JP5369519B2 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP5369519B2
JP5369519B2 JP2008178793A JP2008178793A JP5369519B2 JP 5369519 B2 JP5369519 B2 JP 5369519B2 JP 2008178793 A JP2008178793 A JP 2008178793A JP 2008178793 A JP2008178793 A JP 2008178793A JP 5369519 B2 JP5369519 B2 JP 5369519B2
Authority
JP
Japan
Prior art keywords
electrode layer
film
electrode
lower electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008178793A
Other languages
Japanese (ja)
Other versions
JP2010021234A (en
Inventor
俊幸 中磯
裕 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008178793A priority Critical patent/JP5369519B2/en
Publication of JP2010021234A publication Critical patent/JP2010021234A/en
Application granted granted Critical
Publication of JP5369519B2 publication Critical patent/JP5369519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor which reduces the ESR (equivalent series resistance). <P>SOLUTION: The capacitor is provided with (a) a pair of electrode layers 15 and 17, (b) a dielectric layer 16 disposed between a pair of the electrode layers 15 and 17 and (c) a pair of lead out electrodes 30s and 32; 30t and 34 connected to a pair of the electrode layers 15 and 17. One electrode layer 15 has (i) a center part 15p, overlapping a capacity-generating part, where a pair of the electrode layers 15 and 17 confront each other through the dielectric layer 16, when it is viewed via from a direction, where the electrode layers 15 and 17 and the dielectric layer 16 are laminated and (ii) a periphery part 15q, which extends outward from the center part and continuously surrounds the center part over the whole circumference. One extraction electrode 30s is connected to a periphery part 15s of one electrode layer 15 at one part, and a connection face continuously surrounds the center part 15p over the entire circumference. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明はコンデンサに関し、特に可変コンデンサに好適な、コンデンサの構造に関する。   The present invention relates to a capacitor, and more particularly to a capacitor structure suitable for a variable capacitor.

従来、一対の電極層の間に誘電体層が配置された構造のコンデンサが種々提案されている。   Conventionally, various capacitors having a structure in which a dielectric layer is disposed between a pair of electrode layers have been proposed.

例えば図20の断面図に示す可変コンデンサは、支持基板1上に、下部電極層2、誘電体層3、上部電極層4及び保護層5が積層され、下部電極層2及び上部電極層4の間に誘電体層3が配置された平行平板型の可変コンデンサである。誘電体層3には、(Ba,Sr)TiOなどの容量変化率の高い強誘電体系薄膜材料が用いられる。下部電極層2及び上部電極層4には、誘電体層3の誘電体薄膜形成時の高温酸化雰囲気に対する耐性はあるが比抵抗の高いPtなどが用いられる。下部電極層2及び上部電極層4は、それぞれ、保護層5に形成された単一のスルーホール(貫通孔)に配置された半田ボールや金属バンプなどの外部端子6,7を介して、外部回路に接続される(例えば、特許文献1参照)。
特開2002−329641号公報
For example, in the variable capacitor shown in the sectional view of FIG. 20, the lower electrode layer 2, the dielectric layer 3, the upper electrode layer 4, and the protective layer 5 are laminated on the support substrate 1, and the lower electrode layer 2 and the upper electrode layer 4 are formed. A parallel plate type variable capacitor having a dielectric layer 3 disposed therebetween. For the dielectric layer 3, a ferroelectric thin film material having a high capacitance change rate such as (Ba, Sr) TiO 3 is used. For the lower electrode layer 2 and the upper electrode layer 4, Pt or the like that has resistance to a high-temperature oxidation atmosphere when forming the dielectric thin film of the dielectric layer 3 but has a high specific resistance is used. The lower electrode layer 2 and the upper electrode layer 4 are externally connected via external terminals 6 and 7 such as solder balls and metal bumps disposed in a single through hole (through hole) formed in the protective layer 5. It is connected to a circuit (see, for example, Patent Document 1).
JP 2002-329641 A

理想的なコンデンサならば、周波数が高くなるとインピーダンスは低くなる。しかし、実際のコンデンサでは、ある周波数までは、周波数が高くなるにつれてインピーダンスが次第に低くなるものの、ある周波数を越えると、周波数が高くなるにつれてインピーダンスが次第に高くなる。インピーダンスの最下点は、等価直列抵抗(Equivalent Series Resistance、以下「ESR」と言う。)と呼ばれている。   For an ideal capacitor, the impedance decreases as the frequency increases. However, in an actual capacitor, the impedance gradually decreases as the frequency increases up to a certain frequency. However, when the frequency exceeds a certain frequency, the impedance gradually increases as the frequency increases. The lowest point of the impedance is called an equivalent series resistance (hereinafter referred to as “ESR”).

例えば、高周波用可変コンデンサに、図20のように下部電極層2から外部端子6で引き出す構造を採用すると、ESRが大きくなり、ESRの影響により高周波帯での損失が増大する問題点がある。   For example, if a structure for pulling out from the lower electrode layer 2 by the external terminal 6 as shown in FIG. 20 is adopted for the high frequency variable capacitor, there is a problem that ESR increases and loss in the high frequency band increases due to the influence of ESR.

すなわち、高周波用可変コンデンサは、容量密度が高ければ高いほどよい一般の薄膜コンデンサとは異なり、数pFから十数pFの容量値が10V以下の制御電圧で数十%の可変率を有することが要求される。必要な容量発生部の面積は、30μm×30μmより小さく、数十から数百μmであり、高い加工精度が要求される。 That is, the high-frequency variable capacitor has a variable rate of several tens of percent at a control voltage of 10 V or less, with a capacitance value of several pF to several tens of pF, unlike a general thin film capacitor having a higher capacitance density. Required. The area of the required capacity generating portion is smaller than 30 μm × 30 μm and is several tens to several hundreds μm 2 , and high processing accuracy is required.

下部電極層を外部接続端子と接続するための引き出し電極用スルーホールは、従来は、後述する比較例の図17〜図19、特に図17(c)及び図19(b)において符号22qで示すように、容量発生部よりも下部電極用外部接続端子に近い方にのみ形成されている。   Conventionally, the lead-through hole for connecting the lower electrode layer to the external connection terminal is indicated by reference numeral 22q in FIGS. 17 to 19, particularly FIGS. 17C and 19B, which will be described later. Thus, it is formed only in the direction closer to the external connection terminal for the lower electrode than the capacitance generating portion.

可変コンデンサの高周波での損失は、誘電ロス以外に、導電ロスにも強く影響を受ける。特に、低容量素子になると容量発生部が小さくなる影響で、引き出し電極と上下の電極層との接続部の面積が狭くなるなどして配線抵抗が増大するため、特性劣化(高周波での損失増大)が起こる。   The loss at high frequency of the variable capacitor is strongly influenced by the conductive loss in addition to the dielectric loss. In particular, in the case of a low-capacitance element, the capacitance generation portion becomes smaller, and the area of the connection portion between the extraction electrode and the upper and lower electrode layers is reduced, resulting in an increase in wiring resistance. ) Occurs.

上下の電極層、特に下部電極材料は誘電体薄膜形成時の高温酸化雰囲気での耐性があるPtやPdなどを用いるが、これらは比抵抗の高い材料である。   The upper and lower electrode layers, particularly the lower electrode material, use Pt, Pd, or the like that is resistant in a high-temperature oxidizing atmosphere when forming the dielectric thin film, but these are materials with high specific resistance.

以上の観点から、導電ロスが少なくなるような素子構造が求められる。   From the above viewpoint, an element structure that reduces the conductive loss is required.

本発明は、かかる実情に鑑み、ESRを低減することができるコンデンサを提供しようとするものである。   In view of such circumstances, the present invention is intended to provide a capacitor capable of reducing ESR.

本発明は、上記課題を解決するために、以下のように構成したコンデンサを提供する。   In order to solve the above problems, the present invention provides a capacitor configured as follows.

コンデンサは、(a)一対の電極層と、(b)該一対の電極層の間に配置された誘電体層と、(c)前記電極層にそれぞれ接続された一対の引き出し電極とを備える。一方の前記電極層は、前記電極層及び前記誘電体層の積層方向から透視したとき、(i)前記一対の電極層が前記誘電体層を介して対向する容量発生部に重なる中心部と、(ii)該中心部から外側に延在し、かつ前記中心部を全周に渡って連続的に取り囲む外周部とを有する。一方の前記引き出し電極は、前記一方の電極層の前記外周部の前記一方の電極層に関して前記誘電体層側に1箇所で接続され、当該接続面は前記中心部を全周に渡って連続的に取り囲む。前記一方の引き出し電極は、第1及び第2の電極膜を含む。前記第1の電極膜は、前記一方の電極層に前記接続面で接続され、ドーナツ状に形成されている。前記第2の電極膜は、前記第1の電極膜の前記接続面とは反対側の端面に、半月状に接続されている。 The capacitor includes (a) a pair of electrode layers, (b) a dielectric layer disposed between the pair of electrode layers, and (c) a pair of lead electrodes respectively connected to the electrode layers. When one of the electrode layers is seen through from the stacking direction of the electrode layer and the dielectric layer, (i) a central portion where the pair of electrode layers overlaps a capacitance generating portion opposed via the dielectric layer; (Ii) an outer peripheral portion extending outward from the central portion and continuously surrounding the central portion over the entire circumference. One of the lead electrodes is connected to the dielectric layer side at one location with respect to the one electrode layer of the outer peripheral portion of the one electrode layer, and the connection surface is continuous over the entire circumference of the central portion. Surround with . Before Symbol One of the extraction electrode includes first and second electrode films. The first electrode film is connected to the one electrode layer at the connection surface and is formed in a donut shape. The second electrode film is connected in a half-moon shape to an end surface of the first electrode film opposite to the connection surface.

上記構成によれば、コンデンサの一対の電極層の間に高周波電圧が印加されると、一方の電極層において、電流は、外周部に形成された一方の引き出し電極との接続面と中心部との間を、放射状にかつ均等に流れる。一方の電極層において、中心部と一方の引き出し電極との接続面との間の電流パスが増え、導電ロスが小さくなるため、ESRを低減し、高周波帯での損失が低減することができる。   According to the above configuration, when a high-frequency voltage is applied between the pair of electrode layers of the capacitor, the current flows in one electrode layer from the connection surface and the central portion with one lead electrode formed on the outer peripheral portion. Flows radially and evenly. In one electrode layer, the number of current paths between the central portion and the connection surface of the one extraction electrode is increased, and the conductive loss is reduced. Therefore, ESR can be reduced, and loss in a high frequency band can be reduced.

本発明のコンデンサは、ESRを低減することができる。   The capacitor of the present invention can reduce ESR.

以下、本発明の実施の形態について、図1〜図19を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

<実施例1> 実施例1の可変コンデンサ10について、図1〜図8を参照しながら説明する。図1及び図2は、製造工程を示す断面図である。図3〜図8は、製造途中の要部平面図である。図1及び図2は、図3〜図8の線A−Aに沿って切断した断面図である。   Example 1 A variable capacitor 10 of Example 1 will be described with reference to FIGS. FIG.1 and FIG.2 is sectional drawing which shows a manufacturing process. 3-8 is a principal part top view in the middle of manufacture. 1 and 2 are cross-sectional views taken along line AA in FIGS.

まず、実施例1の可変コンデンサ10の概要を説明する。   First, an outline of the variable capacitor 10 according to the first embodiment will be described.

図2(h)の断面図に示すように、実施例1の可変コンデンサ10は、基板12上に、上部電極層17と下部電極層15との間に誘電体層16が挟まれたキャパシタ構造を有し、上部電極層17と下部電極層15とは、それぞれ、引き出し電極30a,32;30b,34を介して、外部電極32s,34sに電気的に接続されている。   As shown in the cross-sectional view of FIG. 2H, the variable capacitor 10 according to the first embodiment has a capacitor structure in which a dielectric layer 16 is sandwiched between an upper electrode layer 17 and a lower electrode layer 15 on a substrate 12. The upper electrode layer 17 and the lower electrode layer 15 are electrically connected to the external electrodes 32s and 34s via the extraction electrodes 30a and 32; 30b and 34, respectively.

積層方向から透視すると、図3の平面図に示すように、下部電極層15は、上部電極層17と下部電極層15とが誘電体層16を介して対向する容量発生部18に重なる中心部15pと、中心部15pから外側に延在し、中心部15pを全周に渡って連続的に取り囲む外周部15qとを有している。積層方向から透視すると、下部電極層15の中心部15pは上部電極層17に重なる部分であり、下部電極層15の外周部15qは、円形の下部電極層15のうち円形の中心部15p以外のドーナツ状の部分である。   When seen through from the stacking direction, as shown in the plan view of FIG. 3, the lower electrode layer 15 has a central portion where the upper electrode layer 17 and the lower electrode layer 15 overlap the capacitance generating portion 18 facing each other through the dielectric layer 16. 15p and an outer peripheral portion 15q extending outward from the central portion 15p and continuously surrounding the central portion 15p over the entire circumference. When seen through from the stacking direction, the central portion 15p of the lower electrode layer 15 is a portion overlapping the upper electrode layer 17, and the outer peripheral portion 15q of the lower electrode layer 15 is other than the circular central portion 15p of the circular lower electrode layer 15. It is a donut-shaped part.

そして、図2(h)の断面図と図4の要部平面図とに示すように、下部電極層15の外周部15qに、下部電極層15と外部電極34sとの間を接続する引き出し電極30bが1箇所で接続され、引き出し電極30bとの接続面15sは、中心部15pの外側を全周に渡って連続的に取り囲むように延在している。   Then, as shown in the cross-sectional view of FIG. 2H and the main part plan view of FIG. 4, an extraction electrode that connects the lower electrode layer 15 and the external electrode 34 s to the outer peripheral portion 15 q of the lower electrode layer 15. 30b is connected at one location, and the connection surface 15s with the extraction electrode 30b extends so as to continuously surround the outer side of the center portion 15p over the entire circumference.

これにより、コンデンサの一対の電極層15,17の間に高周波電圧が印加されると、下部電極層15において、電流は、外周部15qに形成された引き出し電極30bとの接続面15sと中心部15pとの間を、放射状にかつ均等に流れる。   Thus, when a high frequency voltage is applied between the pair of electrode layers 15 and 17 of the capacitor, the current flows in the lower electrode layer 15 from the connection surface 15s and the central portion with the extraction electrode 30b formed in the outer peripheral portion 15q. It flows radially and evenly between 15p.

また、参考例1として、図4の代わりに、図5の要部平面図に示すように、積層方向から透視したときに、下部電極層15の外周部15qに、下部電極層15と外部電極34sとの間を接続する引き出し電極が4か所以上(図5では4か所)に分割して接続され、接続面15kは、中心部15pを中心に、中心部15pのまわりに等間隔に(図5では90度ごとに)配置されている。 Further, as Reference Example 1 , instead of FIG. 4, the lower electrode layer 15 and the external electrode are arranged on the outer peripheral portion 15 q of the lower electrode layer 15 when seen through from the stacking direction as shown in the plan view of the main part of FIG. The connection electrode 15k is divided into four or more locations (four locations in FIG. 5) and connected, and the connection surface 15k is centered on the center portion 15p and is equally spaced around the center portion 15p. (It is every 90 degrees in FIG. 5).

この参考例1において、電極層15,17の間に高周波電圧が印加されると、下部電極層15において、電流は、外周部15qに形成された引き出し電極との接続面と中心部15pとの間を、略放射状にかつ略均等に流れる。 In this reference example 1 , when a high frequency voltage is applied between the electrode layers 15 and 17, in the lower electrode layer 15, the current flows between the connection surface with the extraction electrode formed in the outer peripheral portion 15q and the central portion 15p. Between them, it flows almost radially and substantially evenly.

このように、下部電極層15の外周部15qに、引き出し電極とを接続する接続面15s,15kを、中心部15pの周りに、ドーナツ状に配置し、あるいは4以上の等間隔に分割して配置することにより、キャパシタ構造と外部電極との間の相対的に比抵抗の高い下部電極層15における電流パスを増加させて電流を分散させ、導電ロスを小さくすることで、ESRを低減でき、高周波帯での損失を低減できる。   As described above, the connection surfaces 15s and 15k for connecting the extraction electrode to the outer peripheral portion 15q of the lower electrode layer 15 are arranged in a donut shape around the central portion 15p, or divided into four or more equal intervals. By disposing, the current path in the lower electrode layer 15 having a relatively high specific resistance between the capacitor structure and the external electrode is increased to disperse the current and reduce the conductive loss, thereby reducing the ESR. Loss in the high frequency band can be reduced.

次に、実施例1の可変コンデンサ10の製造工程及び作製例について、説明する。   Next, the manufacturing process and manufacturing example of the variable capacitor 10 of Example 1 will be described.

(1)まず、図1(a)に示すように、基板12上に、密着層14、下部電極層15、誘電体層16、上部電極層17を積層する。   (1) First, as shown in FIG. 1A, an adhesion layer 14, a lower electrode layer 15, a dielectric layer 16, and an upper electrode layer 17 are stacked on a substrate 12.

作製例では、表面にSiO膜が形成されたSiO/Si基板12上に、化学溶液堆積(CSD)法により、密着層14として、Ba0.7Sr0.3TiO(BST)薄膜を形成した。具体的には、化学量論組成のBST原料溶液を基板12のSiO膜上に塗布し、乾燥させ、650℃、30minの熱処理により結晶化させて、BST薄膜を得た。次いで、密着層14のBST薄膜上にスパッタリング法により膜厚300nmのPt膜を成膜し、下部電極層15とした。次いで、下部電極層15上に、誘電体層16として、密着層14のBST薄膜と同様にCSD法によりBST薄膜を形成した。すなわち、原料溶液を下部電極層15のPt膜上に塗布し、300〜400℃で乾燥させ、650℃、30minの熱処理により結晶化させてBST薄膜を得た。次いで、誘電体層16のBST薄膜上に、スパッタリング法で膜厚300nmのPt膜を成膜し、上部電極層17とした。 In the production example, a Ba 0.7 Sr 0.3 TiO 3 (BST) thin film is formed as an adhesion layer 14 on a SiO 2 / Si substrate 12 having a SiO 2 film formed on the surface by a chemical solution deposition (CSD) method. Formed. Specifically, a BST raw material solution having a stoichiometric composition was applied onto the SiO 2 film of the substrate 12, dried, and crystallized by a heat treatment at 650 ° C. for 30 minutes to obtain a BST thin film. Next, a 300-nm-thick Pt film was formed on the BST thin film of the adhesion layer 14 by sputtering to form the lower electrode layer 15. Next, a BST thin film was formed as the dielectric layer 16 on the lower electrode layer 15 by the CSD method in the same manner as the BST thin film of the adhesion layer 14. That is, the raw material solution was applied on the Pt film of the lower electrode layer 15, dried at 300 to 400 ° C., and crystallized by heat treatment at 650 ° C. for 30 minutes to obtain a BST thin film. Next, a 300 nm-thickness Pt film was formed on the BST thin film of the dielectric layer 16 by a sputtering method to form the upper electrode layer 17.

(2)次に、図1(b)に示すように、各層14〜17をパターニングして、容量発生部18を形成する。このとき、図3の要部平面図に示すように、積層方向から見ると、上部電極層17よりも大きく誘電体層16が形成され、誘電体層16よりも大きく下部電極層15が形成されている。容量発生部18は、上部電極層17と下部電極層15とが誘電体層16を介して対向する部分、すなわち、図3において上部電極層17に重なる部分である。下部電極層15は、積層方向から見ると、容量発生部18、すなわち上部電極層17に重なる中心部15pと、中心部15pから外側に延在し、かつ中心部15pを全周に渡って連続的に取り囲む外周部15qとを有している。   (2) Next, as shown in FIG. 1 (b), the layers 14 to 17 are patterned to form the capacitance generator 18. At this time, as shown in the plan view of the main part in FIG. 3, when viewed from the stacking direction, the dielectric layer 16 is formed larger than the upper electrode layer 17 and the lower electrode layer 15 is formed larger than the dielectric layer 16. ing. The capacitance generator 18 is a portion where the upper electrode layer 17 and the lower electrode layer 15 face each other with the dielectric layer 16 interposed therebetween, that is, a portion overlapping the upper electrode layer 17 in FIG. When viewed from the stacking direction, the lower electrode layer 15 has a central portion 15p that overlaps the capacitance generating portion 18, that is, the upper electrode layer 17, and extends outward from the central portion 15p, and is continuous over the entire circumference of the central portion 15p. And an outer peripheral portion 15q that surrounds it.

作製例では、レジストマスクを形成した後、イオンミリング法により上部電極層17とその下の誘電体層16、下部電極層15を順次ドライエッチングした。これを、キャパシタ構造とする。次いで、上記のキャパシタ構造を800℃、30minの条件で熱処理した。   In the manufacturing example, after forming a resist mask, the upper electrode layer 17, the dielectric layer 16 therebelow, and the lower electrode layer 15 were sequentially dry etched by ion milling. This is a capacitor structure. Next, the above capacitor structure was heat-treated at 800 ° C. for 30 minutes.

(3)次に、図1(c)に示すように、絶縁保護膜20と、1層目の有機保護膜22とを形成する。1層目の有機保護膜22には、上部電極層17の上に貫通孔22aを形成し、下部電極層15の外周部15qの上に貫通孔22bを形成する。   (3) Next, as shown in FIG. 1C, an insulating protective film 20 and a first organic protective film 22 are formed. In the first organic protective film 22, a through hole 22 a is formed on the upper electrode layer 17, and a through hole 22 b is formed on the outer peripheral portion 15 q of the lower electrode layer 15.

図4の要部平面図に示すように、積層方向から見たとき、貫通孔22bは、貫通孔22aの周囲を全周に渡って連続的に取り囲み、貫通孔22aを中心に点対称(回転対称)となるように、ドーナツ状に形成する。   As shown in the plan view of the main part of FIG. 4, when viewed from the stacking direction, the through hole 22b continuously surrounds the periphery of the through hole 22a over the entire circumference, and is point-symmetric (rotated) around the through hole 22a. It is formed in a donut shape so as to be symmetrical.

参考例1では、図5の要部平面図に示すように、下部電極層15の外周部15qの上に形成する貫通孔22cを、貫通孔22aを中心に4箇所又はそれ以上に分割し、貫通孔22aを中心に等間隔に形成する。 In Reference Example 1 , as shown in the plan view of the main part of FIG. 5, the through hole 22c formed on the outer peripheral part 15q of the lower electrode layer 15 is divided into four or more around the through hole 22a, The through holes 22a are formed at equal intervals around the center.

作製例では、キャパシタ構造の上面及び側面を覆うように、スパッタリング法により膜厚300nmの窒化シリコン(SiN)膜を成膜し、無機の絶縁保護膜20とした。次いで、絶縁保護膜20のSiN膜上に、感光性樹脂材料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、貫通孔22a,22bを有する第1の有機保護膜22として、膜厚2μmのポリイミド膜を得た。 In the manufacturing example, a silicon nitride (SiN x ) film having a film thickness of 300 nm was formed by a sputtering method so as to cover the upper surface and side surfaces of the capacitor structure, thereby forming the inorganic insulating protective film 20. Next, a photosensitive resin material is applied onto the SiN X film of the insulating protective film 20 by spin coating, and after drying, curing is performed through an exposure and development process, and the first organic protective film having the through holes 22a and 22b. As a result, a polyimide film having a thickness of 2 μm was obtained.

(4)次に、図1(d)に示すように、1層目の有機保護膜22の貫通孔22a,22bの底面に露出している部分の絶縁保護膜20を除去し、その下の部分の上部電極層17及び下部電極層15の一部17s,15sを露出させる。   (4) Next, as shown in FIG. 1D, the portion of the insulating protective film 20 exposed on the bottoms of the through holes 22a and 22b of the first organic protective film 22 is removed, The portions 17s and 15s of the upper electrode layer 17 and the lower electrode layer 15 are exposed.

作製例では、1層目の有機保護膜22であるポリイミド膜をマスクとして、CHFガスを用いて、矢印23で示すように貫通孔22a,22bを介して絶縁保護膜20のSiN膜をドライエッチングし、上部電極層17及び下部電極層15のPt膜の一部17s,15sを露出させる。 In the manufacturing example, the SiN X film of the insulating protective film 20 is formed through the through holes 22a and 22b as shown by the arrow 23 using CHF 3 gas using the polyimide film which is the first organic protective film 22 as a mask. Dry etching is performed to expose portions 17 s and 15 s of the Pt films of the upper electrode layer 17 and the lower electrode layer 15.

(5)次いで、図2(e)に示すように、上下電極引き出し用スルーホール埋め込み用電極膜30a,30bを形成する。このとき、図6の要部平面図に示すように、積層方向から見ると、上部電極層17に接続された電極膜30aの周りに、下部電極層15に接続された電極膜30bがドーナツ状に形成される。   (5) Next, as shown in FIG. 2 (e), electrode films 30a and 30b for embedding through-holes for extracting upper and lower electrodes are formed. At this time, as shown in the plan view of the main part of FIG. 6, when viewed from the stacking direction, the electrode film 30b connected to the lower electrode layer 15 is formed in a donut shape around the electrode film 30a connected to the upper electrode layer 17. Formed.

参考例1では、図示していないが、積層方向から見ると、上部電極層17に接続された電極膜の周りに、下部電極層15bに接続された4つ又はそれ以上の電極膜が等間隔(例えば90度ごと)に配置される。 In Reference Example 1 , although not shown, when viewed from the stacking direction, four or more electrode films connected to the lower electrode layer 15b are equally spaced around the electrode film connected to the upper electrode layer 17. (For example, every 90 degrees).

作製例では、スパッタリング法によりTi(膜厚100nm)、Cu(膜厚2000nm)を順次成膜した。次いで、フォトリソグラフィ法によってレジストマスクを形成し、表面に露出した部分のCu/Ti構造をイオンミリング法によりエッチングして、Cu/Tiからなる埋め込み用電極膜30a,30bを形成した。   In the manufacturing example, Ti (film thickness 100 nm) and Cu (film thickness 2000 nm) were sequentially formed by a sputtering method. Next, a resist mask was formed by photolithography, and the Cu / Ti structure exposed on the surface was etched by ion milling to form embedded electrode films 30a and 30b made of Cu / Ti.

(6)次に、図2(f)に示すように、2層目の有機保護膜24を形成する。このとき、図7の要部平面図に示すように、第2の有機保護膜24には、上部電極層17に接続された引き出し用電極膜30aの一部30sが露出する貫通孔24aと、下部電極層15に接続された引き出し用電極膜30bの一部30tが露出する半月状の貫通孔24bとを形成する。   (6) Next, as shown in FIG. 2F, a second-layer organic protective film 24 is formed. At this time, as shown in the plan view of the main part of FIG. 7, the second organic protective film 24 has a through hole 24a in which a part 30s of the extraction electrode film 30a connected to the upper electrode layer 17 is exposed, A half-moon-shaped through-hole 24b in which a part 30t of the extraction electrode film 30b connected to the lower electrode layer 15 is exposed is formed.

作製例では、感光性樹脂原料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、貫通孔24a,24bを有する2層目の有機保護膜24として、膜厚2μmのポリイミド膜を得た。   In the production example, a photosensitive resin material is applied by spin coating, dried, cured through an exposure and development process, and a 2 μm-thick polyimide film as the second organic protective film 24 having the through holes 24a and 24b. A membrane was obtained.

(7)次に、図2(g)に示すように、上下電極の引き出し電極膜32,34を形成する。このとき、図8の平面図に示すように、電極膜32,34が、それぞれ、電極膜30a,30bの露出面30s,30tに接続されるように形成する。   (7) Next, as shown in FIG. 2G, lead electrode films 32 and 34 for the upper and lower electrodes are formed. At this time, as shown in the plan view of FIG. 8, the electrode films 32 and 34 are formed so as to be connected to the exposed surfaces 30s and 30t of the electrode films 30a and 30b, respectively.

作製例では、スパッタリング法によりTi(膜厚100nm)、Cu(膜厚2000nm)を順次成膜した。次いで、フォトリソグラフィ法によってレジストマスクを形成し、表面に露出した部分のCu/Ti構造をイオンミリング法により除去して、Cu/Tiからなる引き出し電極膜32,34を形成した。   In the manufacturing example, Ti (film thickness 100 nm) and Cu (film thickness 2000 nm) were sequentially formed by a sputtering method. Next, a resist mask was formed by photolithography, and the Cu / Ti structure exposed on the surface was removed by ion milling to form extraction electrode films 32 and 34 made of Cu / Ti.

(8)次に、図2(h)に示すように、3層目の有機保護膜26を形成する。第3の有機保護膜26には、上下電極引き出し電極膜32,34の一部32s,34sが外部電極として露出する貫通孔26a,26bを形成する。   (8) Next, as shown in FIG. 2H, a third-layer organic protective film 26 is formed. In the third organic protective film 26, through holes 26a and 26b are formed in which parts 32s and 34s of the upper and lower electrode lead electrode films 32 and 34 are exposed as external electrodes.

作製例では、感光性樹脂原料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、貫通孔26a,26bを有する有機保護膜26として、膜厚2μmのポリイミド膜を得た。   In the production example, a photosensitive resin material was applied by spin coating, dried, and then cured through an exposure and development process, and a polyimide film having a thickness of 2 μm was obtained as the organic protective film 26 having through holes 26a and 26b. .

以上の工程で製造された可変コンデンサ10は、例えば、外部電極32s,34sに半田ボールや金属バンプなどの外部端子が形成され、回路基板などに実装される。   The variable capacitor 10 manufactured through the above steps is mounted on a circuit board or the like, for example, with external terminals such as solder balls and metal bumps formed on the external electrodes 32s and 34s.

参考例2参考例2の可変コンデンサ10aについて、図9〜図16を参照しながら説明する。図9及び図10は、製造工程を示す断面図である。図11〜図16は、製造途中の要部平面図である。図9及び図10は、図11〜図16の線B−Bに沿って切断した断面図である。 The variable capacitor 10a of the <Reference Example 2> Example 2 is described with reference to FIGS. 9 to 16. 9 and 10 are cross-sectional views showing the manufacturing process. FIGS. 11-16 is a principal part top view in the middle of manufacture. 9 and 10 are cross-sectional views taken along the line BB in FIGS. 11 to 16.

まず、参考例2の可変コンデンサ10aの概要を説明する。参考例2の可変コンデンサ10aは、実施例1の可変コンデンサ10と略同様に構成されている。 First, an outline of the variable capacitor 10a of Reference Example 2 will be described. The variable capacitor 10a of the reference example 2 is configured in substantially the same manner as the variable capacitor 10 of the first embodiment.

すなわち、図10(h)の断面図に示すように、基板12上に、上部電極層17xと下部電極層15xとの間に誘電体層16xが挟まれたキャパシタ構造を有し、上部電極層17xと下部電極層15xとは、それぞれ、引き出し電極を介して、外部電極32t,34tに電気的に接続されている。   That is, as shown in the cross-sectional view of FIG. 10H, the substrate 12 has a capacitor structure in which the dielectric layer 16x is sandwiched between the upper electrode layer 17x and the lower electrode layer 15x, and the upper electrode layer The 17x and the lower electrode layer 15x are electrically connected to the external electrodes 32t and 34t via extraction electrodes, respectively.

参考例2の可変コンデンサ10aは、実施例1の可変コンデンサ10と異なり、容量発生部18xが複数に分割されている。 Unlike the variable capacitor 10 of the first embodiment, the variable capacitor 10a of the reference example 2 is divided into a plurality of capacitance generators 18x.

すなわち、積層方向から見ると、図11の要部平面図に示すように、上部電極層17x及び誘電体層16xは4つに分割されている。下部電極層15xは、上部電極層17xと下部電極層15xとが誘電体層16xを介して対向する4か所の容量発生部18xに重なる中心部15uと、中心部15uの外側に外周部15vとを有する。外周部15vは、下部電極層15xのうち、中心部15uを除く部分であり、各中心部15uについて見ると、各中心部15uの周囲を全周に渡って連続的に取り囲む。   That is, when viewed from the stacking direction, the upper electrode layer 17x and the dielectric layer 16x are divided into four as shown in the plan view of the main part of FIG. The lower electrode layer 15x includes a central portion 15u where the upper electrode layer 17x and the lower electrode layer 15x face each other through the dielectric layer 16x and the four capacitance generating portions 18x, and an outer peripheral portion 15v outside the central portion 15u. And have. The outer peripheral portion 15v is a portion of the lower electrode layer 15x excluding the central portion 15u. When viewed from the respective central portions 15u, the outer peripheral portion 15v continuously surrounds the periphery of each central portion 15u over the entire periphery.

そして、下部電極層15xの外周部15vには、下部電極層15xと外部電極との間を接続する引き出し電極との接続面が複数個所に形成され、積層方向から透視すると、引き出し電極との接続面と容量発生部18xに重なる中心部15uとは、千鳥状に交互に配置されている。   The outer electrode portion 15v of the lower electrode layer 15x is formed with a plurality of connection surfaces with the extraction electrode connecting the lower electrode layer 15x and the external electrode. The surfaces and the central portions 15u overlapping the capacity generating portions 18x are alternately arranged in a staggered manner.

このように、下部電極層と引き出し電極とを接続する接続面と、容量発生部とを格子状又は千鳥状に交互に配置することにより、容量発生部と外部電極との間の相対的に比抵抗の高い下部電極層15における電流パスを増加させて電流を分散させ、導電ロスを小さくして、ESRが低減でき、高周波帯での損失を低減できる。   In this way, by arranging the connection surface connecting the lower electrode layer and the extraction electrode and the capacity generation section alternately in a lattice or zigzag pattern, the relative ratio between the capacity generation section and the external electrode is increased. The current path in the lower electrode layer 15 having a high resistance is increased to disperse the current, the conduction loss is reduced, the ESR can be reduced, and the loss in the high frequency band can be reduced.

次に、参考例2の可変コンデンサ10aの製造工程及び作製例について説明する。 Next, a manufacturing process and a manufacturing example of the variable capacitor 10a of Reference Example 2 will be described.

(1)まず、図9(a)に示すように、基板12上に、密着層14、下部電極層15、誘電体層16、上部電極層17を積層する。   (1) First, as shown in FIG. 9A, the adhesion layer 14, the lower electrode layer 15, the dielectric layer 16, and the upper electrode layer 17 are laminated on the substrate 12.

作製例では、表面にSiO膜が形成されたSiO/Si基板12上に、化学溶液堆積(CSD)法により、密着層14として、Ba0.7Sr0.3TiO(BST)薄膜を形成した。具体的には、化学量論組成のBST原料溶液を基板12のSiO膜上に塗布し、乾燥させ、650℃、30minの熱処理により結晶化させて、BST薄膜を得た。次いで、密着層14のBST薄膜上にスパッタリング法により膜厚300nmのPt膜を成膜し、下部電極層15とした。次いで、下部電極層15上に、誘電体層16として、密着層14のBST薄膜と同様にCSD法によりBST薄膜を形成した。すなわち、原料溶液を下部電極層15のPt膜上に塗布し、300〜400℃で乾燥させ、650℃、30minの熱処理により結晶化させてBST薄膜を得た。次いで、誘電体層16のBST薄膜上に、スパッタリング法で膜厚300nmのPt膜を成膜し、上部電極層17とした。 In the production example, a Ba 0.7 Sr 0.3 TiO 3 (BST) thin film is formed as an adhesion layer 14 on a SiO 2 / Si substrate 12 having a SiO 2 film formed on the surface by a chemical solution deposition (CSD) method. Formed. Specifically, a BST raw material solution having a stoichiometric composition was applied onto the SiO 2 film of the substrate 12, dried, and crystallized by a heat treatment at 650 ° C. for 30 minutes to obtain a BST thin film. Next, a 300-nm-thick Pt film was formed on the BST thin film of the adhesion layer 14 by sputtering to form the lower electrode layer 15. Next, a BST thin film was formed as the dielectric layer 16 on the lower electrode layer 15 by the CSD method in the same manner as the BST thin film of the adhesion layer 14. That is, the raw material solution was applied on the Pt film of the lower electrode layer 15, dried at 300 to 400 ° C., and crystallized by heat treatment at 650 ° C. for 30 minutes to obtain a BST thin film. Next, a 300 nm-thickness Pt film was formed on the BST thin film of the dielectric layer 16 by a sputtering method to form the upper electrode layer 17.

(2)次に、図9(b)に示すように、各層14〜17をパターニングして、複数の容量発生部18xを形成する。このとき、図11の平面図に示すように、積層方向から見ると、下部電極層15xは、複数に分割された上部電極層17x全体を含むように形成され、複数に分割された上部電極層17xのそれぞれについて、全周に渡って取り囲む。   (2) Next, as shown in FIG. 9B, the layers 14 to 17 are patterned to form a plurality of capacitance generating portions 18x. At this time, as shown in the plan view of FIG. 11, when viewed from the stacking direction, the lower electrode layer 15x is formed so as to include the entire upper electrode layer 17x divided into a plurality, and the upper electrode layer divided into a plurality of parts. Each 17x is surrounded over the entire circumference.

作製例では、レジストマスクを形成した後、イオンミリング法により上部電極層17xとその下の誘電体層16x、下部電極層15xを順次ドライエッチングした。これを、キャパシタ構造とする。次いで、上記のキャパシタ構造を800℃、30minの条件で熱処理した。   In the manufacturing example, after forming a resist mask, the upper electrode layer 17x, the dielectric layer 16x therebelow, and the lower electrode layer 15x were sequentially dry-etched by ion milling. This is a capacitor structure. Next, the above capacitor structure was heat-treated at 800 ° C. for 30 minutes.

(3)次に、図9(c)に示すように、絶縁保護膜20vと、1層目の有機保護膜22vとを形成する。このとき、1層目の有機保護膜22vには、上部電極層17xの上に貫通孔22xを形成し、下部電極層15xの外側領域の上に貫通孔22yを形成する。   (3) Next, as shown in FIG. 9C, an insulating protective film 20v and a first organic protective film 22v are formed. At this time, in the first organic protective film 22v, the through hole 22x is formed on the upper electrode layer 17x, and the through hole 22y is formed on the outer region of the lower electrode layer 15x.

このとき図12の要部平面図に示すように、貫通孔22xと貫通孔22yとは、交互に、千鳥状に形成する。   At this time, as shown in the plan view of the main part of FIG. 12, the through holes 22x and the through holes 22y are alternately formed in a staggered pattern.

参考例3では、図12の代わりに、図13の要部平面図に示すように、複数の貫通孔22xと1つの貫通孔22zとが形成され、各貫通孔22xの周りが貫通孔22zで囲まれる。 In Reference Example 3 , instead of FIG. 12, a plurality of through-holes 22x and one through-hole 22z are formed as shown in the plan view of the main part of FIG. 13, and the periphery of each through-hole 22x is a through-hole 22z. Surrounded.

作製例では、キャパシタ構造の上面及び側面を覆うように、スパッタリング法により膜厚300nmの窒化シリコン(SiN)膜を成膜し、無機の絶縁保護膜20vとした。次いで、絶縁保護膜20のSiN膜上に、感光性樹脂材料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、貫通孔22x,22yを有する第1の有機保護膜22vとして、膜厚2μmのポリイミド膜を得た。 In the manufacturing example, a 300 nm-thickness silicon nitride (SiN x ) film was formed by sputtering so as to cover the upper surface and side surfaces of the capacitor structure, thereby forming the inorganic insulating protective film 20v. Next, a photosensitive resin material is applied onto the SiN X film of the insulating protective film 20 by spin coating, and after drying, curing is performed through an exposure and development process, and the first organic protective film having the through holes 22x and 22y. A polyimide film having a thickness of 2 μm was obtained as 22v.

(4)次に、図9(d)に示すように、1層目の有機保護膜22vの貫通孔22x,22yの底面に露出する部分の絶縁保護膜20vを除去し、その下の部分の上部電極層17x及び下部電極層15xの一部17t,15tを露出させる。   (4) Next, as shown in FIG. 9 (d), the portion of the insulating protective film 20v exposed on the bottom surfaces of the through holes 22x and 22y of the first organic protective film 22v is removed, and the lower portion of the insulating protective film 20v is removed. Parts 17t and 15t of the upper electrode layer 17x and the lower electrode layer 15x are exposed.

作製例では、1層目の有機保護膜22vであるポリイミド膜をマスクとして、CHFガスを用いて、矢印23aで示すように貫通孔22x,22yを介して絶縁保護膜20vのSiN膜をドライエッチングし、有機保護膜22vの貫通孔22x,22zの底面に、上部電極層17x及び下部電極層15xのPt膜の一部17t,15tを露出させる。 In the manufacturing example, using the polyimide film which is the first organic protective film 22v as a mask, the SiN X film of the insulating protective film 20v is formed through the through holes 22x and 22y using CHF 3 gas as shown by an arrow 23a. Dry etching is performed to expose portions 17t and 15t of the Pt film of the upper electrode layer 17x and the lower electrode layer 15x on the bottom surfaces of the through holes 22x and 22z of the organic protective film 22v.

(5)次いで、図10(e)に示すように、上下電極引き出し用スルーホール埋め込み用電極膜31a,31bを形成する。このとき、図14の平面図に示すように、上部電極層17xに接続された電極膜31aの周りを取り囲むように、下部電極層15xに接続された電極膜31bが形成される。   (5) Next, as shown in FIG. 10 (e), upper and lower electrode lead-through through-hole filling electrode films 31a and 31b are formed. At this time, as shown in the plan view of FIG. 14, the electrode film 31b connected to the lower electrode layer 15x is formed so as to surround the electrode film 31a connected to the upper electrode layer 17x.

作製例では、スパッタリング法によりTi(膜厚100nm)、Cu(膜厚2000nm)を順次成膜した。次いで、フォトリソグラフィ法によってレジストマスクを形成し、表面に露出した部分のCu/Ti構造をイオンミリング法によりエッチングして、Cu/Tiからなる埋め込み配線膜を形成した。   In the manufacturing example, Ti (film thickness 100 nm) and Cu (film thickness 2000 nm) were sequentially formed by a sputtering method. Next, a resist mask was formed by photolithography, and a portion of the Cu / Ti structure exposed on the surface was etched by ion milling to form a buried wiring film made of Cu / Ti.

(6)次に、図10(f)に示すように、第2の有機保護膜24vを形成する。このとき、図15の平面図に示すように、第2の有機保護膜24には、下部電極引き出し電極膜31bの一部31tが露出する1つの貫通孔24yと、上部電極膜31aの一部31sが露出する4つの貫通孔24xとを形成する。   (6) Next, as shown in FIG. 10F, a second organic protective film 24v is formed. At this time, as shown in the plan view of FIG. 15, the second organic protective film 24 has one through hole 24y in which a part 31t of the lower electrode lead electrode film 31b is exposed and a part of the upper electrode film 31a. Four through holes 24x exposing 31s are formed.

作製例では、感光性樹脂原料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、貫通孔24x,24yを有する2層目の有機保護膜24vとして、膜厚2μmのポリイミド膜を得た。   In the production example, a photosensitive resin raw material is applied by spin coating, dried, cured through exposure and development steps, and a 2 μm-thick polyimide film is formed as a second organic protective film 24v having through holes 24x and 24y. A membrane was obtained.

(7)次に、図10(g)に示すように、上下電極の引き出し電極膜32a、34aを形成する。このとき、図16の平面図に示すように、電極膜32a,34aが、それぞれ、電極膜31a,31bの露出面に接続されるように形成する。   (7) Next, as shown in FIG. 10G, lead electrode films 32a and 34a for the upper and lower electrodes are formed. At this time, as shown in the plan view of FIG. 16, the electrode films 32a and 34a are formed so as to be connected to the exposed surfaces of the electrode films 31a and 31b, respectively.

作製例では、スパッタリング法によりTi(膜厚100nm)、Cu(膜厚2000nm)を順次成膜した。次いで、フォトリソグラフィ法によってレジストマスクを形成し、表面に露出した部分のCu/Ti構造をイオンミリング法により除去して、Cu/Tiからなる引き出し電極膜31a,31bを形成した。   In the manufacturing example, Ti (film thickness 100 nm) and Cu (film thickness 2000 nm) were sequentially formed by a sputtering method. Next, a resist mask was formed by photolithography, and the Cu / Ti structure exposed on the surface was removed by ion milling to form lead electrode films 31a and 31b made of Cu / Ti.

(7)次に、図10(h)に示すように、上下電極引き出し電極膜31a,31bの一部32t,34tが露出する貫通孔26x,26yを有する第3の有機保護膜26を形成する。上下電極引き出し電極膜のうち、貫通孔26x,26yから露出する部分32s,34sは、外部電極になる。   (7) Next, as shown in FIG. 10 (h), a third organic protective film 26 having through holes 26x and 26y through which parts 32t and 34t of the upper and lower electrode lead electrode films 31a and 31b are exposed is formed. . Of the upper and lower electrode lead electrode films, portions 32s and 34s exposed from the through holes 26x and 26y serve as external electrodes.

作製例では、感光性樹脂原料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、膜厚2μmのポリイミド膜を得た。   In the production example, a photosensitive resin raw material was applied by spin coating, dried, and then cured through an exposure and development process to obtain a polyimide film having a thickness of 2 μm.

以上の工程で製造された可変コンデンサ10aは、例えば、外部電極32t,34tに半田ボールや金属バンプなどの外部端子が形成され、回路基板などに実装される。   The variable capacitor 10a manufactured through the above steps is mounted on a circuit board or the like, for example, with external terminals such as solder balls and metal bumps formed on the external electrodes 32t and 34t.

<比較例> 従来の構造を有する比較例の可変コンデンサの製造工程及び作製例について、図17〜図19を参照しながら説明する。図17及び図18は、製造工程を示す断面図である。図19は、製造途中の要部平面図である。図17及び図18は、図19の線X−Xに沿って切断した断面図である。   <Comparative Example> A manufacturing process and a manufacturing example of a variable capacitor of a comparative example having a conventional structure will be described with reference to FIGS. 17 and 18 are cross-sectional views showing the manufacturing process. FIG. 19 is a plan view of an essential part during manufacture. 17 and 18 are cross-sectional views taken along line XX in FIG.

比較例の可変コンデンサは、実施例1略同様に製造される。   The variable capacitor of the comparative example is manufactured in substantially the same manner as in Example 1.

(1)まず、図17(a)に示すように、基板12上に、密着層14、下部電極層15、誘電体層16、上部電極層17を積層する。   (1) First, as shown in FIG. 17A, the adhesion layer 14, the lower electrode layer 15, the dielectric layer 16, and the upper electrode layer 17 are laminated on the substrate 12.

作製例では、表面にSiO膜が形成されたSiO/Si基板12上に、化学溶液堆積(CSD)法により密着層14としてBa0.7Sr0.3TiO(BST)薄膜を形成した。具体的には、化学量論組成のBSR原料溶液を基板12のSiO膜上に塗布し、乾燥させ、650℃、30minの熱処理により結晶化させてBST薄膜を得た。次いで、密着層14のBST薄膜上にスパッタリング法により膜厚300nmのPt膜を成膜し、下部電極層15とした。次いで、上記下部電極層15上に、誘電体層16として、密着層14のBST薄膜と同様にCSD法によりBST薄膜を形成した。すなわち、原料溶液を下部電極層15のPt膜上に塗布し、乾燥させ、650℃、30minの熱処理により結晶化させて、BST薄膜を得た。次いで、BST薄膜上にスパッタリング法で膜厚300nmのPt膜を成膜し、上部電極層17とした。 In the manufacturing example, a Ba 0.7 Sr 0.3 TiO 3 (BST) thin film is formed as the adhesion layer 14 on the SiO 2 / Si substrate 12 having a SiO 2 film formed on the surface by a chemical solution deposition (CSD) method. did. Specifically, a BSR raw material solution having a stoichiometric composition was applied onto the SiO 2 film of the substrate 12, dried, and crystallized by heat treatment at 650 ° C. for 30 minutes to obtain a BST thin film. Next, a 300-nm-thick Pt film was formed on the BST thin film of the adhesion layer 14 by sputtering to form the lower electrode layer 15. Next, a BST thin film was formed as a dielectric layer 16 on the lower electrode layer 15 by the CSD method in the same manner as the BST thin film of the adhesion layer 14. That is, the raw material solution was applied on the Pt film of the lower electrode layer 15, dried, and crystallized by heat treatment at 650 ° C. for 30 minutes to obtain a BST thin film. Next, a Pt film having a thickness of 300 nm was formed on the BST thin film by a sputtering method to form the upper electrode layer 17.

(2)次に、図17(b)に示すように、容量発生部18を形成する。このとき、図19(a)の要部平面図に示すように、積層方向から見ると、下部電極層15は、上部電極層17より大きく、上部電極層17を全周に渡って取り囲む。   (2) Next, as shown in FIG. At this time, as shown in the plan view of the main part of FIG. 19A, when viewed from the stacking direction, the lower electrode layer 15 is larger than the upper electrode layer 17 and surrounds the upper electrode layer 17 over the entire circumference.

作製例では、フォトリソグラフィ法によってレジストマスクを形成した後、イオンミリング法により上部電極層17とその下の誘電体層16、下部電極層15を順次ドライエッチングした。これをキャパシタ構造とする。このキャパシタ構造を、800℃、30minで熱処理した。   In the manufacturing example, after forming a resist mask by a photolithography method, the upper electrode layer 17, the dielectric layer 16 therebelow, and the lower electrode layer 15 were sequentially dry etched by an ion milling method. This is a capacitor structure. This capacitor structure was heat-treated at 800 ° C. for 30 minutes.

(3)次に、図17(c)に示すように、無機の絶縁保護膜20kと、1層目の有機保護膜22kとを形成する。このとき、1層目の有機保護膜22kには、上部電極層17の上に貫通孔22pを形成し、下部電極層15の上に貫通孔22qを形成する。このとき、図19(b)の要部平面図に示すように、貫通孔22qは、貫通孔22pの片側を取り囲むように、略C字状に形成する。   (3) Next, as shown in FIG. 17C, an inorganic insulating protective film 20k and a first organic protective film 22k are formed. At this time, in the first organic protective film 22k, a through hole 22p is formed on the upper electrode layer 17, and a through hole 22q is formed on the lower electrode layer 15. At this time, as shown in the plan view of the main part of FIG. 19B, the through hole 22q is formed in a substantially C shape so as to surround one side of the through hole 22p.

作製例では、キャパシタ構造の上面及び側面を覆うように、スパッタリング法により膜厚400nmの窒化シリコン(SiN)膜を成膜し、絶縁保護膜20とした。 In the manufacturing example, a silicon nitride (SiN x ) film having a thickness of 400 nm was formed by sputtering to cover the upper surface and side surfaces of the capacitor structure, thereby forming the insulating protective film 20.

次いで、絶縁保護膜20のSiN膜上に感光性樹脂原料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、貫通孔22p,22qを有する1層目の有機保護膜22として、膜厚2μmのポリイミド膜を得た。 Next, a photosensitive resin raw material is applied onto the SiN X film of the insulating protective film 20 by spin coating, dried, cured through exposure and development steps, and a first organic protective film having through holes 22p and 22q. As a result, a polyimide film having a thickness of 2 μm was obtained.

(4)次に、図18(d)に示すように、1層目の有機保護膜22kの貫通孔22p,22qの底面に露出している部分の絶縁保護膜20kを除去し、その下の部分の上部電極層17及び下部電極層15の一部17r,15rを露出させる。   (4) Next, as shown in FIG. 18 (d), the portion of the insulating protective film 20k exposed on the bottom surfaces of the through holes 22p and 22q of the first organic protective film 22k is removed, and the underlying layer is removed. The portions 17r and 15r of the upper electrode layer 17 and the lower electrode layer 15 are exposed.

作製例では、1層目の有機保護膜22kのポリイミド膜をマスクとして、CHFガスを用いて、矢印23で示すように絶縁保護膜20のSiNをドライエッチングし、上部電極層17及び下部電極層15のPt膜の一部17r,15rを露出させた。 In the manufacturing example, SiN X of the insulating protective film 20 is dry-etched as indicated by an arrow 23 using CHF 3 gas using the polyimide film of the first organic protective film 22k as a mask, and the upper electrode layer 17 and the lower electrode layer 17 The portions 17r and 15r of the Pt film of the electrode layer 15 were exposed.

(5)次に、図18(e)に示すように、上部電極層17及び下部電極層15からの引き出し電極膜32p,34pを形成する。このとき、図19(c)の平面図に示すように、電極膜32p,34pは、それぞれ、電極層17,15の露出面17r,15r全体に接続され、1層目の有機保護膜22k上では互いに逆方向に、それぞれ大きく形成される。   (5) Next, as shown in FIG. 18E, lead electrode films 32p and 34p from the upper electrode layer 17 and the lower electrode layer 15 are formed. At this time, as shown in the plan view of FIG. 19C, the electrode films 32p and 34p are connected to the entire exposed surfaces 17r and 15r of the electrode layers 17 and 15, respectively, and on the first organic protective film 22k. Then, they are formed large in opposite directions.

作製例では、スパッタリング法によりTi(膜厚100nm)、Cu(膜厚2000nm)を順次成膜した。次にフォトリソグラフィ法によってレジストマスクを形成し、表面に露出した部分のCu/Ti構造をイオンミリング法により除去してCu/Tiからなる引き出し電極32p,34pを形成した。   In the manufacturing example, Ti (film thickness 100 nm) and Cu (film thickness 2000 nm) were sequentially formed by a sputtering method. Next, a resist mask was formed by photolithography, and portions of the Cu / Ti structure exposed on the surface were removed by ion milling to form lead electrodes 32p and 34p made of Cu / Ti.

(6)次に、図18(f)に示すように、2層目の有機保護膜28を形成する。2層目の有機保護膜28には、引き出し電極膜32p,34pの一部が露出する貫通孔28a,28bを形成する。   (6) Next, as shown in FIG. 18F, a second-layer organic protective film 28 is formed. In the second organic protective film 28, through holes 28a and 28b are formed through which parts of the extraction electrode films 32p and 34p are exposed.

作製例では、感光性樹脂原料をスピンコートで塗布し、乾燥後、露光、現像工程を経てキュアを行い、貫通孔28a,28bを有する2層目の有機保護膜28として、膜厚2μmのポリイミド膜を得た。   In the production example, a photosensitive resin raw material is applied by spin coating, dried, cured through an exposure and development process, and a 2 μm-thick polyimide film as the second organic protective film 28 having the through holes 28a and 28b. A membrane was obtained.

<検討> 上部電極層17の合計面積を225μmと同じにした、実施例1、参考例2及び比較例のそれぞれの作製例について、有限要素法によりESRを計算した。計算条件は次の通りである。
素子サイズ 0.5×0.2mm
メッシュサイズ 10μm
計算周波数 2GHz
ESRの測定 素子長手方向の両端で計算
引き出し電極間の距離 図2(h)の30aと30bの距離
34の長手方向の長さ
34の上下方向の長さ
は各条件で一定にして計算。
<Examination> ESR was calculated by the finite element method for each of the production examples of Example 1, Reference Example 2, and Comparative Example, in which the total area of the upper electrode layer 17 was the same as 225 μm 2 . The calculation conditions are as follows.
Element size 0.5 × 0.2mm
Mesh size 10μm
Calculation frequency 2GHz
Measurement of ESR Calculated at both ends in the longitudinal direction of the element Distance between extraction electrodes Distance between 30a and 30b in FIG. 2 (h) Length in the longitudinal direction of 34 Calculated by making the length in the vertical direction of 34 constant in each condition.

計算結果を、次の表1に示す。

Figure 0005369519
The calculation results are shown in Table 1 below.
Figure 0005369519

この表1から、次のことが分かる。   From Table 1, the following can be understood.

下部電極層と引き出し電極との接続面の形状がドーナツ状である実施例1の構造と、下部電極層と引き出し電極との接続面を容量発生部の周りに等間隔で4箇所形成した参考例2の構造とは、いずれも、下部電極層と引き出し電極との接続面が容量発生部の片側1か所のみに形成されている比較例に比べて、ESRが低減できる。 The structure of Example 1 in which the shape of the connection surface between the lower electrode layer and the extraction electrode is a donut shape, and a reference example in which four connection surfaces between the lower electrode layer and the extraction electrode are formed at equal intervals around the capacitance generating portion In any of the structures of 2 , the ESR can be reduced as compared with the comparative example in which the connection surface between the lower electrode layer and the extraction electrode is formed only at one location on one side of the capacitance generating portion.

また、上部電極及び容量発生部を複数に分割している参考例2の方が、上部電極及び容量発生部が1か所のみである実施例1と比べると、よりESRを低減できる。これは、参考例2の方が、実施例1よりも電流パスが増加して電流がより分散されるためである。 Further, the reference example 2 in which the upper electrode and the capacity generation part are divided into a plurality of parts can further reduce the ESR as compared with the example 1 in which the upper electrode and the capacity generation part are only one place. This is because the current path is increased and the current is more dispersed in the reference example 2 than in the first embodiment.

<まとめ> 下部電極引き出し部を、上部電極を中心としたドーナツ状などにすること、または容量発生部を複数個に分割し、上下電極の引き出し部を千鳥状に配置することにより、容量発生部−下部電極引き出し部間の比抵抗の高い下部電極における電流パスを増加させて電流を分散させる。その結果、ESRが低減でき、高周波帯での損失を低減できる。容量発生部を複数個に分割し、上下電極の引き出し部を格子状もしくは千鳥状に引き出すことにより、さらに低損失な素子が提供できるようになる。   <Summary> By forming the lower electrode lead portion into a donut shape with the upper electrode as the center, or by dividing the capacitance generation portion into a plurality of portions and arranging the upper and lower electrode lead portions in a staggered manner, the capacitance generation portion -Disperse the current by increasing the current path in the lower electrode having a high specific resistance between the lower electrode lead portions. As a result, ESR can be reduced, and loss in the high frequency band can be reduced. By dividing the capacitance generating portion into a plurality of portions and pulling out the leading portions of the upper and lower electrodes in a lattice shape or a staggered shape, a further low loss element can be provided.

また、より薄い下部電極膜厚で同等の導電ロスの素子を得ることができる。   Further, an element having the same conductive loss can be obtained with a thinner lower electrode film thickness.

なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications.

例えば、本発明は、可変コンデンサ以外の種々のタイプのコンデンサに適用することができる。   For example, the present invention can be applied to various types of capacitors other than variable capacitors.

また、下部電極引き出し部を分割する場合には、2箇所以上に分割し、均等に配置すればよい。例えば2箇所に分割する場合は、それぞれの下部電極引き出し部を略C字状に形成してもよい。3箇所に分割する場合には、下部電極引き出し部を120度ごとに配置すればよい。   In addition, when the lower electrode lead-out portion is divided, it may be divided into two or more places and arranged evenly. For example, when dividing into two places, each lower electrode lead-out part may be formed in a substantially C shape. In the case of dividing into three places, the lower electrode lead portions may be arranged every 120 degrees.

可変コンデンサの製造工程を示す断面図である。(実施例1)It is sectional drawing which shows the manufacturing process of a variable capacitor. Example 1 可変コンデンサの製造工程を示す断面図である。(実施例1)It is sectional drawing which shows the manufacturing process of a variable capacitor. Example 1 可変コンデンサの製造途中の要部平面図である。(実施例1)It is a principal part top view in the middle of manufacture of a variable capacitor. Example 1 可変コンデンサの製造途中の要部平面図である。(実施例1)It is a principal part top view in the middle of manufacture of a variable capacitor. Example 1 可変コンデンサの製造途中の要部平面図である。(参考例1It is a principal part top view in the middle of manufacture of a variable capacitor. ( Reference Example 1 ) 可変コンデンサの製造途中の要部平面図である。(実施例1)It is a principal part top view in the middle of manufacture of a variable capacitor. Example 1 可変コンデンサの製造途中の要部平面図である。(実施例1)It is a principal part top view in the middle of manufacture of a variable capacitor. Example 1 可変コンデンサの製造途中の要部平面図である。(実施例1)It is a principal part top view in the middle of manufacture of a variable capacitor. Example 1 可変コンデンサの製造工程を示す断面図である。(参考例2It is sectional drawing which shows the manufacturing process of a variable capacitor. ( Reference Example 2 ) 可変コンデンサの製造工程を示す断面図である。(参考例2It is sectional drawing which shows the manufacturing process of a variable capacitor. ( Reference Example 2 ) 可変コンデンサの製造途中の要部平面図である。(参考例2It is a principal part top view in the middle of manufacture of a variable capacitor. ( Reference Example 2 ) 可変コンデンサの製造途中の要部平面図である。(参考例2It is a principal part top view in the middle of manufacture of a variable capacitor. ( Reference Example 2 ) 可変コンデンサの製造途中の要部平面図である。(参考例2It is a principal part top view in the middle of manufacture of a variable capacitor. ( Reference Example 2 ) 可変コンデンサの製造途中の要部平面図である。(参考例2It is a principal part top view in the middle of manufacture of a variable capacitor. ( Reference Example 2 ) 可変コンデンサの製造途中の要部平面図である。(参考例3It is a principal part top view in the middle of manufacture of a variable capacitor. ( Reference Example 3 ) 可変コンデンサの製造途中の要部平面図である。(参考例2It is a principal part top view in the middle of manufacture of a variable capacitor. ( Reference Example 2 ) 可変コンデンサの製造工程を示す断面図である。(比較例)It is sectional drawing which shows the manufacturing process of a variable capacitor. (Comparative example) 可変コンデンサの製造工程を示す断面図である。(比較例)It is sectional drawing which shows the manufacturing process of a variable capacitor. (Comparative example) 可変コンデンサの製造途中の要部平面図である。(比較例)It is a principal part top view in the middle of manufacture of a variable capacitor. (Comparative example) 可変コンデンサの断面図である。(従来例)It is sectional drawing of a variable capacitor. (Conventional example)

符号の説明Explanation of symbols

12 基板
15,15x 下部電極層
15p 中心部
15q 外周部
15s,15t 接続面
15u 中心部
15v 外周部
16,16x 誘電体層
17,17x 上部電極層
18,18z 容量発生部
20 絶縁保護膜
22,22v 有機保護膜
24,24v 有機保護膜
26 有機保護膜
30a 電極膜(引き出し電極)
30b 電極膜(一方の引き出し電極、第1の電極膜
31a,31b 電極膜(引き出し電極)
32,32a 電極膜(引き出し電極)
32s,32t 外部電極
34 電極膜(一方の引き出し電極、第2の電極膜)
34a 電極膜(引き出し電極)
34s,34t 外部電極
12 Substrate 15, 15x Lower electrode layer 15p Center part 15q Outer part 15s, 15t Connection surface 15u Center part 15v Outer part 16, 16x Dielectric layer 17, 17x Upper electrode layer 18, 18z Capacitance generating part 20 Insulating protective film 22, 22v Organic protective film 24, 24v Organic protective film 26 Organic protective film 30a Electrode film (extraction electrode)
30b Electrode film ( one extraction electrode , first electrode film )
31a, 31b Electrode film (extraction electrode)
32, 32a Electrode film (extraction electrode)
32s, 32t External electrode 34 electrode film (one extraction electrode, second electrode film)
34a Electrode film (extraction electrode)
34s, 34t External electrode

Claims (1)

一対の電極層と、
該一対の電極層の間に配置された誘電体層と、
前記電極層にそれぞれ接続された一対の引き出し電極と、
を備えたコンデンサであって、
一方の前記電極層は、前記電極層及び前記誘電体層の積層方向から透視したとき、前記一対の電極層が前記誘電体層を介して対向する容量発生部に重なる中心部と、該中心部から外側に延在し、かつ前記中心部を全周に渡って連続的に取り囲む外周部とを有し、
一方の前記引き出し電極は、前記一方の電極層の前記外周部の前記一方の電極層に関して前記誘電体層側に1箇所で接続され、当該接続面は前記中心部を全周に渡って連続的に取り囲み、
前記一方の引き出し電極は、
前記一方の電極層に前記接続面で接続され、ドーナツ状に形成された第1の電極膜と、
前記第1の電極膜の前記接続面とは反対側の端面に半月状に接続された第2の電極膜とを含むことを特徴とする、コンデンサ。
A pair of electrode layers;
A dielectric layer disposed between the pair of electrode layers;
A pair of lead electrodes respectively connected to the electrode layers;
A capacitor with
One of the electrode layers includes a central portion where the pair of electrode layers overlaps a capacitance generating portion opposed to each other through the dielectric layer when viewed from the stacking direction of the electrode layer and the dielectric layer, and the central portion An outer peripheral portion extending outward from the outer periphery and continuously surrounding the central portion over the entire circumference,
One of the lead electrodes is connected to the dielectric layer side at one location with respect to the one electrode layer of the outer peripheral portion of the one electrode layer, and the connection surface is continuous over the entire circumference of the central portion. enclose take in,
The one extraction electrode is
A first electrode film connected to the one electrode layer at the connection surface and formed in a donut shape;
A capacitor comprising: a second electrode film connected in a half-moon shape to an end surface opposite to the connection surface of the first electrode film .
JP2008178793A 2008-07-09 2008-07-09 Capacitor Expired - Fee Related JP5369519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178793A JP5369519B2 (en) 2008-07-09 2008-07-09 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178793A JP5369519B2 (en) 2008-07-09 2008-07-09 Capacitor

Publications (2)

Publication Number Publication Date
JP2010021234A JP2010021234A (en) 2010-01-28
JP5369519B2 true JP5369519B2 (en) 2013-12-18

Family

ID=41705866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178793A Expired - Fee Related JP5369519B2 (en) 2008-07-09 2008-07-09 Capacitor

Country Status (1)

Country Link
JP (1) JP5369519B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135374B2 (en) 2010-03-24 2013-02-06 株式会社東芝 Capacitor, integrated device, high-frequency switching device, and electronic equipment
JP5589617B2 (en) * 2010-06-30 2014-09-17 Tdk株式会社 Thin film capacitor and manufacturing method thereof
CN207149415U (en) 2015-02-27 2018-03-27 株式会社村田制作所 Capacitor
WO2018003445A1 (en) * 2016-06-28 2018-01-04 株式会社村田製作所 Capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194472A (en) * 2006-01-20 2007-08-02 Shinko Electric Ind Co Ltd Method for manufacturing thin film capacitor
JP5040188B2 (en) * 2006-06-26 2012-10-03 株式会社村田製作所 Thin film device manufacturing method
JP4738299B2 (en) * 2006-09-20 2011-08-03 富士通株式会社 Capacitor, manufacturing method thereof, and electronic substrate
JP2008153335A (en) * 2006-12-15 2008-07-03 Matsushita Electric Ind Co Ltd Electronic component

Also Published As

Publication number Publication date
JP2010021234A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4930602B2 (en) Method for manufacturing thin film multilayer capacitor
JP4166013B2 (en) Thin film capacitor manufacturing method
US20170142838A1 (en) Laminated thin film capacitor
CN1871768A (en) Film acoustically-coupled transformers with enhanced common mode rejection
WO2012036017A1 (en) Dielectric thin film element, anti-fuse element, and method for producing dielectric thin film element
KR102167962B1 (en) Semiconductor structure having integrated inductor therein
US20230260697A1 (en) Thin film capacitor, its manufacturing method, and electronic circuit substrate having the thin film capacitor
TW200919705A (en) Stack capacitor in semiconductor device and method for fabricating the same
JP5369519B2 (en) Capacitor
JP2015070058A (en) Method of manufacturing multilayer thin film capacitor
JPWO2016158228A1 (en) Thin film capacitor
JPS63266809A (en) Integrated thin film capacitor
JP2009010114A (en) Dielectric thin-film capacitor
JP2011040571A (en) Dielectric thin film element
US20200219968A1 (en) Vertical capacitor structure, capacitor component, and method for manufacturing the vertical capacitor structure
JP2005123250A (en) Interposer, its manufacturing method and electronic device
US6716692B1 (en) Fabrication process and structure of laminated capacitor
TWI437689B (en) Semiconductor device
JP4628520B2 (en) Manufacturing method of electronic device mounting substrate
JP2009182188A (en) Chip coil and method for manufacturing same
US6830984B2 (en) Thick traces from multiple damascene layers
JP2007059624A (en) Capacitor and its manufacturing method
JP2014003167A (en) Electronic component
CN217847589U (en) Inductor component
KR102682841B1 (en) Thin film capacitor and electronic circuit board comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees