JP5372682B2 - Surface effect 3D photonic crystal - Google Patents

Surface effect 3D photonic crystal Download PDF

Info

Publication number
JP5372682B2
JP5372682B2 JP2009223937A JP2009223937A JP5372682B2 JP 5372682 B2 JP5372682 B2 JP 5372682B2 JP 2009223937 A JP2009223937 A JP 2009223937A JP 2009223937 A JP2009223937 A JP 2009223937A JP 5372682 B2 JP5372682 B2 JP 5372682B2
Authority
JP
Japan
Prior art keywords
photonic crystal
dimensional photonic
layer
light
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009223937A
Other languages
Japanese (ja)
Other versions
JP2011075614A (en
JP2011075614A5 (en
Inventor
進 野田
賢司 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2009223937A priority Critical patent/JP5372682B2/en
Publication of JP2011075614A publication Critical patent/JP2011075614A/en
Publication of JP2011075614A5 publication Critical patent/JP2011075614A5/ja
Application granted granted Critical
Publication of JP5372682B2 publication Critical patent/JP5372682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional photonic crystal which is easily accessed from the outside, is not influenced by an optical loss due to absorption or the like, and controls light propagation, light localization or the like. <P>SOLUTION: The surface effect three-dimensional photonic crystal 30 is configured by forming a surface structure layer 31, which is different in structure from an original crystal surface, on the surface of a wood-pile three dimensional photonic crystal. The surface structure layer 31 has an orthogonal grid structure that is formed by adding a connection member 32 formed of the same material as a rod 11 to a stripe layer 12 which is originally formed on the crystal surface, into the same layer, in the direction orthogonal to the rod 11 composing the stripe layer. The connection member 32 is formed at a position at which the surface structure layer 31 shifts by 1/2 cycle from the rod of the most adjacent stripe layer 125. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、外部からのアクセスが容易で、吸収等による光損失の影響のない、光伝搬及び光閉じ込め等の制御を可能とする3次元フォトニック結晶に関する。   The present invention relates to a three-dimensional photonic crystal that can be easily accessed from the outside and can control light propagation and light confinement without being affected by light loss due to absorption or the like.

近年、新しい光デバイスとして、フォトニック結晶が注目されている。フォトニック結晶とは周期屈折率分布をもった光機能材料であり、光や電磁波のエネルギーに対してバンド構造を形成する。特に、光や電磁波の伝播が不可能となるエネルギー領域(フォトニックバンドギャップ、略称:PBG)が形成されることが特徴である。   In recent years, photonic crystals have attracted attention as new optical devices. A photonic crystal is an optical functional material having a periodic refractive index distribution and forms a band structure with respect to energy of light or electromagnetic waves. In particular, an energy region (photonic band gap, abbreviated as PBG) where light or electromagnetic waves cannot be propagated is formed.

フォトニック結晶の屈折率分布の中に屈折率分布の乱れ(欠陥)を導入することにより、PBG中にこの欠陥によるエネルギー準位(欠陥準位)が形成される。これによって、PBG中の欠陥準位のエネルギーに対応する波長の光のみが、この欠陥位置において存在可能になる。これにより、フォトニック結晶内に、点状の欠陥から成る光共振器や線状の欠陥から成る光導波路等の光回路素子を設けることができる。1個のフォトニック結晶内にこれらの光回路素子を多数設けて光集積回路を構成することにより、このフォトニック結晶は光IC素子となる。これまでの光通信等の分野においてはディスクリートな光回路素子を個々に接続して用いているが、光IC素子を用いることにより回路を超小型化することができる。   By introducing a disorder (defect) of the refractive index distribution into the refractive index distribution of the photonic crystal, an energy level (defect level) due to this defect is formed in the PBG. As a result, only light having a wavelength corresponding to the energy of the defect level in the PBG can exist at this defect position. As a result, an optical circuit element such as an optical resonator composed of point-like defects or an optical waveguide composed of linear defects can be provided in the photonic crystal. By providing a large number of these optical circuit elements in one photonic crystal to constitute an optical integrated circuit, this photonic crystal becomes an optical IC element. Until now, discrete optical circuit elements have been individually connected and used in the field of optical communication and the like, but the circuit can be miniaturized by using an optical IC element.

フォトニック結晶には、2次元フォトニック結晶と3次元フォトニック結晶がある。このうち3次元フォトニック結晶は、2次元フォトニック結晶と比較して、構造的に頑丈であり、全ての光の偏光状態に対応することができるという特長を有する。特許文献1には、空気より屈折率の高い物質から構成されるロッドを互いに平行に周期的に配列してなるストライプ層を複数積層したものであって、最隣接のストライプ層のロッド同士が直交し、次隣接のストライプ層のロッド同士が平行且つ半周期ずれた構造を有するウッドパイル型の3次元フォトニック結晶について記載されている。また、この文献には、この3次元フォトニック結晶の内部において、ロッドの一部に線状の欠陥を設けることにより光導波路を形成することが記載されている。   Photonic crystals include two-dimensional photonic crystals and three-dimensional photonic crystals. Among these, the three-dimensional photonic crystal is structurally robust compared to the two-dimensional photonic crystal, and has a feature that it can cope with the polarization state of all light. In Patent Document 1, a plurality of stripe layers formed by periodically arranging rods made of a material having a refractive index higher than that of air are periodically stacked, and rods of the adjacent stripe layers are orthogonal to each other. In addition, a woodpile type three-dimensional photonic crystal having a structure in which rods of the next adjacent stripe layers are parallel and shifted by a half period is described. This document also describes that an optical waveguide is formed by providing a linear defect in a part of the rod inside the three-dimensional photonic crystal.

特許文献2には、構造体内部のロッドに点欠陥を設けた3次元フォトニック結晶が記載されている。この点欠陥には、ロッドの一部を欠損させてそこに形状や屈折率等の異なる物体を配置したもの、ロッドを欠損させることなくロッドに部材を取り付けたもの、ロッド自体の形状を変化させた(太くした/細くした)もの、等がある。この点欠陥は、その形状や大きさ、ロッドに対する位置(変位)により定まる所定の周波数の光に共振する光共振器となる。この光共振器は前記のように光IC素子の構成要素になる。また、欠陥部に発光体を導入することにより、光が点欠陥において共振して発光するレーザ光源として用いることもできる。   Patent Document 2 describes a three-dimensional photonic crystal in which point defects are provided in a rod inside a structure. In this point defect, a part of the rod is missing and an object with a different shape or refractive index is placed there, a member attached to the rod without losing the rod, or the shape of the rod itself is changed. (Thickened / thinned), etc. This point defect becomes an optical resonator that resonates with light of a predetermined frequency determined by its shape and size, and position (displacement) with respect to the rod. This optical resonator becomes a component of the optical IC element as described above. Further, by introducing a light emitter into the defect portion, it can also be used as a laser light source in which light resonates and emits light at a point defect.

特開2001−074955号公報JP 2001-074955 A 特開2004−006567号公報JP 2004006567 A

上述のように、従来の3次元フォトニック結晶では、光共振器や光導波路等に用いる欠陥が構造体の内部に形成されている(埋め込まれている)。従って、構造体外部の光を構造体内部に取り入れたり、構造体内部の光を構造体外部に取り出したりといった、内外間の光のアクセスや、構造体内部における光の制御、操作等が、2次元フォトニック結晶に比べて難しいという問題があった。   As described above, in the conventional three-dimensional photonic crystal, defects used for an optical resonator, an optical waveguide, and the like are formed (embedded) inside the structure. Accordingly, there are two types of access to light between inside and outside, such as taking light outside the structure into the structure, and taking out light inside the structure outside the structure, and control and operation of light inside the structure. There was a problem that it was difficult compared to a two-dimensional photonic crystal.

本発明が解決しようとする課題は、外部からのアクセスが容易で、吸収等による光損失の影響のない、光伝搬及び光閉じ込め等の制御を可能とする3次元フォトニック結晶を提供することである。   The problem to be solved by the present invention is to provide a three-dimensional photonic crystal that is easy to access from the outside and is free from the effects of light loss due to absorption, etc., and that can control light propagation and light confinement. is there.

本願発明者は、上記の課題を解決するべく研究を重ねた結果、3次元フォトニック結晶の「表面」に着目した。3次元フォトニック結晶の表面は、その一方の側が空気等の自由空間となるため、様々な物質と光を相互作用させることが極めて容易となる。しかしながら、3次元フォトニック結晶の分野では、その表面における光操作はこれまで全く検討されていなかった。   The inventor of the present application has paid attention to the “surface” of the three-dimensional photonic crystal as a result of repeated research to solve the above-described problems. Since the surface of the three-dimensional photonic crystal has a free space such as air on one side, it is extremely easy to cause various substances to interact with light. However, in the field of three-dimensional photonic crystals, optical manipulation on the surface has not been studied at all.

本願発明者は、まず、この3次元フォトニック結晶の表面に光の局在状態が形成されるかを、理論と実験の双方から検討した。その結果、3次元フォトニック結晶の表面において、光の状態(モード)が形成されることが確認できた。これに基づいて様々な実験を行った結果、3次元フォトニック結晶の表面構造を、その内部構造と所定の関係を保ちつつ変化させることにより、3次元フォトニック結晶表面において光の伝播が不可能となるPBG(以下、これを「表面モードギャップ」と称す)が形成されることを見出した。さらに、表面構造を変化させた層(以下、「表面構造層」と称す)に、点状や線状の欠陥を導入することにより、光共振器や光導波路が形成されることを見出した。   The inventor of the present application first examined whether a localized state of light is formed on the surface of the three-dimensional photonic crystal from both theory and experiment. As a result, it was confirmed that a light state (mode) was formed on the surface of the three-dimensional photonic crystal. As a result of various experiments based on this, it is impossible to propagate light on the surface of the three-dimensional photonic crystal by changing the surface structure of the three-dimensional photonic crystal while maintaining a predetermined relationship with the internal structure. It was found that PBG (hereinafter referred to as “surface mode gap”) is formed. Furthermore, it has been found that an optical resonator or an optical waveguide is formed by introducing point-like or linear defects into a layer whose surface structure has been changed (hereinafter referred to as “surface structure layer”).

即ち、本発明に係る3次元フォトニック結晶は、
ロッドを互いに平行に所定の周期長で配列してなるストライプ層を最隣接のストライプ層のロッド同士が直交するように積層した周期構造を有する3次元フォトニック結晶の表面の1層又は複数層のストライプ層から成る表面構造層が、該ストライプ層内で隣接するロッドを連結する連結部材を有し、該連結部材が該ロッドの長手方向に前記周期長で配列されていることにより、該表面構造層にフォトニックバンドギャップが形成されていることを特徴とする。
なお、本発明に係る3次元フォトニック結晶と従来の3次元フォトニック結晶の違いを明確にするために、以下では、前記表面構造層が形成された本発明に係る3次元フォトニック結晶のことを、「表面効果3次元フォトニック結晶」と呼ぶことにする。
That is, the three-dimensional photonic crystal according to the present invention is
One or a plurality of layers on the surface of a three-dimensional photonic crystal having a periodic structure in which stripe layers in which rods are arranged in parallel with each other at a predetermined period length are stacked so that rods of the adjacent stripe layers are orthogonal to each other The surface structure layer made of a stripe layer has a connecting member for connecting adjacent rods in the stripe layer, and the connecting member is arranged in the longitudinal direction of the rod at the periodic length, whereby the surface structure wherein the photonic band gap layers are formed.
In order to clarify the difference between the three-dimensional photonic crystal according to the present invention and the conventional three-dimensional photonic crystal, the three-dimensional photonic crystal according to the present invention in which the surface structure layer is formed will be described below. Is referred to as a “surface effect three-dimensional photonic crystal”.

上記の表面効果3次元フォトニック結晶は、さらに、該表面構造層に点状欠陥や線状欠陥を導入することにより、光共振器や光導波路を形成することができる。 The surface effect three-dimensional photonic crystal can further form an optical resonator or an optical waveguide by introducing a point defect or a line defect into the surface structure layer.

なお、前記表面構造層は、3次元フォトニック結晶の最表面の一層だけでも良く、最表面を含む表面近傍の複数の層から構成されていても良い。   The surface structure layer may be only one layer on the outermost surface of the three-dimensional photonic crystal, or may be composed of a plurality of layers near the surface including the outermost surface.

本発明に係る表面効果3次元フォトニック結晶は、3次元フォトニック結晶の内部構造の周期性と所定の関係を有する表面構造層を設けることにより、該表面構造層においてPBGを形成したものである。この表面構造層は、従来の2次元及び3次元フォトニック結晶と同様に、点状や線状等の欠陥を導入することにより光共振器や光導波路などを形成することができるため、表面効果3次元フォトニック結晶表面における光制御や光操作が可能となる。また、光共振器や光導波路が構造体表面に形成されるため、外部との光のアクセスが従来の3次元フォトニック結晶より高効率で実現できる。さらに、表面効果3次元フォトニック結晶の表面において吸収等の影響を受けない光閉じ込めが可能であることから、光損失のない、高感度かつ高度な光−物質相互作用を得ることができる。 The surface effect three-dimensional photonic crystal according to the present invention is such that a PBG is formed in the surface structure layer by providing a surface structure layer having a predetermined relationship with the periodicity of the internal structure of the three-dimensional photonic crystal. . The surface structure layer, as in the conventional two-dimensional and three-dimensional photonic crystal, it is possible to form a like optical resonator and an optical waveguide by introducing defects such as point-like or linear, surface effects Light control and light manipulation on the surface of the three-dimensional photonic crystal are possible. In addition, since the optical resonator and the optical waveguide are formed on the structure surface, access to the outside light can be realized with higher efficiency than the conventional three-dimensional photonic crystal. Furthermore, since light confinement that is not affected by absorption or the like is possible on the surface of the surface-effect three-dimensional photonic crystal, high-sensitivity and high-level light-matter interaction without light loss can be obtained.

3次元フォトニック結晶の構造の一例を示した斜視図。The perspective view which showed an example of the structure of a three-dimensional photonic crystal. 表面を持たない無限の大きさを有する3次元フォトニック結晶のフォトニックバンドの計算結果を示した図(a)、及び表面を有する3次元フォトニック結晶のフォトニックバンドの計算結果を示した図(b)。The figure which showed the calculation result of the photonic band of the three-dimensional photonic crystal which has an infinite size without the surface, and the figure which showed the calculation result of the photonic band of the three-dimensional photonic crystal which has the surface (b). 3次元フォトニック結晶表面のΓ-M方向における光の状態の計算結果を示した図。The figure which showed the calculation result of the state of the light in (GAMMA) -M direction of the three-dimensional photonic crystal surface. 3次元フォトニック結晶表面における光の局在状態を調べるための実験系を示す概略構成図。The schematic block diagram which shows the experimental system for investigating the localized state of the light in the three-dimensional photonic crystal surface. 入射角がθ=52.3°である場合の各波長(周波数)に対する反射率の測定結果の一例を示した図(a)、及び3次元フォトニック結晶表面におけるフォトニックバンドの測定結果を示した図(b)。The figure which showed an example of the measurement result of the reflectance for each wavelength (frequency) when the incident angle is θ = 52.3 °, and the figure which shows the measurement result of the photonic band on the surface of the three-dimensional photonic crystal (b). 3次元フォトニック結晶表面における光の伝播を示した図。The figure which showed propagation of light in the three-dimensional photonic crystal surface. 本発明に係る表面効果3次元フォトニック結晶の一実施例を示す斜視図(a)、及び表面構造層の電子顕微鏡写真(b)。The perspective view (a) which shows one Example of the surface effect three-dimensional photonic crystal which concerns on this invention, and the electron micrograph (b) of a surface structure layer. 従来の表面構造に対するバンド図(a)、ロッド間隔a(=0.5μm)に対して表面構造層の誘電体の幅を0.16a(=0.08μm)とした場合のバンド図(b)、及び表面構造層の誘電体の幅を0.4a(=0.2μm)とした場合のバンド図(c)。Band diagram (a) for the conventional surface structure, band diagram (b) when the width of the dielectric of the surface structure layer is 0.16a (= 0.08 μm) with respect to the rod interval a (= 0.5 μm), and the surface Band diagram (c) when the width of the dielectric of the structural layer is 0.4a (= 0.2 μm). 点状の表面欠陥を形成した表面構造層の電子顕微鏡写真。The electron micrograph of the surface structure layer which formed the point-shaped surface defect. 表面欠陥における光局在の計算結果を示した図(a)、及び表面構造層の誘電体の幅を0.4a(=0.2μm)、表面欠陥の幅を0.55a(=0.275μm)とした場合の測定結果を示した図。Figure (a) showing the calculation result of optical localization in surface defects, and the case where the width of the dielectric in the surface structure layer is 0.4a (= 0.2μm) and the width of the surface defects is 0.55a (= 0.275μm) The figure which showed the measurement result. 表面欠陥の長さを変化させた場合の共振スペクトルの測定結果を示した図。The figure which showed the measurement result of the resonance spectrum at the time of changing the length of a surface defect. 表面欠陥の長さとQ値の変化を示した図。The figure which showed the length of the surface defect, and the change of Q value. 線状の表面欠陥を設けることにより導波路が形成された表面構造層を示した上面図。The top view which showed the surface structure layer in which the waveguide was formed by providing a linear surface defect. 表面構造層に形成した導波路の導波モードを示したバンド図。The band figure which showed the waveguide mode of the waveguide formed in the surface structure layer. 導波路の幅を0.52aとした場合の、導波モードを示したバンド図。The band figure which showed the waveguide mode when the width | variety of a waveguide is 0.52a. 導波路の幅を0.52aとした場合の、導波路の周囲における電界分布を示した図。The figure which showed the electric field distribution in the circumference | surroundings of a waveguide when the width | variety of a waveguide is 0.52a.

本願発明者は、3次元フォトニック結晶の表面における光操作が可能であるかについて、まず結晶表面の光の状態を理論及び実験の双方から検証した。これを図1〜図6を用いて説明する。   The inventor of the present application first verified the state of light on the crystal surface from both theory and experiment as to whether or not optical manipulation on the surface of the three-dimensional photonic crystal is possible. This will be described with reference to FIGS.

図1は、3次元フォトニック結晶の構造の一例の斜視図である。この斜視図の3次元フォトニック結晶10はウッドパイル型と呼ばれるものであり、SiやGaAs等の誘電体から成るロッド11が周期aで略平行に並んだストライプ層12を有し、ストライプ層12が積層した構造をとっている。ストライプ層12は4層周期で同じ構造になるように積層されており、4n番目(nは整数、以下同様)のストライプ層121のロッド11と(4n+2)番目のストライプ層123のロッド11は略平行且つ1/2周期ずつずれるように並んでいる。(4n+1)番目のストライプ層122のロッド11と(4n+3)番目のストライプ層124のロッド11の関係も同様である。そして、最隣接のストライプ層12同士では、ロッド11は略直交するように配置されている。   FIG. 1 is a perspective view of an example of the structure of a three-dimensional photonic crystal. The three-dimensional photonic crystal 10 in this perspective view is called a woodpile type, and has a stripe layer 12 in which rods 11 made of a dielectric such as Si or GaAs are arranged substantially in parallel with a period a. Has a laminated structure. The stripe layers 12 are laminated so as to have the same structure in a four-layer cycle, and the rod 11 of the 4n-th stripe layer 121 (n is an integer, the same applies hereinafter) and the rod 11 of the (4n + 2) -th stripe layer 123. Are arranged so as to be substantially parallel and shifted by 1/2 period. The relationship between the rod 11 of the (4n + 1) th stripe layer 122 and the rod 11 of the (4n + 3) th stripe layer 124 is the same. The rods 11 are arranged so as to be substantially orthogonal to each other between the adjacent stripe layers 12.

図2は、上記のウッドパイル型3次元フォトニック結晶10に対し、3次元時間領域差分法によりフォトニックバンドを計算した結果を示している。なお、図2(a)は、3次元フォトニック結晶10に表面が存在しない(大きさが無限である)と仮定した場合のバンド図であり、図2(b)は、表面が存在する(ストライプ層12の積層数が有限である)とした場合のバンド図である。   FIG. 2 shows a result of calculating a photonic band by the three-dimensional time domain difference method for the woodpile type three-dimensional photonic crystal 10 described above. 2A is a band diagram when it is assumed that the surface does not exist in the three-dimensional photonic crystal 10 (the size is infinite), and FIG. 2B has a surface ( It is a band diagram in the case where the number of stacked stripe layers 12 is finite).

図2(a)に示すように、3次元フォトニック結晶10の大きさが無限である場合、周波数0.29〜0.34(c/a)近傍では光の状態が存在しないPBGが形成されるため、このエネルギー領域の波長の光は結晶中に存在することができない。一方、表面を有する3次元フォトニック結晶では、図2(a)でPBGが形成されていた周波数域において、破線で示される光のモード13が形成されていることが分かる(図2(b))。また、図3に、図2(b)で用いた3次元フォトニック結晶の表面のΓ-M方向における計算結果を示す。この図から、Γ-M方向の3次元フォトニック結晶の表面において、電界が強く局在していることが分かる。これは、Γ-M方向の3次元フォトニック結晶の表面において光が存在していることを示している。   As shown in FIG. 2 (a), when the size of the three-dimensional photonic crystal 10 is infinite, PBG having no light state is formed near the frequency of 0.29 to 0.34 (c / a). Light with a wavelength in the energy region cannot be present in the crystal. On the other hand, in the three-dimensional photonic crystal having the surface, it can be seen that the light mode 13 indicated by the broken line is formed in the frequency region where the PBG was formed in FIG. 2A (FIG. 2B). ). FIG. 3 shows the calculation result in the Γ-M direction of the surface of the three-dimensional photonic crystal used in FIG. From this figure, it can be seen that the electric field is strongly localized on the surface of the three-dimensional photonic crystal in the Γ-M direction. This indicates that light is present on the surface of the three-dimensional photonic crystal in the Γ-M direction.

上記の結果を実証するため、3次元フォトニック結晶表面に光の局在状態が形成されるかどうかを実験により検証した。この実験に用いた実験系の概略構成を図4に示す。図4の実験系は、3次元フォトニック結晶10の表面の極近傍(〜0.5μm)に、プリズム20を配置したものである。   In order to verify the above results, whether or not a localized state of light is formed on the surface of the three-dimensional photonic crystal was verified by experiments. A schematic configuration of the experimental system used in this experiment is shown in FIG. The experimental system of FIG. 4 is a system in which a prism 20 is arranged in the very vicinity (˜0.5 μm) of the surface of the three-dimensional photonic crystal 10.

図4のプリズム20の内部に光を入射すると、この入射した光はプリズム20の底面21に角度θで入射する。底面に入射した光は入射角と同じ角度θで反射され、そのままプリズム20の外部に出射されるが、一方で底面21には僅かに光が染み出した状態(減衰波)ができる。フォトニック結晶10の表面に光の状態が存在する場合、この染み出した光はフォトニック結晶の表面に結合するため、プリズムからの反射光強度が減少する。   When light enters the prism 20 of FIG. 4, the incident light enters the bottom surface 21 of the prism 20 at an angle θ. The light incident on the bottom surface is reflected at the same angle θ as the incident angle and is emitted as it is to the outside of the prism 20, but on the other hand, the bottom surface 21 is in a state where light is slightly exuded (attenuated wave). In the case where a light state exists on the surface of the photonic crystal 10, the exuded light is coupled to the surface of the photonic crystal, so that the reflected light intensity from the prism decreases.

この実験の結果を図5に示す。図5(a)は、プリズム20の底面21における入射角をθ=52.3°とした場合の測定結果の一例を示した、波長と反射率(入射光強度と反射光強度の比率)の関係を示す図である。この図の結果では、0.36c/a近傍の周波数の入射光に対して、反射率が減少する現象が見られた。この結果から、3次元フォトニック結晶10の表面に光が結合したことが分かる。一方、上記の実験系に対して、入射光の周波数及び入射角θを変化させることにより得られたフォトニックバンドの測定結果を、図5(b)に示す。この図の結果は、図2(b)のものと良く一致している。従って、理論と実験の双方から、フォトニック結晶表面に光の状態(モード)が形成される(光が局在する)ことが分かった。   The results of this experiment are shown in FIG. FIG. 5A shows an example of the measurement result when the incident angle at the bottom surface 21 of the prism 20 is θ = 52.3 °, and shows the relationship between the wavelength and the reflectance (ratio of incident light intensity and reflected light intensity). FIG. In the result of this figure, a phenomenon was observed in which the reflectance decreased with respect to incident light having a frequency in the vicinity of 0.36 c / a. From this result, it can be seen that light is coupled to the surface of the three-dimensional photonic crystal 10. On the other hand, the measurement result of the photonic band obtained by changing the frequency of incident light and the incident angle θ with respect to the above experimental system is shown in FIG. The result of this figure agrees well with that of FIG. Therefore, it was found from both theory and experiment that a light state (mode) is formed on the surface of the photonic crystal (light is localized).

また、図6に、3次元フォトニック結晶10の表面にレーザ光を照射した実験の結果を示す。ここで、図6(a)はレーザ光を照射する前の、図6(b)は図6(a)の点線で囲った領域に入射角をθ=45.7°とし波長1430nmのレーザ光を照射した後の、3次元フォトニック結晶表面における光の状態の測定結果を示した図である。この図から、表面におけるフォトニックバンドと対応する波長のレーザ光を照射した場合には、照射した領域以外にも3次元フォトニック結晶10の表面に光が伝播している様子をはっきりと見て取ることができる。   FIG. 6 shows the results of an experiment in which the surface of the three-dimensional photonic crystal 10 is irradiated with laser light. Here, FIG. 6A shows a laser beam before irradiation with a laser beam, and FIG. 6B shows a region surrounded by a dotted line in FIG. 6A with an incident angle θ = 45.7 ° and a laser beam with a wavelength of 1430 nm. It is the figure which showed the measurement result of the state of the light in the three-dimensional photonic crystal surface after having performed. From this figure, when laser light having a wavelength corresponding to the photonic band on the surface is irradiated, it can be clearly seen that the light propagates to the surface of the three-dimensional photonic crystal 10 in addition to the irradiated region. Can do.

上記の理論及び実験の結果から、3次元フォトニック結晶表面において光のモードが存在すること、及び光が該表面上を伝播することが分かった。しかしながら、この光は結晶表面上を拡散してしまうため、このままでは3次元フォトニック結晶表面において自在に光を制御することができない。これに対し、本願発明者は、まず3次元フォトニック結晶10の表面に光のモードが存在しない「表面モードギャップ」を形成させることを考えた。そして、様々な実験の結果、3次元フォトニック結晶の表面に、内部構造の周期性と所定の関係を有する周期性を持った表面構造層を形成させることにより、該表面に表面モードギャップが形成されることを見出した。以下に、本発明の実施例を示す。   From the above theoretical and experimental results, it has been found that there is a mode of light on the surface of the three-dimensional photonic crystal and that light propagates on the surface. However, since this light diffuses on the crystal surface, the light cannot be freely controlled on the three-dimensional photonic crystal surface as it is. In contrast, the inventor of the present application first considered the formation of a “surface mode gap” in which no light mode exists on the surface of the three-dimensional photonic crystal 10. As a result of various experiments, by forming a surface structure layer having a periodicity having a predetermined relationship with the periodicity of the internal structure on the surface of the three-dimensional photonic crystal, a surface mode gap is formed on the surface. I found out that Examples of the present invention are shown below.

本発明に係る表面効果3次元フォトニック結晶の一実施例を図7〜図16を用いて説明する。
図7(a)は、本実施例の表面効果3次元フォトニック結晶30の斜視図を示している。また、図7(b)は3次元フォトニック結晶30の表面構造層31の電子顕微鏡写真である。この表面効果3次元フォトニック結晶30は、ウッドパイル型3次元フォトニック結晶表面に、本来の結晶表面とは構造の異なる表面構造層31を形成したものである。この表面構造層31は、本来、結晶表面に形成されるストライプ層12に対して、同じ層内に、ストライプ層を構成するロッド11と直交する方向に該ロッド11と同じ材料で構成される連結部材32を付加した、直交格子構造の層である。また、この連結部材32は、表面構造層31と最隣接するストライプ層125のロッド11と1/2周期ずれた位置に形成される。なお、本実施例の表面効果3次元フォトニック結晶における積層数は、表面構造層を含めて8である。
An embodiment of the surface effect three-dimensional photonic crystal according to the present invention will be described with reference to FIGS.
FIG. 7A shows a perspective view of the surface effect three-dimensional photonic crystal 30 of the present embodiment. FIG. 7B is an electron micrograph of the surface structure layer 31 of the three-dimensional photonic crystal 30. The surface effect three-dimensional photonic crystal 30 is obtained by forming a surface structure layer 31 having a structure different from the original crystal surface on the surface of a woodpile type three-dimensional photonic crystal. The surface structure layer 31 is originally connected to the stripe layer 12 formed on the crystal surface in the same layer and made of the same material as the rod 11 in a direction perpendicular to the rod 11 constituting the stripe layer. This is a layer having an orthogonal lattice structure to which a member 32 is added. The connecting member 32 is formed at a position shifted from the rod 11 of the stripe layer 125 nearest to the surface structure layer 31 by a half period. The number of stacks in the surface effect three-dimensional photonic crystal of this example is 8, including the surface structure layer.

図8に、連結部材32の幅Wを変化させた場合の、3次元フォトニック結晶30表面におけるフォトニックバンドの測定結果を示す。図8(a)は、連結部材32を付加しなかった(W=0)、従来の表面構造に対するバンド図であり、図8(b)及び(c)はそれぞれW=0.16a(=0.08μm)、0.4a(=0.2μm)の場合のバンド図である。なお、ロッド11及び連結部材32の周期はa=0.5μm、ロッド幅は0.4a(=0.2μm)とした。
図8(a)のバンド図は、図5(b)と同様に、全ての周波数域(波長域)に対して表面モードが存在している。一方、図8(b)のようにW=0.16aの連結部材32を付加すると、波長1.3〜1.4μm域に表面モードギャップが形成されることが分かった。また、図8(c)のようにW=0.4aの連結部材32を付加すると、波長1.4〜1.5μm域に表面モードギャップが形成された。
FIG. 8 shows the measurement result of the photonic band on the surface of the three-dimensional photonic crystal 30 when the width W of the connecting member 32 is changed. FIG. 8 (a) is a band diagram for a conventional surface structure in which the connecting member 32 is not added (W = 0), and FIGS. 8 (b) and 8 (c) are respectively W = 0.16a (= 0.08 μm). ) And 0.4a (= 0.2 μm). The period of the rod 11 and the connecting member 32 was a = 0.5 μm, and the rod width was 0.4a (= 0.2 μm).
In the band diagram of FIG. 8A, as in FIG. 5B, surface modes exist for all frequency bands (wavelength bands). On the other hand, it was found that when a connecting member 32 with W = 0.16a was added as shown in FIG. 8B, a surface mode gap was formed in the wavelength range of 1.3 to 1.4 μm. Further, when a connecting member 32 of W = 0.4a was added as shown in FIG. 8C, a surface mode gap was formed in the wavelength region of 1.4 to 1.5 μm.

次に、表面構造層31の構造の一部を乱すことにより、点状の「表面欠陥」を形成した場合の結果を示す。図9は、長さLdの領域において連結部材32の幅をWからWdとした表面欠陥321を形成した表面構造層31Aの電子顕微鏡写真である。この表面構造層31Aを用いた3次元フォトニック結晶30に対して数値計算を行ったところ、図10(a)に示すように、幅Wdを増加させた部分にのみ光が点状に局在することが分かった。この結果を踏まえて、連結部材32の幅をW=0.4aとし、表面欠陥321の幅をWd=0.55a(=0.275μm)として、実際に実験を行った。図10(b)に、この表面欠陥321を中心とした領域において光の局在状態を測定した結果を示す。この図に示すように、僅か数μm以下の非常に狭い欠陥領域にのみ、光が局在していることが分かる。 Next, a result in the case where a dot-like “surface defect” is formed by disturbing a part of the structure of the surface structure layer 31 is shown. Figure 9 is an electron micrograph of the region of the length L d to form surface defects 321 and W d the width of the connecting member 32 from the W surface structure layer 31A. When a numerical calculation is performed on the three-dimensional photonic crystal 30 using the surface structure layer 31A, as shown in FIG. 10 (a), the light is localized in a dot-like manner only in the portion where the width Wd is increased. I found out that it exists. Based on this result, an experiment was actually performed by setting the width of the connecting member 32 to W = 0.4a and the width of the surface defect 321 to W d = 0.55a (= 0.275 μm). FIG. 10B shows the result of measuring the localized state of light in the region centered on the surface defect 321. As shown in this figure, it can be seen that light is localized only in a very narrow defect region of only a few μm or less.

さらに、図11に、表面欠陥321の長さLdを変化させた場合の共振スペクトルの測定結果を示す。図11から、表面欠陥321の長さLdに依存して、異なる波長の光が表面欠陥に蓄えられることが分かった。また、図12に、様々な表面局在モードのQ値の測定結果を示す。この図から分かるように、Ld=6aにおいてQ値は最大で9000以上にも達した。この値は、3次元フォトニック結晶としては実現されている中で世界最大である。このQ値は、積層数を増やしていくことで、指数関数的に増大していくことが期待される。 Further, FIG. 11 shows the measurement result of the resonance spectrum when the length L d of the surface defect 321 is changed. From FIG. 11, it was found that light having different wavelengths is stored in the surface defect depending on the length L d of the surface defect 321. FIG. 12 shows the measurement results of the Q values of various surface localized modes. As can be seen from this figure, the maximum Q value reached 9000 or more at L d = 6a. This value is the world's largest among three-dimensional photonic crystals. This Q value is expected to increase exponentially by increasing the number of stacked layers.

さらに、表面構造層31に線状欠陥を設けることにより、「導波路」を形成した場合の結果を示す。図13は、幅Wdの表面欠陥を十分な長さを有する領域に形成することにより、導波路322を形成した表面構造層31Bの上面図である。この表面構造層31Bを用いた3次元フォトニック結晶30に対して数値計算を行ったところ、図14のフォトニックバンド図に示すように、モードギャップ(グラフ内の白の領域の部分)の周波数域内に導波モードを形成することができた。また、導波路322の欠陥幅Wdを変えることにより、導波帯域を制御することができることが示された。この導波路322は、欠陥幅Wdが0.40a以上、0.60a未満の範囲内で、単一モードの導波路となった。さらに、欠陥幅Wdを0.60a以上にすると、高周波数側に高次のモードが形成された。 Furthermore, a result when a “waveguide” is formed by providing a linear defect in the surface structure layer 31 is shown. 13, by forming a region having a sufficient length to surface defects of the width W d, is a top view of the surface structure layer 31B which is formed a waveguide 322. When a numerical calculation is performed on the three-dimensional photonic crystal 30 using the surface structure layer 31B, as shown in the photonic band diagram of FIG. 14, the frequency of the mode gap (the white region portion in the graph). A waveguide mode could be formed in the region. Further, it was shown that the waveguide band can be controlled by changing the defect width W d of the waveguide 322. The waveguide 322, the defect width W d is more than 0.40A, in the range of less than 0.60A, was the single mode waveguide. Further, when the defect width W d above 0.60A, higher order mode is formed on the high frequency side.

導波路322の幅Wdを0.52aとした場合のバンド図を図15に示す。この図に示すように、欠陥幅をWd=0.52aとすることで、モードギャップの周波数帯域のほぼ全域において導波帯域を得ることができる。また、この場合の導波路周辺における光電界分布を図16に示す。この図から、光が導波路322の近傍に局在すると共に、導波路322を伝播していることが分かる。 The band diagram in the case where the 0.52a width W d of the waveguide 322 shown in FIG. 15. As shown in this figure, by setting the defect width to W d = 0.52a, a waveguide band can be obtained in almost the entire frequency band of the mode gap. In addition, the optical electric field distribution around the waveguide in this case is shown in FIG. From this figure, it can be seen that light is localized in the vicinity of the waveguide 322 and propagates through the waveguide 322.

10…3次元フォトニック結晶
11…ロッド
12、121、122、123、124…ストライプ層
125…表面構造層に最隣接するストライプ層
13…光のモード
20…プリズム
21…プリズムの底面
30…表面構造層を形成した3次元フォトニック結晶(表面効果3次元フォトニック結晶)
31、31A、31B…表面構造層
32…連結部材
321…表面欠陥(点状欠陥)
322…導波路
DESCRIPTION OF SYMBOLS 10 ... Three-dimensional photonic crystal 11 ... Rod 12, 121, 122, 123, 124 ... Stripe layer 125 ... Stripe layer 13 nearest to surface structure layer ... Light mode 20 ... Prism 21 ... Bottom surface 30 of prism ... Surface structure Layered 3D photonic crystal (surface effect 3D photonic crystal)
31, 31A, 31B ... surface structure layer 32 ... connecting member 321 ... surface defects (point defects)
322: Waveguide

Claims (5)

ロッドを互いに平行に所定の周期長で配列してなるストライプ層を最隣接のストライプ層のロッド同士が直交するように積層した周期構造を有する3次元フォトニック結晶の表面の1層又は複数層のストライプ層から成る表面構造層が、該ストライプ層内で隣接するロッドを連結する連結部材を有し、該連結部材が該ロッドの長手方向に前記周期長で配列されていることにより、該表面構造層にフォトニックバンドギャップが形成されていることを特徴とする表面効果3次元フォトニック結晶。 One or a plurality of layers on the surface of a three-dimensional photonic crystal having a periodic structure in which stripe layers in which rods are arranged in parallel with each other at a predetermined period length are stacked so that rods of the adjacent stripe layers are orthogonal to each other The surface structure layer made of a stripe layer has a connecting member for connecting adjacent rods in the stripe layer, and the connecting member is arranged in the longitudinal direction of the rod at the periodic length, whereby the surface structure surface effect three-dimensional photonic crystal, wherein a photonic band gap is formed in the layer. 前記表面構造層に、点状欠陥から成る光共振器が形成されていることを特徴とする請求項1に記載の表面効果3次元フォトニック結晶。   2. The surface effect three-dimensional photonic crystal according to claim 1, wherein an optical resonator composed of point defects is formed on the surface structure layer. 前記表面構造層に、線状欠陥から成る光導波路が形成されていることを特徴とする請求項1又は2に記載の表面効果3次元フォトニック結晶。   3. The surface effect three-dimensional photonic crystal according to claim 1, wherein an optical waveguide made of a linear defect is formed in the surface structure layer. 前記3次元フォトニック結晶の周期構造が、次隣接のストライプ層のロッド同士が平行且つ半周期ずれた構造を有するウッドパイル型であり、前記ロッドは空気より屈折率の高い誘電体から成ることを特徴とする請求項1〜3のいずれかに記載の表面効果3次元フォトニック結晶。 Periodic structure of the three-dimensional photonic crystal, woodpile type Der having a structure in which the rod ends of the next adjacent stripe layer is displaced parallel to and half period is, the rod Ru consists high dielectric refractive index than air The surface effect three-dimensional photonic crystal according to any one of claims 1 to 3. 前記表面構造層が1層のストライプ層から成り、前記連結部材が、該表面構造層と最隣接するストライプ層を構成するロッドと半周期ずれた位置に形成された、所定の幅を有する、前記誘電体から成ることを特徴とする請求項4に記載の表面効果3次元フォトニック結晶。 The surface structure layer is composed of a single stripe layer, and the connecting member is formed at a position shifted by a half period from a rod constituting the stripe layer closest to the surface structure layer, and has a predetermined width, surface effect three-dimensional photonic crystal according to claim 4, wherein the formed Turkey dielectric.
JP2009223937A 2009-09-29 2009-09-29 Surface effect 3D photonic crystal Active JP5372682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223937A JP5372682B2 (en) 2009-09-29 2009-09-29 Surface effect 3D photonic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223937A JP5372682B2 (en) 2009-09-29 2009-09-29 Surface effect 3D photonic crystal

Publications (3)

Publication Number Publication Date
JP2011075614A JP2011075614A (en) 2011-04-14
JP2011075614A5 JP2011075614A5 (en) 2012-07-05
JP5372682B2 true JP5372682B2 (en) 2013-12-18

Family

ID=44019709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223937A Active JP5372682B2 (en) 2009-09-29 2009-09-29 Surface effect 3D photonic crystal

Country Status (1)

Country Link
JP (1) JP5372682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025431A (en) * 2019-12-11 2020-04-17 深圳市光科全息技术有限公司 Three-dimensional photonic crystal and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106228969A (en) * 2016-09-19 2016-12-14 四川大学 A kind of three-dimensional locally resonant photonic crystal structure and preparation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074955A (en) * 1999-08-31 2001-03-23 Susumu Noda Photonic crystal waveguide
US6690876B2 (en) * 2001-06-27 2004-02-10 Agilent Technologies, Inc. Three-dimensional photonic crystal waveguide apparatus
JP2004006567A (en) * 2002-03-26 2004-01-08 Japan Science & Technology Corp Point defect 3-dimensional photonic crystal optical resonator
JP3648498B2 (en) * 2002-03-26 2005-05-18 独立行政法人科学技術振興機構 3D photonic crystal optical resonator with waveguide
JP3981736B2 (en) * 2004-02-02 2007-09-26 独立行政法人情報通信研究機構 Defect mode control method using three-dimensional photonic crystal
JP4006527B2 (en) * 2004-02-02 2007-11-14 独立行政法人情報通信研究機構 3D photonic crystal system that outputs surface mode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025431A (en) * 2019-12-11 2020-04-17 深圳市光科全息技术有限公司 Three-dimensional photonic crystal and application thereof
CN111025431B (en) * 2019-12-11 2021-08-10 深圳市光科全息技术有限公司 Three-dimensional photonic crystal and application thereof

Also Published As

Publication number Publication date
JP2011075614A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP4338211B2 (en) Structure with photonic crystal, surface emitting laser
JP4612844B2 (en) Three-dimensional periodic structure and functional element having the same
JP4769658B2 (en) Resonator
KR100991068B1 (en) Vcsel with photonic crystal mirror for waveguiding by diffraction
JP5278868B2 (en) Light emitting element
JP3721142B2 (en) Two-dimensional photonic crystal point defect interference optical resonator and optical reflector
JP2006323090A (en) Three-dimensional photonic crystal and optical element using the same
JP2008241891A (en) Two-dimensional photonic crystal
US7502541B2 (en) Resonator, light emitting device, and wavelength conversion device
JP4684861B2 (en) Waveguide and device having the same
JP2009054795A (en) Semiconductor laser
Szameit et al. Long-range interaction in waveguide lattices
US7313307B2 (en) Waveguide and device including the same
JP5372682B2 (en) Surface effect 3D photonic crystal
US20100046901A1 (en) Optical waveguide with periodic sub-wavelength sized regions
JP2004310049A (en) Resonator and resonance device using photonic crystal
JP5002216B2 (en) Waveguide and light emitting device having the same
JP2008147623A (en) Structure using photonic crystal and surface-emitting laser
Poushimin et al. Radiation losses in photonic crystal slab waveguide to enhance LEDs efficiency
JP4956741B2 (en) Photonic crystal waveguide
JP2009111167A (en) Surface-emitting semiconductor laser element
JP2007279455A (en) Light reflector and optical apparatus
WO2006103850A1 (en) Waveguide element and laser generator
JP2008241892A (en) Two-dimensional photonic crystal optical resonator
JP6416703B2 (en) Photonic crystal coupled resonator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250