JP5369442B2 - Resin dispersion continuous coagulation method - Google Patents

Resin dispersion continuous coagulation method Download PDF

Info

Publication number
JP5369442B2
JP5369442B2 JP2008014065A JP2008014065A JP5369442B2 JP 5369442 B2 JP5369442 B2 JP 5369442B2 JP 2008014065 A JP2008014065 A JP 2008014065A JP 2008014065 A JP2008014065 A JP 2008014065A JP 5369442 B2 JP5369442 B2 JP 5369442B2
Authority
JP
Japan
Prior art keywords
blade
resin
space
resin dispersion
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008014065A
Other languages
Japanese (ja)
Other versions
JP2009173775A (en
Inventor
博幸 栴檀
良幸 田中
義之 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008014065A priority Critical patent/JP5369442B2/en
Publication of JP2009173775A publication Critical patent/JP2009173775A/en
Application granted granted Critical
Publication of JP5369442B2 publication Critical patent/JP5369442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous process for coagulation of resin dispersion, which can continuously coagulate even resin dispersion such as rubber latex without problems, resulting in resin coagulated particles having sizes within a given range. <P>SOLUTION: According to the present process for continuous coagulation of a resin dispersion, in a step for production of fat-coagulated particles, a resin dispersion and a coagulation solution are stirred and mixed by a comminuting blade 32 in a comminution space SPc, while the coagulated resin produced by stirring and mixing of the resin dispersion and the coagulation solution is comminuted with the comminuting blade, to sequentially produce resin coagulated particles having sizes within a defined range, which are continuously fed into a shear space sPs. Further, in a shear step, the resin coagulated particles are continuously delivered into an emission space SPe, while applying shear force onto the resin coagulated particles by fluid delivery blades 34a, 34b, 34c and a fixed blade 111 in the shear space. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、乳化液や懸濁液等の樹脂分散液を連続的に凝析して所定範囲内の大きさの樹脂凝析粒体を製造する方法に関する。   The present invention relates to a method for producing a resin coagulated granule having a size within a predetermined range by continuously coagulating a resin dispersion such as an emulsion or a suspension.

過去に「円筒形の外殻の内部空間に樹脂分散液と凝析液とを一定の割合で導き、その結果として生成する樹脂凝析体を、複数の攪拌翼が取り付けられた攪拌棒と、外殻の内周面から外殻の内側に向かって攪拌翼の間の空間まで延びる固定羽根とによって剪断して所定範囲の大きさの樹脂凝析粒子を連続的に製造する方法」が提案されている(例えば、特許文献1参照)。
特開昭57−146639号公報
In the past, “the resin dispersion liquid and the coagulation liquid are guided to the inner space of the cylindrical outer shell at a certain ratio, and the resulting resin coagulation is mixed with a stirring rod to which a plurality of stirring blades are attached, A method for continuously producing resin agglomerated particles in a predetermined range by shearing with a fixed blade extending from the inner peripheral surface of the outer shell to the space between the stirring blades toward the inner side of the outer shell '' (For example, refer to Patent Document 1).
JP-A-57-14639

しかし、上述のような方法を用いてゴムラテックスを凝析しゴム凝析粒子を得ようとすると、ゴムラテックスが凝析機の入口付近で柔らかい大きな塊となり、その塊が、攪拌翼と外殻との間に詰まったりする問題がある。   However, when the rubber latex is coagulated using the above-described method to obtain rubber coagulated particles, the rubber latex becomes a soft large mass near the inlet of the coagulator, and the mass is mixed with the stirring blade and the outer shell. There is a problem of clogging.

本発明の課題は、ゴムラテックスのような樹脂分散液であっても問題なく連続的に凝析して所定範囲の大きさの樹脂凝析粒体を得ることができる樹脂分散液連続凝析方法を提供することにある。   An object of the present invention is to provide a resin dispersion continuous coagulation method capable of continuously coagulating without problems even in the case of a resin dispersion such as rubber latex to obtain resin coagulation granules having a size within a predetermined range. Is to provide.

第1発明に係る樹脂分散液連続凝析方法は、樹脂凝析粒体製造工程及び剪断工程を備える。樹脂凝析粒体製造工程では、粉砕翼が配置される粉砕空間に第1通路を通じて樹脂分散液が第1流量で供給されると同時に第2通路を通じて凝析液が第2流量で供給され、粉砕空間において樹脂分散液と凝析液とが粉砕翼によって攪拌混合されると同時に樹脂分散液と凝析液との攪拌混合によって生成する樹脂凝析体が粉砕翼によって粉砕されて所定範囲内の大きさの樹脂凝析粒体が順次製造され、樹脂凝析粒体が剪断空間に連続的に送出される。なお、剪断空間は、粉砕空間に隣接する。また、ここにいう「翼」とは、軸周りに複数の羽根が取り付けられたものを意味する。剪断工程では、剪断空間に配置され樹脂凝析粒体を排出空間に送出する複数の流体搬送翼と、剪断空間を形成する円筒壁から円筒壁の軸に向かって延びる固定羽根とによって樹脂凝析粒体に剪断力が掛けられながら樹脂凝析粒体が連続的に排出空間に送出される。なお、排出空間は、剪断空間に隣接しており、粉砕空間には連通していない。また、流体搬送翼は、回転軸が粉砕翼の回転軸の延長線上にあるのが好ましい。   The resin dispersion continuous coagulation method according to the first invention includes a resin coagulation particle production process and a shearing process. In the resin coagulated particle production process, the resin dispersion liquid is supplied at the first flow rate through the first passage to the pulverization space where the pulverization blades are disposed, and at the same time, the coagulation liquid is supplied at the second flow rate through the second passage. In the pulverization space, the resin dispersion liquid and the coagulation liquid are stirred and mixed by the pulverization blade, and at the same time, the resin coagulate formed by the stirring and mixing of the resin dispersion liquid and the coagulation liquid is pulverized by the pulverization blade and within a predetermined range. Resin agglomerated particles having a size are sequentially produced, and the resin agglomerated particles are continuously delivered to the shearing space. Note that the shearing space is adjacent to the grinding space. In addition, the “wing” referred to here means one having a plurality of blades attached around the axis. In the shearing process, resin coagulation is performed by a plurality of fluid conveying blades arranged in the shearing space and sending resin coagulated particles to the discharge space, and fixed blades extending from the cylindrical wall forming the shearing space toward the axis of the cylindrical wall. The resin coagulated particles are continuously sent to the discharge space while a shearing force is applied to the particles. The discharge space is adjacent to the shearing space and does not communicate with the grinding space. Moreover, it is preferable that the rotation axis of the fluid conveying blade is on an extension line of the rotation shaft of the grinding blade.

この樹脂分散液連続凝析方法では、粉砕空間において樹脂分散液と凝析液との攪拌混合によって生成する樹脂凝析体が粉砕翼によって粉砕されて所定範囲内の大きさの樹脂凝析粒体が順次製造され、その後、剪断空間において流体搬送翼及び固定羽根によって樹脂凝析粒体に剪断力が掛けられながら樹脂凝析粒体が連続的に排出空間に送出される。つまり、この樹脂分散液連続凝析方法では、樹脂凝析体が粉砕翼によって所定範囲内の大きさの樹脂凝析粒体にされてから剪断空間に送出されることになる。したがって、この樹脂分散液連続凝析方法を利用すれば、ゴムラテックスのような樹脂分散液であっても問題なく連続的に凝析して所定範囲の大きさの樹脂凝析粒体を得ることができる。また、この樹脂分散液連続凝析方法では、粉砕空間において製造された樹脂凝析粒体が剪断空間において剪断される。このため、この樹脂分散液連続凝析方法を利用すれば、未凝析成分を順次減少させることができる。   In this resin dispersion continuous coagulation method, the resin coagulate produced by stirring and mixing the resin dispersion and coagulation liquid in the pulverization space is pulverized by the pulverization blade, and the resin coagulation granules having a size within a predetermined range. Are sequentially manufactured, and then the resin coagulated particles are continuously delivered to the discharge space while a shear force is applied to the resin coagulated particles by the fluid conveying blade and the fixed blade in the shear space. In other words, in this resin dispersion continuous coagulation method, the resin coagulation body is made into resin coagulation particles having a size within a predetermined range by the pulverization blade and then sent to the shearing space. Therefore, if this resin dispersion continuous coagulation method is used, even a resin dispersion such as rubber latex can be coagulated continuously without problems to obtain resin coagulated particles having a size within a predetermined range. Can do. Further, in this resin dispersion continuous coagulation method, the resin coagulation granules produced in the pulverization space are sheared in the shearing space. For this reason, if this resin dispersion continuous coagulation method is utilized, an uncoagulated component can be decreased sequentially.

なお、ここにいう「ゴムラテックス」は、合成ゴムラテックスであってもよいし、天然ゴムラテックスであってもよい。また、このゴムラテックスとしては、例えば、シリコーンゴムラテックス、エチレンプロピレンゴムラテックス、アクリロニトリルブタジエンゴムラテックス、スチレンブタジエンゴムラテックス、クロロプレンゴムラテックス、アクリルゴムラテックス、ブチルゴムラテックス、フッ素ゴムラテックス等が挙げられる。   The “rubber latex” mentioned here may be a synthetic rubber latex or a natural rubber latex. Examples of the rubber latex include silicone rubber latex, ethylene propylene rubber latex, acrylonitrile butadiene rubber latex, styrene butadiene rubber latex, chloroprene rubber latex, acrylic rubber latex, butyl rubber latex, and fluorine rubber latex.

また、ここにいう「凝析液」は、例えば、硫酸水溶液、塩酸水溶液、硝酸水溶液、硫酸アルミニウム水溶液、塩化アルミニウム水溶液、塩化マグネシウム水溶液、硫酸マグネシウム水溶液、塩化カルシウム水溶液、塩化アンモニウム水溶液、硝酸ナトリウム水溶液、カリミョウバン水溶液、PAC(ポリ塩化アルミニウム)水溶液等が挙げられる。なお、これらの中でも、硫酸アルミニウム水溶液が特に好ましい。   In addition, the “coagulation liquid” referred to here is, for example, sulfuric acid aqueous solution, hydrochloric acid aqueous solution, nitric acid aqueous solution, aluminum sulfate aqueous solution, aluminum chloride aqueous solution, magnesium chloride aqueous solution, magnesium sulfate aqueous solution, calcium chloride aqueous solution, ammonium chloride aqueous solution, sodium nitrate aqueous solution. , Potassium alum aqueous solution, PAC (polyaluminum chloride) aqueous solution and the like. Of these, an aqueous aluminum sulfate solution is particularly preferred.

第2発明に係る樹脂分散液連続凝析方法は、第1発明に係る樹脂分散液連続凝析方法であって、流体搬送翼の間の空間には、局所攪拌翼が配置されている。局所攪拌翼は、回転軸及び複数の羽根を有する。回転軸は、流体搬送翼の回転軸の延長線上にある。羽根は、回転軸を含む面に沿って延びる。そして、剪断力は、流体搬送翼、局所攪拌翼及び固定羽根によって発生される。   The resin dispersion continuous coagulation method according to the second invention is the resin dispersion continuous coagulation method according to the first invention, wherein local stirring blades are arranged in the space between the fluid conveying blades. The local stirring blade has a rotating shaft and a plurality of blades. The rotation axis is on an extension line of the rotation axis of the fluid conveying blade. The blades extend along a plane including the rotation axis. The shearing force is generated by the fluid conveying blade, the local stirring blade, and the fixed blade.

このため、この樹脂分散液連続凝析方法を利用すれば、流体搬送翼の間のシャフト部分に樹脂凝析粒体が付着するのを防止しつつ樹脂凝析粒体に対して良好に剪断力を加えることができる。   For this reason, if this resin dispersion continuous coagulation method is used, the resin coagulation particles are prevented from adhering to the shaft portion between the fluid conveying blades, and the resin coagulation particles have good shearing force. Can be added.

第3発明に係る樹脂分散液連続凝析方法は、第1発明又は第2発明に係る樹脂分散液連続凝析方法であって、逆流発生工程をさらに備える。逆流発生工程では、逆流発生翼が設けられる逆流空間において、第3通路を通って送出される凝析液が逆流発生翼によって排出空間に送出される。なお、逆流発生翼は、粉砕翼の回転軸の延長線上にある回転軸を有する。そして、この逆流発生翼は、樹脂凝析粒体の流れ方向と反対方向の流体流れを発生させる。そして、この結果、剪断空間から排出空間に流れ込む樹脂凝析粒体と、逆流空間から排出空間に流れ込む凝析液とは、混じり合って排出空間から系外に排出される。   The resin dispersion continuous coagulation method according to the third invention is the resin dispersion continuous coagulation method according to the first invention or the second invention, further comprising a backflow generation step. In the backflow generation process, in the backflow space where the backflow generation blade is provided, the coagulated liquid sent through the third passage is sent to the discharge space by the backflow generation blade. Note that the backflow generating blade has a rotating shaft that is on an extension of the rotating shaft of the grinding blade. And this backflow generation | occurrence | production blade | wing produces | generates the fluid flow of the direction opposite to the flow direction of a resin coagulation granule. As a result, the resin coagulated particles flowing from the shearing space into the discharge space and the coagulating liquid flowing from the backflow space into the discharge space are mixed and discharged out of the system from the discharge space.

このため、この樹脂分散液連続凝析方法を利用すれば、逆流空間に後壁があった場合、樹脂凝析粒体が後壁に付着するのを防止することができる。また、この樹脂分散液連続凝析方法を利用すれば、逆流空間の後に翼の駆動機構が存在する場合、樹脂凝析粒体が駆動機構に侵入するのを防止することができる。   For this reason, if this resin dispersion continuous coagulation method is utilized, when there is a rear wall in the backflow space, it is possible to prevent the resin coagulated particles from adhering to the rear wall. Further, if this resin dispersion continuous coagulation method is used, it is possible to prevent the resin coagulated particles from entering the drive mechanism when the blade drive mechanism exists after the backflow space.

第4発明に係る樹脂分散液連続凝析方法は、第1発明から第3発明のいずれかに係る樹脂分散液連続凝析方法であって、粉砕翼は、複数の羽根を有する。羽根は、剪断空間に存在するシャフト端から粉砕空間に向かうに連れてシャフトの外周方向に向かって延びている。また、この羽根は、シャフトの長手方向に沿って見た場合においてシャフトの半径方向に対して所定角度傾斜するようにシャフトに取り付けられている。つまり、粉砕翼の反対側で方持ちされている。   The resin dispersion continuous coagulation method according to the fourth invention is the resin dispersion continuous coagulation method according to any of the first to third inventions, wherein the pulverization blade has a plurality of blades. The blades extend in the outer circumferential direction of the shaft from the shaft end existing in the shearing space toward the grinding space. Further, the blade is attached to the shaft so as to be inclined at a predetermined angle with respect to the radial direction of the shaft when viewed along the longitudinal direction of the shaft. In other words, it is held on the opposite side of the grinding blade.

このため、この樹脂分散液連続凝析方法では、粉砕翼が樹脂凝析粒体の粉砕空間から剪断空間への送出に貢献する。したがって、この樹脂分散液連続凝析方法を利用すれば、樹脂凝析粒体を粉砕空間から剪断空間にスムースに送り出すことができる。また、この樹脂分散液連続凝析方法では、粉砕空間にシャフト部等の変位しない物が存在しない。したがって、この樹脂分散液連続凝析方法を利用すれば、樹脂凝析粒体が粘着性を有している場合であっても、粉砕翼に樹脂凝析粒体が付着するおそれを低減することができる。   For this reason, in this resin dispersion continuous coagulation method, the pulverization blade contributes to the delivery of the resin coagulated particles from the pulverization space to the shearing space. Therefore, if this resin dispersion continuous coagulation method is used, the resin coagulated particles can be smoothly sent from the pulverization space to the shearing space. Further, in this resin dispersion continuous coagulation method, there is no non-displacement such as a shaft portion in the grinding space. Therefore, if this resin dispersion continuous coagulation method is used, even if the resin coagulated particles have adhesiveness, the risk of the resin coagulated particles adhering to the pulverization blade is reduced. Can do.

第5発明に係る樹脂分散液連続凝析方法は、第4発明に係る樹脂分散液連続凝析方法であって、シャフトには、粉砕翼に隣接する位置に、粉砕補助翼が取り付けられている。粉砕補助翼は、複数の羽根を有する。羽根は、シャフトの軸を含む面に沿って延びている。   The resin dispersion continuous coagulation method according to the fifth invention is the resin dispersion continuous coagulation method according to the fourth invention, wherein a grinding auxiliary blade is attached to the shaft at a position adjacent to the grinding blade. . The grinding auxiliary blade has a plurality of blades. The vanes extend along a plane that includes the axis of the shaft.

このため、この樹脂分散液連続凝析方法では、粉砕補助翼がない場合に比べて、樹脂凝析粒体の粉砕空間滞留時間が長くなる。したがって、この樹脂分散液連続凝析方法を利用すれば、樹脂凝析体の粉砕を良好に行うことができる。   For this reason, in this resin dispersion continuous coagulation method, the residence time of the resin coagulated particles in the pulverization space becomes longer than in the case without the pulverization auxiliary blade. Therefore, if this resin dispersion continuous coagulation method is utilized, the resin coagulation can be pulverized well.

第1発明に係る樹脂分散液連続凝析方法を利用すれば、ゴムラテックスのような樹脂分散液であっても問題なく連続的に凝析して所定範囲の大きさの樹脂凝析粒体を得ることができる。また、この樹脂分散液連続凝析方法では、粉砕空間において製造された樹脂凝析粒体が剪断空間において剪断される。このため、この樹脂分散液連続凝析方法を利用すれば、未凝析成分を順次減少させることができる。   If the resin dispersion continuous coagulation method according to the first invention is used, even if the resin dispersion is a rubber latex, the resin coagulation particles having a predetermined range of size can be coagulated without problems. Can be obtained. Further, in this resin dispersion continuous coagulation method, the resin coagulation granules produced in the pulverization space are sheared in the shearing space. For this reason, if this resin dispersion continuous coagulation method is utilized, an uncoagulated component can be decreased sequentially.

第2発明に係る樹脂分散液連続凝析方法を利用すれば、流体搬送翼の間のシャフト部分に樹脂凝析粒体が付着するのを防止しつつ樹脂凝析粒体に対して良好に剪断力を加えることができる。   If the resin dispersion continuous coagulation method according to the second invention is used, the resin coagulation particles can be well sheared while preventing the resin coagulation particles from adhering to the shaft portion between the fluid conveying blades. You can apply power.

第3発明に係る樹脂分散液連続凝析方法を利用すれば、逆流空間に後壁があった場合、樹脂凝析粒体が後壁に付着するのを防止することができる。また、この樹脂分散液連続凝析方法を利用すれば、逆流空間の後に翼の駆動機構が存在する場合、樹脂凝析粒体が駆動機構に侵入するのを防止することができる。   If the resin dispersion continuous coagulation method according to the third invention is used, it is possible to prevent the resin coagulation particles from adhering to the rear wall when there is a rear wall in the backflow space. Further, if this resin dispersion continuous coagulation method is used, it is possible to prevent the resin coagulated particles from entering the drive mechanism when the blade drive mechanism exists after the backflow space.

第4発明に係る樹脂分散液連続凝析方法を利用すれば、樹脂凝析粒体を粉砕空間から剪断空間にスムースに送り出すことができる。また、この樹脂分散液連続凝析方法では、粉砕空間にシャフト部等の変位しない物が存在しない。したがって、この樹脂分散液連続凝析方法を利用すれば、樹脂凝析粒体が粘着性を有している場合であっても、粉砕翼に樹脂凝析粒体が付着するおそれを低減することができる。   If the resin dispersion continuous coagulation method according to the fourth aspect of the invention is used, the resin coagulated particles can be smoothly sent from the pulverization space to the shearing space. Further, in this resin dispersion continuous coagulation method, there is no non-displacement such as a shaft portion in the grinding space. Therefore, if this resin dispersion continuous coagulation method is used, even if the resin coagulated particles have adhesiveness, the risk of the resin coagulated particles adhering to the pulverization blade is reduced. Can do.

第5発明に係る樹脂分散液連続凝析方法を利用すれば、樹脂凝析体の粉砕を良好に行うことができる。   If the resin dispersion continuous coagulation method according to the fifth aspect of the invention is used, the resin coagulate can be pulverized satisfactorily.

本発明の一実施形態に係る樹脂分散液連続凝析装置1は、樹脂分散液、特にゴムラテックスを凝析して所定範囲内の大きさの樹脂凝析粒体を製造するための装置であって、図1、図2及び図3に示されるように、主に、ケーシング10、攪拌棒30、シール機構50及び駆動機構70を備える。以下、これらの構成要素の詳細について詳述する。   A resin dispersion continuous coagulation apparatus 1 according to an embodiment of the present invention is an apparatus for coagulating a resin dispersion, particularly rubber latex, to produce resin coagulation particles having a size within a predetermined range. As shown in FIGS. 1, 2, and 3, the casing 10, the stirring rod 30, the seal mechanism 50, and the drive mechanism 70 are mainly provided. Details of these components will be described in detail below.

<樹脂分散液連続凝析装置の構成要素>
(1)ケーシング
ケーシング10は、図1及び図2に示されるように、主に、本体部11、蓋部12、樹脂分散液供給管13、凝析液供給管14及び樹脂凝析粒体排出管15から構成されている。なお、このケーシング10は、本体部11及び樹脂凝析粒体排出管15の軸が水平面に平行になり(つまり、本体部11及び樹脂凝析粒体排出管15の軸が鉛直方向に直交し)且つ凝析液供給管14が上を向くように設置される。
<Constituent elements of resin dispersion continuous coagulation device>
(1) Casing As shown in FIGS. 1 and 2, the casing 10 mainly includes a main body 11, a lid 12, a resin dispersion supply pipe 13, a coagulation liquid supply pipe 14, and a resin coagulation particle discharge. It consists of a tube 15. In the casing 10, the axes of the main body 11 and the resin coagulated particle discharge pipe 15 are parallel to the horizontal plane (that is, the axes of the main body 11 and the resin coagulated particle discharge pipe 15 are orthogonal to the vertical direction. ) And the coagulating liquid supply pipe 14 is installed so as to face upward.

本体部11は、図1及び図2に示されるように、円筒形の部材であって、3つの円筒部材11a,11b,11cが取り外し可能に連結されて構成されている。なお、以下、説明の便宜上、蓋部12が取り付けられている円筒部材11aを「第1円筒部材」と称し、中央に位置する円筒部材11bを「第2円筒部材」と称し、樹脂凝析粒体排出管15が取り付けられている円筒部材11cを「第3円筒部材」と称する。そして、これらの円筒部材11a,11b,11cは、フランジ113(図3参照)によって連結されている。また、これら円筒部材11a,11b,11cの連結部分は、図1に示されるように、シールリング112によってシールされている。また、本体部11には、攪拌棒30が駆動シャフト71に取り付けられた状態において粉砕補助翼33(後述)及び局所攪拌翼36a,36b,36c(後述)に対応する位置、及び逆流補助翼37(後述)と逆流発生翼38(後述)との間に対応する位置に固定羽根111が形成されている。固定羽根111は、図1に示されるように、本体部11の軸方向に沿って5セット形成されており、図2に示されるように1セットにつき4枚の羽根が用意されている。そして、この固定羽根111は、平板状の羽根であって、図3に示されるように、本体部11の軸を含む第1面と、本体部11の軸を含み第1面に直交する第2面に沿って本体部11の内周面から本体部11の軸に向かって延びている。   As shown in FIGS. 1 and 2, the main body 11 is a cylindrical member, and is configured by detachably connecting three cylindrical members 11a, 11b, and 11c. Hereinafter, for convenience of explanation, the cylindrical member 11a to which the lid portion 12 is attached is referred to as a “first cylindrical member”, and the cylindrical member 11b located at the center is referred to as a “second cylindrical member”, and resin coagulated particles. The cylindrical member 11c to which the body discharge pipe 15 is attached is referred to as a “third cylindrical member”. And these cylindrical members 11a, 11b, and 11c are connected by the flange 113 (refer FIG. 3). Further, the connecting portions of the cylindrical members 11a, 11b, and 11c are sealed by a seal ring 112 as shown in FIG. In the main body 11, the position corresponding to the grinding auxiliary blade 33 (described later) and the local stirring blades 36 a, 36 b, 36 c (described later) and the backflow auxiliary blade 37 in a state where the stirring rod 30 is attached to the drive shaft 71. A fixed blade 111 is formed at a position corresponding to between a later-described flow generation blade 38 (described later). As shown in FIG. 1, five sets of fixed blades 111 are formed along the axial direction of the main body 11, and four blades are prepared for each set as shown in FIG. And this fixed blade | wing 111 is a flat blade | wing, Comprising: As FIG. 3 shows, the 1st surface containing the axis | shaft of the main-body part 11 and the axis | shaft orthogonal to the 1st surface including the axis | shaft of the main-body part 11 are shown. It extends from the inner peripheral surface of the main body part 11 toward the axis of the main body part 11 along the two surfaces.

蓋部12は、図1及び図2に示されるように、本体部11の外径よりもほぼ同一の外径を有する円盤体であって、本体部11の第1端の開口を覆う。なお、この蓋部12には、ほぼ中心に、樹脂分散液供給管13を嵌め込むための挿通孔が形成されている。また、この蓋部12と第1円筒部材11aとの連結部分は、図1に示されるように、シールリング112によってシールされている。   As shown in FIGS. 1 and 2, the lid 12 is a disc body having an outer diameter substantially the same as the outer diameter of the main body 11, and covers the opening at the first end of the main body 11. The lid portion 12 is formed with an insertion hole for fitting the resin dispersion supply pipe 13 substantially at the center. Moreover, the connection part of this cover part 12 and the 1st cylindrical member 11a is sealed by the seal ring 112, as FIG. 1 shows.

樹脂分散液供給管13は、図示しない樹脂分散液タンクに貯蔵される樹脂分散液を前記本体部11の内部空間SPに導くためのものであり、図1及び図2に示されるように、蓋部12のほぼ中心に形成される挿通孔に嵌め込まれた状態で蓋部12に溶接されている。   The resin dispersion supply pipe 13 is for guiding the resin dispersion stored in a resin dispersion tank (not shown) to the internal space SP of the main body 11, and as shown in FIGS. It is welded to the lid portion 12 while being fitted in an insertion hole formed at substantially the center of the portion 12.

凝析液供給管14は、図示しない凝析液タンクに貯蔵される凝析液を前記本体部11の内部空間SPに導くためのものであり、図1及び図2に示されるように、本体部11の第1端側の端部の側壁を貫通して設けられている。なお、この凝析液供給管14は、本体部11の第1円筒部材11aに溶接されている。   The coagulating liquid supply pipe 14 is for guiding the coagulating liquid stored in a coagulating liquid tank (not shown) to the internal space SP of the main body 11, and as shown in FIG. 1 and FIG. It is provided through the side wall of the end portion on the first end side of the portion 11. The coagulating liquid supply pipe 14 is welded to the first cylindrical member 11 a of the main body 11.

樹脂凝析粒体排出管15は、ケーシング10の内部空間SPで生成する樹脂凝析粒体を系外に排出するためのものであり、図1及び図2に示されるように、本体部11の第1端の反対側の第2端の若干手前の位置の側壁を貫通して設けられている。なお、この樹脂凝析粒体排出管15は、本体部11の軸に沿って見た場合において、軸が凝析液供給管14の軸と直交する。また、この樹脂凝析粒体排出管15は、本体部11の第3円筒部材11cに溶接されている。   The resin coagulated particle discharge pipe 15 is for discharging the resin coagulated particles generated in the internal space SP of the casing 10 to the outside of the system. As shown in FIGS. 1 and 2, the main body 11 Is provided through the side wall at a position slightly before the second end opposite to the first end. The resin coagulated particle discharge pipe 15 is perpendicular to the axis of the coagulation liquid supply pipe 14 when viewed along the axis of the main body 11. The resin coagulated particle discharge pipe 15 is welded to the third cylindrical member 11 c of the main body 11.

(2)攪拌棒
攪拌棒30は、図4に示されるように、主に、シャフト31、粉砕翼32、粉砕補助翼33、3つの流体搬送翼34a,34b,34c、剪断翼35、3つの局所攪拌翼36a,36b,36c、逆流補助翼37及び逆流発生翼38から構成されている。なお、以下、説明の便宜上、粉砕翼側の流体搬送翼34aを「第1流体搬送翼」と称し、中央に位置する流体搬送翼34bを「第2流体搬送翼」と称し、逆流発生翼側の流体搬送翼34cを「第3流体搬送翼」と称し、粉砕翼側の局所攪拌翼36aを「第1局所攪拌翼」と称し、中央に位置する局所攪拌翼36bを「第2局所攪拌翼」と称し、逆流発生翼側の局所攪拌翼36cを「第3局所攪拌翼」と称する。
(2) Stirring bar As shown in FIG. 4, the stirring bar 30 mainly includes a shaft 31, a crushing blade 32, a crushing auxiliary blade 33, three fluid conveying blades 34 a, 34 b, 34 c, a shear blade 35, It comprises local stirring blades 36a, 36b, 36c, a backflow auxiliary blade 37 and a backflow generating blade 38. Hereinafter, for convenience of explanation, the fluid conveyance blade 34a on the pulverization blade side is referred to as “first fluid conveyance blade”, the fluid conveyance blade 34b located in the center is referred to as “second fluid conveyance blade”, and the fluid on the backflow generation blade side is referred to. The conveying blade 34c is referred to as a “third fluid conveying blade”, the local stirring blade 36a on the pulverization blade side is referred to as a “first local stirring blade”, and the local stirring blade 36b located in the center is referred to as a “second local stirring blade”. The local stirring blade 36c on the backflow generating blade side is referred to as a “third local stirring blade”.

シャフト31は、図4に示されるように、円柱棒である。なお、このシャフト31には、第1端側の端部に駆動機構70の駆動シャフト71と連結するためのピン受け孔(図示せず)が形成されている。   As illustrated in FIG. 4, the shaft 31 is a cylindrical bar. The shaft 31 is formed with a pin receiving hole (not shown) for connecting to the drive shaft 71 of the drive mechanism 70 at the end on the first end side.

粉砕翼32は、図5に示されるように、4枚の羽根321から構成されている。そして、これらの羽根321は、平板状の羽根であり、シャフト31の第1端の反対側の第2端側の部分の外周から、シャフト31の第2端を基点とし第1端へと向かう方向の反対方向に向かうに連れて外周方向に向かって延びている。また、これらの羽根321は、図5に示されるように、シャフト31の軸に沿って見た場合において、シャフト31の外周に沿って均等に配置されており、シャフト31の軸を含む第21面、及びシャフト31の軸を含み第21面に直交する第22面に対して90°傾斜するように形成されている。   As shown in FIG. 5, the pulverization blade 32 includes four blades 321. And these blade | wings 321 are flat blade | wings, and go to the 1st end from the outer periphery of the part of the 2nd end side opposite to the 1st end of the shaft 31 from the 2nd end of the shaft 31 as a base point. It extends toward the outer circumferential direction as it goes in the opposite direction. Further, as shown in FIG. 5, these blades 321 are evenly arranged along the outer periphery of the shaft 31 when viewed along the axis of the shaft 31, and include a 21st shaft including the axis of the shaft 31. The surface and the axis of the shaft 31 are formed so as to be inclined by 90 ° with respect to the 22nd surface orthogonal to the 21st surface.

粉砕補助翼33は、図6に示されるように、4枚の羽根331から構成されている。羽根331は、平板状の羽根であり、シャフト31の軸を含む第31面、及びシャフト31の軸を含み第31面と直交する第32面に沿ってシャフト31の外周面から外側に向かって延びている。また、この羽根331は、シャフト31の軸方向第1端側に張り出すように形成されている。また、この粉砕補助翼33は、図4に示されるように、粉砕翼32に隣接して設けられる。   As shown in FIG. 6, the grinding auxiliary wing 33 is composed of four blades 331. The blade 331 is a flat blade, and extends outward from the outer peripheral surface of the shaft 31 along a thirty-first surface including the axis of the shaft 31 and a thirty-second surface including the axis of the shaft 31 and orthogonal to the thirty-first surface. It extends. Further, the blade 331 is formed so as to protrude toward the first end side in the axial direction of the shaft 31. Further, the grinding auxiliary blade 33 is provided adjacent to the grinding blade 32 as shown in FIG.

流体搬送翼34a,34b,34cは、図4に示されるように、シャフト31の中央より第2端側の領域においてシャフト31の軸方向に沿って等間隔に並べられており、図7に示されるように、それぞれ3枚の羽根341から構成されている。羽根341は、図4に示されるように、シャフト31の軸に対して45°の角度で交差する平板状の羽根であり、図7に示されるように、シャフト31の外周に沿って均等に配置されている。   As shown in FIG. 4, the fluid conveying blades 34a, 34b, and 34c are arranged at equal intervals along the axial direction of the shaft 31 in the region on the second end side from the center of the shaft 31, and are shown in FIG. As shown in the figure, each of the blades 341 is composed of three blades 341. The blades 341 are flat blades that intersect at an angle of 45 ° with respect to the axis of the shaft 31 as shown in FIG. 4, and are evenly distributed along the outer periphery of the shaft 31 as shown in FIG. 7. Has been placed.

剪断翼35は、図4に示されるように、第3局所攪拌翼36cと逆流補助翼37との間の第3局所攪拌翼36c寄りに位置しており、図8に示されるように、4枚の羽根351から構成されている。羽根351は、図8に示されるように、平板状の羽根であり、シャフト31の軸を含む第51面、及びシャフト31の軸を含み第51面に直交する第52面に沿ってシャフト31の外周面から外側に向かって延びている。   As shown in FIG. 4, the shear blade 35 is positioned near the third local stirring blade 36 c between the third local stirring blade 36 c and the backflow auxiliary blade 37, and as shown in FIG. It is composed of a single blade 351. As shown in FIG. 8, the blade 351 is a flat blade, and the shaft 31 extends along a 51st surface including the axis of the shaft 31 and a 52nd surface including the axis of the shaft 31 and orthogonal to the 51st surface. It extends toward the outside from the outer peripheral surface.

局所攪拌翼36a,36b,36cは、図4に示されるように、第1流体搬送翼34aと第2流体搬送翼34bとの間、第2流体搬送翼34bと第3流体搬送翼34cとの間、及び第3流体搬送翼34cと剪断翼35との間に位置しており、図9に示されるように、それぞれ4枚の羽根361から構成されている。羽根361は、図9に示されるように、シャフト31の軸を含む第61面、及びシャフト31の軸を含み第61面に直交する第62面に沿ってシャフト31の外周面から外側に向かって延びている。なお、この羽根361は、長さが流体搬送翼34a,34b,34cの長さよりも短い。また、第61面は第51面と一致する面であり、第62面は第52面と一致する面である。   As shown in FIG. 4, the local agitating blades 36a, 36b, and 36c are provided between the first fluid conveying blade 34a and the second fluid conveying blade 34b, and between the second fluid conveying blade 34b and the third fluid conveying blade 34c. And between the third fluid conveying blade 34c and the shear blade 35, each of which is composed of four blades 361 as shown in FIG. As shown in FIG. 9, the blade 361 is directed outward from the outer peripheral surface of the shaft 31 along a 61st surface including the axis of the shaft 31 and a 62nd surface including the axis of the shaft 31 and orthogonal to the 61st surface. It extends. The blade 361 has a length shorter than that of the fluid conveying blades 34a, 34b, 34c. The 61st surface is a surface that matches the 51st surface, and the 62nd surface is a surface that matches the 52nd surface.

逆流補助翼37は、図4に示されるように、剪断翼35と逆流発生翼38との間の逆流発生翼38寄りに位置しており、図10に示されるように、4枚の羽根371及び邪魔板372から構成されている。羽根371は、図10に示されるように、平板状の羽根であり、シャフト31の軸を含む第71面、及びシャフト31の軸を含み第71面に直交する第72面に沿ってシャフト31の外周面から外側に向かって延びている。なお、第71面は第51面と一致する面であり、第72面は第52面と一致する面である。邪魔板372は、図10に示されるように、円環状の板であり、シャフト31の外周面から羽根371の中央部分まで延びている。また、この邪魔板372は、図4に示されるように、シャフト31の軸に直交する方向に沿って見た場合、羽根371の中央部分と交差するように形成されている。   As shown in FIG. 4, the backflow auxiliary blade 37 is located near the backflow generating blade 38 between the shear blade 35 and the backflow generating blade 38, and as shown in FIG. And a baffle plate 372. As shown in FIG. 10, the blade 371 is a flat blade, and the shaft 31 extends along a 71st surface including the axis of the shaft 31 and a 72nd surface including the axis of the shaft 31 and orthogonal to the 71st surface. It extends toward the outside from the outer peripheral surface. The 71st surface is a surface that matches the 51st surface, and the 72nd surface is a surface that matches the 52nd surface. As shown in FIG. 10, the baffle plate 372 is an annular plate and extends from the outer peripheral surface of the shaft 31 to the central portion of the blade 371. Further, as shown in FIG. 4, the baffle plate 372 is formed so as to intersect the central portion of the blade 371 when viewed along a direction orthogonal to the axis of the shaft 31.

逆流発生翼38は、流体搬送翼34a,34b,34cとは逆方向の流体流れをつくり出す翼であり、図4に示されるように、シャフト31の第1端側の端部に位置している。そして、この逆流発生翼38は、図11及び図12に示されるように、2枚の羽根381から構成されている。羽根381は、図12に示されるように、シャフト31の外周から外側に向かうに連れて湾曲する羽根であり、シャフト31を挟んで対抗するように形成されている。   The reverse flow generating blade 38 is a blade that creates a fluid flow in a direction opposite to that of the fluid conveying blades 34a, 34b, and 34c, and is positioned at the end portion of the shaft 31 on the first end side as shown in FIG. . And this backflow generation | occurrence | production blade | wing 38 is comprised from the two blade | wings 381, as FIG.11 and FIG.12 shows. As shown in FIG. 12, the blade 381 is a blade that curves as it goes outward from the outer periphery of the shaft 31, and is formed so as to face the shaft 31.

そして、この攪拌棒30は、図1に示されるように、シャフト31の軸がケーシング10の本体部11の軸に一致するようにケーシング10に収容され、シール機構50を介して駆動機構70の駆動シャフト71に連結される。このように攪拌棒30がケーシング10に収容された状態において、粉砕翼32が収容される内部空間SPを「粉砕空間SPc」と称し、粉砕補助翼33、流体搬送翼34a,34b,34c、剪断翼35及び局所攪拌翼36a,36b,36cが収容される内部空間SPを「剪断空間SPs」と称し、剪断翼35と逆流補助翼37との間の内部空間SPを「排出空間SPe」と称し、逆流補助翼37及び逆流発生翼38を収容する内部空間を「逆流空間SPr」と称する。   As shown in FIG. 1, the stirring rod 30 is accommodated in the casing 10 such that the axis of the shaft 31 coincides with the axis of the main body 11 of the casing 10, and the drive mechanism 70 is connected via the seal mechanism 50. Connected to the drive shaft 71. In the state where the stirring rod 30 is accommodated in the casing 10 as described above, the internal space SP in which the pulverization blade 32 is accommodated is referred to as a “pulverization space SPc”. The internal space SP in which the blade 35 and the local stirring blades 36a, 36b, and 36c are accommodated is referred to as “shear space SPs”, and the internal space SP between the shear blade 35 and the backflow auxiliary blade 37 is referred to as “discharge space SPe”. The internal space that houses the backflow auxiliary blade 37 and the backflow generation blade 38 is referred to as a “backflow space SPr”.

(3)シール機構
シール機構50は、ケーシング10の内部空間SPに流れる液が駆動シャフト71を伝って駆動機構70に浸入しないように内部空間SPと駆動機構70とを分け隔てる。なお、このシール機構50には駆動シャフト71の脇に凝析液通路が設けられており、凝析液通路を流れる凝析液は逆流発生翼38によって排出空間SPeへと送られる。
(3) Seal mechanism The seal mechanism 50 separates the internal space SP from the drive mechanism 70 so that the liquid flowing into the internal space SP of the casing 10 does not enter the drive mechanism 70 through the drive shaft 71. The seal mechanism 50 is provided with a coagulation liquid passage on the side of the drive shaft 71, and the coagulation liquid flowing in the coagulation liquid passage is sent to the discharge space SPe by the backflow generating blade 38.

(4)駆動機構
駆動機構70は、例えば、電動機や内燃機関等であって、駆動シャフト71を回転させる。
(4) Drive mechanism The drive mechanism 70 is, for example, an electric motor or an internal combustion engine, and rotates the drive shaft 71.

<樹脂分散液連続凝析装置による樹脂凝析粒体の製造>
先ず、駆動機構70により駆動シャフト71を回転させて攪拌棒30を回転させる。そして、樹脂分散液供給管13に所定流量で樹脂分散液を流して樹脂分散液を粉砕空間SPcに送ると同時に凝析液供給管14に所定流量で凝析液を流して凝析液を粉砕空間SPcに送る。すると、粉砕空間SPcでは、粉砕翼32によって流入する樹脂分散液と凝析液とが攪拌混合されると同時に樹脂分散液と凝析液との攪拌混合によって生成する樹脂凝析体が粉砕翼32によって粉砕される。この結果、粉砕空間SPcには、所定範囲内の大きさの樹脂凝析粒体が連続的に製造される。そして、この樹脂凝析粒体は、主に流体搬送翼34a,34b,34cによって生じる流体流れ(以下「搬送方向流れ」という)に乗って剪断空間SPsへと送られる。そして、剪断空間SPsでは、樹脂凝析粒体及び未凝析成分が、搬送方向流れに乗って排出空間SPeへと流れながら、流体搬送翼34a,34b,34c、局所攪拌翼36a,36b,36c及び固定羽根111によって剪断力を加えられる。この結果、未凝析成分が減少すると同時に樹脂凝析粒体の形状が整えられていく。そして、搬送方向流れに乗って排出空間SPeへと達した樹脂凝析粒体は、搬送方向流れと、逆流発生翼38によって逆流空間SPrにおいて生じる逆搬送方向流れとによって樹脂凝析粒体排出管15に押し出される。
<Manufacture of resin coagulated particles using a resin dispersion continuous coagulator>
First, the drive shaft 71 is rotated by the drive mechanism 70 to rotate the stirring rod 30. Then, the resin dispersion is supplied to the resin dispersion supply pipe 13 at a predetermined flow rate and sent to the pulverization space SPc. At the same time, the coagulation liquid is supplied to the coagulation liquid supply pipe 14 at a predetermined flow rate to pulverize the coagulation liquid. Send to space SPc. Then, in the pulverization space SPc, the resin dispersion liquid and the coagulation liquid flowing in by the pulverization blade 32 are agitated and mixed, and at the same time, the resin agglomerate generated by the agitation and mixing of the resin dispersion liquid and the coagulation liquid is the pulverization blade 32. Is crushed by. As a result, resin coagulated particles having a size within a predetermined range are continuously produced in the pulverization space SPc. The resin coagulated particles are sent to the shear space SPs by riding on a fluid flow (hereinafter referred to as “transport direction flow”) generated mainly by the fluid transport blades 34a, 34b, and 34c. In the shear space SPs, the resin coagulated particles and the unaggregated components flow in the transport direction flow to the discharge space SPe, and the fluid transport blades 34a, 34b, 34c and the local stirring blades 36a, 36b, 36c. And a shearing force is applied by the fixed blade 111. As a result, the amount of unaggregated components decreases and the shape of the resin agglomerated particles is adjusted. The resin agglomerated particles that have reached the discharge space SPe by riding in the flow in the conveyance direction are caused by the flow in the conveyance direction and the flow in the reverse conveyance direction generated in the reverse flow space SPr by the backflow generation blade 38. 15 is pushed out.

<樹脂分散液連続凝析装置の特徴>
(1)
本発明に係る樹脂分散液連続凝析装置1では、樹脂分散液供給管13を通って所定の流量で流れてくる樹脂分散液と、凝析液供給管14を通って所定の流量で流れてくる凝析液とが粉砕空間SPcにおいて粉砕翼32によって攪拌混合されると同時に、この攪拌混合により生成する樹脂凝析体が粉砕翼32によって粉砕されて、所定範囲内の大きさの樹脂凝析粒体が順次製造される。そして、その後、剪断空間SPsにおいて樹脂凝析粒体に剪断力が掛けられながら樹脂凝析粒体が連続的に排出空間SPeに送出される。つまり、この樹脂分散液連続凝析装置1では、樹脂凝析体が粉砕翼32によって所定範囲内の大きさの樹脂凝析粒体にされてから剪断空間SPsに送出されることになる。したがって、この樹脂分散液連続凝析装置1では、ゴムラテックスのような樹脂分散液であっても詰まり等の問題なく連続的に凝析して所定範囲の大きさの樹脂凝析粒体が得られる。また、この樹脂分散液連続凝析装置1では、粉砕空間SPcにおいて製造された樹脂凝析粒体が剪断空間SPsにおいて剪断される。このため、この樹脂分散液連続凝析装置1では、未凝析成分を順次減少される。
<Features of continuous coagulation equipment for resin dispersion>
(1)
In the resin dispersion continuous coagulation apparatus 1 according to the present invention, a resin dispersion that flows at a predetermined flow rate through the resin dispersion supply pipe 13 and a flow at a predetermined flow rate through the coagulation liquid supply pipe 14. At the same time, the coagulating liquid is stirred and mixed by the pulverization blade 32 in the pulverization space SPc, and at the same time, the resin agglomerate generated by the stirring and mixing is pulverized by the pulverization blade 32 and the resin coagulation having a size within a predetermined range. Granules are produced sequentially. Thereafter, the resin coagulated particles are continuously sent to the discharge space SPe while the shear force is applied to the resin coagulated particles in the shear space SPs. That is, in this resin dispersion continuous coagulation apparatus 1, the resin coagulated material is made into resin coagulated particles having a size within a predetermined range by the pulverization blade 32 and then sent to the shearing space SPs. Therefore, in this resin dispersion continuous coagulation apparatus 1, even a resin dispersion such as rubber latex coagulates continuously without problems such as clogging, and resin coagulation granules having a predetermined size range are obtained. It is done. Further, in the resin dispersion continuous coagulation apparatus 1, the resin coagulation granules produced in the pulverization space SPc are sheared in the shear space SPs. For this reason, in this resin dispersion continuous coagulation apparatus 1, uncoagulated components are sequentially reduced.

(2)
本発明に係る樹脂分散液連続凝析装置1では、第1流体搬送翼34aと第2流体搬送翼34bとの間、第2流体搬送翼34bと第3流体搬送翼34cとの間、及び第3流体搬送翼34cと剪断翼35との間のシャフト31に局所攪拌翼36a,36b,36cが形成されている。このため、この樹脂分散液連続凝析装置1では、流体搬送翼34a,34b,34cの間、及び第3流体搬送翼34cと剪断翼35との間のシャフト部分に樹脂凝析粒体が付着するのが防止されつつ樹脂凝析粒体に良好に剪断力が加えられる。
(2)
In the resin dispersion continuous coagulation apparatus 1 according to the present invention, between the first fluid conveyance blade 34a and the second fluid conveyance blade 34b, between the second fluid conveyance blade 34b and the third fluid conveyance blade 34c, and the first. Local stirring blades 36 a, 36 b, and 36 c are formed on the shaft 31 between the three-fluid conveying blade 34 c and the shearing blade 35. For this reason, in this resin dispersion continuous coagulation apparatus 1, resin coagulated particles adhere to the shaft portions between the fluid conveying blades 34a, 34b, 34c and between the third fluid conveying blade 34c and the shear blade 35. The shearing force is applied to the resin coagulated particles well while being prevented.

(3)
本発明に係る樹脂分散液連続凝析装置1では、逆流空間SPrにおいて、シール機構50を通って送出される凝析液が逆流発生翼38によって排出空間SPeに送出される。そして、この結果、剪断空間SPsから排出空間SPeに流れ込む樹脂凝析粒体と、逆流空間SPrから排出空間SPeに流れ込む凝析液とは、混じり合って排出空間SPeから樹脂凝析粒体排出管15を通って系外に排出される。
(3)
In the resin dispersion continuous coagulation apparatus 1 according to the present invention, the coagulation liquid sent through the seal mechanism 50 in the backflow space SPr is sent to the discharge space SPe by the backflow generation blade 38. As a result, the resin coagulated particles flowing from the shearing space SPs into the discharge space SPe and the coagulant liquid flowing into the discharge space SPe from the backflow space SPr are mixed together to form the resin coagulated particle discharge pipe from the discharge space SPe. 15 is discharged out of the system.

このため、この樹脂分散液連続凝析装置1では、本体部11の蓋部12の逆側の壁に樹脂凝析粒体が付着するのが防止されると共に、駆動機構70への樹脂凝析粒体の侵入が防止される。   For this reason, in this resin dispersion continuous coagulation apparatus 1, resin coagulation particles are prevented from adhering to the opposite wall of the lid portion 12 of the main body portion 11, and the resin coagulation on the drive mechanism 70 is performed. Intrusion of granules is prevented.

(4)
本発明に係る樹脂分散液連続凝析装置1では、粉砕翼32の羽根321が、シャフト31の第2端側の部分の外周から、シャフト31の第2端を基点とし第1端へと向かう方向の反対方向に向かうに連れて外周方向に向かって延びるように形成されている。また、この羽根321は、図5に示されるように、シャフト31の軸に沿って見た場合において、シャフト31の外周に沿って均等に配置されており、シャフト31の軸を含む第21面、及びシャフト31の軸を含み第21面に直交する第22面に対して90°傾斜するように形成されている。このため、この樹脂分散液連続凝析装置1では、粉砕翼32が樹脂凝析粒体の粉砕空間SPcから剪断空間SPsへの送出に貢献する。したがって、この樹脂分散液連続凝析装置1では、樹脂凝析粒体が粉砕空間SPcから剪断空間SPsに向かってスムースに送り出される。また、粉砕空間SPsでは、シャフト等、変位しない物体が存在しない。したがって、この樹脂分散液連続凝析装置1では、樹脂凝析粒体が粘着性を有している場合であっても、粉砕翼32に樹脂凝析粒体が付着するおそれが低減される。
(4)
In the resin dispersion continuous coagulation apparatus 1 according to the present invention, the blades 321 of the pulverizing blades 32 go from the outer periphery of the portion on the second end side of the shaft 31 to the first end with the second end of the shaft 31 as a base point. It forms so that it may extend toward an outer peripheral direction as it goes to the opposite direction of a direction. Further, as shown in FIG. 5, the blades 321 are evenly arranged along the outer periphery of the shaft 31 when viewed along the axis of the shaft 31, and the 21st surface including the axis of the shaft 31. , And the axis of the shaft 31 is formed so as to be inclined by 90 ° with respect to the 22nd surface orthogonal to the 21st surface. For this reason, in this resin dispersion continuous coagulation apparatus 1, the pulverization blade 32 contributes to the delivery of the resin coagulated particles from the pulverization space SPc to the shear space SPs. Therefore, in this resin dispersion continuous coagulation apparatus 1, the resin coagulation particles are smoothly sent out from the pulverization space SPc toward the shear space SPs. In the pulverization space SPs, there is no non-displaceable object such as a shaft. Therefore, in this resin dispersion continuous coagulation apparatus 1, the possibility that the resin coagulation particles adhere to the pulverization blade 32 is reduced even when the resin coagulation particles have adhesiveness.

(5)
本発明に係る樹脂分散液連続凝析装置1では、攪拌棒30の粉砕翼32に隣接する位置に粉砕補助翼33が取り付けられている。このため、この樹脂分散液連続凝析装置1では、樹脂凝析粒体が粉砕空間SPcに滞留する時間が長くなる。したがって、この樹脂分散液連続凝析装置1では、樹脂凝析体の粉砕を良好に行うことができる。
(5)
In the resin dispersion continuous coagulation apparatus 1 according to the present invention, a grinding auxiliary blade 33 is attached at a position adjacent to the grinding blade 32 of the stirring rod 30. For this reason, in this resin dispersion continuous coagulation apparatus 1, the time for the resin coagulated particles to stay in the pulverization space SPc becomes longer. Therefore, in this resin dispersion continuous coagulation apparatus 1, the resin coagulation can be pulverized well.

(6)
本発明に係る樹脂分散液連続凝析装置1では、流体流れ方向下流側において攪拌棒30が方持ちで駆動シャフト71に連結されている。このため、この樹脂分散液連続凝析装置1では、流体流れ方向上流側及び下流側において攪拌棒30が支持されているものよりも樹脂分散液供給管13や凝析液供給管14の配置の自由度が高い。したがって、樹脂分散液連続凝析装置1では、樹脂分散液と凝析液との攪拌混合開始時における状態が制御しやすくなっている。
(6)
In the resin dispersion continuous coagulation apparatus 1 according to the present invention, the stirring rod 30 is held at the downstream side in the fluid flow direction and connected to the drive shaft 71. For this reason, in this resin dispersion continuous coagulation apparatus 1, the resin dispersion supply pipe 13 and the coagulation liquid supply pipe 14 are arranged more than those in which the stirring rod 30 is supported on the upstream side and the downstream side in the fluid flow direction. High degree of freedom. Therefore, in the resin dispersion continuous coagulation apparatus 1, the state at the start of stirring and mixing of the resin dispersion and the coagulation liquid is easily controlled.

(7)
本発明に係る樹脂分散液連続凝析装置1では、3つの円筒部材11a,11b,11cが取り外し可能に連結されて本体部11が構成されている。また、樹脂分散液連続凝析装置1では、攪拌棒30と駆動シャフト71とを容易に取り外すことができる。このため、この樹脂分散液連続凝析装置1では、品種の切換やメンテナンス等において、容易にケーシングを分解することができる。したがって、洗浄作業者やメンテナンス作業者等は、樹脂分散液連続凝析装置1を簡便に洗浄したりメンテナンスしたりすることができる。
(7)
In the resin dispersion continuous coagulation device 1 according to the present invention, three cylindrical members 11a, 11b, and 11c are detachably connected to constitute a main body portion 11. Moreover, in the resin dispersion continuous coagulation apparatus 1, the stirring rod 30 and the drive shaft 71 can be easily removed. For this reason, in this resin dispersion continuous coagulation apparatus 1, the casing can be easily disassembled during product changeover or maintenance. Therefore, a cleaning worker, a maintenance worker, etc. can simply wash or maintain the resin dispersion continuous coagulation apparatus 1.

<変形例>
(A)
先の実施の形態に係る樹脂分散液連続凝析装置1では図4に示されるような攪拌棒30が採用されたが、これに代えて、図13に示されるような攪拌棒30Aが採用されてもよい。この攪拌棒30Aは、粉砕翼32A以外、先の実施の形態に掛かる攪拌棒30と同一である。また、本変形例に係る粉砕翼32Aは、羽根321AがL字型の形状を呈していること以外、先の実施形態に掛かる粉砕翼32と同一である。
<Modification>
(A)
In the resin dispersion continuous coagulation apparatus 1 according to the previous embodiment, the stirring rod 30 as shown in FIG. 4 is adopted, but instead of this, a stirring rod 30A as shown in FIG. 13 is adopted. May be. The stirring bar 30A is the same as the stirring bar 30 according to the previous embodiment except for the pulverizing blade 32A. Further, the pulverizing blade 32A according to this modification is the same as the pulverizing blade 32 according to the previous embodiment, except that the blade 321A has an L-shaped shape.

(B)
先の実施の形態では粉砕翼32、粉砕補助翼33、流体搬送翼34a,34b,34c、剪断翼35、局所攪拌翼36a,36b,36c、逆流補助翼37及び逆流発生翼38において羽根の枚数が規定されたが、本発明においてこれらの翼の羽根の枚数は特に限定されず、条件に応じて適宜変更してもかまわない。例えば、粉砕翼32の羽根321の枚数を6枚としてもかまわないし、流体搬送翼34の羽根341の枚数を4枚としてもかまわない。
(B)
In the previous embodiment, the number of blades in the pulverization blade 32, the pulverization auxiliary blade 33, the fluid conveyance blades 34a, 34b, 34c, the shear blade 35, the local stirring blades 36a, 36b, 36c, the backflow auxiliary blade 37, and the backflow generation blade 38. However, in the present invention, the number of blades of these blades is not particularly limited, and may be appropriately changed according to conditions. For example, the number of blades 321 of the crushing blade 32 may be six, or the number of blades 341 of the fluid conveying blade 34 may be four.

本発明に係る樹脂分散液連続凝析方法は、ゴムラテックスのような樹脂分散液であっても問題なく連続的に凝析して所定範囲の大きさの樹脂凝析粒体を得ることができるという特徴を有しており、特にゴムラテックスの粒子化に有効である。   The resin dispersion continuous coagulation method according to the present invention can continuously coagulate without problems even in the case of a resin dispersion such as rubber latex to obtain resin coagulated particles having a size within a predetermined range. It is particularly effective for the formation of rubber latex particles.

本発明に係る樹脂分散液凝析装置の平面部分断面図である。It is a plane fragmentary sectional view of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の側面図である。1 is a side view of a resin dispersion coagulation apparatus according to the present invention. 本発明に係る樹脂分散液凝析装置における攪拌棒の断面図、ケーシングの本体部の断面図、フランジの正面図、及び樹脂凝析粒体排出管の縦断面図を重ね合わせた図である。It is the figure which piled up the sectional view of the stirring rod in the resin dispersion coagulation apparatus which concerns on this invention, the sectional view of the main-body part of a casing, the front view of a flange, and the longitudinal cross-sectional view of a resin coagulated particle discharge pipe. 本発明に係る樹脂分散液凝析装置の攪拌棒の側面図である。It is a side view of the stirring rod of the resin dispersion coagulation apparatus according to the present invention. 本発明に係る樹脂分散液凝析装置の粉砕翼の背面図である。It is a rear view of the grinding | pulverization blade | wing of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の粉砕補助翼のA−A断面図である。It is AA sectional drawing of the grinding auxiliary blade of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の流体搬送翼の正面図である。It is a front view of the fluid conveyance wing | blade of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の剪断翼のB−B断面図である。It is BB sectional drawing of the shearing blade of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の局所攪拌翼のC−C断面図である。It is CC sectional drawing of the local stirring blade of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の逆流補助翼のD−D断面図である。It is DD sectional drawing of the backflow auxiliary | assistant blade | wing of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の逆流発生翼の正面図である。It is a front view of the backflow generation | occurrence | production blade of the resin dispersion coagulation apparatus which concerns on this invention. 本発明に係る樹脂分散液凝析装置の逆流発生翼のE−E断面図である。It is EE sectional drawing of the backflow generation | occurrence | production blade of the resin dispersion coagulation apparatus which concerns on this invention. 変形例(A)に係る攪拌棒の側面図である。It is a side view of the stirring rod which concerns on a modification (A).

符号の説明Explanation of symbols

31 シャフト
32 粉砕翼
33 粉砕補助翼
34a,34b,34c 流体搬送翼
36a,36b,36c 局所攪拌翼
111 固定羽根
331 粉砕補助翼の羽根
361 局所攪拌翼の羽根
SPc 粉砕空間
SPe 排出空間
SPr 逆流空間
SPs 剪断空間
31 Shaft 32 Grinding blade 33 Grinding auxiliary blade 34a, 34b, 34c Fluid conveying blade 36a, 36b, 36c Local stirring blade 111 Fixed blade 331 Grinding auxiliary blade 361 Local stirring blade SPc Grinding space SPe Discharge space SPr Backflow space SPs Shear space

Claims (5)

粉砕翼(32)が配置される粉砕空間(SPc)に第1通路を通じて樹脂分散液を第1流量で供給すると同時に第2通路を通じて凝析液を第2流量で供給し前記粉砕空間において前記樹脂分散液と前記凝析液とを前記粉砕翼によって攪拌混合すると同時に前記樹脂分散液と前記凝析液との攪拌混合によって生成する樹脂凝析体を前記粉砕翼によって粉砕して所定範囲内の大きさの樹脂凝析粒体を順次製造し前記樹脂凝析粒体を前記粉砕空間に隣接する剪断空間(SPs)に連続的に送出する樹脂凝析粒体製造工程と、
前記剪断空間に配置され前記樹脂凝析粒体を前記剪断空間に隣接する前記排出空間に送出する複数の流体搬送翼(34a,34b,34c)と、前記剪断空間を形成する円筒壁から前記円筒壁の軸に向かって延びる固定羽根(111)とによって前記樹脂凝析粒体に剪断力を掛けながら前記樹脂凝析粒体を連続的に排出空間(SPe)に送出する剪断工程と
を備える樹脂分散液連続凝析方法。
The resin dispersion liquid is supplied at a first flow rate through the first passage to the pulverization space (SPc) in which the pulverization blade (32) is disposed, and at the same time, the coagulation liquid is supplied at the second flow rate through the second passage, and the resin in the pulverization space. The dispersion coagulated liquid and the coagulated liquid are stirred and mixed by the pulverizing blade, and at the same time, the resin coagulate formed by the stirring and mixing of the resin dispersion liquid and the coagulated liquid is pulverized by the pulverizing blade and the size within a predetermined range. Resin agglomerated particles are sequentially manufactured, and the resin agglomerated particles are continuously sent to shear spaces (SPs) adjacent to the pulverization space;
A plurality of fluid conveying blades (34a, 34b, 34c) disposed in the shear space and delivering the resin coagulated particles to the discharge space adjacent to the shear space, and a cylindrical wall from the cylindrical wall forming the shear space And a shearing step of continuously feeding the resin coagulated particles to the discharge space (SPe) while applying a shearing force to the resin coagulated particles by a fixed blade (111) extending toward the wall axis. Dispersion continuous coagulation method.
前記流体搬送翼の間の空間には、前記流体搬送翼の回転軸の延長線上にある回転軸と、前記回転軸を含む面に沿って延びる複数の羽根(361)とを有する局所攪拌翼(36a,36b,36c)が配置されており、
前記剪断力は、前記流体搬送翼、前記局所攪拌翼及び前記固定羽根によって発生される
請求項1に記載の樹脂分散液連続凝析方法。
In the space between the fluid conveying blades, a local agitating blade having a rotating shaft on an extension line of the rotating shaft of the fluid conveying blade and a plurality of blades (361) extending along a surface including the rotating shaft (361) 36a, 36b, 36c) are arranged,
The resin dispersion continuous coagulation method according to claim 1, wherein the shear force is generated by the fluid conveying blade, the local stirring blade, and the fixed blade.
前記粉砕翼の回転軸の延長線上にある回転軸を有し前記樹脂凝析粒体の流れ方向と反対方向の流体流れを発生させる逆流発生翼が設けられる逆流空間(SPr)において、第3通路を通って送出される凝析液を逆流発生翼によって前記排出空間に送出する逆流発生工程をさらに備え、
前記剪断空間から前記排出空間に流れ込む樹脂凝析粒体と、前記逆流空間から前記排出空間に流れ込む前記凝析液とは、混じり合って前記排出空間から系外に排出される
請求項1又は2に記載の樹脂分散液連続凝析方法。
In a backflow space (SPr) provided with a backflow generation blade that has a rotation axis on an extension line of the rotation axis of the crushing blade and generates a fluid flow in a direction opposite to the flow direction of the resin coagulated particles, a third passage Further comprising a backflow generating step of sending the coagulated liquid sent through the discharge space to the discharge space by a backflow generating blade,
The resin coagulated particles that flow into the discharge space from the shear space and the coagulation liquid that flows into the discharge space from the backflow space are mixed and discharged from the discharge space to the outside of the system. The resin dispersion continuous coagulation method described in 1.
前記粉砕翼は、前記剪断空間に存在するシャフト端から前記粉砕空間に向かうに連れてシャフト(31)の外周方向に向かって延び前記シャフトの長手方向に沿って見た場合において前記シャフトの半径方向に対して所定角度傾斜するように前記シャフトに取り付けられる複数の羽根を有する
請求項1から3のいずれかに記載の樹脂分散液連続凝析方法。
The pulverization blade extends in the outer circumferential direction of the shaft (31) from the end of the shaft existing in the shearing space toward the pulverization space, and when viewed along the longitudinal direction of the shaft, the radial direction of the shaft The resin dispersion continuous coagulation method according to claim 1, further comprising a plurality of blades attached to the shaft so as to be inclined at a predetermined angle with respect to the shaft.
前記シャフトには、前記粉砕翼に隣接する位置に、前記シャフトの軸を含む面に沿って延びる複数の羽根(331)を有する粉砕補助翼(33)が取り付けられている、
請求項4に記載の樹脂分散液連続凝析方法。
A grinding auxiliary blade (33) having a plurality of blades (331) extending along a surface including the shaft axis is attached to the shaft at a position adjacent to the grinding blade.
The resin dispersion continuous coagulation method according to claim 4.
JP2008014065A 2008-01-24 2008-01-24 Resin dispersion continuous coagulation method Active JP5369442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008014065A JP5369442B2 (en) 2008-01-24 2008-01-24 Resin dispersion continuous coagulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008014065A JP5369442B2 (en) 2008-01-24 2008-01-24 Resin dispersion continuous coagulation method

Publications (2)

Publication Number Publication Date
JP2009173775A JP2009173775A (en) 2009-08-06
JP5369442B2 true JP5369442B2 (en) 2013-12-18

Family

ID=41029216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008014065A Active JP5369442B2 (en) 2008-01-24 2008-01-24 Resin dispersion continuous coagulation method

Country Status (1)

Country Link
JP (1) JP5369442B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146639A (en) * 1981-03-05 1982-09-10 Japan Synthetic Rubber Co Ltd Method and apparatus for continuously coagulating rubber polymer latex
JPH01230605A (en) * 1988-03-11 1989-09-14 Hitachi Chem Co Ltd Method and apparatus for production of coagulated resin
JP3023973B2 (en) * 1990-08-27 2000-03-21 日本ゼオン株式会社 Method and apparatus for coagulating an aqueous polymer dispersion
JP4929618B2 (en) * 2005-05-26 2012-05-09 日本ゼオン株式会社 Method for producing rubbery polymer
JP5029389B2 (en) * 2008-01-24 2012-09-19 ダイキン工業株式会社 Resin dispersion continuous coagulation method

Also Published As

Publication number Publication date
JP2009173775A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
US8518186B2 (en) System and process for starch production
KR101658410B1 (en) Dispersing and emulsifying apparatus for high viscosity fluid
US7691953B2 (en) System and process for production of polyvinyl chloride
KR20120135033A (en) Dispersion method and dispersion system
JP2000317290A (en) Mixing equipment
JP7061476B2 (en) Stirrer
CN105084975B (en) For the emulsifier of nitre sulfenyl depot fertilizer production
JP5369442B2 (en) Resin dispersion continuous coagulation method
JP5492500B2 (en) Powder and particle mixer
CN104492299B (en) A kind of powder body mixing dispersion machine
JP2017035679A (en) Dispersion system
JP2013039508A (en) Medium stirring type crusher
EP3110539B1 (en) Mixing apparatus with stator and method
JP2002126561A (en) Shredding device
TWI460008B (en) Centrifugal dispersing device
JP2003321547A (en) Method of recovering polymer
CN105833822B (en) For the high-shear reactor of quick competitive reaction
KR20170015027A (en) Dispersing and emulsifying apparatus for low viscosity fluid
JP6726003B2 (en) Slurry kneading/dispersing device
CN217410591U (en) Mixing device for producing super-strong high-energy-absorption alloy
CN210613433U (en) Mixer capable of improving transmission effect
KR20160106933A (en) Particulate powder transfer apparatus
JP2006239596A (en) Method for producing solid-liquid-mixed material
JP2001079827A (en) In-pipeline mixing apparatus
CN206483545U (en) Pitch crushes hybrid system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R151 Written notification of patent or utility model registration

Ref document number: 5369442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151