 15b. That is, biogas can be recovered while producing the microorganism group-supporting carrier. However, the biogas recovery method is not limited to this method. For example, without providing the gas recovery means 15, an opening is provided in the upper part of the processing tank 7, and the opening is closed with an elastic material such as synthetic rubber (for example, silicone rubber), and the syringe is injected into the elastic material that closes the opening. You may make it collect | recover biogas from a head space with a needle. The elastic material such as synthetic rubber closes the hole when the injection needle is pulled out. Therefore, when the biogas is not collected, the biogas does not leak from the processing tank 7 even if the injection needle is pulled out.

さらに、図30〜図33に示す処理装置1では、処理槽7内のメタン発酵液4の液面よりも下部に、処理槽7内のメタン発酵液4を処理槽7の外に導くメタン発酵液排出管16aを備え、このメタン発酵液排出管16aをバルブ16bにより開閉可能としたメタン発酵液採取手段16により、処理槽7内からメタン発酵液4を採取するようにしている。但し、メタン発酵液4の採取方法は、この方法に限定されるものではない。例えば、メタン発酵液採取手段16を備えることなく、処理槽7に開口部を設けて合成ゴム等の弾性材料で塞ぎ、注射器の注射針を刺してメタン発酵液4を採取するようにしてもよい。または両端が開口された管の一端の注射器に接続し、他端をメタン発酵液4に浸けて、管を介してメタン発酵液4を採取するようにしてもよい。これらの場合にも、処理槽7からバイオガスが漏れ出すことはない。   Furthermore, in the processing apparatus 1 shown in FIGS. 30 to 33, methane fermentation for guiding the methane fermentation solution 4 in the treatment tank 7 to the outside of the treatment tank 7 below the liquid level of the methane fermentation solution 4 in the treatment tank 7. A methane fermentation broth 4 is collected from the treatment tank 7 by a methane fermentation broth collecting means 16 that includes a liquid discharge pipe 16a and that can be opened and closed by a valve 16b. However, the method for collecting the methane fermentation broth 4 is not limited to this method. For example, without providing the methane fermentation broth collecting means 16, the processing tank 7 may be provided with an opening and closed with an elastic material such as synthetic rubber, and the injection needle of a syringe may be inserted to collect the methane fermentation broth 4. . Or you may make it connect to the syringe of one end of the pipe | tube with which both ends were opened, immerse the other end in the methane fermentation liquid 4, and extract | collect the methane fermentation liquid 4 through a pipe | tube. Also in these cases, the biogas does not leak from the treatment tank 7.

また、ガス回収手段15やメタン発酵液採取手段16とは別に、メタン発酵液4に物質を添加・供給する手段を設けるようにしてもよい。具体的には、処理槽7の外部からメタン発酵液4に物質を添加・供給することのできる開閉可能な物質導入管を備えるようにしてもよい。この場合には、メタン発酵液に栄養源、中和剤、メタン発酵汚泥等の物質を必要に応じて添加することができる。勿論、有機性基質をこの導入管から供給することもできる。また、環境を嫌気性に維持するためにガスを供給することもできる。但し、メタン発酵液4に物質を添加・供給する手段は必ずしも備える必要はなく、ガス回収手段15やメタン発酵液採取手段16をメタン発酵液4に物質を添加・供給する手段として併用するようにしてもよい。また、上記のように注射器の注射針を弾性材料に差し込んでメタン発酵液4に物質を添加・供給するようにしてもよい。   In addition to the gas recovery means 15 and the methane fermentation broth collecting means 16, a means for adding and supplying substances to the methane fermentation broth 4 may be provided. Specifically, an openable / closable substance introduction pipe that can add and supply substances to the methane fermentation broth 4 from the outside of the treatment tank 7 may be provided. In this case, substances such as nutrient sources, neutralizing agents, and methane fermentation sludge can be added to the methane fermentation broth as necessary. Of course, the organic substrate can also be supplied from this introduction tube. Gas can also be supplied to keep the environment anaerobic. However, it is not always necessary to provide means for adding and supplying substances to the methane fermentation broth 4, and the gas recovery means 15 and the methane fermentation liquid collecting means 16 may be used together as means for adding and supplying substances to the methane fermentation broth 4. May be. Further, as described above, the injection needle of the syringe may be inserted into the elastic material to add and supply the substance to the methane fermentation solution 4.

以下、図30に示す処理装置を用いた場合を第一の実施形態Aとして説明し、図31に示す処理装置を用いた場合を第一の実施形態Bとして説明し、図32に示す処理装置を用いた場合を第一の実施形態Cとして説明し、図33に示す処理装置を用いた場合を第一の実施形態Dとして説明する。   Hereinafter, the case where the processing apparatus shown in FIG. 30 is used will be described as a first embodiment A, the case where the processing apparatus shown in FIG. 31 is used will be described as a first embodiment B, and the processing apparatus shown in FIG. Will be described as the first embodiment C, and the case where the processing apparatus shown in FIG. 33 is used will be described as the first embodiment D.

(第一の実施形態A)
図30に示す処理装置1は、密閉構造の容器20を処理槽7とし、容器20に収容可能な密閉構造の小容器21を対電極槽8とし、小容器21は少なくとも一部にイオン交換膜6を備えると共にガス(対電極10から発生するガス)を容器20の外に排出するガス排出管22を備えるものとしている。尚、図30に示す処理装置1では、対電極10と定電位設定装置12を結線する配線は、ガス排出管22の中を通過させているが、必ずしもこの構成には限定されず、配線をガス排出管22を通さずに定電位設定装置12と結線するようにしてもよい。
(First embodiment A)
In the processing apparatus 1 shown in FIG. 30, a sealed container 20 is used as a processing tank 7, a sealed small container 21 that can be accommodated in the container 20 is used as a counter electrode tank 8, and the small container 21 is at least partly an ion exchange membrane. 6 and a gas discharge pipe 22 for discharging gas (gas generated from the counter electrode 10) to the outside of the container 20. In the processing apparatus 1 shown in FIG. 30, the wiring connecting the counter electrode 10 and the constant potential setting device 12 passes through the gas exhaust pipe 22. However, the wiring is not necessarily limited to this configuration. The constant potential setting device 12 may be connected without passing through the gas discharge pipe 22.

したがって、図30に示す処理装置1によれば、処理槽7からバイオガスが漏洩することがない。また、対電極槽8から発生するガスが処理槽7に漏れ出すことがないので、バイオガスに対電極槽8から発生したガスが混入してバイオガスのメタン濃度を低下させたり、対電極槽8から発生したガスがメタン発酵液4に溶け込んでメタン発酵に関与する微生物群の生育や機能に悪影響を及ぼすこともない。さらに、処理槽7を密閉構造としているので、処理槽7を嫌気環境に制御し易い利点もある。   Therefore, according to the processing apparatus 1 shown in FIG. 30, biogas does not leak from the processing tank 7. In addition, since the gas generated from the counter electrode tank 8 does not leak into the processing tank 7, the gas generated from the counter electrode tank 8 is mixed with the biogas to reduce the methane concentration of the biogas, or the counter electrode tank. The gas generated from 8 does not dissolve in the methane fermentation solution 4 and does not adversely affect the growth and function of the microorganism group involved in methane fermentation. Furthermore, since the processing tank 7 has a sealed structure, there is an advantage that the processing tank 7 can be easily controlled in an anaerobic environment.

また、容器20に小容器21を収容することで、容器20に収容されているメタン発酵液4に小容器21が浸され、小容器21の少なくとも一部に備えられているイオン交換膜6はメタン発酵液4と接触する。換言すれば、メタン発酵液4はイオン交換膜6を介して電解液4aと接触する。   Moreover, by accommodating the small container 21 in the container 20, the small container 21 is immersed in the methane fermentation solution 4 accommodated in the container 20, and the ion exchange membrane 6 provided in at least a part of the small container 21 is Contact with methane fermentation solution 4. In other words, the methane fermentation solution 4 comes into contact with the electrolytic solution 4 a through the ion exchange membrane 6.

処理槽7としての密閉構造の容器20は、対電極槽8としての密閉構造の小容器21を収容可能な大きさの容器であり、形状は特に限定されない。容器の材質としては、例えば、ガラス、プラスチック、絶縁処理を施した金属、コンクリート等が挙げられるがこれらに限定されるものではない。また、ガス不透過性の膜材をヒートシール等により袋状に形成した容器を処理槽7として用いるようにしてもよい。   The container 20 having a sealed structure as the processing tank 7 is a container having a size capable of accommodating the small container 21 having the sealed structure as the counter electrode tank 8, and the shape thereof is not particularly limited. Examples of the material of the container include, but are not limited to, glass, plastic, an insulating metal, concrete, and the like. Further, a container in which a gas-impermeable film material is formed into a bag shape by heat sealing or the like may be used as the processing tank 7.

対電極槽8としての密閉構造の小容器21は、処理槽7としての容器20に収容可能な大きさの容器であり、少なくとも一部にイオン交換膜6を備えるものとしている。ここで、小容器21はその全体をイオン交換膜6で形成した袋状の容器としてもよいが、袋状の容器の片面だけをイオン交換膜6で構成したり、一つの面のさらに一部分をイオン交換膜6のみで構成するようにしてもよい。部分的にイオン交換膜6を用いる場合には、その他の部分は容器20と同様の上記材質で構成してもよいし、イオン交換膜6以外の膜材、例えばガス不透過性の膜材により構成し、小容器21からのガス(対電極槽8から発生するガス)が容器20の内部に漏洩しないようにしてもよい。   The small container 21 having a sealed structure as the counter electrode tank 8 is a container of a size that can be accommodated in the container 20 as the processing tank 7, and includes the ion exchange membrane 6 at least in part. Here, the small container 21 may be a bag-like container formed entirely by the ion-exchange membrane 6, but only one side of the bag-like container may be constituted by the ion-exchange membrane 6, or a part of one surface may be further formed. You may make it comprise only the ion exchange membrane 6. FIG. When the ion exchange membrane 6 is partially used, other portions may be made of the same material as that of the container 20, or may be made of a membrane material other than the ion exchange membrane 6, such as a gas-impermeable membrane material. It may be configured so that gas from the small container 21 (gas generated from the counter electrode tank 8) does not leak into the container 20.

有機性基質は、処理槽7に添加される。   The organic substrate is added to the treatment tank 7.

対電極槽8に収容される電解液4aは、例えば、ナトリウムイオンやカリウムイオン等を含むものとすればよい。尚、通常、メタン発酵液4にもナトリウムイオンやカリウムイオン等が含まれていることから、電解液4aとしてメタン発酵液4を用いることも可能である。   The electrolyte solution 4a accommodated in the counter electrode tank 8 may include, for example, sodium ions or potassium ions. In addition, since sodium ion, potassium ion, etc. are normally contained also in the methane fermentation liquid 4, it is also possible to use the methane fermentation liquid 4 as the electrolyte solution 4a.

作用電極9及び対電極10としては、例えば炭素板等の導電性材料を適宜使用することができる。対電極10では、作用電極9における酸化還元反応に対して電子の授受を補完する反応が進行する。   As the working electrode 9 and the counter electrode 10, for example, a conductive material such as a carbon plate can be used as appropriate. In the counter electrode 10, a reaction that complements the exchange of electrons with respect to the oxidation-reduction reaction in the working electrode 9 proceeds.

処理槽7の温度(メタン発酵液4の温度)は、4℃〜100℃未満とすればよいが、好適には40℃〜70℃、より好適には50℃〜60℃、さらに好適には55℃である。   The temperature of the treatment tank 7 (the temperature of the methane fermentation solution 4) may be 4 ° C to less than 100 ° C, but is preferably 40 ° C to 70 ° C, more preferably 50 ° C to 60 ° C, and even more preferably. 55 ° C.

本実施形態では、作用電極9の電位を作用電極9にて還元反応が生じ得る電位に制御しながら微生物群担持担体の作製を行う。または、作用電極9の電位を銀・塩化銀電極電位基準で+0.3Vに制御しながら微生物群担持担体の作製を行う。作用電極9の電位を作用電極9にて還元反応が生じ得る電位について具体的に説明すると、作用電極9において還元反応を生じさせるために、作用電極9の電位を、作用電極9への電位無印加時のメタン発酵液4の溶液電位(酸化還元電位)よりもマイナス側に大きな電位に制御する。即ち、電位無印加時の作用電極9と参照電極11の間の電位差が、作用電極9への電位無印加時のメタン発酵液4の溶液電位に相当するので、その値よりもマイナス側に大きな電位を作用電極9に印加することで、作用電極9において還元反応を進行させることができる。具体的には、メタン発酵液が一般的に銀・塩化銀電極電位基準で−0.5V程度であることから、作用電極9の電位は−0.6Vを含んで−0.6Vよりもマイナス側に大きくすればよい。一方で、出来るだけ還元反応が強く生じる電位とした方が本発明の効果が得られやすくなると考えられるが、作用電極9の電位をマイナス側に大きくし過ぎると水の電気分解が激しく生じてメタン発酵が停止する虞があると共に、メタン発酵から水素発酵への移行が生じる虞もあるので、それよりも小さな電位とすることが好適である。但し、本実施形態のように、イオン交換膜6を備える場合には、メタン発酵から水素発酵への移行は生じない。また、−1.2V程度であれば水の電気分解が激しく生じることはない。したがって、−0.5V超(−0.5Vよりもマイナス側に大きな電位)〜−1.2V、好ましくは−0.6V〜−1.0V、より好ましくは−0.6V〜−0.8V、さらに好ましくは−0.8Vである。   In the present embodiment, the microorganism group-carrying support is produced while controlling the potential of the working electrode 9 to a potential at which a reduction reaction can occur at the working electrode 9. Alternatively, the microorganism group-carrying support is produced while controlling the potential of the working electrode 9 to +0.3 V on the basis of the silver / silver chloride electrode potential. The potential of the working electrode 9 will be described in detail with respect to the potential at which the reduction reaction can occur at the working electrode 9. In order to cause the reduction reaction at the working electrode 9, The electric potential is controlled to be larger on the minus side than the solution potential (oxidation-reduction potential) of the methane fermentation solution 4 during heating. That is, the potential difference between the working electrode 9 and the reference electrode 11 when no potential is applied corresponds to the solution potential of the methane fermentation broth 4 when no potential is applied to the working electrode 9, and is therefore larger on the minus side than that value. By applying a potential to the working electrode 9, the reduction reaction can proceed at the working electrode 9. Specifically, since the methane fermentation liquid is generally about −0.5 V on the basis of the silver / silver chloride electrode potential, the potential of the working electrode 9 includes −0.6 V and is minus −0.6 V. You just need to make it bigger. On the other hand, it is considered that the potential of the present invention can be obtained more easily when the potential at which the reduction reaction is as strong as possible. However, if the potential of the working electrode 9 is increased too much to the minus side, water electrolysis occurs violently and methane. Since there is a possibility that fermentation may stop and there is a possibility that transition from methane fermentation to hydrogen fermentation may occur, it is preferable to use a potential lower than that. However, when the ion exchange membrane 6 is provided as in this embodiment, the transition from methane fermentation to hydrogen fermentation does not occur. Moreover, if it is about -1.2V, electrolysis of water will not occur violently. Therefore, over -0.5V (potential greater on the negative side than -0.5V) to -1.2V, preferably -0.6V to -1.0V, more preferably -0.6V to -0.8V More preferably, it is -0.8V.

本発明の効果は、イオン交換膜6を備えることで得られ易くなる。つまり、本発明の微生物群担持担体からはメタン発酵液への微生物の供給が行われると共に、メタン発酵液には元々メタン発酵に関与する微生物が存在しており、イオン交換膜6を備えることで、メタン発酵液4に存在する微生物を対電極槽8に移動(拡散)させることなく、処理槽7側に留めることができる。したがって、対電極10の酸化反応に伴う微生物からの電子の引き抜きを防ぎながら、作用電極9から微生物へ電子を供給することができるので、本発明の効果をより得られ易くなる。さらには、対電極槽8に電解液を入れておくことで、対電極槽8による電子の引き抜き反応が電解液との間で完結するので、微生物からの電子の引き抜きが確実に防止される。   The effect of the present invention is easily obtained by providing the ion exchange membrane 6. That is, the microorganism group-supporting carrier of the present invention supplies microorganisms to the methane fermentation solution, and the methane fermentation solution originally contains microorganisms that are involved in methane fermentation, and includes the ion exchange membrane 6. The microorganisms present in the methane fermentation liquid 4 can be retained on the treatment tank 7 side without being moved (diffused) to the counter electrode tank 8. Therefore, since the electrons can be supplied from the working electrode 9 to the microorganism while preventing the electrons from being extracted from the microorganism due to the oxidation reaction of the counter electrode 10, the effect of the present invention can be obtained more easily. Furthermore, by putting the electrolytic solution in the counter electrode tank 8, the electron extraction reaction by the counter electrode tank 8 is completed with the electrolytic solution, so that the extraction of electrons from the microorganisms is reliably prevented.

また、イオン交換膜6を備えることで、作用電極9の電位を制御したときに、メタン発酵液4と電解液4aとの間でのイオン電流の流れが許容されるので、メタン発酵液4の電荷バランスを維持しながら、作用電極9の電位を制御し続けることができる。   Further, by providing the ion exchange membrane 6, when the potential of the working electrode 9 is controlled, the flow of ion current between the methane fermentation solution 4 and the electrolytic solution 4a is allowed. The potential of the working electrode 9 can be continuously controlled while maintaining the charge balance.

さらに、酸化還元物質3をメタン発酵液4に添加することで、メタン発酵液4の溶液電位の制御性を高めて、メタン発酵液4の溶液電位を作用電極9の電位に近づけ易くなる。そして、イオン交換膜6を備えることで、メタン発酵液4に含まれている酸化還元物質3の電解液4aへの透過を防ぐことができる。例えば、イオン交換膜6として、一価の陽イオンのみを透過する膜であるナフィオン膜を用いることで、酸化還元物質3が鉄イオンである場合に、二価の鉄イオンや三価の鉄イオンはイオン交換膜6を透過しないことから、酸化還元物質を電解液4aに透過させることなく、メタン発酵液4中に留まらせることができる。したがって、作用電極9の電位を制御すると、それに応じてメタン発酵液4中の酸化還元物質3の酸化体と還元体の濃度比が変化し、作用電極9の電位によるメタン発酵液4の溶液電位の追随性が向上する。したがって、メタン発酵液4に存在する微生物を活性化させてその機能を向上させやすくなる。   Furthermore, by adding the oxidation-reduction substance 3 to the methane fermentation broth 4, the controllability of the solution potential of the methane fermentation broth 4 is enhanced, and the solution potential of the methane fermentation broth 4 is easily brought close to the potential of the working electrode 9. And by providing the ion exchange membrane 6, permeation | transmission to the electrolyte solution 4a of the oxidation-reduction substance 3 contained in the methane fermentation liquid 4 can be prevented. For example, by using a Nafion membrane that is a membrane that transmits only monovalent cations as the ion exchange membrane 6, when the redox material 3 is an iron ion, a divalent iron ion or a trivalent iron ion is obtained. Does not permeate the ion exchange membrane 6, so that the redox substance can remain in the methane fermentation solution 4 without permeating the electrolyte solution 4 a. Therefore, when the potential of the working electrode 9 is controlled, the concentration ratio of the oxidant and reductant of the redox substance 3 in the methane fermentation solution 4 changes accordingly, and the solution potential of the methane fermentation solution 4 by the potential of the working electrode 9 is changed. The followability of is improved. Therefore, it becomes easy to activate the microorganism which exists in the methane fermentation liquid 4, and to improve the function.

酸化還元物質3としては、メタン発酵液4に浸されている作用電極9と可逆的に酸化還元反応を生じ得る物質であり、且つメタン発酵液4に生息している微生物に対して毒性を呈しない物質を用いることができる。例えば、上記のように、土壌成分として一般的な鉄イオンが挙げられる。ここで、鉄イオンをメタン発酵液中で安定に存在させるためには、鉄イオンをキレート剤に配位させてメタン発酵液中に添加することが好ましい。キレート剤としては、鉄イオンを配位しうるものであれば任意のキレート剤を用いることができるが、例えばジエチレントリアミンペンタ酢酸(DTPA)、エチレンジアミンテトラ酢酸(EDTA)、テトラエチレントリアミン(TET)、エチレンジアミン(EDA)、ジエチレントリアミン(DETA)、クエン酸、シュウ酸、クラウンエーテル、ニトリロテトラ酢酸、エデト酸二ナトリウム、エデト酸ナトリウム、エデト酸三ナトリウム、ペニシラミン、ペンテテートカルシウム三ナトリウム、ペンテト酸、スクシメルおよびエデト酸トリエンチンを挙げることができる。また、鉄イオン以外にも、フェロシアン化カリウム、アントラキノンジスルホン酸ナトリウムなどのキノン化合物、メチルビオロゲンを用いることができる。これらの物質も酸化還元反応により、酸化体と還元体に可逆的に変化する。特に、キノン化合物は土壌成分の一つとして知られている物質であり、好ましい。つまり、土壌そのものをメタン発酵液に添加することで、土壌に含まれている酸化還元物質3によりメタン発酵液の酸化還元電位が制御できる場合がある。但し、酸化還元物質3は上記した物質に限定されるものではない。   The redox substance 3 is a substance that can reversibly undergo a redox reaction with the working electrode 9 immersed in the methane fermentation broth 4 and is toxic to microorganisms that live in the methane fermentation broth 4. Substances that do not work can be used. For example, a general iron ion is mentioned as a soil component as mentioned above. Here, in order to allow iron ions to stably exist in the methane fermentation broth, it is preferable that iron ions be coordinated with the chelating agent and added to the methane fermentation broth. As the chelating agent, any chelating agent capable of coordinating iron ions can be used. For example, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), tetraethylenetriamine (TET), ethylenediamine (EDA), diethylenetriamine (DETA), citric acid, oxalic acid, crown ether, nitrilotetraacetic acid, disodium edetate, sodium edetate, trisodium edetate, penicillamine, trisodium pentetate calcium, pentetate, succil and edet Mention may be made of acid trientine. In addition to iron ions, quinone compounds such as potassium ferrocyanide and sodium anthraquinone disulfonate, and methyl viologen can be used. These substances also reversibly change into an oxidized form and a reduced form by an oxidation-reduction reaction. In particular, a quinone compound is a substance known as one of the soil components and is preferable. That is, by adding the soil itself to the methane fermentation broth, the redox potential of the methane fermentation broth can be controlled by the redox material 3 contained in the soil. However, the oxidation-reduction substance 3 is not limited to the above-described substances.

尚、メタン発酵液4には、通常、酸化還元物質が含まれていることから、上記の酸化還元物質を添加せずともよい。特に、本発明では、少なくとも作用電極9の近傍のメタン発酵液4の溶液電位を制御できれば、作用電極9から微生物への電子の供給が生じて本発明の効果が得られるので、酸化還元物質3の添加は必須ではない。   Since the methane fermentation broth 4 normally contains a redox material, the redox material may not be added. In particular, in the present invention, if at least the solution potential of the methane fermentation broth 4 in the vicinity of the working electrode 9 can be controlled, the supply of electrons from the working electrode 9 to the microorganism occurs, and the effects of the present invention can be obtained. The addition of is not essential.

(第一の実施形態B) (First embodiment B)

図31に示す処理装置1は、上方が開放されている容器23をイオン交換膜6で仕切ることにより開放された二つの槽が形成され、処理槽7としての一方の槽の上方開放部がガス不透過膜またはガス不透過部材24により塞がれているものとしている。つまり、図31に示す処理装置1は、対電極槽8から発生するガスを処理槽7に漏れ出さないようにする構成以外は、図30と同一の構成としている。したがって、図30に示す処理装置を用いた場合と同様の効果が得られる。   In the processing apparatus 1 shown in FIG. 31, two tanks opened by partitioning a container 23 whose upper side is opened by an ion exchange membrane 6 are formed, and an upper open part of one tank as the processing tank 7 is a gas. It is assumed that it is blocked by an impermeable film or a gas impermeable member 24. That is, the processing apparatus 1 shown in FIG. 31 has the same configuration as that of FIG. 30 except that the gas generated from the counter electrode tank 8 does not leak into the processing tank 7. Therefore, the same effect as that obtained when the processing apparatus shown in FIG. 30 is used can be obtained.

ガス不透過膜またはガス不透過部材24としては、各種分野で一般に用いられているものを適宜用いることができる。例えば、ガス不透過部材としては、ガラス、プラスチック、絶縁処理を施した金属、コンクリート等が挙げられるがこれらに限定されるものではない。また、ガス不透過膜としては、例えばイオン交換膜6を用いることができるがこれに限定されるものではない。   As the gas impermeable film or the gas impermeable member 24, those generally used in various fields can be appropriately used. For example, examples of the gas impermeable member include, but are not limited to, glass, plastic, an insulating metal, concrete, and the like. Further, as the gas impermeable membrane, for example, an ion exchange membrane 6 can be used, but is not limited thereto.

尚、対電極槽8については、開放したままでもよいが、処理槽7と同様に密閉構造とし、対電極槽8において発生するガスを対電極槽8の外に排出するガス排出管を備えるようにしてもよい。この場合には、対電極槽8から発生するガスを所望の位置から排出させることができるので、これを回収し、場合によっては再利用することが可能となる。   The counter electrode tank 8 may be left open, but has a sealed structure like the processing tank 7 and includes a gas discharge pipe for discharging the gas generated in the counter electrode tank 8 out of the counter electrode tank 8. It may be. In this case, since the gas generated from the counter electrode tank 8 can be discharged from a desired position, it can be recovered and reused in some cases.

(第一の実施形態C)
図32に示す処理装置1は、収容される液体の液面よりも下部に開口部を備える二つの容器25aと25bがイオン交換膜6を介して開口部で連結されてU字型の容器25が形成され、一方の容器25aを密閉構造として処理槽7とし、他方の容器25bを開放して対電極槽8としている。この場合、メタン発酵液4と電解液4aがイオン交換膜6を介して接触すると共に、処理槽7のメタン発酵液4の液面よりも上部の空間と対電極槽8の電解液4aの液面よりも上部の空間とが容器25自体のU字型構造によって隔てて配置される。そして、一方の容器25aが密閉構造とされていることから、対電極槽8から発生するガスが処理槽7に侵入するのを防ぎながら、処理槽7から発生するバイオガスが処理槽7から漏洩するのを防ぐことができる。したがって、図30に示す処理装置を用いた場合と同様の効果が得られる。
(First embodiment C)
In the processing apparatus 1 shown in FIG. 32, two containers 25a and 25b each having an opening below the liquid level of the liquid to be accommodated are connected to each other through the opening via the ion exchange membrane 6, and a U-shaped container 25 is used. The one container 25a is used as a processing tank 7 with a sealed structure, and the other container 25b is opened as a counter electrode tank 8. In this case, the methane fermentation solution 4 and the electrolyte solution 4a are in contact with each other via the ion exchange membrane 6, and the space above the liquid surface of the methane fermentation solution 4 in the treatment tank 7 and the solution of the electrolyte solution 4a in the counter electrode tank 8 are used. The space above the surface is spaced apart by the U-shaped structure of the container 25 itself. And since one container 25a is made into the airtight structure, the biogas generated from the processing tank 7 leaks from the processing tank 7 while preventing the gas generated from the counter electrode tank 8 from entering the processing tank 7. Can be prevented. Therefore, the same effect as that obtained when the processing apparatus shown in FIG. 30 is used can be obtained.

尚、図32に示す処理装置1における他方の容器25bの開放とは、例えば他方の容器25bの端部を完全に開放した場合は勿論のこと、一方の容器25aと同様に密閉構造としつつ、対電極槽8において発生するガスを対電極槽8の外に排出するガス排出管を備える場合も含むことを意味している。ガス排出管を備える場合には、対電極槽8から発生するガスを所望の位置から排出させることができるので、これを回収して再利用し易くなる。   In addition, the opening of the other container 25b in the processing apparatus 1 shown in FIG. 32 means that, for example, when the end of the other container 25b is completely opened, the sealing structure is the same as that of the one container 25a. This also includes the case where a gas discharge pipe for discharging the gas generated in the counter electrode tank 8 to the outside of the counter electrode tank 8 is provided. When the gas discharge pipe is provided, the gas generated from the counter electrode tank 8 can be discharged from a desired position, so that it can be easily recovered and reused.

(第一の実施形態D)
図33に示す処理装置1は、収容される液体の液面よりも下部に開口部を備える二つの容器26aと26bがイオン交換膜6を介して開口部で連結されてH字型の容器26が形成され、一方の容器26aを密閉構造として処理槽7とし、他方の容器26bを開放して対電極槽8としている。この場合にも、メタン発酵液4と電解液4aがイオン交換膜6を介して接触すると共に、処理槽7のメタン発酵液4の液面よりも上部の空間と対電極槽8の電解液4aの液面よりも上部の空間とが容器26自体のH字型構造によって隔てて配置される。そして、H字型容器26の一方の容器26aが密閉構造とされていることから、処理槽7は密閉構造となる。したがって、対電極槽8から発生するガスが処理槽7に侵入するのを防ぎながら、処理槽7から発生するバイオガスが処理槽7から漏洩するのを防ぐことができる。したがって、図30に示す処理装置を用いた場合と同様の効果が得られる。
(First embodiment D)
In the processing apparatus 1 shown in FIG. 33, two containers 26a and 26b each having an opening below the liquid level of the liquid to be accommodated are connected by an opening through the ion exchange membrane 6, and an H-shaped container 26 is provided. The one container 26a has a sealed structure as the processing tank 7, and the other container 26b is opened as the counter electrode tank 8. In this case as well, the methane fermentation solution 4 and the electrolyte solution 4a are in contact with each other through the ion exchange membrane 6, and the space above the liquid surface of the methane fermentation solution 4 in the treatment tank 7 and the electrolyte solution 4a in the counter electrode tank 8 are used. The space above the liquid level is spaced apart by the H-shaped structure of the container 26 itself. And since one container 26a of the H-shaped container 26 is made into the sealed structure, the processing tank 7 becomes a sealed structure. Therefore, it is possible to prevent the biogas generated from the processing tank 7 from leaking from the processing tank 7 while preventing the gas generated from the counter electrode tank 8 from entering the processing tank 7. Therefore, the same effect as that obtained when the processing apparatus shown in FIG. 30 is used can be obtained.

尚、本実施形態における他方の容器26bの開放とは、容器26を完全に開放した場合は勿論のこと、一方の容器26aと同様に密閉構造としつつ、対電極槽8において発生するガスを対電極槽8の外に排出するガス排出管を備える場合も含むことを意味している。ガス排出管を備える場合には、対電極槽8から発生するガスを所望の位置から排出させることができるので、これを回収して再利用し易くなる。   In the present embodiment, the opening of the other container 26b is not limited to the case where the container 26 is completely opened. This also includes the case where a gas discharge pipe for discharging outside the electrode tank 8 is provided. When the gas discharge pipe is provided, the gas generated from the counter electrode tank 8 can be discharged from a desired position, so that it can be easily recovered and reused.

<第二の実施形態>
第二の実施形態にかかる微生物群担持担体の作製方法は、微生物を担持し得る導電性担体を作用電極とし、作用電極と対電極と参照電極とを定電位設定装置に結線し、メタン発酵液と対電極とをイオン交換膜を介して接触させ、メタン発酵液に作用電極と参照電極とを接触させ、作用電極の電位を3電極方式で制御するようにしている。つまり、第一の実施形態における微生物群担持担体の作製方法とは、電解液を用いることなく対電極を直接イオン交換膜に接触させている点のみが異なっている。
<Second Embodiment>
A method for producing a microorganism group-supporting carrier according to the second embodiment uses a conductive carrier capable of supporting microorganisms as a working electrode, and connects the working electrode, the counter electrode, and the reference electrode to a constant potential setting device. And the counter electrode through an ion exchange membrane, the working electrode and the reference electrode are brought into contact with the methane fermentation broth, and the potential of the working electrode is controlled by a three-electrode system. That is, it differs from the method for producing the microorganism group-supported carrier in the first embodiment only in that the counter electrode is brought into direct contact with the ion exchange membrane without using an electrolytic solution.

しかしながら、第一の実施形態のように電解液4aを用いずとも、作用電極9と対電極10との間でイオン交換膜6を介してイオン電流は流れる。また、メタン発酵液4中の微生物を対電極10側に移動(拡散)させることなく、処理槽7に留める効果も得られる。さらには、メタン発酵液4中の酸化還元物質3を対電極10側に透過させない効果も得られる。したがって、第二の実施形態にかかる微生物群担持担体の作製方法によれば、第一の実施形態と同様の電位制御条件で、同様の効果を得ることが可能である。   However, an ion current flows between the working electrode 9 and the counter electrode 10 via the ion exchange membrane 6 without using the electrolytic solution 4a as in the first embodiment. Further, the effect of retaining the microorganisms in the methane fermentation solution 4 in the treatment tank 7 without moving (diffusing) to the counter electrode 10 side is also obtained. Furthermore, the effect which does not permeate | transmit the redox substance 3 in the methane fermentation liquid 4 to the counter electrode 10 side is also acquired. Therefore, according to the method for producing a microorganism group-supporting carrier according to the second embodiment, the same effect can be obtained under the same potential control conditions as in the first embodiment.

第二の実施形態にかかる微生物群担持担体の作製方法は、例えば図34に示す処理装置により実施される。図34に示す処理装置1は、イオン交換膜6を少なくとも一部に備える密閉構造の容器5内に作用電極9と参照電極11が配置され、容器5の外側に対電極10が配置され、容器5にメタン発酵液4が収容されると共に作用電極9と参照電極11がメタン発酵液4に浸され、容器4のイオン交換膜6は容器5にメタン発酵液4が収容されたときに少なくともその一部がイオン交換膜6と接触しうる位置に備えられ、イオン交換膜6のメタン発酵液4の接触面とは反対側の面の少なくとも一部に対電極10が接触して配置されているものとしている。図34に示す処理装置1では、容器5のメタン発酵液4の液面よりも下部に開口部5aが設けられ、開口部5aがイオン交換膜6で塞がれ、容器5の外側のイオン交換膜6の表面の少なくとも一部に対電極10が接触して配置されているものとしている。つまり、図34に示す処理装置1では、容器5全体が処理槽7として機能することとなる。   The method for producing a microorganism-group-supporting carrier according to the second embodiment is performed by, for example, a processing apparatus shown in FIG. The processing apparatus 1 shown in FIG. 34 has a working electrode 9 and a reference electrode 11 arranged in a sealed container 5 having at least a part of an ion exchange membrane 6, and a counter electrode 10 arranged outside the container 5. 5, the working electrode 9 and the reference electrode 11 are immersed in the methane fermentation solution 4, and the ion exchange membrane 6 of the container 4 is at least when the methane fermentation solution 4 is stored in the container 5. The counter electrode 10 is disposed in contact with at least a part of the surface of the ion exchange membrane 6 opposite to the contact surface of the methane fermentation broth 4, provided in a position where a part can be in contact with the ion exchange membrane 6. It is supposed to be. In the processing apparatus 1 shown in FIG. 34, an opening 5 a is provided below the liquid level of the methane fermentation solution 4 in the container 5, the opening 5 a is closed with the ion exchange membrane 6, and ion exchange outside the container 5 is performed. It is assumed that the counter electrode 10 is disposed in contact with at least a part of the surface of the film 6. That is, in the processing apparatus 1 shown in FIG. 34, the entire container 5 functions as the processing tank 7.

したがって、図34に示す処理装置1によれば、容器5からバイオガスが漏洩することがない。また、対電極10から発生するガスが容器5内に漏れ出すことがないので、バイオガスに対電極10から発生したガスが混入してバイオガスのメタン濃度を低下させたり、対電極10から発生したガスがメタン発酵液4に溶け込んでメタン発酵に関与する微生物群の生育や機能に悪影響を及ぼすこともない。さらに、容器5を密閉構造としているので、容器5内を嫌気環境に制御し易い利点もある。   Therefore, according to the processing apparatus 1 shown in FIG. 34, biogas does not leak from the container 5. Further, since the gas generated from the counter electrode 10 does not leak into the container 5, the gas generated from the counter electrode 10 is mixed into the biogas to reduce the methane concentration of the biogas, or from the counter electrode 10. The dissolved gas does not dissolve in the methane fermentation solution 4 and does not adversely affect the growth and function of the microorganism group involved in methane fermentation. Furthermore, since the container 5 has a sealed structure, there is an advantage that the inside of the container 5 can be easily controlled in an anaerobic environment.

尚、図34に示す処理装置1では、第一の実施形態と同様に、ガス回収手段15、メタン発酵液採取手段16を備えるようにしているが、上記の通り、ガス回収方法、メタン発酵液採取方法は、これらの手段を利用したものには限定されない。また、第一の実施形態と同様、メタン発酵液4に物質を添加・供給する手段を設けるようにしてもよい。   In addition, although the processing apparatus 1 shown in FIG. 34 includes the gas recovery means 15 and the methane fermentation liquid collection means 16 as in the first embodiment, as described above, the gas recovery method, the methane fermentation liquid The collection method is not limited to those using these means. Moreover, you may make it provide the means to add and supply a substance to the methane fermentation liquid 4 similarly to 1st embodiment.

以下、図34に示す処理装置1の詳細について説明する。但し、以下に説明する以外の構成については、第一の実施形態と実質的に同一であり、説明は省略する。   Hereinafter, the details of the processing apparatus 1 shown in FIG. 34 will be described. However, configurations other than those described below are substantially the same as those in the first embodiment, and a description thereof will be omitted.

容器5は、イオン交換膜6を少なくとも一部に備える密閉構造としている。容器5の材質としては、例えば、ガラス、プラスチック、絶縁処理を施した金属、コンクリート等が挙げられるがこれらに限定されるものではない。尚、図34では、密閉構造の容器5のメタン発酵液4の液面よりも下部に設けられた開口部5aをイオン交換膜6により塞ぐようにしているが、容器5の形態や構造は特に限定されない。例えば容器5全体をイオン交換膜6で形成した袋状の容器としてもよいし、袋状の容器の片面だけをイオン交換膜6で構成してもよいし、一つの面のさらに一部分をイオン交換膜6のみで構成するようにしてもよい。部分的にイオン交換膜6を用いる場合には、その他の部分はガラス等の上記材質で構成してもよいし、イオン交換膜6以外の膜材、例えばメタン発酵液4とメタン発酵液4中の成分(微生物を含む)の双方を透過させることがない膜材により構成してもよい。要は、容器5に収容されるメタン発酵液4が容器5の少なくとも一部を構成するイオン交換膜6と接触しうる構造の容器とすればよい。   The container 5 has a sealed structure including at least a part of the ion exchange membrane 6. Examples of the material of the container 5 include, but are not limited to, glass, plastic, metal subjected to insulation treatment, concrete, and the like. In FIG. 34, the opening 5a provided below the liquid surface of the methane fermentation solution 4 of the sealed container 5 is closed by the ion exchange membrane 6. However, the form and structure of the container 5 are not particularly limited. It is not limited. For example, the entire container 5 may be a bag-shaped container formed of the ion-exchange membrane 6, or only one surface of the bag-shaped container may be formed of the ion-exchange membrane 6, or a part of one surface may be ion-exchanged. You may make it comprise only with the film | membrane 6. FIG. When the ion exchange membrane 6 is partially used, the other portions may be made of the above-mentioned material such as glass, or other membrane materials other than the ion exchange membrane 6, such as the methane fermentation broth 4 and the methane fermentation broth 4 You may comprise with the film | membrane material which does not permeate | transmit both of the component (including microorganisms). In short, the methane fermentation solution 4 accommodated in the container 5 may be a container having a structure that can come into contact with the ion exchange membrane 6 constituting at least a part of the container 5.

対電極10は、イオン交換膜6のメタン発酵液4との接触面とは反対側の面の少なくとも一部に接触させるようにしている。本実施形態において、対電極10は板状の炭素電極としているが、対電極10の形状と材質はこれに限定されるものではなく、要は、イオン交換膜6との接触が可能な形状であり、且つ作用電極9における酸化還元反応に対して電子の授受を補完する反応を進行させることが可能な材質、つまり、作用電極9において還元反応が生じる際に酸化反応を進行させることが可能な材質の電極とすればよい。また、本実施形態では、対電極10の面積をイオン交換膜6の面積よりも大きなものとしてイオン交換膜6全体を対電極10で完全に覆うようにし、イオン交換膜6と対電極10とを接触させるようにしているが、イオン交換膜6のメタン発酵液4との接触面とは反対側の面の少なくとも一部に対電極10を接触させれば、イオン交換膜6を介してメタン発酵液4から対電極10にイオンが伝達するので、必ずしもイオン交換膜6全体を対電極10で完全に覆うようにしてイオン交換膜6と対電極10とを接触させずともよい。但し、イオン交換膜6全体を対電極10で完全に覆うことで、対電極10をイオン交換膜6の保護材としても機能させることができると共に、メタン発酵液4からのイオンの伝達面が増大する結果として、メタン発酵液4の電位制御性を高めることができる利点があり、好適である。イオン交換膜6全体を対電極10で完全に覆う方法としては、例えば、容器5の開口部5aの周囲に接着剤を塗布して対電極10を接着することにより、開口部5aを塞ぐイオン交換膜6全体と対電極10とを接触させるようにしてもよいし、容器5の開口部5aの周囲に接着剤を塗布して対電極10の表面の少なくとも一部に塗布形成されたイオン交換膜6を接着することにより、開口部5aをイオン交換膜6で塞ぎつつ、開口部5aを塞ぐイオン交換膜6全体と対電極10とを接触させるようにしてもよい。イオン交換膜6を塗布形成するための薬剤としては、例えばナフィオン分散液が挙げられるが、これに限定されるものではない。また、対電極10の表面にナフィオン分散液を塗布し、ナフィオン分散液が乾燥する前にイオン交換膜6を貼り付けるようにしてもよい。この場合には、イオン交換膜6の対電極10の表面への接着性と接触性とを十分なものとすることができる。   The counter electrode 10 is brought into contact with at least a part of the surface opposite to the contact surface of the ion exchange membrane 6 with the methane fermentation solution 4. In the present embodiment, the counter electrode 10 is a plate-like carbon electrode, but the shape and material of the counter electrode 10 are not limited to this, and the shape is that the contact with the ion exchange membrane 6 is essential. And a material capable of proceeding with a reaction that complements the exchange of electrons with respect to the oxidation-reduction reaction at the working electrode 9, that is, the oxidation reaction can proceed when the reduction reaction occurs at the working electrode 9. A material electrode may be used. In the present embodiment, the counter electrode 10 has a larger area than the ion exchange membrane 6 so that the entire ion exchange membrane 6 is completely covered with the counter electrode 10, and the ion exchange membrane 6 and the counter electrode 10 are covered. Although it is made to contact, if the counter electrode 10 is made to contact at least one part of the surface on the opposite side to the contact surface of the ion exchange membrane 6 with the methane fermentation liquid 4, methane fermentation will be carried out via the ion exchange membrane 6. Since ions are transmitted from the liquid 4 to the counter electrode 10, the ion exchange membrane 6 and the counter electrode 10 do not necessarily have to be in contact with each other so that the entire ion exchange membrane 6 is completely covered with the counter electrode 10. However, by completely covering the entire ion exchange membrane 6 with the counter electrode 10, the counter electrode 10 can function as a protective material for the ion exchange membrane 6, and the ion transmission surface from the methane fermentation solution 4 is increased. As a result, there is an advantage that the potential controllability of the methane fermentation broth 4 can be improved, which is preferable. As a method of completely covering the entire ion exchange membrane 6 with the counter electrode 10, for example, ion exchange is performed by closing the opening 5 a by applying an adhesive around the opening 5 a of the container 5 and bonding the counter electrode 10. The entire membrane 6 and the counter electrode 10 may be brought into contact with each other, or an ion exchange membrane formed by applying an adhesive around the opening 5a of the container 5 and applying it to at least a part of the surface of the counter electrode 10 By bonding 6, the counter electrode 10 may be brought into contact with the entire ion exchange membrane 6 that closes the opening 5 a while closing the opening 5 a with the ion exchange membrane 6. Examples of the agent for coating and forming the ion exchange membrane 6 include a Nafion dispersion, but are not limited thereto. Alternatively, a Nafion dispersion may be applied to the surface of the counter electrode 10 and the ion exchange membrane 6 may be attached before the Nafion dispersion is dried. In this case, the adhesion and contact properties of the ion exchange membrane 6 to the surface of the counter electrode 10 can be made sufficient.

ここで、対電極10は多孔質体とすることが好適である。この場合には、イオン交換膜6と対電極10との接触面で発生したガスを接触面とは反対側の面に通過させやすくなる。尚、対電極10を多孔質体とし、ナフィオン分散液を用いてイオン交換膜6を貼り付けることで、ナフィオン分散液の多孔質体の孔への侵入によりイオン交換膜6と対電極10との接触面積を増大させて電気化学反応をより進行させやすくすることができ、好適である。   Here, the counter electrode 10 is preferably a porous body. In this case, the gas generated at the contact surface between the ion exchange membrane 6 and the counter electrode 10 can easily pass through the surface opposite to the contact surface. In addition, the counter electrode 10 is made a porous body, and the ion exchange membrane 6 is attached using a Nafion dispersion liquid, whereby the ion exchange membrane 6 and the counter electrode 10 are separated by the penetration of the Nafion dispersion liquid into the pores of the porous body. The contact area can be increased to facilitate the progress of the electrochemical reaction, which is preferable.

ここで、上述の第一の実施形態及び第二の実施形態における微生物群担持担体の作製方法により得られた微生物群担持担体は、引き続きメタン発酵液4に接触させたまま作用電極9として使用し、本発明のメタン発酵処理を行うことが好適である。この場合、作製した微生物群担持担体を取り出すことなく、そのままメタン発酵処理を継続できる。また、メタン発酵液4に生息する微生物の量や分布も電位制御によってメタン発酵に適したものとなっているので、その恩恵を受けながら、メタン発酵処理を行うことができる。勿論、上記により作製した微生物群担持担体を一旦取り出して、別のメタン発酵槽のメタン発酵液に入れてメタン発酵処理を行っても良いし、さらに微生物群担持担体に電位を印加して、メタン発酵処理を行うようにしてもよい。   Here, the microorganism group-carrying support obtained by the method for producing a microorganism group-carrying carrier in the first embodiment and the second embodiment described above is used as the working electrode 9 while still in contact with the methane fermentation broth 4. It is preferable to perform the methane fermentation treatment of the present invention. In this case, the methane fermentation treatment can be continued as it is without taking out the produced microorganism group-supporting carrier. Moreover, since the quantity and distribution of microorganisms inhabiting the methane fermentation liquid 4 are also suitable for methane fermentation by controlling the potential, the methane fermentation treatment can be performed while receiving the benefits. Of course, the microorganism group-supported carrier prepared as described above may be once taken out and placed in a methane fermentation solution in another methane fermentation tank to perform methane fermentation treatment. You may make it perform a fermentation process.

上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では、メタン発酵の際の導電性担体の電位を銀・塩化銀電極電位基準で−0.6V〜−1.0Vまたは+0.3Vに制御するようにしていたが、微生物群のメタン生成活性を優先的に高めたい場合には、銀・塩化銀電極電位基準で−0.8Vにすることが好ましい。この場合には、微生物群のメタン生成活性を極めて高いものとして、効率よくメタン生成を行うことが可能となる。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the potential of the conductive carrier during methane fermentation is controlled to -0.6 V to -1.0 V or +0.3 V on the basis of the silver / silver chloride electrode potential. In order to increase the methane production activity of the group preferentially, it is preferable to set it to −0.8 V on the basis of the silver / silver chloride electrode potential. In this case, the methane generation activity of the microorganism group can be made extremely high, and methane can be efficiently generated.

また、本発明を実施するための処理装置は、例えば図35に示すように、メタン発酵液4と電解質4aをイオン交換膜6ではなく、イオンや微生物を一切透過させることのない不透過部材40で隔て、あるいは処理槽7と対電極槽8を別の容器で形成し、塩橋41(寒天等にKCl等の飽和電解質溶液を入れたもの)を介してメタン発酵液4と電解質4aを接触(液絡)させるようにしてもよい。この場合にも、メタン発酵液4中の微生物の対電極槽8への移動を防ぐことができるので、対電極10からの電子の引き抜きを防ぐことができ、しかも、塩橋によってイオン電流の流れが許容される。また、メタン発酵液4に含まれる酸化還元物質3についても対電極槽8に透過しないので、メタン発酵液4の溶液電位の制御性も確保される。   Moreover, the processing apparatus for implementing this invention is not the ion-exchange membrane 6, but the impervious member 40 which does not permeate | transmit ions and microorganisms at all, as shown in FIG. 35, for example. Or the treatment tank 7 and the counter electrode tank 8 are formed in separate containers, and the methane fermentation solution 4 and the electrolyte 4a are brought into contact with each other through a salt bridge 41 (agar or the like containing a saturated electrolyte solution such as KCl). (Liquid junction) may be used. Also in this case, since the movement of microorganisms in the methane fermentation broth 4 to the counter electrode tank 8 can be prevented, the extraction of electrons from the counter electrode 10 can be prevented, and the flow of ion current by the salt bridge can be prevented. Is acceptable. In addition, since the redox material 3 contained in the methane fermentation broth 4 does not pass through the counter electrode tank 8, the controllability of the solution potential of the methane fermentation broth 4 is also ensured.

以下に本発明の実施例を説明するが、本発明はこれら実施例に限られるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例A−1)
1.実験装置及び実験方法
本実施例において使用した実験装置の断面図を図1に示す。250mL容の2つのガラスバイアル瓶(Duran製)のうちの一方をメタン発酵槽26aとし、他方を対電極槽26bとし、下部開口部において陽イオン交換膜(ナフィオンK)を介して2つのバイアル瓶を接続し、H字型の容器26とした。また、メタン発酵槽26aには排出部51と供給部52を設けた。メタン発酵槽26aには蓋をし、蓋の上面にはシリコーンゴム栓を設けて、配線や電極を通した際の密閉製を確保した。また、蓋の上面のシリコーンゴム栓に管33を通し、メタン発酵槽26aの発酵液4の液面の上部の空間(ヘッドスペース)のガスを管33の一端から排出して、管の他端に接続された袋34にガスを回収するようにした。
(Example A-1)
1. Experimental Apparatus and Experimental Method FIG. 1 shows a cross-sectional view of the experimental apparatus used in this example. One of two 250 mL glass vials (manufactured by Duran) is the methane fermentation tank 26a, the other is the counter electrode tank 26b, and the two vials via a cation exchange membrane (Nafion K) at the lower opening. Were connected to form an H-shaped container 26. Moreover, the discharge part 51 and the supply part 52 were provided in the methane fermentation tank 26a. The methane fermentation tank 26a was covered, and a silicone rubber stopper was provided on the upper surface of the lid to ensure a sealed product when wiring and electrodes were passed. Further, the pipe 33 is passed through the silicone rubber stopper on the upper surface of the lid, and the gas in the space (head space) above the liquid level of the fermentation liquid 4 in the methane fermentation tank 26a is discharged from one end of the pipe 33, and the other end of the pipe Gas was collected in the bag 34 connected to the.

対電極槽26bには、電解液4aを収容すると共に対電極10(2.5cm×7.5cm×0.3cmの板状炭素電極)を収容して電解液4aに浸した。対電極槽26bも蓋をし、蓋の上面にはシリコーンゴム栓を設けて、シリコーンゴム栓にガス排出管22を貫通させた。そして、対電極10と電位制御装置12を結線するための配線31をガス排出管22に通した。ガス排出管22は両端が開口されており、一端を対電極槽26bの内部に、他端を対電極槽26bの外側に配置するようにして、対電極槽26bで発生するガスが対電極槽26bの外側に排出されるようにした。   The counter electrode tank 26b accommodated the electrolyte solution 4a and the counter electrode 10 (2.5 cm × 7.5 cm × 0.3 cm plate-like carbon electrode), and was immersed in the electrolyte solution 4a. The counter electrode tank 26b was also covered, and a silicone rubber plug was provided on the upper surface of the cover, and the gas discharge pipe 22 was passed through the silicone rubber plug. Then, a wiring 31 for connecting the counter electrode 10 and the potential control device 12 was passed through the gas exhaust pipe 22. Both ends of the gas discharge pipe 22 are opened, and the gas generated in the counter electrode tank 26b is arranged so that one end is disposed inside the counter electrode tank 26b and the other end is disposed outside the counter electrode tank 26b. It was made to discharge to the outside of 26b.

作用電極9(2.5cm×7.5cm×0.3cmの板状炭素電極)は、メタン発酵槽26aに収容して発酵液4に浸し、作用電極9から電位制御装置12への配線はシリコーンゴム栓を通してメタン発酵槽26aの外側に引き出した。参照電極11(銀・塩化銀電極)はメタン発酵槽26aの外側からシリコーンゴム栓に差し込んで、発酵液4と接触させた。作用電極9と対電極10と参照電極11とを3電極式の電位制御装置(ポテンシオスタット)12に結線して、作用電極9の電位を制御した。   The working electrode 9 (2.5 cm × 7.5 cm × 0.3 cm plate-like carbon electrode) is housed in the methane fermentation tank 26a and immersed in the fermentation broth 4, and the wiring from the working electrode 9 to the potential control device 12 is silicone. It was pulled out of the methane fermentation tank 26a through a rubber stopper. The reference electrode 11 (silver / silver chloride electrode) was inserted into a silicone rubber stopper from the outside of the methane fermentation tank 26a and brought into contact with the fermentation broth 4. The working electrode 9, the counter electrode 10, and the reference electrode 11 were connected to a three-electrode potential controller (potentiostat) 12 to control the potential of the working electrode 9.

メタン発酵槽26aに収容される発酵液4の組成は、KH2PO4 1.135 g/l, K2HPO4 1.740 g/l, NiCl2・6H2O 0.403 mg/l, CoCl2・6H2O 0.484 mg/lとした。また、アントラキノン-2,6-ジスルホン酸(AQDS)を終濃度0.2mMになるように添加した。電解液4aの組成は、NaCl 5.844 g/lとした。 The composition of the fermented liquid 4 accommodated in the methane fermenter 26a is KH 2 PO 4 1.135 g / l, K 2 HPO 4 1.740 g / l, NiCl 2 · 6H 2 O 0.403 mg / l, CoCl 2 · 6H 2 O 0.484 mg / l. Anthraquinone-2,6-disulfonic acid (AQDS) was added to a final concentration of 0.2 mM. The composition of the electrolytic solution 4a was NaCl 5.844 g / l.

発酵液4には、模擬生ゴミでメタン発酵を行って集積した種汚泥から取得した微生物群集を添加した。また、実験中は発酵液4のpHを7.4〜7.9に維持し、温度は55℃に維持した。発酵液4と電解液4aは攪拌子で攪拌し続けた。   To the fermentation liquid 4, a microbial community obtained from seed sludge accumulated by performing methane fermentation with simulated raw garbage was added. During the experiment, the pH of the fermentation broth 4 was maintained at 7.4 to 7.9, and the temperature was maintained at 55 ° C. The fermentation solution 4 and the electrolyte solution 4a were continuously stirred with a stirrer.

また、本実施例では、図2に示す負荷(有機物負荷量OLR、水理学的滞留時間HRT)をかけながら運転を行った。尚、メタン発酵槽の運転はフィルアンドドロー方式でおこなった。つまり一定量の発酵液を廃棄し、同量の基質を添加する方式で運転を行った。基質には、ドッグフード(日本ペットフード製)を100g/l(10重量%)、KH2PO4 1.135 g/l, K2HPO4 1.740 g/l, NiCl2・6H2O 0.403 mg/l, CoCl2・6H2O 0.484 mg/l含む模擬生ごみ基質を用いた。 Further, in this example, the operation was performed while applying the load shown in FIG. 2 (organic matter load amount OLR, hydraulic retention time HRT). The operation of the methane fermentation tank was performed by the fill and draw method. In other words, a certain amount of fermentation broth was discarded and the operation was performed by adding the same amount of substrate. The substrate, dog food (manufactured by Nippon pet food) to 100 g / l (10 wt%), KH 2 PO 4 1.135 g / l, K 2 HPO 4 1.740 g / l, NiCl 2 · 6H 2 O 0.403 mg / l, A simulated garbage substrate containing 0.484 mg / l CoCl 2 · 6H 2 O was used.

作用電極9の電位は、参照電極11である銀・塩化銀電極電位基準で、+0.6V、+0.3V、−0.3V、−0.6Vとして、メタン発酵処理を行った。また、比較実験として、作用電極9への通電を行わずにメタン発酵処理を行った。尚、作用電極9と微生物群集を添加した発酵液4は実験開始数日前から接触させておき、予め作用電極9に若干数の微生物群集を担持させてから実験に供した。   The potential of the working electrode 9 was +0.6 V, +0.3 V, −0.3 V, and −0.6 V based on the silver / silver chloride electrode potential standard as the reference electrode 11, and the methane fermentation treatment was performed. As a comparative experiment, methane fermentation treatment was performed without energizing the working electrode 9. The fermented liquid 4 to which the working electrode 9 and the microbial community had been added was brought into contact several days before the start of the experiment, and a few microbial communities were supported on the working electrode 9 in advance before the experiment.

尚、メタン発酵液4の電位は−0.5V程度であったことから、作用電極9の電位が+0.6V、+0.3V、−0.3Vの場合には、作用電極9で酸化反応が生じており、−0.6Vでは還元反応が生じていることになる。このことは、−0.6Vでは作用電極9においてカソード電流が流れ、+0.6V、+0.3V、−0.3Vでは作用電極9にアノード電流が流れていることからも確認することができた。   Since the potential of the methane fermentation broth 4 was about −0.5 V, when the potential of the working electrode 9 was +0.6 V, +0.3 V, and −0.3 V, the oxidation reaction was performed at the working electrode 9. This occurs, and a reduction reaction occurs at -0.6V. This can be confirmed from the fact that the cathode current flows in the working electrode 9 at −0.6 V, and the anode current flows in the working electrode 9 at +0.6 V, +0.3 V, and −0.3 V. .

2.分析方法
(1)化学分析方法
メタン発酵槽26aから排出されるガスの組成(メタン、水素、二酸化炭素)は、熱伝導率検出器(GC390B、GLサイエンス製)と活性炭充填カラム(GLサイエンス製)を備えたガスクロマトグラフィーにより測定した。
2. Analysis method (1) Chemical analysis method The composition (methane, hydrogen, carbon dioxide) of the gas discharged from the methane fermentation tank 26a is a thermal conductivity detector (GC390B, manufactured by GL Science) and an activated carbon packed column (manufactured by GL Science). Was measured by gas chromatography equipped with

発酵液4の低級脂肪酸濃度分析は、分析方法:液体クロマトグラフィー(GLサイエンス製、装置名GL-7400)により行った。   The lower fatty acid concentration analysis of the fermentation broth 4 was performed by an analysis method: liquid chromatography (manufactured by GL Science, apparatus name: GL-7400).

COD(化学的酸素要求量)の分析は、分析方法:Japanese Industrial Standard (JIS) K 0102-20(HACH製、装置名DR800)により行った。   The analysis of COD (chemical oxygen demand) was performed according to the analysis method: Japanese Industrial Standard (JIS) K 0102-20 (HACH, apparatus name: DR800).

SS(浮遊固形分量)の分析は、分析方法:JIS K 0102-14.1(ヤマト製、装置名DN63)により行った。   The analysis of SS (floating solid content) was performed by an analysis method: JIS K 0102-14.1 (manufactured by Yamato, apparatus name DN63).

(2)生物学的分析
実験終了後に作用電極9に付着している微生物群とメタン発酵液4に含まれる微生物群の16S rRNA遺伝子のコピー数をリアルタイムPCRを用いて定量分析した。具体的には、作用電極9に付着している微生物群を懸濁させた溶液またはメタン発酵液4を遠心分離処理して微生物群を沈降させ、トリス−EDTA緩衝液 (pH8.0、100mM トリスHCl、40mM EDTA)に懸濁した。DNAはドデシル硫酸ナトリウム及びフェノール−クロロホルム−イソアミルアルコール溶液(25:24:1 v/v)の存在下、微生物群から繰り返しビーズを衝突させて抽出し、次いで、抽出DNAをQIAamp DNAミクロキット(キアゲン社製)で精製した。これを、TaqMan リアルタイムPCRに供して微生物群の16S rRNA遺伝子のコピー数を定量分析した。プライマー/プローブセットは以下の通りとした。そして、原核生物に関する定量分析結果にメタン菌に関する定量分析結果を加算して、微生物群全体の16S rRNA遺伝子のコピー数を求めた。尚、実験に使用したプライマー/プローブセットは、以下の論文に記載されているものである(Takai, K., K. Horikoshi (2000). "Rapid detection and quatification of members of archaeal community by quantitative PCR using fluorogenic probes." Appl. Environ. Microbiol. 66(11): 5066-5072.、Sawayama, S., Tsukahara K, Yagishita T (2006). "Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester." Bioresour. Technol. 97(1): 69-76.)。
・原核生物用プライマー/プローブセット:
Uni340F/Uni806R/Uni516F
・メタン菌用プライマー/プローブセットセット:
S-P-MArch-0348-S-a-17/S-D-Arch-0786-A-a-20/S-P-MArch-0515-S-a-25
(2) Biological analysis The copy number of 16S rRNA gene of the microorganism group adhering to the working electrode 9 and the microorganism group contained in the methane fermentation broth 4 was quantitatively analyzed using real-time PCR. Specifically, a solution in which the microorganism group adhering to the working electrode 9 is suspended or the methane fermentation solution 4 is centrifuged to settle the microorganism group, and a Tris-EDTA buffer solution (pH 8.0, 100 mM Tris). HCl, 40 mM EDTA). DNA was extracted by repeated collision of beads from the microbial population in the presence of sodium dodecyl sulfate and phenol-chloroform-isoamyl alcohol solution (25: 24: 1 v / v), and the extracted DNA was then extracted with the QIAamp DNA micro kit (Qiagen). Purified). This was subjected to TaqMan real-time PCR to quantitatively analyze the copy number of the 16S rRNA gene of the microorganism group. The primer / probe set was as follows. And the quantitative analysis result regarding a methane bacterium was added to the quantitative analysis result regarding a prokaryote, and the copy number of 16S rRNA gene of the whole microorganism group was calculated | required. The primer / probe set used in the experiment is described in the following paper (Takai, K., K. Horikoshi (2000). "Rapid detection and quatification of members of archaeal community by quantitative PCR using fluorogenic probes. "Appl. Environ. Microbiol. 66 (11): 5066-5072., Sawayama, S., Tsukahara K, Yagishita T (2006)." Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed- bed anaerobic digester. "Bioresour. Technol. 97 (1): 69-76.).
Prokaryotic primer / probe set:
Uni340F / Uni806R / Uni516F
・ Primer / probe set for methane bacteria:
SP-MArch-0348-Sa-17 / SD-Arch-0786-Aa-20 / SP-MArch-0515-Sa-25

また、末端断片長多型解析(T−RFLP)により、全菌のうち古細菌を除く細菌の群集構造と、全菌のうち細菌を除く古細菌の群集構造とを解析した。具体的には、細菌のフォーワードプライマーとして5’末端で6-FAMでラベルされたBa27fを用い、リバースプライマーとしてBa907を用い、古細菌のフォーワードプライマーとしてAr109fを用い、リバースプライマーとして5’末端で6-FAMでラベルされたAr912rtを用いて、50μLの反応混合物中でPCRを行い、PCR単位複製配列物を得た。PCR単位複製配列物はWizard SV Gel and PCR Clean-Up System (プロメガ社製)で精製した後、細菌の制限酵素としてMspI(New England BioLabs社製)を用い、古細菌の制限酵素としてTaqI(New England BioLabs社製)を用いて消化した。この精製消化物の内部サイズ標準としてDNAサイズ標準GeneScan-500 ROX Size Standard (Applied Biosystems社製)を用いた。3130xl Genetic Analyzer(Applied Biosystems社製)により、末端断片長多型解析を実行した。尚2%未満の成分については、データから取り除いた。   Further, by analyzing the terminal fragment length polymorphism (T-RFLP), the community structure of bacteria excluding archaea out of all bacteria and the community structure of archaea excluding bacteria among all bacteria were analyzed. Specifically, Ba27f labeled with 6-FAM at the 5 'end is used as a bacterial forward primer, Ba907 is used as a reverse primer, Ar109f is used as an archaeal forward primer, and the 5' end is used as a reverse primer. PCR was performed in a 50 μL reaction mixture using Ar912rt labeled with 6-FAM in to obtain a PCR amplicon. The PCR amplicon was purified by Wizard SV Gel and PCR Clean-Up System (Promega), MspI (New England BioLabs) was used as a bacterial restriction enzyme, and TaqI (New England BioLabs) was used as an archaeal restriction enzyme. England BioLabs). The DNA size standard GeneScan-500 ROX Size Standard (Applied Biosystems) was used as an internal size standard for this purified digest. Terminal fragment length polymorphism analysis was performed using 3130xl Genetic Analyzer (Applied Biosystems). Ingredients below 2% were removed from the data.

さらに、細菌を除く古細菌について、クローン解析を行った。具体的には、T−RFLPと同様の条件でPCRを行い、PCR産物を精製してpGEM−T Easy ベクター(プロメガ社製)にライゲートさせた。プラスミドはEscherichia coli JM109細胞に組み込み、そのクローンをランダムに選択して、BigDye Terminator cycle sequencing chemistryを用いたABI 3130xl sequencer(アプライドバイオシステムズ)によりシーケンシングを行った。   Furthermore, clonal analysis was performed on archaea except bacteria. Specifically, PCR was performed under the same conditions as for T-RFLP, and the PCR product was purified and ligated into a pGEM-T Easy vector (Promega). The plasmid was incorporated into Escherichia coli JM109 cells, and clones were randomly selected and sequenced by ABI 3130xl sequencer (Applied Biosystems) using BigDye Terminator cycle sequencing chemistry.

3.実験結果
(1)設定電位とガス生成速度の関係
図3に各種設定電位におけるガス生成速度の経時変化を示す。尚、本実験で得られたガスのうち50〜70%がメタンガスであった。設定電位が+0.6Vの場合には、有機物負荷量11.2gCOD/l/日でガス生成速度が低下した(最終ガス生成速度1000ml/l/日)。また、高負荷条件下(有機物負荷量26.9gCOD/l/日)で運転を続けたところ、設定電位が−0.3Vの場合と通電なしの場合には、ガス生成速度の低下が見られた(最終ガス生成速度は共に2300ml/l/日)。一方、+0.3V及び−0.6Vの場合には、高負荷条件下(有機物負荷量26.9gCOD/l/日)で運転を続けても、ガス生成速度の低下が見られなかった(最終ガス生成速度は共に6800ml/l/日)。
3. Experimental Results (1) Relationship between Set Potential and Gas Generation Rate FIG. 3 shows changes with time in the gas generation rate at various set potentials. In addition, 50 to 70% of the gas obtained in this experiment was methane gas. When the set potential was +0.6 V, the gas generation rate decreased at an organic load of 11.2 g COD / l / day (final gas generation rate of 1000 ml / l / day). In addition, when the operation was continued under high load conditions (organic matter load: 26.9 g COD / l / day), a decrease in gas generation rate was observed when the set potential was -0.3 V and when there was no energization. (Final gas production rate is 2300 ml / l / day). On the other hand, in the case of + 0.3V and -0.6V, even if the operation was continued under a high load condition (organic matter load 26.9 g COD / l / day), no decrease in gas generation rate was observed (final) (The gas generation rate is 6800 ml / l / day for both).

(2)設定電位とCOD除去速度の関係
図4に各種設定電位におけるCOD除去速度の経時変化を示す。設定電位が+0.6Vの場合には、COD除去速度の有機物負荷量の増加に伴う上昇は見られなかった(最終COD除去速度3.1gCOD/l/日)。また、設定電位が−0.3V、通電なし、+0.3V、−0.6Vの場合にはそれぞれCOD除去速度の有機物負荷量の増加に伴う上昇が見られ、有機物負荷量が26.9gCOD/l/日に上昇した場合にもCOD除去速度は上昇した。特に、設定電位が−0.6Vと+0.3Vの場合にCOD除去速度の上昇が顕著であった。尚、最終的なCOD除去速度は16.1gCOD/l/日(設定電位−0.6V)、12.0gCOD/l/日(通電なし)、12.6gCOD/l/日(設定電位−0.3V)、15.4gCOD/l/日(設定電位+0.3V)であった。
(2) Relationship between set potential and COD removal rate FIG. 4 shows changes with time in the COD removal rate at various set potentials. When the set potential was +0.6 V, the COD removal rate did not increase with the increase in the organic load (final COD removal rate 3.1 g COD / l / day). Further, when the set potential is −0.3 V, no energization, +0.3 V, and −0.6 V, the COD removal rate increases with an increase in the organic load, and the organic load is 26.9 g COD / The COD removal rate also increased when increased to 1 / day. In particular, the increase in the COD removal rate was significant when the set potential was −0.6 V and +0.3 V. The final COD removal rates were 16.1 g COD / l / day (set potential −0.6 V), 12.0 g COD / l / day (no energization), 12.6 g COD / l / day (set potential −0.1 V). 3V), 15.4 g COD / l / day (set potential +0.3 V).

(3)設定電位とSS除去速度の関係
図5に各種設定電位におけるSS除去速度の経時変化を示す。設定電位が+0.3V、−0.6Vの場合には、有機物負荷量の増加に伴い、SS除去速度も上昇する傾向が見られ、有機物負荷量が26.9gCOD/l/日に上昇した場合にもSS除去速度の上昇が見られた。尚、最終的なSS除去速度は、4.8g/l/日(設定電位−0.6V)、5.0g/l/日(設定電位+0.3V)であった。また、設定電位が−0.3V、通電なしの場合には、有機物負荷量の増加に伴うSS除去速度の大幅な上昇は見られなかった。尚、最終的なSS除去速度は、3.3g/l/日(設定電位−0.3V)、3.0g/l/日(通電なし)であった。
(3) Relationship between set potential and SS removal rate FIG. 5 shows changes with time in the SS removal rate at various set potentials. When the set potential is +0.3 V or -0.6 V, the SS removal rate tends to increase as the organic load increases, and the organic load increases 26.9 g COD / l / day. Also, an increase in the SS removal rate was observed. The final SS removal rates were 4.8 g / l / day (set potential −0.6 V) and 5.0 g / l / day (set potential +0.3 V). In addition, when the set potential was −0.3 V and no current was supplied, no significant increase in the SS removal rate accompanying an increase in the organic load was observed. The final SS removal rate was 3.3 g / l / day (set potential −0.3 V) and 3.0 g / l / day (no power supply).

(4)設定電位と低級脂肪酸濃度の関係
図6に各種設定電位における低級脂肪酸濃度(酢酸、酪酸、プロピオン酸)の経時変化を示す。設定電位が+0.6Vの場合には、20日目あたりで既に低級脂肪酸の蓄積が見られた。また、(有機物負荷量26.9gCOD/l/日)で運転を続けたところ、設定電位が−0.3Vの場合と通電なしの場合には、低級脂肪酸の蓄積が見られた。一方で、設定電位が+0.3Vと−0.6Vの場合には、低級脂肪酸の蓄積が見られなかった。この結果から、設定電位を+0.3Vと−0.6Vにした場合には、メタン発酵槽の酸敗を防いで、長期にわたりメタン発酵処理を実施できることが明らかとなった。
(4) Relationship between set potential and lower fatty acid concentration FIG. 6 shows changes with time in lower fatty acid concentrations (acetic acid, butyric acid, propionic acid) at various set potentials. When the set potential was +0.6 V, accumulation of lower fatty acids was already observed around the 20th day. Further, when the operation was continued at (organic substance loading 26.9 g COD / l / day), accumulation of lower fatty acids was observed when the set potential was −0.3 V and when no current was supplied. On the other hand, when the set potential was +0.3 V and −0.6 V, accumulation of lower fatty acids was not observed. From this result, it was clarified that when the set potential was set to +0.3 V and −0.6 V, the methane fermentation treatment can be performed over a long period of time by preventing the methane fermentation tank from being spoiled.

(実施例A−2)
上記実施例A−1の実験が終了した後、発酵液画分と担体付着画分とを遺伝子学的解析に供し、微生物の付着状態と微生物群の分布状態について検討した。
(Example A-2)
After the experiment of Example A-1 was completed, the fermented liquid fraction and the carrier-adhered fraction were subjected to genetic analysis, and the state of microbial adhesion and the state of microbial population distribution were examined.

1.全菌とメタン菌の定量PCR結果
実施例A−1の実験終了後、発酵液の画分と担体付着画分とを取得し、全菌及びメタン菌のコピー数を定量PCRにより測定した。結果を図7〜10に示す。図7が発酵液画分の全菌のコピー数であり、図8が発酵液画分のメタン菌のコピー数であり、図9が担体付着画分の全菌のコピー数であり、図10が担体付着画分のメタン菌のコピー数である。この結果、いずれの画分においても、設定電位が+0.3Vと−0.6Vの場合には、通電なしの場合と比較してコピー数が大幅に増加することが明らかとなった。また、発酵液画分については、通電なしの場合と設定電位が+0.3Vと−0.6Vの場合でコピー数が2〜5倍程度しか変わらなかったにも関わらず、担体付着画分については、通電なしの場合と設定電位が+0.3Vと−0.6Vの場合でコピー数が400〜900倍も変わることが明らかとなった。このことから、実施例A−1において見られた高負荷条件におけるメタン発酵処理能の維持ないしは向上効果は、担体付着画分が大幅に増加することに起因することが明らかとなった。
1. Quantitative PCR Results for Whole Bacteria and Methane Bacteria After completion of the experiment in Example A-1, a fraction of the fermentation broth and a carrier-attached fraction were obtained, and the copy numbers of the whole bacteria and methane bacteria were measured by quantitative PCR. The results are shown in FIGS. FIG. 7 shows the copy number of all the bacteria in the fermentation broth fraction, FIG. 8 shows the copy number of methane bacteria in the fermented liquid fraction, FIG. 9 shows the copy number of all bacteria in the carrier-attached fraction, and FIG. Is the copy number of methane bacteria in the carrier-attached fraction. As a result, it has been clarified that in any fraction, when the set potential is +0.3 V and −0.6 V, the number of copies is greatly increased as compared with the case where no power is supplied. In addition, as for the fermented liquor fraction, the carrier-adhered fraction was not changed in the case of no energization and the set potential was +0.3 V and -0.6 V, although the copy number changed only about 2 to 5 times. It has been clarified that the copy number varies by 400 to 900 times between the case of no energization and the case where the set potential is + 0.3V and −0.6V. From this, it has been clarified that the maintenance or improvement effect of the methane fermentation treatment performance under the high load condition seen in Example A-1 is caused by a significant increase in the fraction adhered to the carrier.

2.T−RFLPによる細菌群集構造の比較
末端断片長多型解析(T−RFLP)により、全菌のうち、古細菌を除く細菌の群集構造を比較した。結果を図11に示す。図11に示される結果から、設定電位が+0.3Vと−0.6Vの場合に、262bpに該当する微生物の占める割合が大きくなり、特に炭素板においてその傾向が顕著であった。尚、図11中のかっこ内の電位は、発酵液の電位を意味している。つまり、作用電極9(担体)の電位と、発酵液の電位は異なるものである。
2. Comparison of bacterial community structure by T-RFLP By end fragment length polymorphism analysis (T-RFLP), the bacterial community structure of all bacteria except archaea was compared. The results are shown in FIG. From the results shown in FIG. 11, when the set potential was +0.3 V and −0.6 V, the proportion of microorganisms corresponding to 262 bp increased, and this tendency was particularly remarkable in the carbon plate. In addition, the electric potential in the parenthesis in FIG. 11 means the electric potential of the fermentation broth. That is, the potential of the working electrode 9 (carrier) and the potential of the fermentation broth are different.

次に、TAクローニングにより細菌群集の構造を解析した結果を図12に示す。この解析結果から、262bpに該当する微生物が、サーモトガ(Thermotogae)門に属する微生物であることが明らかとなった。したがって、サーモトガ(Thermotogae)門に属する微生物がSS除去及びCOD除去において、有効に作用していることが考えられた。また、このことから、サーモトガ(Thermotogae)門に属する微生物を含む微生物群集を培養液に添加し、培養液と微生物を担持し得る導電性担体、例えば炭素製の担体を接触させて、導電性担体の電位を銀・塩化銀電極電位基準で−0.6Vまたは+0.3Vに設定することで、サーモトガ(Thermotogae)門に属する微生物を導電性担体上に担持させて活性化させることができ、SS除去及びCOD除去を高負荷環境下においても効率よく実施できることが明らかとなった。   Next, the result of analyzing the structure of the bacterial community by TA cloning is shown in FIG. From this analysis result, it was revealed that a microorganism corresponding to 262 bp is a microorganism belonging to the Thermotogae gate. Therefore, it was considered that microorganisms belonging to the Thermotogae gate acted effectively in SS removal and COD removal. In addition, from this, a microbial community containing microorganisms belonging to Thermotogae is added to the culture solution, and the culture solution and a conductive carrier capable of supporting the microorganisms, for example, a carbon carrier, are brought into contact with each other. Is set to -0.6V or + 0.3V on the basis of the silver / silver chloride electrode potential, microorganisms belonging to Thermotogae can be supported on the conductive support and activated, and SS It was revealed that removal and COD removal can be carried out efficiently even under a high load environment.

また、図11に示される結果から、設定電位が+0.3Vと−0.6Vの場合に、210bpに該当する微生物が検出されなくなったことから、210bpに該当する微生物がSS除去及びCOD除去の阻害要因となっており、設定電位を+0.3Vと−0.6Vとすることで、210bpに該当する微生物を失活または除去して、SS除去及びCOD除去を高負荷環境下においても効率よく実施できる効果が得られる可能性もこの実験から示唆された。   In addition, from the results shown in FIG. 11, when the set potential is +0.3 V and −0.6 V, the microorganisms corresponding to 210 bp are not detected, and thus the microorganisms corresponding to 210 bp are subjected to SS removal and COD removal. It is an inhibiting factor, and by setting the set potential to +0.3 V and -0.6 V, microorganisms corresponding to 210 bp are inactivated or removed, and SS removal and COD removal are efficiently performed even in a high load environment. This experiment also suggested the possibility of obtaining a practicable effect.

さらに、サーモトガ(Thermotogae)門に属する微生物が低級脂肪酸の分解に関与しており、設定電位を+0.3Vと−0.6Vとすることで、低級脂肪酸の分解を促進できる可能性も示唆された。また、210bpに該当する微生物が低級脂肪酸の蓄積を促進しており、設定電位を+0.3Vと−0.6Vとすることで、低級脂肪酸の蓄積を抑えられる可能性も示唆された。   Furthermore, it was suggested that microorganisms belonging to the Thermotogae gate are involved in the degradation of lower fatty acids, and that the degradation of lower fatty acids can be promoted by setting the set potential to +0.3 V and -0.6 V. . In addition, it was suggested that microorganisms corresponding to 210 bp promote accumulation of lower fatty acids, and that the accumulation of lower fatty acids can be suppressed by setting the set potential to +0.3 V and −0.6 V.

そして、さらに解析を進めた結果、設定電位が−0.6Vの場合に炭素板に付着していた95bpのの微生物が蛋白質分解能を有すると考えられるBacteroidetes門の細菌に近縁性を示し、150bpの細菌は生ごみの蛋白質や繊維分を特異的に分解していると考えられているFirmicutes門の細菌に近縁性を示すことが確認された。このことから、設定電位を−0.6Vとすることで、有機性廃棄物のメタン発酵処理に有効な微生物群を担体に付着させる効果があることも明らかとなった。   As a result of further analysis, when the set potential is −0.6 V, the 95 bp microorganism attached to the carbon plate shows close affinity to the Bacteroidetes bacterium considered to have protein resolution, and 150 bp. These bacteria were closely related to the bacteria of the Firmicutes, which are thought to specifically degrade food proteins and fiber. From this, it was also clarified that setting the set potential to −0.6 V has an effect of attaching a microorganism group effective for methane fermentation treatment of organic waste to the carrier.

3.T−RFLPによる古細菌群集構造の比較
末端断片長多型解析(T−RFLP)により、全菌のうち、細菌を除く古細菌の群集構造を比較した。尚、古細菌にはメタン生成菌が含まれている。結果を図13に示す。設定電位が+0.3Vの場合には、92bpに該当する微生物の占める割合が大きくなり、特に炭素板においてその傾向が顕著であったが、186bpに該当する微生物については占有割合が殆ど変わらなかった。設定電位が−0.6Vの場合には、炭素板において186bpに該当する微生物の占有割合の若干の増加と、92bpに該当する微生物の占有割合の若干の増加が見られた。
3. Comparison of archaeal community structure by T-RFLP Comparison of archaea community structure excluding bacteria among all bacteria by end fragment length polymorphism analysis (T-RFLP). The archaebacteria contain methanogens. The results are shown in FIG. When the set potential was +0.3 V, the proportion of microorganisms corresponding to 92 bp increased, and the tendency was particularly remarkable in the carbon plate, but the proportion of microorganisms corresponding to 186 bp remained almost unchanged. . When the set potential was −0.6 V, a slight increase in the occupation ratio of microorganisms corresponding to 186 bp and a slight increase in the occupation ratio of microorganisms corresponding to 92 bp were observed on the carbon plate.

次に、TAクローニングにより古細菌群集の構造を解析した結果を図14に示す。この結果から、設定電位が+0.3Vの場合に占有割合が増加した92bpに該当する微生物が水素資化性メタン生成菌であるMethanothermobacter thermautotrophicusであることが明らかとなった。また、186bpに該当する微生物が酢酸資化性メタン生成菌であるMethanosarcina thermophilaであり、設定電位が+0.3V及び−0.6Vの場合には、その占有割合が通電なしの場合と同等かあるいは若干増加しており、低級脂肪酸である酢酸の蓄積の抑制につながったものと考えられた。つまり、定量PCRの結果から、設定電位が+0.3V及び−0.6Vの場合には、通電なしの場合と比較して担体上でメタン生成菌のコピー数の大幅な増加が確認されていることから、メタン生成菌の増殖に伴って酢酸資化性メタン生成菌もその占有割合を維持しながら増加しており、その結果として低級脂肪酸である酢酸の蓄積の抑制につながったものと考えられた。   Next, the results of analyzing the structure of the archaeal community by TA cloning are shown in FIG. From this result, it was clarified that the microorganism corresponding to 92 bp whose occupation ratio increased when the set potential was +0.3 V was Methanothermobacter thermautotrophicus, which is a hydrogen-assimilating methanogen. In addition, when the microorganism corresponding to 186 bp is Methanosarcina thermophila which is an acetic acid-assimilating methanogen and the set potential is +0.3 V and −0.6 V, the occupation ratio is the same as when no current is supplied or It was thought that this increased slightly, leading to the suppression of acetic acid accumulation, which is a lower fatty acid. That is, from the results of quantitative PCR, when the set potential is +0.3 V and −0.6 V, it is confirmed that the copy number of methanogenic bacteria on the carrier is significantly increased as compared with the case where no current is supplied. Therefore, acetic acid-assimilating methanogens increased with the growth of methanogens while maintaining their occupation ratio, and as a result, the accumulation of acetic acid, which is a lower fatty acid, was thought to have been suppressed. It was.

以上の結果から、酢酸資化性メタン生成菌であるMethanosarcina thermophilaを含む微生物群集を培養液に添加し、培養液と微生物を担持し得る導電性担体、例えば炭素製の担体を接触させて、導電性担体の電位を銀・塩化銀電極電位基準で−0.6Vまたは+0.3Vに設定することで、酢酸を生成源としてメタンガスを効率よく生成できることが明らかとなった。   Based on the above results, a microbial community containing Methanosarcina thermophila, which is an acetic acid-assimilating methanogen, is added to the culture solution, and a conductive carrier that can support the microorganism, for example, a carbon carrier, is brought into contact with the culture solution. It has been clarified that methane gas can be efficiently generated using acetic acid as a generation source by setting the potential of the active carrier to −0.6 V or +0.3 V based on the silver / silver chloride electrode potential.

また、水素資化性メタン生成菌であるMethanothermobacter thermautotrophicusを含む微生物群集を培養液に添加し、培養液と微生物を担持し得る導電性担体、例えば炭素製の担体を接触させて、導電性担体の電位を銀・塩化銀電極電位基準で−0.6Vまたは+0.3Vに設定することで、水素ガスと二酸化炭素を生成源としてメタンガスを効率よく生成できることが明らかとなった。   In addition, a microbial community containing Methanothermobacter thermautotrophicus, which is a hydrogen-utilizing methanogen, is added to the culture solution, and the culture solution is contacted with a conductive carrier that can carry the microorganism, for example, a carbon carrier, It has been clarified that methane gas can be efficiently generated using hydrogen gas and carbon dioxide as a generation source by setting the potential to -0.6 V or +0.3 V on the basis of the silver / silver chloride electrode potential.

(実施例A−3)
水素資化性メタン生成菌であるMethanothermobacter thermautotrophicusについて、菌体自体の活性を設定電位により高めて、メタン生成速度を増加させることが可能か検討した。
(Example A-3)
We investigated whether Methanothermobacter thermautotrophicus, a hydrogen-utilizing methanogen, could increase the methane production rate by increasing the activity of the cell itself with a set potential.

図17に示す実験装置を用いて実験を行った。250mL容のガラスバイアル瓶(Duran製)を培養容器5とし、培養液4の液面より下部に開口部を3つ設けた。1つめの開口部5bには参照電極11(東亜DDK製、HS−205C、銀・塩化銀電極)を差し込んで参照電極11と培養液4とを接触させた。2つめの開口部5cは培養液4を採取するために設け、蓋の開閉により培養液4を採取可能とした。3つめの開口部5aはポーラス板状の炭素電極(対電極10)で塞ぎ、この板状の炭素電極の片側表面の下半分には20%ナフィオン分散液(DE2021)を塗布し、さらにナフィオン膜N117で覆うことでイオン交換膜6を形成し、イオン交換膜6によって3つめの開口部5aが塞がれるようにした。対電極10をポーラスなものとした理由は、イオン交換膜6と対電極10との接触面で発生したガスを対電極10の反対側の面に通過しやすくするためである。作用電極9(導電性担体)として板状の炭素電極を培養液4に浸した。作用電極9と対電極10と参照電極11とを3電極式の電位制御装置(ポテンシオスタット)12に結線して、作用電極9(導電性担体)の電位を厳密に制御可能とした。尚、培養液4は培養容器5の8分目程度まで入れ、液面上部にヘッドスペースを確保した。培養容器5には蓋18をし、蓋18の上面18aに弾性材料であるシリコーンゴムを備えて、注射器の注射針を差し込んで培養容器5内のヘッドスペースからガス状物質を回収可能とし、且つ注射針の差し込みにより生じた孔が注射針を抜いた際に塞がるようにした。   Experiments were performed using the experimental apparatus shown in FIG. A 250 mL glass vial (manufactured by Duran) was used as the culture container 5, and three openings were provided below the liquid level of the culture solution 4. The reference electrode 11 (manufactured by Toa DDK, HS-205C, silver / silver chloride electrode) was inserted into the first opening 5b, and the reference electrode 11 and the culture solution 4 were brought into contact with each other. The second opening 5c is provided to collect the culture solution 4, and the culture solution 4 can be collected by opening and closing the lid. The third opening 5a is closed with a porous plate-like carbon electrode (counter electrode 10), and 20% Nafion dispersion (DE2021) is applied to the lower half of the surface of one side of this plate-like carbon electrode. The ion exchange membrane 6 was formed by covering with N117, and the third opening 5a was blocked by the ion exchange membrane 6. The reason why the counter electrode 10 is made porous is that gas generated at the contact surface between the ion exchange membrane 6 and the counter electrode 10 can easily pass through the opposite surface of the counter electrode 10. A plate-like carbon electrode was immersed in the culture solution 4 as the working electrode 9 (conductive carrier). The working electrode 9, the counter electrode 10, and the reference electrode 11 are connected to a three-electrode potential control device (potentiostat) 12 so that the potential of the working electrode 9 (conductive carrier) can be strictly controlled. In addition, the culture solution 4 was put into the culture vessel 5 until about the eighth minute, and a head space was secured above the liquid level. The culture container 5 is provided with a lid 18, and an upper surface 18 a of the lid 18 is provided with a silicone rubber that is an elastic material. The syringe needle of the syringe can be inserted to collect a gaseous substance from the head space in the culture container 5, and The hole produced by inserting the injection needle was closed when the injection needle was removed.

培養温度は55℃とした。また、培養液4にAQDS(アントラキノン−2,6−ジスルホン酸)を添加し、AQDS濃度は0.5mMとした。尚、培養液4は攪拌子19で攪拌し、上部のシリコーンゴム栓に注射針を2本刺し、一方の注射針からH/CO=80/20混合ガスを1時間通気することにより、ヘッドスペースをHとCOの混合ガスで置換した。培養液4の組成は以下の通りとした。また、培養液4のpHは7.2とした。
<培養液組成(/L)>KH2PO4 0.3 g, (NH4)2SO4 1.5 g, NaCl 0.6 g, MgSO4・7H2O 0.12 g, CaCl2・2H2O 0.08 g, FeSO4・7H2O 4.0 mg, K2HPO4 0.15 g, Na2CO3 4.0 g, Trace vitamins 10.0 ml, Trace element solution 10.0 ml, L-Cysteine・HCl・H2O 0.5 g, Na2S・9H2O 0.5 g, Resazurin 1.0 mg
<Vitamin solution(/L)>Biotin 2.0 mg, Folic acid 2.0 mg, Pyridoxine-HCl 10.0 mg, Thiamine-HCl・2H2O 5.0 mg, Riboflavine 5.0 mg, Nicotinic acid 5.0 mg, Ca-pantothenate 5.0 mg, p-Aminobenzoic acid 1.0 mg, Vitamin B12 0.01 mg
<Trace element solution(/L)>Na2・EDTA 0.64 g, MgSO4・7H2O 6.2 g, MnSO4・4H2O 0.55 g, NaCl 1.0 g, FeSO4・7H2O 0.1 g, CoCl2・6H2O 0.17 g, CaCl2・2H2O 0.13 g, ZnSO4・7H2O 0.18 g, CuSO4 0.05 g, KAl(SO4)2・12H2O 0.018 g, H3BO3 0.01 g, Na2MoO4・12H2O 0.011 g, NiCl2・6H2O 0.025 g
The culture temperature was 55 ° C. Further, AQDS (anthraquinone-2,6-disulfonic acid) was added to the culture solution 4 so that the AQDS concentration was 0.5 mM. The culture solution 4 is stirred with a stir bar 19, two injection needles are inserted into the upper silicone rubber stopper, and H 2 / CO 2 = 80/20 mixed gas is aerated from one injection needle for 1 hour. The head space was replaced with a mixed gas of H 2 and CO 2 . The composition of the culture solution 4 was as follows. The pH of the culture solution 4 was 7.2.
<Culture solution composition (/ L)> KH 2 PO 4 0.3 g, (NH 4 ) 2 SO 4 1.5 g, NaCl 0.6 g, MgSO 4 .7H 2 O 0.12 g, CaCl 2 .2H 2 O 0.08 g, FeSO 4・ 7H 2 O 4.0 mg, K 2 HPO 4 0.15 g, Na 2 CO 3 4.0 g, Trace vitamins 10.0 ml, Trace element solution 10.0 ml, L-Cysteine ・ HCl ・ H2O 0.5 g, Na 2 S ・ 9H 2 O 0.5 g, Resazurin 1.0 mg
<Vitamin solution (/ L)> Biotin 2.0 mg, Folic acid 2.0 mg, Pyridoxine-HCl 10.0 mg, Thiamine-HCl · 2H 2 O 5.0 mg, Riboflavine 5.0 mg, Nicotinic acid 5.0 mg, Ca-pantothenate 5.0 mg, p- Aminobenzoic acid 1.0 mg, Vitamin B 12 0.01 mg
<Trace element solution (/ L)> Na 2 · EDTA 0.64 g, MgSO 4 · 7H 2 O 6.2 g, MnSO 4 · 4H 2 O 0.55 g, NaCl 1.0 g, FeSO 4 · 7H 2 O 0.1 g, CoCl 2 · 6H 2 O 0.17 g, CaCl 2・ 2H 2 O 0.13 g, ZnSO 4・ 7H 2 O 0.18 g, CuSO 4 0.05 g, KAl (SO 4 ) 2・ 12H 2 O 0.018 g, H 3 BO 3 0.01 g, Na 2 MoO 4・ 12H 2 O 0.011 g, NiCl 2・ 6H 2 O 0.025 g

結果を図15に示す。尚、図15の相対活性とは、通電しない条件での菌体当たりのメタン生成量を1とした相対評価値である。即ち、この値を比較することで、メタン生成菌1菌体当たりのメタン生成活性を評価することができる。   The results are shown in FIG. Note that the relative activity in FIG. 15 is a relative evaluation value where the amount of methane produced per cell under the condition where no current is supplied is 1. That is, by comparing these values, the methanogenic activity per methanogenic cell can be evaluated.

図15に示される結果から、作用電極9(導電性担体)の設定電位を−0.8Vとすることで、通電しない場合と比較してメタン生成活性が3.5倍向上することが明らかとなった。   From the results shown in FIG. 15, it is clear that setting the working potential of the working electrode 9 (conductive carrier) to −0.8 V improves the methane production activity by 3.5 times compared to the case where no current is supplied. became.

この実験結果から、導電性担体の電位を−0.6Vまたは+0.3Vに制御して担体に水素資化性メタン生成菌であるMethanothermobacter thermautotrophicusを優占的に担持させた後、導電性担体の電位を−0.8Vに制御することで、極めて高効率にメタンを生成できることが明らかとなった。   From this experimental result, the potential of the conductive carrier is controlled to −0.6 V or +0.3 V, and the carrier is preferentially loaded with Methanothermobacter thermautotrophicus which is a hydrogen-assimilating methanogen. It was revealed that methane can be generated with extremely high efficiency by controlling the potential to -0.8V.

(実施例A−4)
担体付着画分の菌数よりも発酵液画分の菌数を多くして、ガス生成速度の検証を行った。
(Example A-4)
The number of bacteria in the fermented liquid fraction was increased from the number of bacteria in the carrier-attached fraction, and the gas production rate was verified.

実験は以下の9条件の担体を発酵液に浸して実施した。尚、発酵液は、模擬生ゴミでメタン発酵を行って集積した種汚泥を脱イオン水で1/3に希釈して200ml使用した。
(a)PE:ポリエチレン製の担体
(b)C:炭素製の担体
(c)PP:ポリプロピレン製の担体
(d)PE:ポリエチレン製の担体にバイオフィルムを付着
(e)C:炭素製の担体にバイオフィルムを付着
(f)PP:ポリプロピレン製の担体にバイオフィルムを付着
(g)担体なし
The experiment was performed by immersing a carrier under the following nine conditions in the fermentation broth. In addition, 200 ml of the fermented liquor was used by diluting seed sludge accumulated by performing methane fermentation with simulated raw garbage to 1/3 with deionized water.
(A) PE: polyethylene carrier (b) C: carbon carrier (c) PP: polypropylene carrier (d) PE: biofilm attached to polyethylene carrier (e) C: carbon carrier (F) PP: Adhering biofilm to polypropylene carrier (g) No carrier

運転条件は、0.95g/l/日とした。尚、(d)〜(f)のバイオフィルムを付着した条件においても、担体担持画分と比較して発酵液画分の方が菌数が多い。   The operating conditions were 0.95 g / l / day. In addition, even under the conditions where the biofilms (d) to (f) are attached, the fermentation liquid fraction has more bacteria than the carrier-supported fraction.

結果を図16に示す。(d)〜(f)の条件については、ガス生成速度が徐々に増加する傾向が見られたが、その他の条件については、ガス生成速度の増加が殆ど見られなかった。この結果から、担体に付着している菌は活性が高く、スタートアップに寄与したものと考えられた。   The results are shown in FIG. Regarding the conditions (d) to (f), there was a tendency for the gas generation rate to gradually increase, but for other conditions, there was almost no increase in the gas generation rate. From these results, it was considered that the bacteria attached to the carrier had high activity and contributed to start-up.

以上の結果から、担体付着画分を増加させることで、微生物反応プロセスの進行に極めて有利に作用することが明らかとなった。このことから、本発明のように導電性担体の電位を制御して目的の微生物群を予め担持・集積させ、あるいは処理を行いながら担持・集積させることによって、極めて効率よく微生物反応プロセスを進行させて所望の処理を実施できることが明らかとなった。   From the above results, it became clear that increasing the fraction adhered to the carrier has a very advantageous effect on the progress of the microbial reaction process. Therefore, as in the present invention, by controlling the potential of the conductive carrier and supporting and accumulating the target microorganism group in advance, or by supporting and accumulating while performing the treatment, the microbial reaction process can proceed extremely efficiently. It has become clear that the desired treatment can be carried out.

(実施例B−1)
1.実験装置及び実験方法
実施例A−1と同様の実験装置及び実験方法により、設定電位を変更して実験を実施した。また、実施例A−1において実施された一部の設定電位条件での実験について、再度実験を行い、再現性を確認した。
(Example B-1)
1. Experimental Apparatus and Experimental Method An experiment was performed by changing the set potential using the same experimental apparatus and experimental method as in Example A-1. Moreover, about the experiment on the one part set potential conditions implemented in Example A-1, it experimented again and confirmed reproducibility.

具体的には、作用電極9の電位を、参照電極11である銀・塩化銀電極電位基準で+0.0V、−0.8Vとした条件で新たに実験を実施した。−0.8Vでの実験は3回実施した。   Specifically, an experiment was newly conducted under the condition that the potential of the working electrode 9 was +0.0 V and −0.8 V based on the potential of the silver / silver chloride electrode as the reference electrode 11. The experiment at −0.8 V was performed three times.

また、通電無しの条件と−0.6Vの条件について、実施例A−1で得られた結果の再現性を確認する実験を2回実施した。   Moreover, the experiment which confirms the reproducibility of the result obtained in Example A-1 about the conditions without electricity supply and the conditions of -0.6V was implemented twice.

さらに、−0.6Vの条件と−0.8Vの条件について、有機物負荷量(OLR)を増大させて実験を行った。−0.6Vの条件については、本実施例で行った2回の実験とも、有機物負荷量を31.8g/l/日まで増加させた。−0.8Vの条件については、本実施例で行った3回の実験のうちの2回の実験について、有機物負荷量を31.8g/l/日まで増加させた。本実施例におけるメタン発酵槽の運転条件(負荷条件)を図18に示す。   Furthermore, an experiment was performed by increasing the organic load (OLR) under the conditions of -0.6V and -0.8V. With respect to the condition of −0.6 V, the organic load was increased to 31.8 g / l / day in the two experiments conducted in this example. Regarding the condition of −0.8 V, the organic load was increased to 31.8 g / l / day for two of the three experiments conducted in this example. The operating conditions (load conditions) of the methane fermenter in this example are shown in FIG.

尚、−0.6V、−0.8Vでは作用電極9上で還元反応が生じていることになる。このことは、−0.6V、−0.8Vでは作用電極9においてカソード電流が流れていることからも確認することができた。   Incidentally, at -0.6 V and -0.8 V, a reduction reaction occurs on the working electrode 9. This could be confirmed from the fact that the cathode current flows in the working electrode 9 at −0.6V and −0.8V.

2.実験結果
(1)設定電位とガス生成速度の関係
図19に各種設定電位におけるガス生成速度の経時変化を示す。図19において、×は通電無しの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)をそのままプロットしたものである。○は−0.8Vの条件の3回の実験結果の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。□は−0.6Vの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。△は+0.0Vの条件の実験結果である。◇(−0.3V)、◆(+0.3V)及び▲(+0.6V)で示される実験結果は、実施例A−1で得られた結果をそのまま掲載したものである。
2. Experimental Results (1) Relationship between Set Potential and Gas Generation Rate FIG. 19 shows changes over time in gas generation rate at various set potentials. In FIG. 19, x is a plot of three experimental results (one experimental result in Example A-1 and two experimental results in the present example) under no-energization conditions. ○ is a plot of the average of three experimental results under the condition of -0.8 V. For data before increasing the organic load to 31.8 g / l / day, the standard deviation is the error bar. It showed in. □ is a plot of average values of three experimental results (one experimental result in Example A-1 and two experimental results in this example) under the condition of −0.6 V, and the organic load amount For data up to 31.8 g / l / day before increasing, the standard deviation is indicated by error bars. Δ is the experimental result under the condition of + 0.0V. The experimental results indicated by ◇ (−0.3V), ♦ (+ 0.3V) and ▲ (+ 0.6V) are the results obtained in Example A-1 as they are.

通電無しの条件と−0.6Vの条件については、実施例A−1と同様の傾向が確認された。また、+0.3V及び−0.6Vの条件に加えて、−0.8Vの条件についても、運転期間中にガス生成速度の低下が見られなかった。特に、−0.6V及び−0.8Vの条件については、有機物負荷量を31.8g/l/日まで増加させても、ガス生成速度の低下は見られなかった。   About the conditions without electricity supply and the conditions of -0.6V, the tendency similar to Example A-1 was confirmed. In addition to the conditions of +0.3 V and -0.6 V, no decrease in gas generation rate was observed during the operation period under the condition of -0.8 V. In particular, under the conditions of -0.6 V and -0.8 V, no decrease in gas generation rate was observed even when the organic load was increased to 31.8 g / l / day.

(2)設定電位とCOD除去速度の関係
図20に各種設定電位におけるCOD除去速度の経時変化を示す。図20において、×は通電無しの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)の平均値をプロットしたものであり、標準偏差をエラーバーで示した。○は−0.8Vの条件の3回の実験結果の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。□は−0.6Vの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。△は+0.0Vの条件の実験結果である。◇(−0.3V)、◆(+0.3V)及び▲(+0.6V)で示される実験結果は、実施例A−1で得られた結果をそのまま掲載したものである。
(2) Relationship between set potential and COD removal rate FIG. 20 shows changes over time in the COD removal rate at various set potentials. In FIG. 20, x is a plot of average values of three experimental results (one experimental result in Example A-1 and two experimental results in this example) under the condition of no energization. Deviations are indicated by error bars. ○ is a plot of the average of three experimental results under the condition of -0.8 V. For data before increasing the organic load to 31.8 g / l / day, the standard deviation is the error bar. It showed in. □ is a plot of average values of three experimental results (one experimental result in Example A-1 and two experimental results in this example) under the condition of −0.6 V, and the organic load amount For data up to 31.8 g / l / day before increasing, the standard deviation is indicated by error bars. Δ is the experimental result under the condition of + 0.0V. The experimental results indicated by ◇ (−0.3V), ♦ (+ 0.3V) and ▲ (+ 0.6V) are the results obtained in Example A-1 as they are.

通電無しの条件と−0.6Vの条件については、実施例A−1と同様の傾向が確認された。また、+0.3V及び−0.6Vの条件に加えて、−0.8Vの条件についても、有機物負荷量の増加に伴い、COD除去速度が低下することなく上昇し続けた。特に、−0.6V及び−0.8Vの条件については、有機物負荷量を31.8g/l/日まで増加させても、COD除去速度は低下することなく上昇し続けた。   About the conditions without electricity supply and the conditions of -0.6V, the tendency similar to Example A-1 was confirmed. Further, in addition to the conditions of +0.3 V and -0.6 V, the condition of -0.8 V continued to increase without decreasing the COD removal rate with the increase in the organic load. In particular, for the conditions of −0.6 V and −0.8 V, the COD removal rate continued to increase without decreasing even when the organic load was increased to 31.8 g / l / day.

(3)設定電位とSS除去速度の関係
図21に各種設定電位におけるSS除去速度の経時変化を示す。図21において、×は通電無しの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)の平均値をプロットしたものであり、標準偏差をエラーバーで示した。○は−0.8Vの条件の3回の実験結果の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。□は−0.6Vの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。△は+0.0Vの条件の実験結果である。◇(−0.3V)及び◆(+0.3V)で示される実験結果は、実施例A−1で得られた結果をそのまま掲載したものである。
(3) Relationship between set potential and SS removal rate FIG. 21 shows changes with time in the SS removal rate at various set potentials. In FIG. 21, X is a plot of average values of three experimental results (one experimental result in Example A-1 and two experimental results in this example) under the condition of no energization. Deviations are indicated by error bars. ○ is a plot of the average of three experimental results under the condition of -0.8 V. For data before increasing the organic load to 31.8 g / l / day, the standard deviation is the error bar. It showed in. □ is a plot of average values of three experimental results (one experimental result in Example A-1 and two experimental results in this example) under the condition of −0.6 V, and the organic load amount For data up to 31.8 g / l / day before increasing, the standard deviation is indicated by error bars. Δ is the experimental result under the condition of + 0.0V. The experimental results indicated by ◇ (−0.3V) and ♦ (+ 0.3V) are the same as the results obtained in Example A-1.

通電無しの条件と−0.6Vの条件については、実施例A−1と同様の傾向が確認された。また、+0.3V及び−0.6Vの条件に加えて、−0.8Vの条件についても、有機物負荷量の増加に伴い、SS除去速度が低下することなく上昇し続けた。特に、−0.6V及び−0.8Vの条件については、有機物負荷量を31.8g/l/日まで増加させても、SS除去速度は低下することなく上昇し続けた。   About the conditions without electricity supply and the conditions of -0.6V, the tendency similar to Example A-1 was confirmed. Further, in addition to the conditions of +0.3 V and −0.6 V, the condition of −0.8 V also continued to increase without decreasing the SS removal rate as the organic load increased. In particular, under the conditions of −0.6 V and −0.8 V, the SS removal rate continued to increase without decreasing even when the organic load was increased to 31.8 g / l / day.

(4)設定電位と低級脂肪酸濃度の関係
図22に各種設定電位における低級脂肪酸濃度の経時変化を示す。図22において、×は通電無しの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)の平均値をプロットしたものである。○は−0.8Vの条件の3回の実験結果の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。□は−0.6Vの条件の3回の実験結果(実施例A−1における1回の実験結果と本実施例における2回の実験結果)の平均値をプロットしたものであり、有機物負荷量を31.8g/l/日まで増加させる前までのデータについては、標準偏差をエラーバーで示した。△は+0.0Vの条件の実験結果である。◇(−0.3V)、◆(+0.3V)及び▲(+0.6V)で示される実験結果は、実施例A−1で得られた結果をそのまま掲載したものである。
(4) Relationship between set potential and lower fatty acid concentration FIG. 22 shows changes over time in the lower fatty acid concentration at various set potentials. In FIG. 22, x is a plot of average values of three experimental results (one experimental result in Example A-1 and two experimental results in this example) under the condition of no energization. ○ is a plot of the average of three experimental results under the condition of -0.8 V. For data before increasing the organic load to 31.8 g / l / day, the standard deviation is the error bar. It showed in. □ is a plot of average values of three experimental results (one experimental result in Example A-1 and two experimental results in this example) under the condition of −0.6 V, and the organic load amount For data up to 31.8 g / l / day before increasing, the standard deviation is indicated by error bars. Δ is the experimental result under the condition of + 0.0V. The experimental results indicated by ◇ (−0.3V), ♦ (+ 0.3V) and ▲ (+ 0.6V) are the results obtained in Example A-1 as they are.

通電無しの条件と−0.6Vの条件については、実施例A−1と同様の傾向が確認された。また、+0.3V及び−0.6Vの条件に加えて、−0.8Vの条件についても、低級脂肪酸の蓄積が殆ど見られず、特に、−0.6V及び−0.8Vの条件については、有機物負荷量を31.8g/l/日まで増加させても、低級脂肪酸の蓄積は殆ど見られなかった。この結果から、設定電位を+0.3Vと−0.6Vにした場合に加えて、−0.8Vとした場合についても、メタン発酵槽の酸敗を防いで、長期にわたりメタン発酵処理を実施できることが明らかとなった。   About the conditions without electricity supply and the conditions of -0.6V, the tendency similar to Example A-1 was confirmed. Further, in addition to the conditions of +0.3 V and -0.6 V, the accumulation of lower fatty acids is hardly observed even under the condition of -0.8 V, and particularly with respect to the conditions of -0.6 V and -0.8 V. Even when the organic load was increased to 31.8 g / l / day, accumulation of lower fatty acids was hardly observed. From this result, in addition to the case where the set potential is set to +0.3 V and −0.6 V, also in the case of −0.8 V, it is possible to prevent the methane fermenter from being oxidized and to carry out the methane fermentation treatment for a long time. It became clear.

3.まとめ
以上の結果から、作用電極9の電位を、参照電極11である銀・塩化銀電極電位基準で+0.3V、−0.6V、−0.8Vに設定することで、高負荷条件下(有機物負荷量26.9gCOD/l/日)においても、ガス生成速度、COD除去速度、SS除去速度を低下させることなく、また、低級脂肪酸を蓄積させることなく、メタン発酵処理の一連の微生物反応プロセスを進行させることが可能であることが明らかとなった。特に、作用電極9の電位を、参照電極11である銀・塩化銀電極電位基準で−0.6V、−0.8Vに設定することで、さらに高負荷条件下(有機物負荷量31.8gCOD/l/日)においても、ガス生成速度、COD除去速度、SS除去速度を低下させることなく、また、低級脂肪酸を蓄積させることなく、メタン発酵処理の一連の微生物反応プロセスを進行させることが可能であることが明らかとなった。
3. Summary From the above results, by setting the potential of the working electrode 9 to +0.3 V, −0.6 V, and −0.8 V on the basis of the potential of the silver / silver chloride electrode as the reference electrode 11, Even when the organic load is 26.9 g COD / l / day, a series of microbial reaction processes for methane fermentation without reducing the gas production rate, COD removal rate, SS removal rate, and without accumulating lower fatty acids It has become clear that it is possible to proceed. In particular, by setting the potential of the working electrode 9 to −0.6 V and −0.8 V based on the reference potential of the silver / silver chloride electrode as the reference electrode 11, an even higher load condition (organic load 31.8 g COD / 1 / day), it is possible to proceed with a series of microbial reaction processes of methane fermentation without reducing the gas generation rate, COD removal rate, SS removal rate, and without accumulating lower fatty acids. It became clear that there was.

また、設定電位を−0.6Vとした場合と−0.8Vとした場合とでは、ほぼ同様の結果が得られたことから、設定電位を−0.6Vと−0.8Vの間の値に設定した場合にもほぼ同様の結果が得られるものと推定された。このことから、設定電位を+0.3Vまたは−0.6V〜−0.8Vとすることで、高負荷条件下においても、メタン発酵処理の一連の微生物反応プロセスを進行させることが可能であることがわかった。そして、設定電位を−0.6V〜−0.8Vとすることで、SS除去速度の向上効果及び低級脂肪酸の蓄積抑制効果が得られやすくなり、メタン発酵処理の一連の微生物反応プロセスを進行させる上で好適であることがわかった。   In addition, almost the same result was obtained when the set potential was set to -0.6V and -0.8V, and therefore the set potential was a value between -0.6V and -0.8V. It is estimated that almost the same result can be obtained even when set to. From this, by setting the set potential to +0.3 V or −0.6 V to −0.8 V, it is possible to proceed a series of microbial reaction processes of methane fermentation treatment even under high load conditions. I understood. And by making setting potential into -0.6V--0.8V, it becomes easy to acquire the improvement effect of SS removal rate, and the accumulation suppression effect of a lower fatty acid, and a series of microbial reaction processes of a methane fermentation process are advanced. It has been found suitable above.

(実施例B−2)
実施例B−1で新たに加えた条件について、実施例A−2と同様、発酵液各分と担体付着各分とを遺伝子学的解析に供し、微生物の付着状態と微生物群の分布状態について検討した。
(Example B-2)
About the conditions newly added in Example B-1, like Example A-2, each part of a fermented liquor and each part for carrier adhesion are used for a genetic analysis, About the adhesion state of microorganisms, and the distribution state of microorganism groups investigated.

1.全菌とメタン菌の定量PCR結果
実施例B−1の実験終了後、発酵液の画分と担体付着画分とを取得し、全菌及びメタン菌のコピー数を定量PCRにより測定した。結果を図23〜図26に示す。図23が発酵液画分の全菌のコピー数であり、図24が発酵液画分のメタン菌のコピー数であり、図25が担体付着画分の全菌のコピー数であり、図26が担体付着画分のメタン菌のコピー数である。尚、図23〜図26において、設定電位が−0.3V、+0.3V及び−0.6Vの場合については、基本的には実施例A−2で得られた結果をそのまま掲載したが、一部は再測定した結果を掲載した。
1. Quantitative PCR Results for Whole Bacteria and Methane Bacteria After completion of the experiment in Example B-1, a fraction of the fermentation broth and a carrier-attached fraction were obtained, and the copy numbers of the whole bacteria and methane bacteria were measured by quantitative PCR. The results are shown in FIGS. FIG. 23 shows the number of copies of all bacteria in the fermented liquid fraction, FIG. 24 shows the number of copies of methane bacteria in the fermented liquid fraction, FIG. 25 shows the number of copies of all bacteria in the carrier-attached fraction, and FIG. Is the copy number of methane bacteria in the carrier-attached fraction. In FIG. 23 to FIG. 26, for the cases where the set potential is −0.3 V, +0.3 V, and −0.6 V, the results obtained in Example A-2 are basically shown as they are. Some of the results were remeasured.

この結果、担体付着画分については、設定電位が+0.3Vと−0.6Vの場合に加えて、−0.8Vの場合についても、通電無しの場合と比較してコピー数が大幅に増加することが明らかとなった。ところが、発酵液画分については、設定電位が+0.3Vと−0.6Vの場合とは異なり、−0.8Vの場合にはコピー数が減少することが明らかとなった。   As a result, for the carrier-attached fraction, in addition to the case where the set potential is +0.3 V and -0.6 V, the number of copies is greatly increased also in the case of -0.8 V compared to the case where no power is supplied. It became clear to do. However, for the fermented liquor fraction, it was revealed that the copy number decreased when the set potential was -0.8 V, unlike when the set potential was +0.3 V and -0.6 V.

このように、設定電位が−0.8Vの場合には、設定電位が+0.3Vと−0.6Vの場合とは異なり、発酵液画分についてはコピー数が減少する傾向が見られた。それにも関わらず、実施例B−1では、設定電位が+0.3Vと−0.6Vの場合のみならず、−0.8Vの場合にも、高負荷条件においてメタン発酵処理能の維持ないしは向上効果が確認された。このことから、高負荷条件におけるメタン発酵処理能の維持ないしは向上効果には、担体付着画分が大きく寄与していることが明らかとなった。即ち、担体付着画分のコピー数の増加によって、高負荷条件におけるメタン発酵処理能の維持ないしは向上効果が確実に得られることが明らかとなった。   Thus, when the set potential was −0.8 V, unlike the cases where the set potential was +0.3 V and −0.6 V, there was a tendency for the number of copies to decrease for the fermentation broth fraction. Nevertheless, in Example B-1, not only when the set potential is +0.3 V and −0.6 V, but also when the potential is −0.8 V, the maintenance or improvement of the methane fermentation treatment performance under high load conditions. The effect was confirmed. From this, it became clear that the carrier-adhered fraction contributes greatly to the effect of maintaining or improving the methane fermentation treatment performance under high load conditions. That is, it has been clarified that the effect of maintaining or improving the methane fermentation treatment performance under high load conditions can be surely obtained by increasing the copy number of the carrier-attached fraction.

以上の結果から、設定電位を+0.3Vまたは−0.6Vとした場合に加えて、−0.8Vとした場合にも、担体付着画分を増加できることが明らかとなった。また、設定電位を−0.6Vとした場合よりも−0.8Vとした場合の方が担体付着画分が増加したことから、設定電圧を−0.6Vを含んで−0.6Vよりもマイナス側に大きくすれば、担体付着画分の増加効果が得られるものと考えられた。特に、設定電位を−0.6Vとした場合よりも−0.8Vとした場合の方がメタン菌の担体付着画分が大幅に増加していることに鑑みれば、設定電圧を−0.6Vを含んで−0.6Vよりもマイナス側に大きくすれば、担体付着画分の増加効果が得られ、高負荷条件におけるメタン発酵処理能の維持ないしは向上効果が得られるものと考えられた。ここで、模擬有機性廃棄物のボルタンメトリー測定を行った結果を図27に示す。図27に示されるように、設定電位を−1.0Vよりもマイナス側に大きくすると、水分解が起こることが確認された。つまり、設定電位を−1.0Vよりもマイナス側に大きくすると、作用電極からガスが発生し易くなって、目的外の反応が起こる虞があることがわかった。但し、−1.2V程度であれば、水の電気分解はそれほど激しくは起こらないので、−1.2V程度としても、本発明を実施可能であるが、設定電位は−0.6V〜−1.0Vとするのが好適であり、−0.6V〜−0.8Vとするのがより好適であり、−0.8Vとするのがさらに好適であることがわかった。ここで、設定電位を−0.6Vよりもマイナス側に大きな電位に制御すると、作用電極9上で還元反応が生じることから、設定電位は、作用電極9にて還元反応が生じ得る電位で尚かつ水の電気分解が激しく起こることのない電位とすることが好適であることがわかった。   From the above results, it has been clarified that the carrier adhesion fraction can be increased when the set potential is −0.8 V in addition to the set potential of +0.3 V or −0.6 V. Further, since the carrier adhering fraction increased when the set potential was set to -0.8 V than when set to -0.6 V, the set voltage including -0.6 V and -0.6 V was exceeded. It was considered that the effect of increasing the fraction adhered to the carrier could be obtained by increasing the value to the minus side. In particular, when the set potential is set to -0.8V, the set voltage is set to -0.6V in view of the fact that the carrier adhering fraction of methane bacteria is greatly increased when set at -0.8V. It was considered that the effect of increasing the fraction adhering to the carrier was obtained and the effect of maintaining or improving the methane fermentation treatment performance under high load conditions was obtained. Here, the result of the voltammetric measurement of the simulated organic waste is shown in FIG. As shown in FIG. 27, it was confirmed that water splitting occurred when the set potential was increased to a minus side from −1.0V. In other words, it was found that when the set potential is increased to a minus side from −1.0 V, gas is easily generated from the working electrode, and there is a possibility that an unintended reaction may occur. However, since the electrolysis of water does not occur so vigorously at about −1.2V, the present invention can be implemented even at about −1.2V, but the set potential is −0.6V to −1. It was found that the voltage was preferably 0.0 V, more preferably −0.6 V to −0.8 V, and even more preferably −0.8 V. Here, if the set potential is controlled to a negative potential greater than −0.6 V, a reduction reaction occurs on the working electrode 9, and therefore the set potential is a potential at which a reduction reaction can occur at the working electrode 9. In addition, it has been found that it is preferable to set the potential so that electrolysis of water does not occur vigorously.

2.T−RFLPによる細菌群集構造の比較
末端断片長多型解析(T−RFLP)により、全菌のうち、古細菌を除く細菌の群集構造を比較した。結果を図28に示す。図28に示される結果から、設定電位が+0.3Vと−0.6Vの場合に加えて、−0.8Vの場合においても、262bpに該当する微生物、即ち、サーモトガ(Thermotogae)門に属する微生物の占める割合が大きくなり、特に炭素板においてその傾向が顕著であることが明らかとなった。
2. Comparison of bacterial community structure by T-RFLP By end fragment length polymorphism analysis (T-RFLP), the bacterial community structure of all bacteria except archaea was compared. The results are shown in FIG. From the results shown in FIG. 28, in addition to the case where the set potential is +0.3 V and −0.6 V, the microorganism corresponding to 262 bp, that is, the microorganism belonging to the Thermotogae gate, even in the case of −0.8 V It became clear that the ratio which becomes large, and the tendency was remarkable especially in a carbon plate.

また、図28に示される結果から、設定電位が+0.3Vと−0.6Vの場合に加えて、−0.8Vの場合においても、210bpに該当する微生物が検出されなくなった。   Further, from the result shown in FIG. 28, in addition to the case where the set potential is + 0.3V and −0.6V, the microorganism corresponding to 210 bp is not detected even in the case of −0.8V.

以上の結果から、設定電位を+0.3Vまたは−0.6Vとした場合に加えて、設定電位を−0.8Vとした場合にも古細菌を除く細菌の群集構造を制御できることが明らかとなった。   From the above results, it becomes clear that the bacterial community structure excluding archaea can be controlled when the set potential is set to -0.8 V in addition to the set potential set to +0.3 V or -0.6 V. It was.

また、設定電位を−0.6Vとした場合と−0.8Vとした場合とでは、古細菌を除く細菌の群集構造が類似していたことから、設定電位を−0.6Vと−0.8Vの間の値とした場合にもほぼ同様の結果が得られることが考えられた。したがって、設定電位を+0.3Vまたは−0.6V〜−0.8Vとすることで、古細菌を除く細菌の群集構造を制御できることがわかった。   In addition, when the set potential was -0.6 V and -0.8 V, the bacterial community structure except archaea was similar, so the set potential was -0.6 V and -0. It was considered that almost the same result was obtained when the value was between 8V. Therefore, it was found that the bacterial community structure excluding archaea can be controlled by setting the set potential to +0.3 V or −0.6 V to −0.8 V.

そして、さらに解析を進めた結果、設定電位が−0.6Vと−0.8Vの場合に炭素板に付着していた95bpのの微生物が蛋白質分解能を有すると考えられるBacteroidetes門の細菌に近縁性を示し、150bpの細菌は生ごみの蛋白質や繊維分を特異的に分解していると考えられているFirmicutes門の細菌に近縁性を示すことが確認された。このことから、設定電位を−0.6V〜−0.8Vとすることで、有機性廃棄物のメタン発酵処理に有効な微生物群を担体に付着させる効果があることも明らかとなった。   As a result of further analysis, when the set potential is −0.6 V and −0.8 V, the 95 bp microorganism attached to the carbon plate is closely related to the Bacteroidetes bacterium which is considered to have protein resolution. It was confirmed that the 150 bp bacterium was closely related to the bacteria of the Firmicutes phylum, which is thought to specifically break down proteins and fiber in garbage. From this, it was also clarified that setting the set potential to −0.6 V to −0.8 V has an effect of attaching a microorganism group effective for methane fermentation treatment of organic waste to the carrier.

3.T−RFLPによる古細菌群集構造の比較
末端断片長多型解析(T−RFLP)により、全菌のうち、細菌を除く古細菌の群集構造を比較した。尚、古細菌にはメタン生成菌が含まれている。結果を図29に示す。設定電位を−0.8Vとした場合には、設定電位を−0.6Vとした場合と同様に、炭素板において186bpに該当する酢酸資化性メタン生成菌(Methanosarcina thermophila)の占有割合が増加することが明らかとなった。
3. Comparison of archaeal community structure by T-RFLP Comparison of archaea community structure excluding bacteria among all bacteria by end fragment length polymorphism analysis (T-RFLP). The archaebacteria contain methanogens. The results are shown in FIG. When the set potential is set to -0.8 V, the occupation ratio of Methanosarcina thermophila corresponding to 186 bp on the carbon plate increases as in the case where the set potential is set to -0.6 V. It became clear to do.

また、設定電位を−0.6Vとした場合と−0.8Vとした場合の双方で、炭素板において186bpに該当する酢酸資化性メタン生成菌(Methanosarcina thermophila)の占有割合が増加することが明らかとなったことから、設定電位を−0.6Vと−0.8Vの間の値とした場合にもほぼ同様の結果が得られることが考えられた。したがって、設定電位を−0.6V〜−0.8Vとすることで、炭素板上における酢酸資化性メタン生成菌(Methanosarcina thermophila)の占有割合を増加できることがわかった。   In addition, in both the case where the set potential is set to -0.6 V and -0.8 V, the occupation ratio of the methanosarcina thermophila corresponding to 186 bp on the carbon plate may increase. Since it became clear, it was considered that almost the same result could be obtained even when the set potential was set to a value between -0.6V and -0.8V. Therefore, it was found that the occupation ratio of the acetic acid-assimilating methanogen (Methanosarcina thermophila) on the carbon plate can be increased by setting the set potential to −0.6 V to −0.8 V.

以上、T−RFLPによる古細菌群集構造の比較結果から、設定電位を+0.3Vまたは−0.6V〜−0.8Vとすることで、古細菌群集構造を制御することができることが明らかとなった。そして、設定電位を+0.3Vとすることで、炭素板上における水素資化性メタン生成菌の占有割合を増加することができ、設定電位を−0.6V〜−0.8Vとすることで、酢酸資化性メタン生成菌の占有割合を増加することができることが明らかとなった。   As mentioned above, it becomes clear from the comparison result of the archaea community structure by T-RFLP that the archaea community structure can be controlled by setting the set potential to +0.3 V or −0.6 V to −0.8 V. It was. And, by setting the set potential to + 0.3V, the occupation ratio of hydrogen-utilizing methanogens on the carbon plate can be increased, and by setting the set potential to -0.6V to -0.8V. It was revealed that the occupation ratio of acetic acid-utilizing methanogens can be increased.

Claims (9)

サーモトガ(Thermotogae)門に属する細菌を含む細菌群並びに水素資化性メタン菌及び酢酸資化性メタン菌を含むメタン菌群を含み、且つ有機性基質を含む50℃〜60℃のメタン発酵液を、微生物を担持し得る炭素製の導電性担体と接触させ、
前記導電性担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8V又は+0.3Vに制御し、
前記導電性担体に通電しない場合よりも、前記細菌群及び前記メタン菌群の前記導電性担体への担持量を増加させると共に、前記導電性担体に担持される前記細菌群を前記サーモトガ(Thermotogae)門に属する細菌で優占化させることを特徴とする微生物群担持担体の作製方法。
A methane fermentation broth at 50 ° C. to 60 ° C. containing a bacterial group including bacteria belonging to the Thermotogae gate and a methane bacterial group including hydrogen-utilizing methane bacteria and acetic acid-utilizing methane bacteria, and containing an organic substrate Contact with a carbon conductive carrier capable of supporting microorganisms,
The potential of the conductive carrier is controlled to -0.6V to -0.8V or + 0.3V on the basis of the silver / silver chloride electrode potential ,
The amount of the bacteria group and the methane bacteria group supported on the conductive carrier is increased as compared with the case where the conductive carrier is not energized, and the bacteria group supported on the conductive carrier is added to the Thermotoga. A method for producing a carrier for supporting a microorganism group, characterized in that the microorganism is dominated by bacteria belonging to the gate .
前記酢酸資化性メタン菌をMethanosarcina thermophilaとし、The acetic acid-assimilating methane bacterium is Methanosarcina thermophila,
前記導電性担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8Vに制御し、The potential of the conductive carrier is controlled to -0.6V to -0.8V on the basis of the silver / silver chloride electrode potential,
前記導電性担体に通電しない場合よりも、前記導電性担体に担持される前記メタン菌群におけるMethanosarcina thermophilaの占有割合を高める、請求項1に記載の微生物群担持担体の作製方法。The method for producing a microbial group-carrying carrier according to claim 1, wherein an occupation ratio of Methanosarcina thermophila in the methane bacteria group carried on the conductive carrier is increased as compared with a case where the conductive carrier is not energized.
前記水素資化性メタン菌をMethanothermobacter thermautotrophicusとし、The hydrogen-utilizing methane bacterium is Methanothermobacter thermautotrophicus,
前記導電性担体の電位を銀・塩化銀電極電位基準で+0.3Vに制御し、The potential of the conductive carrier is controlled to +0.3 V on the basis of the silver / silver chloride electrode potential,
前記導電性担体に通電しない場合よりも、前記導電性担体に担持される前記メタン菌群におけるMethanothermobacter thermautotrophicusの占有割合を高める、請求項1に記載の微生物群担持担体の作製方法。The method for producing a carrier for supporting a microorganism group according to claim 1, wherein the occupation ratio of Methanothermobacter thermautotrophicus in the group of methane bacteria supported on the conductive carrier is increased as compared with a case where no current is supplied to the conductive carrier.
前記導電性担体を作用電極とし、
前記作用電極と対電極と参照電極とを定電位設定装置に結線し、
前記メタン発酵液または前記培養液と電解液とをイオン交換膜を介して接触させ、
前記メタン発酵液または前記培養液に前記作用電極と前記参照電極とを接触させ、
前記電解液に前記対電極を接触させ、
前記作用電極の電位を3電極方式で制御する請求項1〜3のいずれか1つに記載の微生物群担持担体の作製方法。
The conductive carrier as a working electrode,
Connecting the working electrode, counter electrode and reference electrode to a constant potential setting device;
The methane fermentation solution or the culture solution and the electrolyte solution are contacted via an ion exchange membrane,
Bringing the working electrode and the reference electrode into contact with the methane fermentation broth or the culture broth;
Contacting the counter electrode with the electrolyte;
The method for producing a microorganism group-supporting carrier according to any one of claims 1 to 3, wherein the potential of the working electrode is controlled by a three-electrode system.
前記導電性担体を作用電極とし、
前記作用電極と対電極と参照電極とを定電位設定装置に結線し、
前記メタン発酵液または前記培養液と前記対電極とをイオン交換膜を介して接触させ、
前記メタン発酵液または前記培養液に前記作用電極と前記参照電極とを接触させ、
前記作用電極の電位を3電極方式で制御する請求項1〜3のいずれか1つに記載の微生物群担持担体の作製方法。
The conductive carrier as a working electrode,
Connecting the working electrode, counter electrode and reference electrode to a constant potential setting device;
Contacting the methane fermentation broth or the culture with the counter electrode through an ion exchange membrane;
Bringing the working electrode and the reference electrode into contact with the methane fermentation broth or the culture broth;
The method for producing a microorganism group-supporting carrier according to any one of claims 1 to 3, wherein the potential of the working electrode is controlled by a three-electrode system.
最終的な有機物負荷量が20gCOD/l/日となるように有機物負荷量を徐々に増加させて少なくとも40日間馴養を行う請求項1〜5のいずれか1つに記載の微生物担持担体の作製方法。The method for producing a microorganism-supporting carrier according to any one of claims 1 to 5, wherein acclimatization is carried out for at least 40 days by gradually increasing the organic load so that the final organic load is 20 gCOD / l / day. . 請求項1〜6のいずれか1つに記載の方法により作製された微生物群担持担体をメタン発酵液に浸漬し、前記微生物群担持担体の電位を銀・塩化銀電極電位基準で−0.6V〜−0.8V又は+0.3Vに制御しながらメタン発酵処理を行うことを特徴とするメタン発酵方法。The microorganism group-supported carrier produced by the method according to any one of claims 1 to 6 is immersed in a methane fermentation solution, and the potential of the microorganism group-supported carrier is -0.6 V based on the silver / silver chloride electrode potential. A methane fermentation method, wherein methane fermentation treatment is performed while controlling to -0.8V or + 0.3V. 前記微生物群担持担体を作用電極とし、The microorganism group carrying carrier as a working electrode,
前記作用電極と対電極と参照電極とを定電位設定装置に結線し、Connecting the working electrode, counter electrode and reference electrode to a constant potential setting device;
前記メタン発酵液と電解液とをイオン交換膜を介して接触させ、Contacting the methane fermentation broth and electrolyte through an ion exchange membrane;
前記メタン発酵液に前記作用電極と前記参照電極とを接触させ、Bringing the working electrode and the reference electrode into contact with the methane fermentation liquor,
前記電解液に前記対電極を接触させ、Contacting the counter electrode with the electrolyte;
前記作用電極の電位を3電極方式で制御する請求項7に記載のメタン発酵方法。The methane fermentation method according to claim 7, wherein the potential of the working electrode is controlled by a three-electrode system.
前記微生物群担持担体を作用電極とし、The microorganism group carrying carrier as a working electrode,
前記作用電極と対電極と参照電極とを定電位設定装置に結線し、Connecting the working electrode, counter electrode and reference electrode to a constant potential setting device;
前記メタン発酵液と前記対電極とをイオン交換膜を介して接触させ、Contacting the methane fermentation broth and the counter electrode through an ion exchange membrane;
前記メタン発酵液に前記作用電極と前記参照電極とを接触させ、Bringing the working electrode and the reference electrode into contact with the methane fermentation liquor,
前記作用電極の電位を3電極方式で制御する請求項7に記載のメタン発酵方法。The methane fermentation method according to claim 7, wherein the potential of the working electrode is controlled by a three-electrode system.
JP2010083327A 2009-03-31 2010-03-31 Method for producing microorganism group-supporting carrier, substance treatment method and substance production method using microorganism Expired - Fee Related JP5372826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083327A JP5372826B2 (en) 2009-03-31 2010-03-31 Method for producing microorganism group-supporting carrier, substance treatment method and substance production method using microorganism

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009087161 2009-03-31
JP2009087161 2009-03-31
JP2009190891 2009-08-20
JP2009190891 2009-08-20
JP2010083327A JP5372826B2 (en) 2009-03-31 2010-03-31 Method for producing microorganism group-supporting carrier, substance treatment method and substance production method using microorganism

Publications (2)

Publication Number Publication Date
JP2011062195A JP2011062195A (en) 2011-03-31
JP5372826B2 true JP5372826B2 (en) 2013-12-18

Family

ID=43949124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083327A Expired - Fee Related JP5372826B2 (en) 2009-03-31 2010-03-31 Method for producing microorganism group-supporting carrier, substance treatment method and substance production method using microorganism

Country Status (1)

Country Link
JP (1) JP5372826B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700620B2 (en) * 2010-04-15 2015-04-15 一般財団法人電力中央研究所 Method for controlling the methanogenic activity of hydrogen-utilizing methane bacteria
JP5801096B2 (en) * 2011-04-28 2015-10-28 一般財団法人電力中央研究所 Proteolytic treatment method
KR101686406B1 (en) * 2015-02-26 2016-12-14 고려대학교 산학협력단 Biogas production method and biogas produced therefrom
KR102529644B1 (en) * 2016-03-15 2023-05-04 고려대학교 산학협력단 Method and device for waste water treatment based on anaerobic digestion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164432B2 (en) * 2003-10-22 2008-10-15 潤一 高橋 Methane fermentation method and methane fermentation apparatus
JP4257847B2 (en) * 2003-12-10 2009-04-22 潤一 高橋 Carbon dioxide conversion method and carbon dioxide converter
JP5123503B2 (en) * 2006-09-04 2013-01-23 一般財団法人電力中央研究所 Microbial activity control method
JP5101855B2 (en) * 2006-10-12 2012-12-19 三井造船株式会社 Bioreactor
JP2009061390A (en) * 2007-09-06 2009-03-26 Yamato:Kk Direct oxidation method of ammonia nitrogen in water and its apparatus

Also Published As

Publication number Publication date
JP2011062195A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
Jourdin et al. Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source
Xu et al. Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading
Xu et al. Enhancing methanogenic fermentation of waste activated sludge via isoelectric-point pretreatment: Insights from interfacial thermodynamics, electron transfer and microbial community
Choi et al. Performance of microbial fuel cell with volatile fatty acids from food wastes
Batlle-Vilanova et al. Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode
Zhang et al. Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities
Meulepas et al. Enrichment of anaerobic methanotrophs in sulfate‐reducing membrane bioreactors
Jafary et al. A comprehensive study on development of a biocathode for cleaner production of hydrogen in a microbial electrolysis cell
Cerrillo et al. Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems
Vilela et al. Hydrogen production in reactors: the influence of organic loading rate, inoculum and support material
CN103881905A (en) Embedded bioelectricity synthesis system and method
NL2026669B1 (en) A process to treat a carbon dioxide comprising gas
JP5372826B2 (en) Method for producing microorganism group-supporting carrier, substance treatment method and substance production method using microorganism
Yun et al. Sulfate reducing bacteria-based wastewater treatment system integrated with sulfide fuel cell for simultaneous wastewater treatment and electricity generation
Thapa et al. Enhanced ex-situ biomethanation of hydrogen and carbon dioxide in a trickling filter bed reactor
Agostino et al. Electrophysiology of the facultative autotrophic bacterium Desulfosporosinus orientis
Castellano-Hinojosa et al. Diversity of electroactive and non-electroactive microorganisms and their potential relationships in microbial electrochemical systems: A review
Litti et al. Electromethanogenesis: a promising biotechnology for the anaerobic treatment of organic waste
Lim et al. Enhancing hydrogen production through anode fed-batch mode and controlled cell voltage in a microbial electrolysis cell fully catalysed by microorganisms
Sasaki et al. Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes
Zain et al. Different types of microbial fuel cell (MFC) systems for simultaneous electricity generation and pollutant removal
JP5700620B2 (en) Method for controlling the methanogenic activity of hydrogen-utilizing methane bacteria
Mohottige et al. Bioelectrochemical oxidation of organics by alkali-halotolerant anodophilic biofilm under nitrogen-deficient, alkaline and saline conditions
JP5872148B2 (en) Biological treatment method and method for producing microorganism group-supporting carrier
JP5745292B2 (en) Fermentation processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees