JP5371384B2 - Waveguide circuit element and waveguide structure - Google Patents

Waveguide circuit element and waveguide structure Download PDF

Info

Publication number
JP5371384B2
JP5371384B2 JP2008288726A JP2008288726A JP5371384B2 JP 5371384 B2 JP5371384 B2 JP 5371384B2 JP 2008288726 A JP2008288726 A JP 2008288726A JP 2008288726 A JP2008288726 A JP 2008288726A JP 5371384 B2 JP5371384 B2 JP 5371384B2
Authority
JP
Japan
Prior art keywords
electric field
waveguide
hole
resonance
resonance space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008288726A
Other languages
Japanese (ja)
Other versions
JP2010118740A (en
Inventor
憲一 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2008288726A priority Critical patent/JP5371384B2/en
Publication of JP2010118740A publication Critical patent/JP2010118740A/en
Application granted granted Critical
Publication of JP5371384B2 publication Critical patent/JP5371384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve withstand voltage, by employing in advance a structure for relieving the electric field concentration (current concentration), in an electric field concentration region in advance. <P>SOLUTION: The waveguide circuit element 1 has opposite surfaces 1a, 1b that are parallel to each other in the inside and is made of a metal member in which a resonant space for resonating an electromagnetic wave of the fundamental wavelength is formed, wherein a round hole 2 is formed, by removing the metal member on one of the opposite surfaces corresponding substantial to the center region as an electric field concentration region, at which the electric field strength in the fundamental wavelength becomes maximum. The round hole 2 relieves the current concentration, and as a result, the electric field concentration can be relieved. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、基本波長の電磁波を共振させる共振空間を有する導波管回路素子及び導波管構造に関する。   The present invention relates to a waveguide circuit element and a waveguide structure having a resonance space for resonating an electromagnetic wave having a fundamental wavelength.

導波管回路は、一般的にマイクロストリップ線路等と比べて高い耐電力性能を有するが、例えば共振器やそれを応用したフィルタ装置等は電界の集中する部分が存在し、その部分で放電が生じやすく、通常の導波管に比べて耐電力性が低いといった問題があった。従来、かかる問題を解決するために、スタブ等に電界が集中する突起部分を設けないようにしたり、導波管の寸法を大きくするといった対策が採られている。   A waveguide circuit generally has higher power handling performance than a microstrip line or the like. For example, a resonator or a filter device using the waveguide circuit has a portion where an electric field is concentrated, and a discharge is generated in that portion. There is a problem that it is likely to occur and the power durability is lower than that of a normal waveguide. Conventionally, in order to solve such a problem, measures have been taken such as avoiding the provision of a protruding portion where the electric field concentrates on a stub or the like, or increasing the size of the waveguide.

特許文献1には、主導波管の外側壁に、複数段の共振器が接合された構造を有する帯域素子フィルタが記載されている。各共振器との接合面には2つの円形孔で窓部が成されている。2つの円形孔を主導波管の中央部に対して対称に形成し、最大電界強度の部分での最大電流の流れを確保したことで、窓部でのアークの発生を防止し、大電力用の帯域阻止フィルタを実現している。
特開平11−274817号公報
Patent Document 1 describes a band element filter having a structure in which a plurality of stages of resonators are joined to an outer wall of a main waveguide. A window portion is formed by two circular holes on the joint surface with each resonator. Two circular holes are formed symmetrically with respect to the central part of the main waveguide, ensuring maximum current flow at the maximum electric field strength, preventing arcing at the window, and for high power The band rejection filter is realized.
Japanese Patent Laid-Open No. 11-274817

しかしながら、従来の突起物の内スラブ等を採用したり、導波管寸法を大きくしたりするといった対策は寸法上や加工上の制約が大きいといった問題点があった。また、特許文献1の構造では、共振器との接合部分での耐電界性能の向上は図れるものの、共振器自体の耐電界性能に関しては記載されていない。   However, the conventional measures such as adopting the inner slab of the protrusion or increasing the waveguide dimension have a problem in that there are large restrictions in size and processing. Further, in the structure of Patent Document 1, although the electric field resistance performance at the junction with the resonator can be improved, the electric field resistance performance of the resonator itself is not described.

本発明は、上記に鑑みてなされたもので、電界集中領域に予め電界集中を緩和させる構造を採用して耐電力性の高い導波管回路素子及び導波管構造を提供するものである。   The present invention has been made in view of the above, and provides a waveguide circuit element and a waveguide structure having high power resistance by adopting a structure that relaxes electric field concentration in advance in an electric field concentration region.

請求項1記載の発明は、内部に所定の高さ寸法を隔てた互いに平行な対向面を有し、基本波長の電磁波を共振させる共振空間が形成された金属部材からなる導波管回路素子において、前記共振空間内の、前記基本波長における電界強度が最大となる電界集中領域に対応する前記対向面の一方に前記金属部材の外部まで貫通された孔を設けたことを特徴とするものである。 According to a first aspect of the present invention, there is provided a waveguide circuit element comprising a metal member having internal opposing surfaces separated from each other by a predetermined height and having a resonance space for resonating an electromagnetic wave having a fundamental wavelength. In the resonance space, a hole penetrating to the outside of the metal member is provided in one of the opposing surfaces corresponding to the electric field concentration region where the electric field intensity at the fundamental wavelength is maximum. .

金属部材の内部に形成された共振空間で、例えばTE○101モードの共振が生じた場合、所定の高さ寸法を隔てて対向する対向面のほぼ中央部分に電界強度がピークとなる領域が生じる。電界強度が高くなると、対向面間で放電現象が生じ、共振が持続できなくなる。そこで、共振空間内の電界強度が集中する領域に対応する対向面の形状を変更して電界集中の原因となる電流の集中を緩和するようにする。例えば、対向面の少なくとも一方の面の金属材を球体の一部形状、あるいはすり鉢状に穿設して除去するようにして、外部と通じる孔を形成し、電流の集中を緩和する。この場合には、孔の部分に電流が流れないので、電流集中が効果的に緩和される。このように、電界集中部分の対向面の少なくとも一方に対して電流集中を緩和させることで電界集中が緩和され、耐電力性能が向上される。 In the resonance space formed inside the metal member, for example, when TE ○ 101 mode resonance occurs, a region in which the electric field strength peaks is generated at the substantially central portion of the opposed surfaces facing each other with a predetermined height dimension. . When the electric field strength increases, a discharge phenomenon occurs between the opposing surfaces, and resonance cannot be sustained. Therefore, the shape of the facing surface corresponding to the region where the electric field strength concentrates in the resonance space is changed to reduce the concentration of current that causes the electric field concentration. For example, the metal material on at least one of the opposing surfaces is removed by drilling into a part of a sphere or a mortar shape to form a hole that communicates with the outside, thereby reducing current concentration . If this is because no current flows in the portion of the hole, current concentration can be effectively relaxed. As described above, by reducing current concentration on at least one of the opposing surfaces of the electric field concentration portion, the electric field concentration is reduced and the power durability performance is improved.

請求項2記載の発明は、請求項1記載の導波管回路素子において、前記孔の横断面形状は、該孔を介して前記基本波長の電磁波の輻射が規制される寸法に設定されていることを特徴とする。この構成によれば、孔によって、当該部分を電流が流れなくなるため、電流集中が緩和され、その結果、電界集中が緩和される。また、孔の横断面形状、例えば孔が円形の場合にあっては、その径が、基本波長の電磁波が孔を通過できない(遮断)寸法に設定されているので、電力ロスを生じることなく、耐電力性能の向上が図れる。 According to a second aspect of the invention, the waveguide circuit device of claim 1, wherein the cross-sectional shape of the front Kiana is set to dimension the radiation of electromagnetic wave is limited of the fundamental wavelength through the pores It is characterized by being. According to this configuration, the current does not flow through the hole due to the hole, so that the current concentration is reduced, and as a result, the electric field concentration is reduced. In addition, when the hole has a cross-sectional shape, for example, when the hole is circular, the diameter of the hole is set to a size at which the electromagnetic wave having the fundamental wavelength cannot pass through the hole (blocking), so that no power loss occurs. The power durability can be improved.

請求項3記載の発明は、請求項1又は2に記載の導波管回路素子において、前記金属部材は、互いに対向する第1、第2の金属ブロックと、前記第1、第2の金属得ロック間に介設される仕切り板とからなり、前記第1、第2の金属ブロックの対向面側には、前記共振空間が前記仕切り板を挟んで互いに鏡面対称に少なくとも1つ形成されてなり、前記仕切り板には、両側に形成された前記共振空間を結合する結合窓が形成され、前記は、前記仕切り板に形成されていることを特徴とする。この構成によれば、第1、第2の金属ブロック間に挟まれる仕切り板にを形成する構造とすることで、少なくとも2以上の共振器を有するフィルタ等の導波管回路素子であっても、の形成が容易となる。 According to a third aspect of the present invention, in the waveguide circuit element according to the first or second aspect, the metal member includes first and second metal blocks facing each other, and the first and second metal layers. A partition plate interposed between the locks, and at least one of the resonance spaces is mirror-symmetrically formed on the opposing surface side of the first and second metal blocks with the partition plate interposed therebetween. , the partition plate is coupled windows for coupling said resonant space formed on both sides is formed, and the hole is characterized in that it is formed in the partition plate. According to this configuration, a waveguide circuit element such as a filter having at least two resonators is formed by forming a hole in the partition plate sandwiched between the first and second metal blocks. However, the formation of the holes is facilitated.

請求項4記載の発明は、請求項1〜3のいずれかに記載の導波管回路素子の前記共振空間の1つと前記基本周波数を伝送する主導波管とが主結合窓を介して接続された導波管構造であって、前記は、前記1つの共振空間を形成する対向面の一方に形成されていることを特徴とするものである。この構成によれば、を、入力部となる前記1つの共振空間の対向面に形成するので、電力が最大である共振空間に対して効果的に電界集中の緩和構造が採用される。 According to a fourth aspect of the present invention, one of the resonance spaces of the waveguide circuit element according to any one of the first to third aspects is connected to a main waveguide that transmits the fundamental frequency via a main coupling window. In the waveguide structure, the hole is formed in one of the opposing surfaces forming the one resonance space. According to this configuration, since the hole is formed in the facing surface of the one resonance space serving as the input portion, a structure for reducing electric field concentration is effectively employed for the resonance space where the power is maximum.

請求項5記載の発明は、請求項4記載の導波管構造において、前記1つの共振空間の側面適所にカットオフ部が連設されていることを特徴とする。この構成によれば、入力部となる共振空間にを設ける態様では、主導波管からの電磁波と共振空間内の電磁波とが主結合窓で干渉する結果、電界手中箇所が、の形成に不適乃至は困難な箇所となる可能性がある。そこで、カットオフ部を形成して、電界集中部をシフトさせて、シフトされた位置に対して、を形成するようにすれば済むので、の設計が容易となる。 According to a fifth aspect of the present invention, in the waveguide structure according to the fourth aspect, a cut-off portion is continuously provided at an appropriate side surface of the one resonance space. According to this configuration, in the aspect in which the hole is provided in the resonance space serving as the input portion, the electromagnetic wave from the main waveguide and the electromagnetic wave in the resonance space interfere with each other at the main coupling window, and as a result, the location in the electric field is in the formation of the hole . It may be an inappropriate or difficult place. Therefore, it is only necessary to form a cut-off portion, shift the electric field concentration portion, and form a hole at the shifted position, so that the design of the hole is facilitated.

請求項1記載の発明によれば、前記共振空間内の電界集中領域に予め電界集中を緩和させるを設けることで、耐電力性能を向上させることができる。 According to the first aspect of the present invention, it is possible to improve the power resistance performance by providing the hole for relaxing the electric field concentration in advance in the electric field concentration region in the resonance space .

請求項2記載の発明によれば、孔によって、電界集中が効果的に緩和される。また、基本波長の電磁波が孔を通過できない(遮断)寸法に設定することで電力ロスを生じることなく、耐電力性能の向上が図れる。   According to the second aspect of the present invention, the electric field concentration is effectively reduced by the holes. Further, by setting the dimensions such that the electromagnetic wave having the fundamental wavelength cannot pass through the hole (blocking), the power durability can be improved without causing power loss.

請求項3記載の発明によれば、第1、第2の金属ブロック間に挟まれる仕切り板に対して、を形成する構造としたので、少なくとも2以上の共振器を有するフィルタ等の導波管回路素子であってもを容易に形成することができる。 According to the third aspect of the present invention, since the hole is formed in the partition plate sandwiched between the first and second metal blocks, a waveguide such as a filter having at least two resonators is provided. Even in the case of a tube circuit element, a hole can be easily formed.

請求項4記載の発明によれば、を入力部となる前記1つの共振空間の対向面に形成するので、電力が最大である共振空間に対して効果的に電界集中の緩和が可能となる。 According to the fourth aspect of the invention, since the hole is formed in the facing surface of the one resonance space serving as the input portion, the electric field concentration can be effectively reduced with respect to the resonance space where the power is maximum. .

請求項5記載の発明カットオフ部を形成して電界集中部をシフトさせ、シフトされた位置に対して、を形成するようにすれば済むので、の設計を容易にすることができる。 According to the fifth aspect of the present invention, it is only necessary to form the cut-off portion to shift the electric field concentration portion and form the hole at the shifted position, so that the design of the hole can be facilitated.

図6は、本発明に係る導波管回路素子等が適用されるマイクロ波送受信機の一例としてのレーダ装置の構成を示すブロック図である。レーダ装置の高周波回路部は、例えば9.63GHzのマイクロ波を基本波として発振するマグネトロンを有する。パルス駆動回路52は、マグネトロン51を所定周期で間歇駆動させて所定幅を有するパルス状の送信信号を生成するものである。サーキュレータ53は、マグネトロン51からのパルス状の送信信号を所定の回路側へ伝搬するものである。終端器54は、サーキュレータ53に接続され、不要電力を消費させるものである。フィルタ55は、基本波に対する高調波の通過を抑制するものである。抑制された高調波は、サーキュレータ53を経て終端器54で消費される。   FIG. 6 is a block diagram showing a configuration of a radar apparatus as an example of a microwave transceiver to which the waveguide circuit element or the like according to the present invention is applied. The high-frequency circuit unit of the radar apparatus includes a magnetron that oscillates using, for example, a 9.63 GHz microwave as a fundamental wave. The pulse driving circuit 52 generates a pulsed transmission signal having a predetermined width by intermittently driving the magnetron 51 at a predetermined cycle. The circulator 53 propagates the pulsed transmission signal from the magnetron 51 to a predetermined circuit side. The terminator 54 is connected to the circulator 53 and consumes unnecessary power. The filter 55 suppresses the passage of harmonics with respect to the fundamental wave. The suppressed harmonics are consumed by the terminator 54 via the circulator 53.

サーキュレータ56は、送信信号を送信側へ伝搬し、受信信号を受信側へ伝搬するためのものである。ロータリージョイント57は、静止系と回転系とを電気的に接続するためのものである。アンテナ58は、図略のモータで定速回転させられるもので、送信信号を探知用の電波パルスとして外方に向けて送信するものである。受信系回路59は、アンテナ58で受波された信号に対して信号処理を施すものである。なお、マグネトロン51〜アンテナ58まで、アンテナ58〜リミッタ回路58までは導波管で構成されている。   The circulator 56 is for propagating the transmission signal to the transmission side and propagating the reception signal to the reception side. The rotary joint 57 is for electrically connecting the stationary system and the rotating system. The antenna 58 is rotated at a constant speed by a motor (not shown), and transmits a transmission signal outward as a radio wave pulse for detection. The reception system circuit 59 performs signal processing on the signal received by the antenna 58. The magnetron 51 to the antenna 58 and the antenna 58 to the limiter circuit 58 are constituted by waveguides.

図1は、本発明に係る導波管回路素子の第1実施形態を示す構造、及びその電界分布特性を示す図で、図1(a)は構造図、図1(b)は全体の電界分布図、図1(c)はI−I’断面における電界強度分布を示す図である。図2は、図1に対する比較例で、従来の一般的な導波管空洞共振器を示しており、図2(a)は構造図、図2(b)は全体の電界分布図、図2(c)はII−II’断面における電界強度分布を示す図である。   FIG. 1 is a diagram showing a structure of a first embodiment of a waveguide circuit element according to the present invention and its electric field distribution characteristics. FIG. 1 (a) is a structural diagram, and FIG. 1 (b) is an overall electric field. The distribution diagram, FIG. 1C, is a diagram showing the electric field intensity distribution in the II ′ section. 2 is a comparative example of FIG. 1 and shows a conventional general waveguide cavity resonator. FIG. 2 (a) is a structural diagram, FIG. 2 (b) is an overall electric field distribution diagram, and FIG. (C) is a figure which shows the electric field strength distribution in a II-II 'cross section.

まず、図2(a)において、導波管空洞共振器100は、略直方体形状の共振空間を有し、縦横の各寸法が22.86mm×10.16mmに設定され、高さは、基本周波数9.63GHzに対応する管内波長のマイクロ波を通過させる寸法6mmに設定されている。この高さ寸法だけ離間して互いに平行な内壁面(対向面)100a、100bが形成されている。この共振空間内に電磁波が導入されると、電流は内壁面全体を流れる一方、前記対向面100a、100bの中央部に集中する。従って、図2(b)に示すように、対向面100a、100bの中央部で電界強度が最大となる。その分布は、図2(c)に示すように、中央部分をピークとする山形となる。従って、電界が集中する対向面100a、100bの中央領域では、放電現象が生じやすい。放電現象は、例えばコロナ放電の場合、電界値がある基準値を超えると開始する。放電現象が生じると、電磁波の伝搬が遮断されてしまうため、導波管空洞共振器100を、図6のレーダ装置に適用した場合には、装置が機能しなくなる。このため、図2(a)に示す導波管構造では、耐電力性能をより高くすることが難しく、レーダ探知性能の向上は困難である。   First, in FIG. 2A, the waveguide cavity resonator 100 has a substantially rectangular parallelepiped resonance space, the vertical and horizontal dimensions are set to 22.86 mm × 10.16 mm, and the height is the fundamental frequency. It is set to a dimension of 6 mm that allows microwaves with an in-tube wavelength corresponding to 9.63 GHz to pass. Inner wall surfaces (opposing surfaces) 100a and 100b that are spaced apart by this height dimension and are parallel to each other are formed. When electromagnetic waves are introduced into the resonance space, the current flows through the entire inner wall surface, but concentrates at the center of the opposing surfaces 100a and 100b. Therefore, as shown in FIG. 2B, the electric field strength is maximized at the center of the opposing surfaces 100a and 100b. As shown in FIG. 2C, the distribution has a mountain shape with a peak at the center. Therefore, a discharge phenomenon is likely to occur in the central region of the opposing surfaces 100a and 100b where the electric field is concentrated. For example, in the case of corona discharge, the discharge phenomenon starts when the electric field value exceeds a certain reference value. When the discharge phenomenon occurs, the propagation of electromagnetic waves is interrupted. Therefore, when the waveguide cavity resonator 100 is applied to the radar apparatus of FIG. 6, the apparatus does not function. For this reason, in the waveguide structure shown in FIG. 2A, it is difficult to further improve the power durability, and it is difficult to improve the radar detection performance.

一方、図1(a)に示す導波管空洞共振器1は、図2(a)と寸法的には同一であるが、後述する別の構造がさらに付加されている。すなわち、導波管空洞共振器1は、対向面1a、1bの一方側、図1(a)では対向面1aの中央領域に、凹部としての孔2が形成されている。孔2は、対向面1aから外部まで貫通している。孔2の直径(縦断面形状)は、本実施形態では、6mmに設定されている。孔2の直径6mmは、管内波長に比して充分小さいため、共振空間内の電磁波が、この孔2を経て外部に漏洩することはほとんどない。蓋3は、金属製で、所定形状、例えば正方形の天板とその周縁に立設された側板とを有するものである。蓋3は、外方より孔2を覆うように配置される。蓋3の天板の形状は有底の円筒でもよいし、有底の角筒でもよい。蓋3のサイズは、共振空間より充分に狭く、かつ高さも低いものとされており、この構造及び孔2の直径とから、共振空間内から見れば、蓋3で構成される内空間は、遮断領域となっている。   On the other hand, the waveguide cavity resonator 1 shown in FIG. 1A is dimensionally the same as FIG. 2A, but is further added with another structure to be described later. That is, the waveguide cavity resonator 1 is formed with a hole 2 as a recess in one side of the opposing surfaces 1a and 1b, in the central region of the opposing surface 1a in FIG. The hole 2 penetrates from the facing surface 1a to the outside. The diameter (vertical cross-sectional shape) of the hole 2 is set to 6 mm in this embodiment. Since the diameter 6 mm of the hole 2 is sufficiently smaller than the wavelength in the tube, the electromagnetic wave in the resonance space hardly leaks outside through the hole 2. The lid 3 is made of metal and has a predetermined shape, for example, a square top plate and a side plate erected on the periphery thereof. The lid 3 is arranged so as to cover the hole 2 from the outside. The shape of the top plate of the lid 3 may be a bottomed cylinder or a bottomed square tube. The size of the lid 3 is sufficiently narrower and lower than the resonance space. From this structure and the diameter of the hole 2, the inner space constituted by the lid 3 is as viewed from the resonance space. It is a blocking area.

孔2、及び蓋3を採用することで、図1(b)、(c)に示すように、対向部1a、1bの中央部分での電界分布は窪んでおり、電界集中は緩和されている。   By adopting the hole 2 and the lid 3, as shown in FIGS. 1B and 1C, the electric field distribution in the central portion of the facing portions 1a and 1b is depressed, and the electric field concentration is relaxed. .

なお、図1の実施形態では、電界集中領域に、外部まで貫通する孔2を形成したが、電界集中領域における対向面1a,1bの少なくとも一方に対して、電流集中を緩和するための構造を採用してもよく、例えば、対向面1a、1bの少なくとも一方に対して、内壁(金属部)の一分を取り除くなど、すなわち電界集中領域に対する、部位の面積を増大乃至は電流を分散させる加工を施せばよい。   In the embodiment of FIG. 1, the hole 2 penetrating to the outside is formed in the electric field concentration region. However, a structure for reducing current concentration is provided for at least one of the opposing surfaces 1a and 1b in the electric field concentration region. For example, a part of the inner wall (metal part) is removed from at least one of the opposing surfaces 1a and 1b, that is, the area of the region is increased or the current is dispersed with respect to the electric field concentration region. Can be applied.

これにより、孔2の外周部位と対向面1b間の電界強度を、図2(c)に示すピーク値の近くまでさらに増大させることが可能となって、耐電力性能を向上させることができる。   Thereby, it is possible to further increase the electric field strength between the outer peripheral portion of the hole 2 and the facing surface 1b to near the peak value shown in FIG. 2C, and to improve the power durability.

図3は、本発明に係る導波管回路素子の第2実施形態を示す構造図であり、図4は、その分解図で、図5は、電界強度分布を示す図である。導波管回路素子10は、第1、第2の金属ブロック11,12と、第1、第2の金属ブロック間に介設される仕切り板13とを備えている。   FIG. 3 is a structural view showing a second embodiment of the waveguide circuit element according to the present invention, FIG. 4 is an exploded view thereof, and FIG. 5 is a view showing an electric field strength distribution. The waveguide circuit element 10 includes first and second metal blocks 11 and 12 and a partition plate 13 interposed between the first and second metal blocks.

金属ブロック11は、直方体形状を有し、所要の厚みを有するアルミニウム(Al)等の導電性金属からなる。金属ブロック11は、金属ブロック12と対向する側の面部に、使用電磁波の周波数から定まる所定の深さ寸法を有する凹設部110が形成されている。凹設部110は、それぞれ使用電磁波の周波数から定まる所定の縦横及び高さ寸法(図1(a)参照)を有する共振空間111,112を有する。共振空間111には、入力側の主線路である導波管14との接合を行うための結合窓113がブロックの厚み方向に貫通して形成されている。結合窓113は、電磁波の入口となる。結合窓114は、共振空間111,112の間に形成されている。   The metal block 11 has a rectangular parallelepiped shape and is made of a conductive metal such as aluminum (Al) having a required thickness. In the metal block 11, a concave portion 110 having a predetermined depth dimension determined from the frequency of the electromagnetic wave used is formed on the surface portion facing the metal block 12. The recessed portion 110 has resonance spaces 111 and 112 having predetermined vertical and horizontal dimensions and height dimensions (see FIG. 1A) determined from the frequency of the used electromagnetic wave. In the resonance space 111, a coupling window 113 for joining with the waveguide 14 which is the main line on the input side is formed penetrating in the thickness direction of the block. The coupling window 113 serves as an entrance for electromagnetic waves. The coupling window 114 is formed between the resonance spaces 111 and 112.

金属ブロック12は、金属ブロック11と同サイズの直方体形状を有し、アルミニウム(Al)等の導電性金属からなる。金属ブロック12は、金属ブロック11と対向する側の面部に鏡面対称な構造、すなわち使用電磁波の周波数から定まる所定の深さ寸法を有する凹設部120が形成されている。凹設部120は、それぞれ使用電磁波の周波数から定まる所定の縦横寸法を有する共振空間121,122を有する。共振空間121には、出力側の主線路である導波管15との接合を行うための結合窓123がブロックの厚み方向に貫通して形成されている。結合窓123は、電磁波の出口となる。結合窓124は、共振空間121,122の間に形成されている。なお、結合窓113,123は、図4のような位置に限定されるものではなく、電磁波の入出力口として好適な位置が採用可能である。   The metal block 12 has a rectangular parallelepiped shape that is the same size as the metal block 11, and is made of a conductive metal such as aluminum (Al). The metal block 12 has a mirror-symmetric structure, that is, a recessed portion 120 having a predetermined depth determined from the frequency of the used electromagnetic wave, on the surface portion facing the metal block 11. The recessed portion 120 has resonance spaces 121 and 122 having predetermined vertical and horizontal dimensions respectively determined from the frequency of the used electromagnetic wave. In the resonance space 121, a coupling window 123 is formed so as to penetrate in the thickness direction of the block for joining with the waveguide 15 which is the main line on the output side. The coupling window 123 serves as an electromagnetic wave outlet. The coupling window 124 is formed between the resonance spaces 121 and 122. Note that the coupling windows 113 and 123 are not limited to the positions shown in FIG. 4, and positions suitable as electromagnetic wave input / output ports can be employed.

仕切り板13は、例えばアルミニウム(Al)製の導電材からなり、金属ブロック11,12の凹設部110,120それぞれの蓋材として機能する。共振領域111,112,121,122と仕切り板13とによって構成される各導波管部分は、本実施形態ではそれぞれ共振器として機能する。仕切り板13には、その所要位置に所要形状を有する4個の結合窓131〜134が形成(穿設)されている。なお、図には示していないが、金属ブロック11,12及び仕切り板13には対応する位置であって、凹設部110,120を外した部分に所要数の機械的締結用の孔が形成され、例えばボルトとナットとで所要圧で締め付けられ、導波管が形成される。   The partition plate 13 is made of, for example, a conductive material made of aluminum (Al), and functions as a cover material for each of the recessed portions 110 and 120 of the metal blocks 11 and 12. In the present embodiment, each waveguide portion constituted by the resonance regions 111, 112, 121, 122 and the partition plate 13 functions as a resonator. The partition plate 13 is formed (perforated) with four coupling windows 131 to 134 having a required shape at required positions. Although not shown in the drawing, a required number of holes for mechanical fastening are formed at positions corresponding to the metal blocks 11 and 12 and the partition plate 13 and where the recessed portions 110 and 120 are removed. For example, the waveguide is formed by tightening with a bolt and a nut with a required pressure.

結合窓131〜134は、仕切り板13の適所をくり抜いて形成されたもので、共振空間112,122間で基本波を通過させる一方、2次高調波等を遮断する位置に形成されている。共振空間112の付加領域115,116は、共振空間112のE面が部分的に突出した形状をなし、そのE面の長手方向に沿った幅が基本波の半波長以下で且つ2次高調波の半波長以上である。そのため、2次高調波の電磁界はこれらの付加領域115,116に侵入して分布する。共振空間122の付加領域125,126についても同様である。そのため、結合窓131,132は、2次高調波モードの電界エネルギーの高い位置で、かつ基本波モードの電界エネルギーの低い位置に配置できる。このようにして、導波管回路素子10は、4つの共振器が順に結合した4段の共振器からなり、共振空間112に相当する共振器及び共振空間122に相当する共振器で、2次高調波モードの結合及び伝搬が阻止される。   The coupling windows 131 to 134 are formed by cutting out appropriate portions of the partition plate 13, and are formed at positions where the fundamental wave is passed between the resonance spaces 112 and 122 while blocking the second harmonic and the like. The additional regions 115 and 116 of the resonance space 112 have a shape in which the E surface of the resonance space 112 partially protrudes, the width along the longitudinal direction of the E surface is equal to or less than a half wavelength of the fundamental wave, and the second harmonic. More than half wavelength. Therefore, the second harmonic electromagnetic field penetrates into these additional regions 115 and 116 and is distributed. The same applies to the additional regions 125 and 126 of the resonance space 122. Therefore, the coupling windows 131 and 132 can be arranged at a position where the electric field energy of the second harmonic mode is high and at a position where the electric field energy of the fundamental wave mode is low. In this way, the waveguide circuit element 10 is composed of a four-stage resonator in which four resonators are coupled in order, and a resonator corresponding to the resonance space 112 and a resonator corresponding to the resonance space 122 are secondary. Harmonic mode coupling and propagation is prevented.

さらに、導波管回路素子10において、仕切り板13の適所には孔135が形成され、共振空間111,121の適所には付加領域117,127が形成されている。孔135及び付加領域117,127は、耐電力性能の向上を図るために採用されたものである。以下、説明する。   Further, in the waveguide circuit element 10, holes 135 are formed at appropriate positions of the partition plate 13, and additional regions 117 and 127 are formed at appropriate positions of the resonance spaces 111 and 121. The holes 135 and the additional regions 117 and 127 are employed for improving the power durability performance. This will be described below.

仕切り板13に孔135が形成される前の状態で、入力側の導波管14から基本周波数の電磁波が入力された場合の、その電界強度分布は図5のようになる。電界強度は、共振空間111内で最大値が見られる。図1で述べたように、電界強度のピークは、基本的には(すなわち、電磁波の入、出力部での干渉の影響を考慮に入れなければ)、共振空間111の中央部分で発生する。   FIG. 5 shows the electric field intensity distribution when an electromagnetic wave having a fundamental frequency is input from the input-side waveguide 14 before the holes 135 are formed in the partition plate 13. The electric field strength has a maximum value in the resonance space 111. As described with reference to FIG. 1, the peak of the electric field intensity basically occurs in the central portion of the resonance space 111 (that is, unless the influence of interference at the input and output portions is taken into consideration).

一方、図3、図4からも判るように、本導波管回路素子1は、結合窓113が共振空間111の右端に形成されており、この態様での電界強度のピークは、図5より、結合窓113の左端側から多少離れた位置にあることが判る。これは、共振空間111の結合窓113の側の側壁を切削して(カットオフ領域)付加領域117を形成することにより、基本波の電界分布を結合窓113の左端からやや中央寄りにずらしたものである。そして、孔135は、この電界強度のピーク位置に対応する仕切り板13に形成されている。孔135は所要の長尺形状を有する。孔135の形状は、図5に示すように、電界強度のピーク領域が結合窓113の長手方向に沿って長目であることから、この領域を含むようにしている。なお、孔135によって、同時に共振空間121にも電界集中緩和効果が期待でき、そのため、共振空間121にも共振空間111と鏡面対称位置に(カットオフ領域)付加領域127が形成されている。孔135は、基本波長の電磁波の通過を遮断する形状、サイズとして形成されている。 On the other hand, as can be seen from FIGS. 3 and 4, the present waveguide circuit element 1 has the coupling window 113 formed at the right end of the resonance space 111, and the peak of the electric field strength in this mode is as shown in FIG. 5. It can be seen that the position is slightly away from the left end side of the coupling window 113. This can be achieved by forming the by cutting the side wall of the right side (cutoff region) addition region 117 of the coupling window 113 of the resonance space 111, slightly offset towards the center of the field distribution of the fundamental wave from the left edge of the coupling window 113 It is a thing. And the hole 135 is formed in the partition plate 13 corresponding to this electric field strength peak position. The hole 135 has a required long shape. As shown in FIG. 5, the shape of the hole 135 is such that the peak region of the electric field intensity is long along the longitudinal direction of the coupling window 113, and this region is included. The hole 135 can be expected to reduce the electric field concentration at the resonance space 121 at the same time. For this reason, an additional region 127 is formed in the resonance space 121 at a mirror-symmetrical position with the resonance space 111 (cut-off region). The hole 135 is formed in a shape and size that block the passage of electromagnetic waves having a fundamental wavelength.

導波管回路素子10の各共振空間は、第1実施形態に係る共振器と同一サイズを有するものであり、この構造において、孔135の形成前と形成後とで放電実験を行った。孔135を形成する前の状態では、電磁波電力90KWで共振空間111内で放電が発生した。一方、孔135を形成した状態では、120KWまで放電が生じないことが確認できた。   Each resonance space of the waveguide circuit element 10 has the same size as the resonator according to the first embodiment. In this structure, a discharge experiment was performed before and after the formation of the hole 135. Before the hole 135 was formed, discharge occurred in the resonance space 111 with an electromagnetic wave power of 90 KW. On the other hand, in the state where the hole 135 was formed, it was confirmed that no discharge occurred up to 120 KW.

本発明は、以下の態様も採用可能である。   The present invention can also employ the following aspects.

(1)第2実施形態では、共振空間111にのみ孔(凹部)を構成したが、必要に応じて、他の共振空間にも適宜、孔(凹部)を形成してもよい。凹部の形状としては、球面の一部、すり鉢状が好ましい。また、孔の態様では、断面円形が好ましい。 (1) In the second embodiment, the holes (recesses) are formed only in the resonance space 111, but holes (recesses) may be appropriately formed in other resonance spaces as necessary. As a shape of a recessed part, a part of spherical surface and a mortar shape are preferable. Moreover, in the aspect of a hole, a circular cross section is preferable.

本発明に係る導波管回路素子の第1実施形態を示す構造、及びその電界分布特性を示す図で、図1(a)は構造図、図1(b)は全体の電界分布図、図1(c)はI−I’断面における電界強度分布を示す図である。1A and 1B are diagrams showing a structure of a waveguide circuit element according to a first embodiment of the present invention and electric field distribution characteristics thereof. FIG. 1A is a structural diagram, FIG. 1 (c) is a diagram showing the electric field strength distribution in the II ′ section. 図1に対する比較例で、従来の一般的な導波管空洞共振器を示しており、図2(a)は構造図、図2(b)は全体の電界分布図、図2(c)はII−II’断面における電界強度分布を示す図である。FIG. 2 is a comparative example of FIG. 1 and shows a conventional general waveguide cavity resonator. FIG. 2A is a structural diagram, FIG. 2B is an overall electric field distribution diagram, and FIG. It is a figure which shows the electric field strength distribution in a II-II 'cross section. 本発明に係る導波管回路素子の第2実施形態を示す構造図である。It is a structural diagram showing a second embodiment of a waveguide circuit element according to the present invention. 図3の分解図である。FIG. 4 is an exploded view of FIG. 3. 図3における電界強度分布を示す図である。It is a figure which shows the electric field strength distribution in FIG. 本発明に係る導波管回路素子が適用されるマイクロ波送受信機の一例としてのレーダ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radar apparatus as an example of the microwave transmitter / receiver to which the waveguide circuit element based on this invention is applied.

1 導波管空洞共振器(導波管回路素子)
1a,1b 対向面
2 孔(凹部)
3 蓋
10 導波管空洞共振器(導波管回路素子、導波管構造)
11,12 金属ブロック(金属部材)
111,112,121,122 共振空間
113 結合窓(主結合窓)
117,127 カットオフ領域
13 仕切り板
131〜134 結合窓
135 孔(凹部)
14,15 導波管(主導波管)
1 Waveguide cavity resonator (waveguide circuit element)
1a, 1b Opposing surface 2 hole (concave)
3 Lid 10 Waveguide cavity resonator (waveguide circuit element, waveguide structure)
11,12 Metal block (metal member)
111, 112, 121, 122 Resonance space 113 Coupling window (main coupling window)
117, 127 Cut-off area 13 Partition plate 131-134 Connection window 135 Hole (recess)
14,15 Waveguide (main waveguide)

Claims (5)

内部に所定の高さ寸法を隔てた互いに平行な対向面を有し、基本波長の電磁波を共振させる共振空間が形成された金属部材からなる導波管回路素子において、
前記共振空間内の、前記基本波長における電界強度が最大となる電界集中領域に対応する前記対向面の一方に前記金属部材の外部まで貫通された孔を設けたことを特徴とする導波管回路素子。
In a waveguide circuit element made of a metal member having opposed surfaces parallel to each other separated by a predetermined height inside and formed with a resonance space for resonating an electromagnetic wave having a fundamental wavelength,
A waveguide circuit characterized in that a hole penetrating to the outside of the metal member is provided in one of the opposing surfaces corresponding to an electric field concentration region where the electric field intensity at the fundamental wavelength is maximum in the resonance space. element.
記孔の横断面形状は、該孔を介して前記基本波長の電磁波の輻射が規制される寸法に設定されていることを特徴とする請求項1記載の導波管回路素子。 Cross-sectional shape of the front Kiana are waveguide circuit device of claim 1, wherein the radiation of the electromagnetic wave of the fundamental wavelength through the pores is set to a dimension that is restricted. 前記金属部材は、互いに対向する第1、第2の金属ブロックと、前記第1、第2の金属ブロック間に介設される仕切り板とからなり、前記第1、第2の金属ブロックの対向面側には、前記共振空間が前記仕切り板を挟んで互いに鏡面対称に少なくとも1つ形成されてなり、前記仕切り板には、両側に形成された前記共振空間を結合する結合窓が形成され、前記は、前記仕切り板に形成されていることを特徴とする請求項1又は2に記載の導波管回路素子。 The metal member includes first and second metal blocks opposed to each other and a partition plate interposed between the first and second metal blocks, and is opposed to the first and second metal blocks. On the surface side, at least one of the resonance spaces is formed mirror-symmetric with respect to the partition plate, and the partition plate is formed with a coupling window for connecting the resonance spaces formed on both sides, the holes, waveguide circuit device according to claim 1 or 2, characterized in that it is formed in the partition plate. 請求項1〜3のいずれかに記載の導波管回路素子の前記共振空間の1つと前記基本周波数を伝送する主導波管とが主結合窓を介して接続された導波管構造であって、前記は、前記1つの共振空間を形成する対向面の一方に形成されていることを特徴とする導波管構造。 A waveguide structure in which one of the resonance spaces of the waveguide circuit element according to any one of claims 1 to 3 and a main waveguide transmitting the fundamental frequency are connected via a main coupling window. The waveguide structure is characterized in that the hole is formed on one of opposing surfaces forming the one resonance space. 前記1つの共振空間の側面適所にカットオフ部が連設されていることを特徴とする請求項4記載の導波管構造。   The waveguide structure according to claim 4, wherein a cut-off portion is continuously provided at an appropriate side surface of the one resonance space.
JP2008288726A 2008-11-11 2008-11-11 Waveguide circuit element and waveguide structure Active JP5371384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288726A JP5371384B2 (en) 2008-11-11 2008-11-11 Waveguide circuit element and waveguide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288726A JP5371384B2 (en) 2008-11-11 2008-11-11 Waveguide circuit element and waveguide structure

Publications (2)

Publication Number Publication Date
JP2010118740A JP2010118740A (en) 2010-05-27
JP5371384B2 true JP5371384B2 (en) 2013-12-18

Family

ID=42306133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288726A Active JP5371384B2 (en) 2008-11-11 2008-11-11 Waveguide circuit element and waveguide structure

Country Status (1)

Country Link
JP (1) JP5371384B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274817A (en) * 1998-03-20 1999-10-08 Shimada Phys & Chem Ind Co Ltd Band block filter
JP2005341491A (en) * 2004-05-31 2005-12-08 New Japan Radio Co Ltd Filter
FR2901918B1 (en) * 2006-06-02 2008-12-05 Alcatel Sa CROSS FILTER

Also Published As

Publication number Publication date
JP2010118740A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
US8354898B2 (en) Harmonic suppression resonator, harmonic propagation blocking filter, and radar apparatus
Kodera et al. Integrated leaky-wave antenna–duplexer/diplexer using CRLH uniform ferrite-loaded open waveguide
US7154441B2 (en) Device for transmitting or emitting high-frequency waves
US6414571B1 (en) Dual TM mode composite resonator
JP2001196817A (en) Dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus
JP2003223985A (en) Electromagnetic wave shield structure and electronic range
JPH11346102A (en) Dielectric resonator device, transmitter-receiver and communication equipment
JP2007235630A (en) Electromagnetic wave transmission line and antenna
JP2010028381A (en) Polar band-pass filter
JP5371384B2 (en) Waveguide circuit element and waveguide structure
JP2010252182A (en) Harmonic cutoff filter, and radar device
RU2703605C1 (en) Waveguide polarization selector with reduced longitudinal size
CN109546269B (en) Dielectric waveguide filter
US6535089B1 (en) High-frequency circuit device and communication apparatus using the same
JP3230492B2 (en) Dielectric line non-reciprocal circuit element and wireless device
JP4814211B2 (en) Harmonic suppression resonator, harmonic propagation blocking filter, harmonic suppression oscillator and microwave transmitter
RU2453018C1 (en) Microwave cyclotron protection device
JP5142907B2 (en) Waveguide structure and radar device
JP4814210B2 (en) Harmonic propagation blocking filter and microwave transmitter
JP2002158540A (en) Mixer, radar system and communications equipment
JP2024032075A (en) Waveguide filters, transmitters, and radars
JP2010251934A (en) Circulator integrated structure, and radar device
RU2815625C1 (en) Cyclotron protective device resonator
JP2024032077A (en) Filter devices, transmitters, and radars
JP2015050491A (en) High frequency cutoff filter, microwave output device, transmission circuit and radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250