JP5369416B2 - Catalyst layer transfer film - Google Patents

Catalyst layer transfer film Download PDF

Info

Publication number
JP5369416B2
JP5369416B2 JP2007253317A JP2007253317A JP5369416B2 JP 5369416 B2 JP5369416 B2 JP 5369416B2 JP 2007253317 A JP2007253317 A JP 2007253317A JP 2007253317 A JP2007253317 A JP 2007253317A JP 5369416 B2 JP5369416 B2 JP 5369416B2
Authority
JP
Japan
Prior art keywords
film
catalyst layer
transfer
transfer film
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007253317A
Other languages
Japanese (ja)
Other versions
JP2009087604A (en
Inventor
宏年 坂元
秀紀 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007253317A priority Critical patent/JP5369416B2/en
Publication of JP2009087604A publication Critical patent/JP2009087604A/en
Application granted granted Critical
Publication of JP5369416B2 publication Critical patent/JP5369416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、触媒層転写フィルムに関する。   The present invention relates to a catalyst layer transfer film.

燃料電池等の触媒層を作成する方法として、今日まで様々の方法が提案されている。これらの中でも、一度別の基材を用いて作製した触媒層を電解質膜に転写する転写法は、触媒層を形成することが容易であり、電解質膜及びガス拡散層にも悪影響が少ないため、有利である。   Various methods have been proposed to date for producing catalyst layers for fuel cells and the like. Among these, the transfer method of transferring the catalyst layer once produced using another base material to the electrolyte membrane is easy to form the catalyst layer, and since there is little adverse effect on the electrolyte membrane and the gas diffusion layer, It is advantageous.

転写法に使用される基材フィルムとしては、例えば、(1)シリコーン樹脂が表面にコートされたポリエステルフィルム、(2)延伸されたポリプロピレンフィルム、(3)ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体等のフッ素系フィルムが知られている。しかしながら、これらの基材フィルムには、種々の問題点がある。即ち、(1)の基材フィルムは、シリコーン樹脂により電極触媒及び電解質膜が汚染され、水素イオンの伝導性が低下するのが避けられない。(2)の基材フィルムは、該フィルム上に触媒層形成用ペーストを塗布し、乾燥させて触媒層を形成させる際に、フィルムが熱により収縮する欠点がある。(3)の基材フィルムは、フィルム自体が柔らかく、伸び易いため、フィルムに皺が入り、作業性に劣る欠点を有している。   Examples of the base film used in the transfer method include (1) polyester film coated with a silicone resin on the surface, (2) stretched polypropylene film, (3) polytetrafluoroethylene, tetrafluoroethylene-hexa Fluorine-based films such as fluoropropylene copolymers are known. However, these substrate films have various problems. That is, in the base film of (1), it is inevitable that the electrode catalyst and the electrolyte membrane are contaminated by the silicone resin and the conductivity of hydrogen ions is lowered. The base film of (2) has a drawback that the film shrinks due to heat when the catalyst layer forming paste is applied on the film and dried to form the catalyst layer. The base film of (3) has the disadvantage that the film itself is soft and easily stretched, so that the film is wrinkled and inferior in workability.

このような問題点を解消するために、基材フィルムとしてポリエチレンテレフタレートを使用し、該基材フィルムと触媒層との間にフッ素系の離型成分を積層した転写フィルムが提案されている(特許文献1)。   In order to solve such problems, a transfer film in which polyethylene terephthalate is used as a base film and a fluorine-based release component is laminated between the base film and the catalyst layer has been proposed (patent) Reference 1).

特許文献1に記載されている転写フィルムを使用すると、触媒層を電解質膜に良好に転写することができる。しかしながら、特許文献1の転写フィルムでは、触媒層と共に、フッ素系の離型成分の一部が固体電解質膜に転写されるのが避けられず、燃料電池の性能に悪影響を及ぼす問題点を有している。   When the transfer film described in Patent Document 1 is used, the catalyst layer can be satisfactorily transferred to the electrolyte membrane. However, in the transfer film of Patent Document 1, it is inevitable that a part of the fluorine-based release component is transferred to the solid electrolyte membrane together with the catalyst layer, which has a problem that adversely affects the performance of the fuel cell. ing.

また、特許文献2には、ポリエステルフィルムを主たる構造体とするフィルムであって、X線光電子分光法測定で有機珪素化合物に由来するピークがいずれの表面においても検出されず、少なくとも一方の表面が主としてポリオレフィンから構成され、当該表面の加熱剥離力が80mN/cm以下である離型フィルムが開示されている。   Patent Document 2 is a film having a polyester film as a main structure, and a peak derived from an organosilicon compound is not detected in any surface by X-ray photoelectron spectroscopy measurement, and at least one surface is A release film is disclosed which is mainly composed of polyolefin and has a heat peeling force of 80 mN / cm or less on the surface.

しかしながら、特許文献2に記載の離型フィルムを用いて触媒層転写フィルムを作成した場合、触媒層が欠落し易い問題がある。そのため、触媒層の電解質膜への転写が不充分になり、燃料電池に優れた性能を付与することができない。
特開2003−285396号公報 特開2006−150812号公報
However, when a catalyst layer transfer film is prepared using the release film described in Patent Document 2, there is a problem that the catalyst layer is easily lost. Therefore, the transfer of the catalyst layer to the electrolyte membrane is insufficient, and excellent performance cannot be imparted to the fuel cell.
JP 2003-285396 A JP 2006-150812 A

本発明は、離型成分による電解質膜の汚染がなく、触媒層の欠落が生じ難い転写フィルムを提供することを課題とする。   An object of the present invention is to provide a transfer film in which the electrolyte membrane is not contaminated by a release component and the catalyst layer is not easily lost.

本発明者は、上記課題を解決するために鋭意研究を重ねて来た。その結果、転写フィルムの基材フィルムとして特定の積層フィルムを使用した場合に、所望の転写フィルムを得ることができ、上記課題を解決できることを見い出した。本発明は、このような知見に基づき完成されたものである。   The present inventor has intensively studied in order to solve the above problems. As a result, it has been found that when a specific laminated film is used as the base film of the transfer film, a desired transfer film can be obtained and the above problems can be solved. The present invention has been completed based on such findings.

本発明は、下記項1〜3に示す触媒層転写フィルムを提供する。
項1.基材フィルムの一方面上に触媒層が形成された、燃料電池用の触媒層を転写するためのフィルムであって、
前記基材フィルムは、ガラス転移温度が50℃以上且つ融点が200℃以上の樹脂からなるフィルムAとガラス転移温度が50℃未満且つ融点が200℃以上のオレフィン系樹脂からなるフィルムBとの積層フィルムであり、
前記フィルムAを構成する樹脂は、ポリイミド、ポリエチレンテレフタレート、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートからなる群より選択される少なくとも1種であり、
前記フィルムBを構成する樹脂は、ポリ−4−メチルペンテン−1であり、
前記触媒層は、フィルムB側に形成されている、
触媒層転写フィルム。
項2.積層フィルムの総厚が30〜200μmの範囲である、項1に記載の触媒層転写フィルム。
項3.フィルムAを構成する樹脂が、ポリイミド、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエチレンナフタレートである、項1又は2に記載の触媒層転写フィルム。
This invention provides the catalyst layer transfer film shown to the following items 1-3.
Item 1. A film for transferring a catalyst layer for a fuel cell, in which a catalyst layer is formed on one surface of a base film,
The base film is a laminate of a film A made of a resin having a glass transition temperature of 50 ° C. or more and a melting point of 200 ° C. or more and a film B made of an olefin resin having a glass transition temperature of less than 50 ° C. and a melting point of 200 ° C. or more. A film,
The resin constituting the film A is at least one selected from the group consisting of polyimide, polyethylene terephthalate, polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate. And
The resin constituting the film B is poly-4-methylpentene-1,
The catalyst layer is formed on the film B side,
Catalyst layer transfer film.
Item 2. Item 2. The catalyst layer transfer film according to Item 1, wherein the total thickness of the laminated film is in the range of 30 to 200 µm.
Item 3. The resin constituting the film A is a polyimide, polyethylene terephthalate, Po Li polyphenylene sulfide, polyether ether ketone, Po Li ethylene naphthalate, the catalyst layer transfer film according to claim 1 or 2.

触媒層転写フィルム
本発明の触媒層転写フィルムは、基材フィルムの一方面上に触媒層が形成された転写フィルムである。本発明の触媒層転写フィルムの一例を示す断面図を図1に示す。
Catalyst layer transfer film The catalyst layer transfer film of the present invention is a transfer film in which a catalyst layer is formed on one surface of a base film. A cross-sectional view showing an example of the catalyst layer transfer film of the present invention is shown in FIG.

基材フィルム
本発明の基材フィルムは、ガラス転移温度が50℃以上且つ融点が200℃以上の樹脂からなるフィルムAとガラス転移温度が50℃未満且つ融点が200℃以上のオレフィン系樹脂からなるフィルムBとの積層フィルムである。
Base film The base film of the present invention comprises a film A composed of a resin having a glass transition temperature of 50 ° C or higher and a melting point of 200 ° C or higher, and an olefin resin having a glass transition temperature of less than 50 ° C and a melting point of 200 ° C or higher. It is a laminated film with film B.

フィルムAを構成する樹脂としては、ガラス転移温度が50℃以上且つ融点が200℃以上の樹脂である限り公知の樹脂を広く使用することができ、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート(PEN)等の高分子フィルム等を挙げることができる。フィルムAを構成する樹脂としては、ガラス転移温度が65℃以上且つ融点が250℃以上である樹脂が好ましく、具体的にはPET、PEN等が好ましい。フィルムAは、無軸延伸、一軸延伸及び二軸延伸のいずれであってもよい。   As the resin constituting the film A, known resins can be widely used as long as the glass transition temperature is 50 ° C. or higher and the melting point is 200 ° C. or higher. For example, polyimide, polyethylene terephthalate (PET), polysulfone, Examples thereof include polymer films such as polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate (PEN). As the resin constituting the film A, a resin having a glass transition temperature of 65 ° C. or higher and a melting point of 250 ° C. or higher is preferable, and specifically, PET, PEN or the like is preferable. The film A may be any of non-axial stretching, uniaxial stretching, and biaxial stretching.

フィルムBを構成するオレフィン系樹脂としては、ガラス転移温度が50℃未満且つ融点が200℃以上のオレフィン系樹脂である限り公知のオレフィン系樹脂を広く使用することができ、例えば、ポリ−4−メチルペンテン−1を挙げることができる。フィルムBを構成するオレフィン系樹脂としては、ガラス転移温度が45℃未満且つ融点が220℃以上であるオレフィン系樹脂が好ましく、具体的にポリ−4−メチルペンテン−1が好ましい。フィルムBは、無軸延伸、一軸延伸及び二軸延伸のいずれであってもよい。 As the olefin resin constituting the film B, known olefin resins can be widely used as long as the glass transition temperature is less than 50 ° C. and the melting point is 200 ° C. or more. For example, poly-4- Mention may be made of methylpentene- 1 . As the olefin resin constituting the film B, an olefin resin having a glass transition temperature of less than 45 ° C. and a melting point of 220 ° C. or more is preferable, and specifically, poly-4-methylpentene-1 is preferable. The film B may be any of non-axial stretching, uniaxial stretching and biaxial stretching.

本明細書において、樹脂の融点及びガラス転移温度は、以下に示す方法により測定したものである。
融点:
融点は、示差走査熱量計(島津製作所製のDSC−60)を使用し、DSC(示差走査熱量測定)法により測定した。この方法の概要を示すと、試料と基準物質を一定速度で加熱したときの熱量変化(発熱及び吸熱)を測定する。例えば、結晶性ポリマーであるポリエチレンをDSCで昇温(加熱)すると、約100〜130℃で熱を吸収して、結晶が融解する。このときの熱の吸収がDSCで吸熱ピークとして測定される。
ガラス転移温度:
ガラス転移点温度は、動的粘弾性測定装置を使用し、DMA(Dynamic mechanical analysis)法により測定した。この方法は、試料に曲げ又は引張りにより正弦的な応力又はひずみを与えており、動的貯蔵弾性率、動的損失弾性率及び損失正接が温度の関数であることを求め、ガラス転移温度を、損失正接のピーク温度から測定する方法である。
In this specification, melting | fusing point and glass transition temperature of resin are measured by the method shown below.
Melting point:
The melting point was measured by a DSC (Differential Scanning Calorimetry) method using a differential scanning calorimeter (DSC-60 manufactured by Shimadzu Corporation). The outline of this method is to measure changes in calorie (exotherm and endotherm) when a sample and a reference material are heated at a constant rate. For example, when polyethylene, which is a crystalline polymer, is heated (heated) by DSC, the crystal is melted by absorbing heat at about 100 to 130 ° C. The heat absorption at this time is measured by DSC as an endothermic peak.
Glass-transition temperature:
The glass transition temperature was measured by a dynamic mechanical analysis (DMA) method using a dynamic viscoelasticity measuring apparatus. In this method, a sample is subjected to sinusoidal stress or strain by bending or pulling, and the dynamic storage elastic modulus, dynamic loss elastic modulus and loss tangent are obtained as a function of temperature, and the glass transition temperature is determined by This is a method of measuring from the peak temperature of loss tangent.

積層フィルムの厚さの合計は、基材フィルム上に触媒層を形成させる作業性、経済性等の観点から、30〜200μm、好ましくは50〜150μmであるのが好ましい。   The total thickness of the laminated films is preferably 30 to 200 μm, preferably 50 to 150 μm, from the viewpoints of workability and economical efficiency for forming a catalyst layer on the base film.

積層フィルムに占める前記フィルムBの厚みの割合は、積層フィルム全体の1〜95%が好ましく、10〜80%がより好ましく、20〜70%が更に好ましく、30〜50%が特に好ましい。   The thickness ratio of the film B in the laminated film is preferably 1 to 95%, more preferably 10 to 80%, still more preferably 20 to 70%, and particularly preferably 30 to 50% of the entire laminated film.

本発明では、フィルムBは、表面処理がなされていてもよい。表面処理としては、例えば、金属ブラシやサンドブラスト等で物理的に表面凹凸をつける機械的処理、マット処理、コロナ放電処理、プラズマ放電処理、紫外線処理等が挙げられる。   In the present invention, the film B may be subjected to a surface treatment. Examples of the surface treatment include mechanical treatment that physically forms surface irregularities with a metal brush, sandblast, etc., mat treatment, corona discharge treatment, plasma discharge treatment, and ultraviolet treatment.

触媒層
本発明において、触媒層は、フィルムB側に形成されている。
Catalyst Layer In the present invention, the catalyst layer is formed on the film B side.

触媒層は、公知のものであり、一般的には、触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を含有する。   The catalyst layer is known and generally contains carbon particles supporting catalyst particles and a hydrogen ion conductive polymer electrolyte.

ここで、触媒粒子としては、例えば、白金、白金化合物等が挙げられる。白金化合物としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄等からなる群から選ばれる少なくとも1種の金属と白金との合金等が挙げられる。   Here, as a catalyst particle, platinum, a platinum compound, etc. are mentioned, for example. Examples of the platinum compound include an alloy of platinum and at least one metal selected from the group consisting of ruthenium, palladium, nickel, molybdenum, iridium, iron and the like.

水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。   Examples of the hydrogen ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins.

基材フィルム上に触媒層を形成させるに当っては、触媒粒子を担持させた炭素粒子及び水素イオン伝導性高分子電解質を適当な溶剤に混合、分散してペースト状にしておき、形成される触媒層が所望の層厚になるように、このペーストを公知の方法に従い基材フィルムのフィルムB上に塗布するのがよい。   In forming the catalyst layer on the base film, the carbon particles supporting the catalyst particles and the hydrogen ion conductive polymer electrolyte are mixed and dispersed in a suitable solvent to form a paste. This paste is preferably applied onto the film B of the base film according to a known method so that the catalyst layer has a desired layer thickness.

使用される溶剤としては、例えば、各種アルコール類、各種エーテル類、各種ジアルキルスルホキシド類、水又はこれらの混合物等が挙げられる。   Examples of the solvent used include various alcohols, various ethers, various dialkyl sulfoxides, water, or a mixture thereof.

ペーストの塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。   The method of applying the paste is not particularly limited, and for example, general methods such as knife coater, bar coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, screen printing, etc. are applied. it can.

斯かるペーストを塗布した後、乾燥することにより、触媒層が形成される。乾燥温度は、通常40〜100℃程度、好ましくは60〜80℃程度である。乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。   After applying such paste, the catalyst layer is formed by drying. A drying temperature is about 40-100 degreeC normally, Preferably it is about 60-80 degreeC. Although depending on the drying temperature, the drying time is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour.

触媒層の厚さは、通常10〜50μm程度、好ましくは15〜30μm程度がよい。   The thickness of the catalyst layer is usually about 10 to 50 μm, preferably about 15 to 30 μm.

触媒層−電解質膜積層体
本発明の触媒層−電解質膜積層体は、電解質膜の両面の触媒層が形成されたものである。本発明の触媒層−電解質膜積層体の断面図の一例を図2に示す。
Catalyst Layer-Electrolyte Membrane Laminate The catalyst layer-electrolyte membrane laminate of the present invention is obtained by forming catalyst layers on both sides of the electrolyte membrane. An example of a cross-sectional view of the catalyst layer-electrolyte membrane laminate of the present invention is shown in FIG.

本発明の触媒層が積層された電解質膜(触媒層−電解質膜積層体)は、例えば、本発明転写フィルムの触媒層面が電解質膜面に対面するように転写フィルムを配置し、加圧した後、該転写フィルムの基材フィルムを剥離することにより製造される。この操作を2回繰り返すことにより、触媒層面が電解質膜の両面に積層された触媒層−電解質膜積層体が製造される。   The electrolyte membrane (catalyst layer-electrolyte membrane laminate) on which the catalyst layer of the present invention is laminated is, for example, after the transfer film is arranged and pressed so that the catalyst layer surface of the transfer film of the present invention faces the electrolyte membrane surface It is manufactured by peeling the base film of the transfer film. By repeating this operation twice, a catalyst layer-electrolyte membrane laminate in which the catalyst layer surface is laminated on both surfaces of the electrolyte membrane is produced.

作業性を考慮すると、触媒層面を電解質膜の両面に同時に積層するのがよい。この場合には、例えば、本発明転写フィルムの触媒層面が電解質膜の両面に対面するように転写フィルムを配置し、加圧した後、該転写フィルムの基材フィルムを剥離すればよい。   In consideration of workability, the catalyst layer surface is preferably laminated on both surfaces of the electrolyte membrane at the same time. In this case, for example, the transfer film may be disposed so that the catalyst layer surface of the transfer film of the present invention faces both surfaces of the electrolyte membrane and pressurized, and then the base film of the transfer film may be peeled off.

使用される電解質膜は、公知のものである。電解質膜の膜厚は、通常20〜250μm程度、好ましくは20〜80μm程度である。電解質膜の具体例としては、デュポン社製の「Nafion」(登録商標)膜、旭硝子(株)製の「Flemion」(登録商標)膜、旭化成(株)製の「Aciplex」(登録商標)膜、ゴア(Gore)社製の「Gore Select」(登録商標)膜等が挙げられる。   The electrolyte membrane used is a known one. The thickness of the electrolyte membrane is usually about 20 to 250 μm, preferably about 20 to 80 μm. Specific examples of the electrolyte membrane include “Nafion” (registered trademark) membrane manufactured by DuPont, “Flemion” (registered trademark) membrane manufactured by Asahi Glass Co., Ltd., and “Aciplex” (registered trademark) membrane manufactured by Asahi Kasei Corporation. And “Gore Select” (registered trademark) membrane manufactured by Gore.

加圧レベルは、転写不良を避けるために、通常0.5〜10Mpa程度、好ましくは1〜10Mpa程度がよい。また、この加圧操作の際に、転写不良を避けるために、加圧面を加熱するのが好ましい。加熱温度は、電解質膜の破損、変性等を避けるために、通常80〜200℃程度、好ましくは135〜150℃程度がよい。   The pressure level is usually about 0.5 to 10 Mpa, preferably about 1 to 10 Mpa in order to avoid transfer defects. Further, it is preferable to heat the pressure surface during this pressure operation in order to avoid transfer failure. The heating temperature is usually about 80 to 200 ° C., preferably about 135 to 150 ° C., in order to avoid breakage, modification and the like of the electrolyte membrane.

電極−電解質膜接合体
本発明の電極−電解質膜接合体は、触媒層−電解質膜積層体の両面に電極基材を配置し、加圧することにより製造される。
Electrode-electrolyte membrane assembly The electrode-electrolyte membrane assembly of the present invention is produced by placing electrode substrates on both sides of a catalyst layer-electrolyte membrane laminate and applying pressure.

電極基材は、公知であり、燃料極、空気極を構成する各種の電極基材を使用できる。   The electrode base material is well known, and various electrode base materials constituting a fuel electrode and an air electrode can be used.

加圧レベルは、通常0.1〜100Mpa程度、好ましくは5〜15Mpa程度がよい。この加圧操作の際に加熱するのが好ましく、加熱温度は通常120〜150℃程度でよい。   The pressure level is usually about 0.1 to 100 Mpa, preferably about 5 to 15 Mpa. It is preferable to heat at the time of this pressurization operation, and heating temperature may be about 120-150 degreeC normally.

本発明によれば、離型成分による電解質膜の汚染がなく、触媒層の欠落が生じ難い転写フィルムを提供できる。   According to the present invention, it is possible to provide a transfer film in which the electrolyte membrane is not contaminated by the release component and the catalyst layer is not easily lost.

本発明の転写フィルムを使用することにより、均一な触媒層を電解質膜上に形成させることができる。   By using the transfer film of the present invention, a uniform catalyst layer can be formed on the electrolyte membrane.

本発明の転写フィルムは、優れた耐熱性を備えている。   The transfer film of the present invention has excellent heat resistance.

そのため、本発明によれば、触媒層を電解質膜に良好に転写することができ、しかも燃料電池の性能に悪影響を与えない触媒層−電解質膜積層体製造用転写フィルムを提供することができる。   Therefore, according to the present invention, it is possible to provide a transfer film for producing a catalyst layer-electrolyte membrane laminate that can transfer the catalyst layer to the electrolyte membrane satisfactorily and that does not adversely affect the performance of the fuel cell.

従って、本発明の触媒層−電解質膜積層体を使用すれば、優れた電池性能を備えた高品質の燃料電池を製造することができる。   Therefore, if the catalyst layer-electrolyte membrane laminate of the present invention is used, a high-quality fuel cell with excellent battery performance can be produced.

以下に実施例を掲げて、本発明をより一層明らかにする。   The present invention will be further clarified by the following examples.

参考例(積層フィルムの作成)
下記に示すフィルムAと各種のフィルムBとを、接着剤(主剤に大日本インキ化学工業(株)製のLX−703VLを、硬化剤に大日本インキ化学工業(株)製のKR−90を用いた接着剤)を用いて貼り合わせることにより、各種の積層フィルムを製造した。
フィルムA;
(A−1)ポリエチレンテレフタレート(PET、東洋紡(株)製のエステルフィルムE5100、厚さ100μm、ガラス転移温度80℃、融点260℃)
フィルムB;
(B−1)ポリ−4−メチルペンテン−1(TPX、三井化学(株)製のオピュラン、厚さ25μm、ガラス転移温度40℃、融点230℃)
(B−2)ポリエチレン(PE、タマポリ(株)製のハイトロンPG、厚さ25μm、ガラス転移温度80℃、融点130℃)
(B−3)ポリエチレンテレフタレート(PET、三菱化学ポリエステル(株)製のダイアホイル、厚さ25μm、ガラス転移温度70℃、融点260℃)
(B−4)フッ素系樹脂(旭硝子(株)製のアフレックス、厚さ25μm、ガラス転移温度40℃、融点260℃)
(A−1)と(B−1)との積層フィルムを以下「積層フィルム(I)」、(A−1)と(B−2)との積層フィルムを以下「積層フィルム(II)」、(A−1)と(B−3)との積層フィルムを以下「積層フィルム(III)」、(A−1)と(B−4)との積層フィルムを以下「積層フィルム(IV)」という。
Reference example (creation of laminated film)
Film A and various films B shown below are adhesives (LX-703VL manufactured by Dainippon Ink & Chemicals, Ltd. as the main agent, and KR-90 manufactured by Dainippon Ink & Chemicals, Inc. as the curing agent. Various laminated films were produced by bonding using the adhesive used.
Film A;
(A-1) Polyethylene terephthalate (PET, ester film E5100 manufactured by Toyobo Co., Ltd., thickness 100 μm, glass transition temperature 80 ° C., melting point 260 ° C.)
Film B;
(B-1) Poly-4-methylpentene-1 (TPX, Mitsui Chemicals Opuran, thickness 25 μm, glass transition temperature 40 ° C., melting point 230 ° C.)
(B-2) Polyethylene (PE, Hytron PG manufactured by Tamapoly Co., Ltd., thickness 25 μm, glass transition temperature 80 ° C., melting point 130 ° C.)
(B-3) Polyethylene terephthalate (PET, Diafoil manufactured by Mitsubishi Chemical Polyester Co., Ltd., thickness 25 μm, glass transition temperature 70 ° C., melting point 260 ° C.)
(B-4) Fluorine-based resin (Aflex manufactured by Asahi Glass Co., Ltd., thickness 25 μm, glass transition temperature 40 ° C., melting point 260 ° C.)
The laminated film of (A-1) and (B-1) is hereinafter referred to as “laminated film (I)”, the laminated film of (A-1) and (B-2) is hereinafter referred to as “laminated film (II)”, The laminated film of (A-1) and (B-3) is hereinafter referred to as “laminated film (III)”, and the laminated film of (A-1) and (B-4) is hereinafter referred to as “laminated film (IV)”. .

実施例1
白金ルテニウム担持カーボン(Pt:27.2重量%、Ru:28.7重量%)(田中貴金属(株)製、TEC62E58)10重量部及び5重量%電解質溶液(デュポン社製、DE−520、溶剤:1−プロパノール/水=1/1(重量比))100重量部を、イソプロピルアルコール100重量部及びプロピレングリコール2重量部に加え、混合及び分散を行い、触媒層形成用ペーストを調製した。
Example 1
Platinum ruthenium-supported carbon (Pt: 27.2% by weight, Ru: 28.7% by weight) (Tanaka Kikinzoku Co., Ltd., TEC62E58) 10 parts by weight and 5% by weight electrolyte solution (manufactured by DuPont, DE-520, solvent) : 1-propanol / water = 1/1 (weight ratio)) was added to 100 parts by weight of isopropyl alcohol and 2 parts by weight of propylene glycol, and mixed and dispersed to prepare a catalyst layer forming paste.

積層フィルム(I)の(B−1)側に触媒層形成用ペーストをブレードコーターを用いて、乾燥後の厚さが20μmになるように塗布し、85℃で乾燥させ、本発明の触媒層転写フィルムを製造した。   The catalyst layer forming paste was applied to the (B-1) side of the laminated film (I) using a blade coater so that the thickness after drying was 20 μm and dried at 85 ° C. A transfer film was produced.

比較例1〜3
積層フィルム(I)の代わりに積層フィルム(II)、積層フィルム(III)又は積層フィルム(IV)を使用する以外は、実施例1と同様にして、比較のための触媒層転写フィルムを製造した。
Comparative Examples 1-3
A comparative catalyst layer transfer film was produced in the same manner as in Example 1 except that the laminated film (II), the laminated film (III) or the laminated film (IV) was used instead of the laminated film (I). .

試験例1(転写フィルムの印刷適正)
転写フィルムの印刷適正は、次のように評価した。実施例1及び比較例1〜3において積層フィルム(I)、積層フィルム(II)、積層フィルム(III)及び積層フィルム(IV)に触媒層形成用ペーストを塗布した際の印刷適正を次の基準で評価した。即ち、触媒層形成用ペーストの塗布を容易に行うことができ、均一な触媒層を形成できる場合を○、触媒層形成用ペーストの塗布が困難であり、触媒層を形成できなかった場合を×として評価した。
Test example 1 (suitability for printing on transfer film)
The printing suitability of the transfer film was evaluated as follows. In Example 1 and Comparative Examples 1 to 3, the printing quality when the paste for forming the catalyst layer was applied to the laminated film (I), the laminated film (II), the laminated film (III) and the laminated film (IV) was as follows. It was evaluated with. That is, the case where the catalyst layer forming paste can be easily applied and a uniform catalyst layer can be formed is ○, the case where the catalyst layer forming paste is difficult to apply and the catalyst layer cannot be formed is × As evaluated.

結果を表1に示す。   The results are shown in Table 1.

試験例2(転写フィルムの転写性能)
実施例1及び比較例1〜2で製造した各触媒層転写フィルムを5×5cmに裁断し、8×8cmに裁断した水素イオン伝導性電解質膜(デュポン社製、ナフィオン112、膜厚50μm)の両側に、転写シートの触媒層面が電解質膜の両面に対面するように転写フィルムを配置し、温度180℃、圧力6.5MPaで転写を行い、触媒層−電解質膜積層体を製造した。
Test example 2 (transfer performance of transfer film)
Each of the catalyst layer transfer films produced in Example 1 and Comparative Examples 1 and 2 was cut to 5 × 5 cm, and the hydrogen ion conductive electrolyte membrane (DuPont, Nafion 112, film thickness 50 μm) cut to 8 × 8 cm was used. On both sides, a transfer film was placed so that the catalyst layer surface of the transfer sheet faced both surfaces of the electrolyte membrane, and transfer was performed at a temperature of 180 ° C. and a pressure of 6.5 MPa to produce a catalyst layer-electrolyte membrane laminate.

電解質膜に触媒層を転写した際の転写率(%)を次式に従い、算出した。   The transfer rate (%) when the catalyst layer was transferred to the electrolyte membrane was calculated according to the following formula.

Figure 0005369416
Figure 0005369416

ここで、転写前の触媒量は、転写前の触媒層転写フィルムの重量から、触媒層をふき取った後の積層フィルムの重量を差し引いた重量である。転写後の触媒量は、転写後の触媒層転写フィルムの重量から、触媒層をふき取った後の積層フィルムの重量を差し引いた重量である。   Here, the amount of catalyst before transfer is the weight obtained by subtracting the weight of the laminated film after wiping off the catalyst layer from the weight of the catalyst layer transfer film before transfer. The amount of catalyst after transfer is a weight obtained by subtracting the weight of the laminated film after wiping off the catalyst layer from the weight of the catalyst layer transfer film after transfer.

転写率が97%以上の転写フィルムを○、転写率が95%以上97%未満の転写フィルムを△、転写率が95%未満の転写フィルムを×として評価した。   A transfer film having a transfer rate of 97% or more was evaluated as “◯”, a transfer film having a transfer rate of 95% or more and less than 97% was evaluated as Δ, and a transfer film having a transfer rate of less than 95% was evaluated as “X”.

結果を表1に示す。   The results are shown in Table 1.

Figure 0005369416
Figure 0005369416

表1から、実施例1で得られた触媒層転写フィルムは、印刷適正が良好であり、優れた転写性能を有していることが明らかである。   From Table 1, it is clear that the catalyst layer transfer film obtained in Example 1 has good printing suitability and excellent transfer performance.

試験例3(転写フィルムの加熱剥離力)
実施例1で得られた触媒層転写フィルムの加熱剥離力を次に示す方法に従って測定した。積層フィルム(I)の(B−1)表面に、アクリル粘着テープ「No.31B」(日東電工(株)製)を貼り付け、熱風オーブン内で100℃1時間熱処理を行った。熱処理後、室温にて1時間放冷した後、引張試験機にて引張速度300mm/分で180°剥離を行い、剥離が安定した領域における平均剥離荷重を粘着テープ幅で除した値を加熱剥離力とした。
Test Example 3 (Heat peeling force of transfer film)
The heat peeling force of the catalyst layer transfer film obtained in Example 1 was measured according to the following method. Acrylic adhesive tape “No. 31B” (manufactured by Nitto Denko Corporation) was attached to the (B-1) surface of the laminated film (I), and heat treatment was performed in a hot air oven at 100 ° C. for 1 hour. After heat treatment, after cooling at room temperature for 1 hour, 180 ° peeling is performed at a tensile rate of 300 mm / min with a tensile tester, and the value obtained by dividing the average peeling load in the area where peeling is stable by the width of the adhesive tape is heated. Power.

その結果、実施例1で得られた触媒層転写フィルムの加熱剥離力は、1667mN/cmであった。   As a result, the heat peeling force of the catalyst layer transfer film obtained in Example 1 was 1667 mN / cm.

図1は、本発明の触媒層転写フィルムの断面図である。FIG. 1 is a cross-sectional view of the catalyst layer transfer film of the present invention. 図2は、触媒層−電解質膜積層体の断面図である。FIG. 2 is a cross-sectional view of the catalyst layer-electrolyte membrane laminate.

Claims (3)

基材フィルムの一方面上に触媒層が形成された、燃料電池用の触媒層を転写するためのフィルムであって、
前記基材フィルムは、ガラス転移温度が50℃以上且つ融点が200℃以上の樹脂からなるフィルムAとガラス転移温度が50℃未満且つ融点が200℃以上のオレフィン系樹脂からなるフィルムBとの積層フィルムであり、
前記フィルムAを構成する樹脂は、ポリイミド、ポリエチレンテレフタレート、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレートからなる群より選択される少なくとも1種であり、
前記フィルムBを構成する樹脂は、ポリ−4−メチルペンテン−1であり、
前記触媒層は、フィルムB側に形成されている、
触媒層転写フィルム。
A film for transferring a catalyst layer for a fuel cell, in which a catalyst layer is formed on one surface of a base film,
The base film is a laminate of a film A made of a resin having a glass transition temperature of 50 ° C. or more and a melting point of 200 ° C. or more and a film B made of an olefin resin having a glass transition temperature of less than 50 ° C. and a melting point of 200 ° C. or more. A film,
The resin constituting the film A is at least one selected from the group consisting of polyimide, polyethylene terephthalate, polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate. And
The resin constituting the film B is poly-4-methylpentene-1,
The catalyst layer is formed on the film B side,
Catalyst layer transfer film.
積層フィルムの総厚が30〜200μmの範囲である、請求項1に記載の触媒層転写フィルム。   The catalyst layer transfer film according to claim 1, wherein the total thickness of the laminated film is in the range of 30 to 200 μm. フィルムAを構成する樹脂が、ポリイミド、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエチレンナフタレートである、請求項1又は2に記載の触媒層転写フィルム。 The resin constituting the film A is a polyimide, polyethylene terephthalate, Po Li polyphenylene sulfide, polyether ether ketone, Po Li ethylene naphthalate, the catalyst layer transfer film according to claim 1 or 2.
JP2007253317A 2007-09-28 2007-09-28 Catalyst layer transfer film Expired - Fee Related JP5369416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253317A JP5369416B2 (en) 2007-09-28 2007-09-28 Catalyst layer transfer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253317A JP5369416B2 (en) 2007-09-28 2007-09-28 Catalyst layer transfer film

Publications (2)

Publication Number Publication Date
JP2009087604A JP2009087604A (en) 2009-04-23
JP5369416B2 true JP5369416B2 (en) 2013-12-18

Family

ID=40660788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253317A Expired - Fee Related JP5369416B2 (en) 2007-09-28 2007-09-28 Catalyst layer transfer film

Country Status (1)

Country Link
JP (1) JP5369416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293859B1 (en) * 2012-05-11 2013-09-18 大日本印刷株式会社 Conductive porous layer for battery and method for producing the same
JP6561800B2 (en) * 2015-11-26 2019-08-21 トヨタ自動車株式会社 Manufacturing method of membrane electrode assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063911A (en) * 2000-08-18 2002-02-28 Matsushita Electric Ind Co Ltd Manufacturing method of polymer electrolyte fuel cell
JP5343298B2 (en) * 2005-08-30 2013-11-13 大日本印刷株式会社 Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP2008204646A (en) * 2007-02-16 2008-09-04 Dainippon Printing Co Ltd Catalyst layer transfer film
JP5332261B2 (en) * 2007-03-30 2013-11-06 大日本印刷株式会社 Catalyst layer transfer film
JP5527254B2 (en) * 2011-02-28 2014-06-18 旭硝子株式会社 Carrier film for catalyst layer, catalyst layer transfer film, and method for producing membrane-catalyst layer assembly

Also Published As

Publication number Publication date
JP2009087604A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5122149B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5196717B2 (en) Catalyst layer transfer sheet, method for producing catalyst layer-electrolyte membrane laminate, method for producing electrode-electrolyte membrane assembly, and method for producing fuel cell
US8202570B2 (en) Process for producing membrane/electrode assembly for polymer electrolyte fuel cell and process for producing polymer electrolyte fuel cell
JP5552766B2 (en) Edge-sealed catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, polymer electrolyte fuel cell, catalyst layer-electrolyte membrane laminate production method, and edge-sealed catalyst layer-electrolyte membrane laminate production method
JP2008516395A (en) Curable subgasket for membrane electrode assembly
JPWO2009151013A1 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP2001160405A (en) Manufacturing method of solid polymer fuel cell
JP4560671B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP5343298B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP5401751B2 (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, electrode-electrolyte membrane assembly, and methods for producing them
JP5369416B2 (en) Catalyst layer transfer film
JP2012074235A (en) Membrane electrode assembly and production method therefor
JP2016146311A (en) Gas diffusion layer for battery, film for battery-electrode assembly including the same, member for battery, battery, and manufacturing methods thereof
JP2007265733A (en) Transfer sheet, catalyst layer-electrolyte membrane laminate, and manufacturing method of them
JP5887692B2 (en) Catalyst layer with reinforcing membrane-electrolyte membrane laminate, membrane-electrode assembly with reinforcing membrane, polymer electrolyte fuel cell, and production method thereof
CN111837279A (en) Membrane electrode assembly and solid polymer fuel cell
JP5200348B2 (en) Catalyst layer transfer film and catalyst layer-electrolyte membrane laminate
JP5277546B2 (en) Catalyst layer transfer film for fuel cell and method for producing catalyst layer-electrolyte membrane laminate
JP5581938B2 (en) Catalyst layer with protective sheet-electrolyte membrane laminate, catalyst layer with protective sheet-electrolyte membrane laminate intermediate, membrane with protective sheet-electrode assembly, and catalyst layer with protective sheet-electrolyte membrane laminate manufacturing method
JP4538692B2 (en) Method for producing catalyst layer-electrolyte membrane laminate
JP2005063832A (en) Catalyst layer-electrolyte film laminate and its manufacturing method
JP2009048936A (en) Repair method of electrolyte membrane with catalyst layer, and transcription film for repair
JP2009230964A (en) Catalyst layer transcription sheet, manufacturing method of electrolyte membrane-catalyst layer assembly using the same, manufacturing method of electrolyte membrane-electrode assembly, and manufacturing method of solid polymer fuel cell
CN113381045A (en) Fuel cell membrane electrode and preparation method thereof
JP2008204646A (en) Catalyst layer transfer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees