JP5369353B2 - Electrode provided with electrode protection partition and dye-sensitized solar cell provided with the electrode - Google Patents

Electrode provided with electrode protection partition and dye-sensitized solar cell provided with the electrode Download PDF

Info

Publication number
JP5369353B2
JP5369353B2 JP2009542538A JP2009542538A JP5369353B2 JP 5369353 B2 JP5369353 B2 JP 5369353B2 JP 2009542538 A JP2009542538 A JP 2009542538A JP 2009542538 A JP2009542538 A JP 2009542538A JP 5369353 B2 JP5369353 B2 JP 5369353B2
Authority
JP
Japan
Prior art keywords
electrode
photoelectrode
partition wall
sealing material
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009542538A
Other languages
Japanese (ja)
Other versions
JPWO2009066623A1 (en
Inventor
真宏 金山
直人 今若
恵子 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2009542538A priority Critical patent/JP5369353B2/en
Publication of JPWO2009066623A1 publication Critical patent/JPWO2009066623A1/en
Application granted granted Critical
Publication of JP5369353B2 publication Critical patent/JP5369353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

To provide a technique, in manufacturing dye-sensitized solar cells, for preventing degradations in their photovoltaic performance and durability due to sealant-derived electrode contamination.A photoelectrode characterized in that an electrode-protection partition wall is formed along a circumference of an oxide semiconductor layer formed on a transparent conductive substrate and a position for forming a partition wall made of a sealant is reserved outside the electrode-protection partition wall; or a counter electrode comprising an electrode-protection partition wall, characterized in that the electrode-protection partition wall is so positioned on the counter electrode that, when the partition wall is laminated to a photoelectrode via a sealant, the electrode-protection partition wall assumes a position over a region of the photoelectrode between the sealant partition wall and an oxide semiconductor layer; and a dye-sensitized solar cell comprising either of the aforementioned electrodes.

Description

本発明は、色素増感太陽電池に適した電極及び該電極を備えた色素増感太陽電池に関する。   The present invention relates to an electrode suitable for a dye-sensitized solar cell and a dye-sensitized solar cell provided with the electrode.

色素増感太陽電池は、Si系太陽電池と比べ低コストであることから、世界的に広く注目されてきている。   Dye-sensitized solar cells have attracted widespread attention worldwide since they are less expensive than Si-based solar cells.

色素増感太陽電池では、基板に透明導電基板を用いているが、この透明導電基板自体の抵抗値に制約があるため、適切なモジュール設計が必要となる。色素増感太陽電池のモジュール化にあたっては、集電材料と、封止技術、そのパターン化が重要な要素を占めており、モジュール性能と耐久性に大きな影響を与える。   In a dye-sensitized solar cell, a transparent conductive substrate is used as a substrate. However, since the resistance value of the transparent conductive substrate itself is limited, an appropriate module design is required. When modularizing dye-sensitized solar cells, the current collector material, sealing technology, and patterning occupy important elements, which greatly affect module performance and durability.

モジュールの高性能化を実現するためには、パターンを緻密化する必要があるため、封止部と電極部との距離は狭い方が望ましい。   In order to realize high performance of the module, it is necessary to make the pattern dense, and therefore it is desirable that the distance between the sealing portion and the electrode portion is narrow.

特開2006−261090号公報JP 2006-261090 A

しかし、封止材料と電極部が隣接すると、(i)対極貼り合わせ時の加圧処理による封止材料の流れによる電極汚染、及び封止材料に含まれる低分子量物などによる汚染などが問題となること、また、(ii)該低分子量物[たとえば、ポリマー(樹脂)の原料であるモノマー、あるいは樹脂モノマーを適度に分散させたりスクリーン印刷に適した粘性を与えるための各種添加剤や溶媒]による汚染などは、封止材料の組成、使用方法によって、その汚染形態が大きく異なることが、本願発明者らの研究により、新規の知見としてわかってきた。   However, if the sealing material and the electrode part are adjacent, (i) electrode contamination due to the flow of the sealing material due to the pressure treatment at the time of bonding the counter electrode, and contamination due to low molecular weight substances contained in the sealing material, etc. are problematic. (Ii) the low molecular weight material [for example, various monomers and solvents for appropriately dispersing the monomer that is a raw material of the polymer (resin) or the resin monomer or imparting viscosity suitable for screen printing] As a result of research conducted by the present inventors, it has been found as a new finding that the contamination form due to the contamination varies greatly depending on the composition and use method of the sealing material.

そこで、かかる新知見に基づき、上記のような封止材料由来の電極汚染による、発電性能低下、耐久性低下を防止する技術を提供することが本発明の課題である。   Therefore, it is an object of the present invention to provide a technique for preventing a decrease in power generation performance and a decrease in durability due to electrode contamination derived from the sealing material as described above based on such new knowledge.

本発明の第一の態様は、透明導電基板上に形成された酸化物半導体層の周囲に沿って電極保護用隔壁が形成され、該電極保護用隔壁より外部に、封止材からなる隔壁配置予定部位が確保されていることを特徴とする光電極である。   According to a first aspect of the present invention, a partition wall for electrode protection is formed along the periphery of an oxide semiconductor layer formed on a transparent conductive substrate, and a partition wall made of a sealing material is disposed outside the partition wall for electrode protection. This is a photoelectrode characterized in that a predetermined site is secured.

本発明の第二の態様は、電極保護用隔壁を備えた対極であって、該電極保護用隔壁は、封止材により光電極と貼り合わせる際に、該封止材の隔壁と酸化物半導体層の間の光電極領域の上部に位置するように、対極上に配置されることを特徴とする対極である。   A second aspect of the present invention is a counter electrode provided with an electrode protection partition, and the electrode protection partition is bonded to the photoelectrode with an encapsulant and the sealing material partition and the oxide semiconductor. The counter electrode is characterized in that it is disposed on the counter electrode so as to be positioned above the photoelectrode region between the layers.

本発明の第三の態様は、前記第一の態様の光電極を備えた色素増感太陽電池である。   3rd aspect of this invention is a dye-sensitized solar cell provided with the photoelectrode of said 1st aspect.

本発明の第四の態様は、前記第二の態様の対極を備えた色素増感太陽電池である。   4th aspect of this invention is a dye-sensitized solar cell provided with the counter electrode of said 2nd aspect.

また、本発明の第五の態様は、前記第一の態様の光電極の電極保護用隔壁より外部に、封止材からなる隔壁を形成し、次いで対極を貼り合わせることを特徴とする色素増感太陽電池の製造方法である。   According to a fifth aspect of the present invention, there is provided a dye sensitizing method characterized in that a partition wall made of a sealing material is formed outside the electrode protection partition wall of the photoelectrode of the first aspect, and then a counter electrode is bonded. It is a manufacturing method of a solar cell.

また、本発明の第六の態様は、光電極に封止材からなる隔壁を形成し、次いで、対極を貼り合わせることにより色素増感太陽電池を製造する方法において、対極として前記第二の態様の電極保護用隔壁を備えた対極を用い、光電極と対極を貼り合わせた際に、前記電極保護用隔壁が前記封止材の隔壁と酸化物半導体層の間の光電極領域の上部に位置するように、前記封止材の隔壁を光電極上に形成することを特徴とする色素増感太陽電池の製造方法である。   The sixth aspect of the present invention is the method for producing a dye-sensitized solar cell by forming a partition wall made of a sealing material on a photoelectrode and then bonding the counter electrode together. When the counter electrode having the electrode protection partition wall is used and the photoelectrode and the counter electrode are bonded together, the electrode protection partition wall is positioned above the photoelectrode region between the partition wall of the sealing material and the oxide semiconductor layer. Thus, a method of manufacturing a dye-sensitized solar cell, wherein the partition wall of the sealing material is formed on a photoelectrode.

本発明の電極保護用隔壁を備えた光電極または対極を用いて、光電極上の酸化物半導体層と封止材の隔壁との間に、前記電極保護用隔壁を介在させることにより、封止材料由来の電極汚染による、発電性能低下、耐久性低下を防止できる。   By using the photoelectrode or counter electrode provided with the electrode protecting partition wall of the present invention, the electrode protecting partition wall is interposed between the oxide semiconductor layer on the photoelectrode and the partition wall of the sealing material, thereby providing a sealing material. It is possible to prevent a decrease in power generation performance and durability due to electrode contamination derived from the origin.

図1Aは、電極保護用隔壁を備えた光電極及び対極の断面示す概略図。本発明の第一の態様に対応する。FIG. 1A is a schematic view showing a cross section of a photoelectrode provided with an electrode protection partition and a counter electrode. This corresponds to the first aspect of the present invention. 図1Bは、電極保護用隔壁を備えた光電極及び対極の断面示す概略図。本発明の第二の態様に対応する。FIG. 1B is a schematic view showing a cross section of a photoelectrode and a counter electrode provided with an electrode protection partition. This corresponds to the second aspect of the present invention. 図2は、電極保護用隔壁を含む印刷パターンを示す。この図には該電極保護用隔壁以外に、集電配線保護のための絶縁層等も示されている。FIG. 2 shows a printed pattern including an electrode protection partition. In this figure, in addition to the electrode protection partition, an insulating layer for protecting the current collecting wiring is also shown. 図3は、実施例2の試験番号1〜4で示される色素増感電池作製のための光電極の作製手順を示す図である。FIG. 3 is a diagram showing a production procedure of a photoelectrode for producing a dye-sensitized battery indicated by test numbers 1 to 4 in Example 2.

1.本発明の第一の態様について
本発明の第一の態様は、透明導電基板上に形成された酸化物半導体層の周囲に沿って電極保護用隔壁が形成され、該電極保護用隔壁より外部に、封止材からなる隔壁配置予定部位が確保されていることを特徴とする光電極を対象とする。
1. About the first aspect of the present invention In the first aspect of the present invention, an electrode protection partition is formed along the periphery of the oxide semiconductor layer formed on the transparent conductive substrate, and the electrode protection partition is formed outside the electrode protection partition. Further, a photoelectrode characterized in that a partition arrangement planned portion made of a sealing material is secured is an object.

(A)電極保護用隔壁
電極保護用隔壁とは、酸化物半導体層の周囲に沿って形成された隔壁であって、対極貼り合わせ時の加圧処理による封止材料自体の流れ、あるいは封止材料に含まれる低分子量物など、による電極の汚染を防止するための隔壁である[図1A参照]。
(A) Electrode protection partition wall The electrode protection partition wall is a partition wall formed along the periphery of the oxide semiconductor layer, and the flow of the sealing material itself by the pressure treatment at the time of bonding the counter electrode, or sealing It is a partition for preventing contamination of the electrode by low molecular weight substances contained in the material [see FIG. 1A].

光電極と対極を隔てるための封止材からなる隔壁以外に、このような電極保護用隔壁を設けることは、本願発明者の知る限り新規である。たとえば、特許文献1では、基板間の周縁部をシールするシール材として用いる樹脂やゴム中にスペーサー材料を含んでよいとの開示がみられるが(特許文献1、段落番号0051〜0052)、これは基板間の間隔を調節する目的等に用いようとするもので目的が全く異なるし、特許文献1にいうシール材とは本願発明でいう封止材からなる隔壁に相当するところ、特許文献1にいうスペーサーはこの封止材中の一粒子成分と考えられるのに対して、本願発明の電極保護用隔壁は、組成物中の一粒子ではないし、封止材からなる隔壁より外部に位置することから、位置関係も異なる。   In addition to the partition made of a sealing material for separating the photoelectrode and the counter electrode, it is novel to provide such an electrode protection partition as far as the inventors of the present application know. For example, Patent Document 1 discloses that a spacer material may be included in a resin or rubber used as a sealing material for sealing a peripheral portion between substrates (Patent Document 1, paragraph numbers 0051 to 0052). Is intended to be used for the purpose of adjusting the interval between the substrates, and the purpose is completely different. The sealing material referred to in Patent Document 1 corresponds to the partition wall made of the sealing material referred to in the present invention. The spacer mentioned in the above is considered to be one particle component in the sealing material, whereas the electrode protecting partition wall of the present invention is not one particle in the composition but is located outside the partition wall made of the sealing material. Therefore, the positional relationship is also different.

該電極保護用隔壁は、酸化物半導体層の周囲に沿って形成されるが、その態様として全周囲を覆うように連続的に形成することもできるし(実施例2の連続状電極保護用隔壁参照)、周囲の一部には隔壁を設けない、たとえばスリット状の隔壁とすることもできる(実施例2のスリット状電極保護用隔壁参照)。もっとも、できるだけ全周囲を覆うように形成することが、より有効に電極を保護することができるので好ましい。   The electrode protection barrier ribs are formed along the periphery of the oxide semiconductor layer. However, the electrode protection barrier ribs can be formed continuously so as to cover the entire periphery. For example, it may be a slit-shaped partition wall (see the slit-shaped electrode protection partition wall of Example 2). However, it is preferable to cover the entire periphery as much as possible because the electrode can be more effectively protected.

該電極保護用隔壁の材料としては、少なくともその表面が、ガラス、セラミックスや、ゴム状樹脂などの樹脂等の絶縁性材料から構成されていることが好ましく、封止材の流れによる汚染から酸化物半導体層を保護するという観点からは、ガラスフリットや樹脂がより好ましい。   As a material for the electrode protection partition, at least the surface thereof is preferably composed of an insulating material such as glass, ceramics, or a resin such as a rubber-like resin. From the viewpoint of protecting the semiconductor layer, glass frit and resin are more preferable.

該電極保護用隔壁の形状としては、その高さは高いほど好ましいといえるが、電極間距離を越えない範囲で、電極間距離の少なくとも20%以上あることが、封止材の流れによる汚染から酸化物半導体層を保護するという観点から好ましく、電極間距離の30%以上であることがより好ましい。   As the shape of the partition wall for electrode protection, it can be said that the higher the height, the better. However, at least 20% of the distance between the electrodes within a range not exceeding the distance between the electrodes is due to contamination due to the flow of the sealing material. It is preferable from the viewpoint of protecting the oxide semiconductor layer, and more preferably 30% or more of the distance between the electrodes.

さらに、より有効に封止材料に含まれる低分子量物などによる電極汚染にも対応する観点からは、該電極保護用隔壁をゴム状樹脂とした上で、電極間距離をわずかに超える高さ(たとえば1.0〜2.0倍)で保護用隔壁を形成し、2つの極を張り合わせた際に、電極間の空間を気密構造にするパッキンの働きをさせるようにすることが好ましい。   Furthermore, from the viewpoint of more effectively dealing with electrode contamination due to low molecular weight substances contained in the sealing material, the electrode protection partition is made of rubber-like resin, and the height slightly exceeding the distance between the electrodes ( For example, when the protective partition is formed at 1.0 to 2.0 times and the two electrodes are bonded to each other, it is preferable to act as a packing that makes the space between the electrodes airtight.

該電極保護用隔壁の幅は、有効発電面積を稼ぐ点でできるだけ狭いことが好ましく、好ましくは0.3mm以下、より好ましくは0.2mm以下に抑えることが好ましい。   The width of the partition wall for electrode protection is preferably as narrow as possible in terms of obtaining an effective power generation area, preferably 0.3 mm or less, more preferably 0.2 mm or less.

該電極保護用隔壁は、光電極の酸化物半導体層の周囲に沿って形成されているが(図1A参照)、該電極保護用隔壁の酸化物半導体層からの距離は小さければ小さいほど有効発電面積を稼ぐ点で好ましいが、スクリーン印刷等の印刷技術により形成する場合には、印刷精度の観点での制約を受け、通常、0.2mm程度の間隔を空けることが好ましい。   The electrode protection partition is formed along the periphery of the oxide semiconductor layer of the photoelectrode (see FIG. 1A). The smaller the distance from the oxide semiconductor layer of the electrode protection partition, the more effective power generation is. Although it is preferable in terms of increasing the area, in the case of forming by a printing technique such as screen printing, it is usually preferable to leave an interval of about 0.2 mm due to restrictions from the viewpoint of printing accuracy.

また、すでに説明したように該電極保護用隔壁より外部には、封止材からなる隔壁配置予定部位が確保されている。封止材からなる隔壁配置予定部位までの距離は、小さければ小さいほど有効発電面積を稼ぐ点で好ましく、実質的にゼロの距離で形成することが好ましい。また、該電極保護用隔壁は、その一部が封止材からなる隔壁と重なっていても差し支えない。   Further, as already described, a partition arrangement planned portion made of a sealing material is secured outside the electrode protection partition. The smaller the distance to the partitioning arrangement planned site made of the sealing material, the better in terms of increasing the effective power generation area, and it is preferable to form the distance substantially zero. Further, the electrode protection partition wall may partially overlap with the partition wall made of a sealing material.

該電極保護用隔壁は、スクリーン印刷法等により施すことで簡便に作製できる。特に後述したような絶縁層と同時印刷することで、より簡便に作製可能である。   The electrode protection partition can be easily produced by applying a screen printing method or the like. In particular, it can be more easily produced by simultaneous printing with an insulating layer as described later.

(B)本発明の光電極は、上記の電極保護用隔壁以外の構成成分として、透明導電基板、酸化物半導体層、分光増感色素等、通常用いられる構成要素を備えている。 (B) The photoelectrode of the present invention includes components that are usually used, such as a transparent conductive substrate, an oxide semiconductor layer, and a spectral sensitizing dye, as components other than the electrode protection partition.

(a)透明導電基板
透明導電基板としては、透明ガラスあるいは透明樹脂フィルム等の透明基板上に、透明導電膜として酸化チタン、酸化亜鉛(アンチモンまたはアルミニウムをドープしたものでもよい)、酸化インジウム(スズまたは亜鉛をドープしたものでもよい)、酸化スズ(アンチモンまたはフッ素をドープしたものでもよい)等の膜を形成したものが好ましく用いられる。
(A) Transparent conductive substrate As the transparent conductive substrate, titanium oxide, zinc oxide (which may be doped with antimony or aluminum), indium oxide (tin) as a transparent conductive film on a transparent substrate such as transparent glass or transparent resin film Alternatively, those formed with a film of tin oxide (which may be doped with antimony or fluorine) may be preferably used.

(b)酸化物半導体層
前記透明導電基板上に形成され、金属酸化物半導体膜からなる層である。該金属酸化物半導体としては、酸化チタン、酸化亜鉛、酸化スズ、スズをドープした酸化インジウム、酸化ジルコニウム、酸化マグネシウム等の公知の多孔質材料を用いることができ、スピンコート法、スプレー法、ディッピング法、スクリーン印刷法、ドクターブレード法、インクジェット法等により前記透明導電基板上に形成できるが、操作の簡便さの観点からはスピンコート法、スプレー法、ディッピング法が、量産化の観点からはスクリーン印刷法によるのが好ましい。
(B) Oxide semiconductor layer A layer formed on the transparent conductive substrate and made of a metal oxide semiconductor film. As the metal oxide semiconductor, known porous materials such as titanium oxide, zinc oxide, tin oxide, tin-doped indium oxide, zirconium oxide, and magnesium oxide can be used. Spin coating, spraying, dipping Can be formed on the transparent conductive substrate by a method, a screen printing method, a doctor blade method, an ink jet method, etc., but from the viewpoint of ease of operation, a spin coating method, a spray method, a dipping method are screens from the viewpoint of mass production. The printing method is preferred.

(c)分光増感色素
前記分光増感色素としては、可視領域および/または赤外光領域に吸収をもつ種々の金属錯体や有機色素を用いることができ、任意の公知の方法、たとえば、二酸化チタン等の酸化物半導体薄膜を色素溶液に所定の温度で浸漬する方法(ディッピング法、ローラ法、エヤーナイフ法など)や、色素溶液を酸化物半導体層表面に塗布する方法(ワイヤーバー法、アプリケーション法、スピン法、スプレー法、オフセット印刷法、スクリーン印刷法等により該金属酸化物半導体膜に吸着されている。
(C) Spectral sensitizing dye As the spectral sensitizing dye, various metal complexes and organic dyes having absorption in the visible region and / or the infrared light region can be used. A method in which an oxide semiconductor thin film such as titanium is immersed in a dye solution at a predetermined temperature (dipping method, roller method, air knife method, etc.) or a method in which a dye solution is applied to the surface of an oxide semiconductor layer (wire bar method, application method) The metal oxide semiconductor film is adsorbed by a spin method, a spray method, an offset printing method, a screen printing method, or the like.

(d)その他
該光電極には任意のパターンで集電配線が施されるのが好ましい。前記端子部分は、この集電配線パターンの一部としてスクリーン印刷等の印刷技術を用いることで容易に作製可能である。また、該集電配線は電解質から保護するため、絶縁層で被覆するのが好ましい。絶縁層としては、ガラスフリットや樹脂を用いることができ、この中でもガラスフリットが、耐久性、絶縁性の点で好ましい。
(D) Others It is preferable that current collecting wiring is applied to the photoelectrode in an arbitrary pattern. The terminal portion can be easily manufactured by using a printing technique such as screen printing as a part of the current collecting wiring pattern. Further, the current collecting wiring is preferably covered with an insulating layer in order to protect it from the electrolyte. As the insulating layer, glass frit or resin can be used, and among these, glass frit is preferable in terms of durability and insulation.

2.本発明の第二の態様について
本発明の第二の態様は、電極保護用隔壁を備えた対極であって、該電極保護用隔壁は、封止材により光電極と貼り合わせる際に、該封止材の隔壁と酸化物半導体層の間の光電極領域の上部に位置するように、対極上に配置されることを特徴とする対極を対象とする。
2. About the second aspect of the present invention The second aspect of the present invention is a counter electrode provided with an electrode protection partition, which is sealed when the electrode protection partition is bonded to the photoelectrode with a sealing material. A counter electrode that is disposed on the counter electrode so as to be positioned above the photoelectrode region between the partition wall of the stopper and the oxide semiconductor layer is an object.

(A)電極保護用隔壁
本態様における電極保護用隔壁も、第一の態様における電極保護用隔壁と同様、対極貼り合わせ時の加圧処理による封止材料自体の流れ、あるいは封止材料に含まれる低分子量物など、による電極の汚染を防止するための隔壁であり、基本的に第一の態様の電極保護用隔壁で説明したのと同様である。
(A) Electrode-protecting partition wall The electrode-protecting partition wall in this embodiment is also included in the flow of the sealing material itself by the pressure treatment at the time of bonding the counter electrode, or the sealing material, as in the electrode protection partition wall in the first embodiment. This is a partition wall for preventing contamination of the electrode by low molecular weight substances, etc., and is basically the same as that described in the electrode protection partition wall of the first aspect.

もっとも、本発明の第一の態様のように光電極上ではなく、対極上に配置されている点で異なる。すなわち、本態様における電極保護用隔壁は、封止材により光電極と貼り合わせる際に、該封止材の隔壁と酸化物半導体層の間の光電極領域の上部に位置するように、対極上に配置される。言い換えれば、前記第一の態様において光電極上に配置された電極保護用隔壁の真上に位置する対極部分に相当する部分に、電極保護用隔壁を配置したのが本態様である[図1B参照]。   However, it differs in that it is arranged not on the photoelectrode but on the counter electrode as in the first aspect of the present invention. That is, the electrode protection partition wall in this embodiment is positioned on the counter electrode so as to be positioned above the photoelectrode region between the partition wall of the sealing material and the oxide semiconductor layer when being bonded to the photoelectrode with the sealing material. Placed in. In other words, in this embodiment, the electrode protection partition is disposed in a portion corresponding to the counter electrode portion located immediately above the electrode protection partition disposed on the photoelectrode in the first embodiment [see FIG. 1B. ].

(B)対極
本発明の対極としては、対極と光電極との間に封入されるべき電解質中の腐食性成分に対する耐腐食性を有するものであれば特に制限されないが、チタン、ステンレス、導電性ガラス等が例示され、その中でも電気伝導性、熱膨張性の観点からはチタンがより好ましい。
(B) Counter electrode The counter electrode of the present invention is not particularly limited as long as it has corrosion resistance to the corrosive component in the electrolyte to be sealed between the counter electrode and the photoelectrode, but titanium, stainless steel, conductive Glass etc. are illustrated, and among these, titanium is more preferable from the viewpoint of electrical conductivity and thermal expansion.

3.本発明の第三及び五の態様について
本発明の第三の態様は、前記第一の態様の光電極を備えた色素増感太陽電池を対象とし、本発明の第五の態様は、前記第一の態様の光電極の電極保護用隔壁より外部に、封止材からなる隔壁を形成し、次いで対極を貼り合わせることを特徴とする色素増感太陽電池の製造方法を対象とする。
3. Third and fifth aspects of the present invention The third aspect of the present invention is directed to a dye-sensitized solar cell provided with the photoelectrode of the first aspect, and the fifth aspect of the present invention is the above-described first aspect. The present invention is directed to a method for producing a dye-sensitized solar cell, in which a partition wall made of a sealing material is formed outside an electrode protection partition wall of a photoelectrode according to one aspect, and then a counter electrode is bonded.

光電極に電極保護用隔壁があることにより、封止材料自体あるいは封止材料に含まれる低分子量物などによる汚染が低減され、変換効率等の性能の劣化の少ない色素増感太陽電池を得ることができる。   By having an electrode protection partition in the photoelectrode, contamination by the sealing material itself or low molecular weight substances contained in the sealing material is reduced, and a dye-sensitized solar cell with little deterioration in performance such as conversion efficiency is obtained. Can do.

まず第一の態様の光電極を形成した透明導電基板上に封止材の隔壁を形成する。スクリーン印刷等の印刷技術を用いることで簡便に形成できる。封止材としては、電解質中の腐食性成分に対する耐腐食性を有するものであれば特に制限されないが、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂、電子線硬化樹脂、金属、ゴム等を例示することができるが、少なくとも表面は電気絶縁性であることを要し、封止材が導電性の場合には表面を、各種樹脂やゴム等の電気絶縁性材料で被覆する。   First, a partition wall of a sealing material is formed on the transparent conductive substrate on which the photoelectrode of the first aspect is formed. It can be easily formed by using a printing technique such as screen printing. The sealing material is not particularly limited as long as it has corrosion resistance against the corrosive component in the electrolyte, but thermoplastic resin, thermosetting resin, ultraviolet curable resin, electron beam curable resin, metal, rubber, etc. As an example, at least the surface needs to be electrically insulating, and when the sealing material is conductive, the surface is covered with an electrically insulating material such as various resins or rubber.

次いで前記封止材を介して光電極と対極を貼り合わせる。この際、均一に圧力をかけて両電極が平行に配置されるように注意すべきである。   Subsequently, a photoelectrode and a counter electrode are bonded together through the sealing material. At this time, care should be taken so that the electrodes are arranged in parallel by applying a uniform pressure.

前記封止材として光硬化性樹脂を用いる場合には、光電極側から光照射(紫外線照射)して封止材を硬化させる。   When using a photocurable resin as the sealing material, the sealing material is cured by light irradiation (ultraviolet irradiation) from the photoelectrode side.

封止材の隔壁を介して光電極と対極との間に一定の間隔が維持されるが、ここに電解質が封入される。電解質としては、I /I系、Br /Br系、キノン/ハイドロキノン系等の酸化還元電解質を含む電解液が例示される。A constant distance is maintained between the photoelectrode and the counter electrode via the partition wall of the sealing material, but the electrolyte is sealed here. Examples of the electrolyte include an electrolytic solution containing a redox electrolyte such as an I 3 / I system, a Br 3 / Br system, and a quinone / hydroquinone system.

4.本発明の第四及び第六の態様について
本発明の第四の態様は、前記第二の態様の対極を備えた色素増感太陽電池を対象とし、本発明の第六の態様は、光電極に封止材からなる隔壁を形成し、次いで、対極を貼り合わせることにより色素増感太陽電池を製造する方法において、対極として前記第二の態様の電極保護用隔壁を備えた対極を用い、光電極と対極を貼り合わせた際に、前記電極保護用隔壁が前記封止材の隔壁と酸化物半導体層の間の光電極領域の上部に位置するように、前記封止材の隔壁を光電極上に形成することを特徴とする色素増感太陽電池の製造方法を対象とする。
4). About 4th and 6th aspect of this invention The 4th aspect of this invention is directed to the dye-sensitized solar cell provided with the counter electrode of said 2nd aspect, and the 6th aspect of this invention is a photoelectrode. In the method for producing a dye-sensitized solar cell by forming a partition wall made of a sealing material on the substrate and then bonding the counter electrode, the counter electrode having the electrode protection partition wall of the second aspect is used as the counter electrode, When the electrode and the counter electrode are bonded together, the partition wall of the sealing material is placed on the photoelectrode so that the partition wall for electrode protection is positioned above the photoelectrode region between the partition wall of the sealing material and the oxide semiconductor layer. The present invention is directed to a method for producing a dye-sensitized solar cell.

対極に電極保護用隔壁があることにより、封止材料自体あるいは封止材料に含まれる低分子量物などによる汚染が低減され、変換効率等の性能の劣化の少ない色素増感太陽電池を得ることができる。   By having an electrode protection partition at the counter electrode, contamination by the sealing material itself or low molecular weight substances contained in the sealing material is reduced, and a dye-sensitized solar cell with little deterioration in performance such as conversion efficiency can be obtained. it can.

第六の態様の製造方法に関しては、前記項目3.の第五の態様の説明において、対極として本発明の第二の態様の電極保護用隔壁を備えた対極を用い、光電極としては原則的には、本発明の第一の態様の電極保護用隔壁を備えた光電極ではなく、通常の電極保護用隔壁のない光電極を用いた場合に読み替えればよい。   Regarding the manufacturing method of the sixth aspect, the above item 3. In the description of the fifth aspect of the present invention, the counter electrode provided with the partition wall for electrode protection according to the second aspect of the present invention is used as the counter electrode, and the electrode for protecting the electrode according to the first aspect of the present invention is used in principle. What is necessary is just to replace with the photoelectrode which does not have the partition wall for electrode protection instead of the photoelectrode provided with the partition wall.

もっとも、本発明の態様においても、以下の条件を充たす場合には、光電極として本発明の第一の態様の光電極を併せ用いてもよい。   However, also in the embodiment of the present invention, the photoelectrode of the first embodiment of the present invention may be used together as the photoelectrode when the following conditions are satisfied.

i)対極の電極保護用隔壁と光電極の電極保護用隔壁との高さの合計が、電極間距離を越えず、封止材の隔壁を介して光電極に対極を貼り合わせた際に、両電極保護用隔壁がぶつかることがないので貼り合わせの障害とならない場合。     i) The total height of the electrode protection partition wall of the counter electrode and the electrode protection partition wall of the photoelectrode does not exceed the distance between the electrodes, and when the counter electrode is bonded to the photoelectrode through the partition wall of the sealing material, When the barriers for protecting both electrodes do not collide with each other and do not hinder the bonding.

ii)対極の電極保護用隔壁と光電極の電極保護用隔壁とが、封止材の隔壁を介して光電極に対極を貼り合わせた際に、両電極保護用隔壁が互い違いに配置される構造を持っているために、貼り合わせの障害とならない場合。     ii) Structure in which the electrode protection partition walls are alternately arranged when the counter electrode partition walls and the electrode protection partition walls of the photoelectrode are bonded to the photoelectrode via the sealing material partition walls. If it does not become a hindrance to pasting.

iii)両電極保護用隔壁の一方または双方がゴム状樹脂からなっており、その高さの合計が電極間距離をわずかに越えても、封止材の隔壁を介して光電極に対極を貼り合わせるのに障害とならない場合、
iv)その他、封止材の隔壁を介して光電極に対極を貼り合わせた際に、貼り合わせの障害とならない事情がある場合。
iii) One or both of the partition walls for protecting both electrodes are made of rubber-like resin, and even if the total height slightly exceeds the distance between the electrodes, the counter electrode is attached to the photoelectrode via the partition wall of the sealing material. If it is not an obstacle to match,
iv) In other cases where there is no obstacle to the bonding when the counter electrode is bonded to the photoelectrode via the partition wall of the sealing material.

以下に本発明を、実施例を用いてより具体的に説明する。もっとも、以下の実施例は本発明の例示にすぎず、本発明は何等これらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited to these.

以下に本発明による色素増感太陽電池の典型的な作製例を示す。
1. 光電極の作製
・ 酸化チタン層の形成
20〜30μmの一次粒子径を有する酸化チタンペースト(触媒化成製 PST−18NR)をスクリーン印刷機(マイクロテック製 MT−320TV)を用いて、120mm×120mmの大きさの導電性ガラス基板(FTO導電膜、日本板硝子製)上にスクリーン印刷し乾燥させた。この工程を所定の膜厚が得られるまで繰り返した後、400μm程度の粒子径の酸化チタンペースト(触媒化成 PST400C)を同じくスクリーン印刷し乾燥させた。この後、基板をマッフル炉(アドバンテック製 FUW252PA)に移し、500℃、30分間焼成を行い酸化チタン層を形成させた。焼成後の酸化チタンの膜厚は約12μmであった。
The typical example of preparation of the dye-sensitized solar cell by this invention is shown below.
1. Production of photoelectrode-Formation of titanium oxide layer Using a screen printer (MT-320TV manufactured by Microtech), a titanium oxide paste (catalyst conversion PST-18NR) having a primary particle size of 20 to 30 µm is 120 mm x 120 mm. Screen printing was performed on a conductive glass substrate (FTO conductive film, manufactured by Nippon Sheet Glass) and dried. This process was repeated until a predetermined film thickness was obtained, and then a titanium oxide paste (catalyst conversion PST400C) having a particle size of about 400 μm was screen-printed and dried. Thereafter, the substrate was transferred to a muffle furnace (FUW252PA manufactured by Advantech) and baked at 500 ° C. for 30 minutes to form a titanium oxide layer. The thickness of the titanium oxide after firing was about 12 μm.

・ 集電グリッドの形成
次いで、銀ペーストをスクリーン印刷により、基板上にグリッド状に塗付し、160℃、12分間乾燥後、マッフル炉にて500℃、30分間焼成して集電配線を得た。
-Formation of current collecting grid Next, silver paste was applied onto the substrate in a grid by screen printing, dried at 160 ° C for 12 minutes, and then fired in a muffle furnace at 500 ° C for 30 minutes to obtain current collecting wiring. It was.

なお、この集電グリッドの形成は、前記酸化チタン層の形成の前に形成してもよい。   The current collecting grid may be formed before the titanium oxide layer is formed.

・ 集電グリッド保護層(絶縁層)及び電極保護用隔壁の同時形成(図2参照)
次いで、ガラスフリットペーストをスクリーン印刷により基板上に塗付することで、前記集電グリッドの絶縁層及び酸化物半導体層の周囲に幅0.2mmで、高さが0.01mmの電極保護用隔壁を同時に形成し、160℃、12分間乾燥後、マッフル炉にて500℃、30分間焼成した。図2には、用いた印刷パターンが示されている。
・ Simultaneous formation of current collector grid protection layer (insulating layer) and electrode protection barrier (see Fig. 2)
Next, a glass frit paste is applied on the substrate by screen printing, so that the electrode protection partition wall having a width of 0.2 mm and a height of 0.01 mm around the insulating layer and the oxide semiconductor layer of the current collecting grid. Were simultaneously formed, dried at 160 ° C. for 12 minutes, and then baked in a muffle furnace at 500 ° C. for 30 minutes. FIG. 2 shows the print pattern used.

なお、この絶縁層及び電極保護用隔壁の形成も、前記酸化チタン層の形成の前に形成してもよい。   The insulating layer and the electrode protection partition may be formed before the titanium oxide layer is formed.

・ 色素吸着
次いで、前記絶縁層を形成した基板をルテニウム有機錯体色素溶液に浸漬し、16時間静置することにより、酸化チタン層に色素を吸着させた。
-Dye adsorption Next, the substrate on which the insulating layer was formed was immersed in a ruthenium organic complex dye solution and allowed to stand for 16 hours to adsorb the dye to the titanium oxide layer.

b. 対極の作製
・ チタン板の輪郭形状加工
0.2mm厚の純チタン板をワイヤー放電加工により、規定の形状(120mm×120mm)に切断した。
b. Production of counter electrode-Outline shape machining of titanium plate A 0.2 mm thick pure titanium plate was cut into a prescribed shape (120 mm x 120 mm) by wire electric discharge machining.

・ 白金触媒層の形成
次いで、電気メッキ法により、チタン板上に白金触媒層を形成した。
-Formation of platinum catalyst layer Next, a platinum catalyst layer was formed on the titanium plate by electroplating.

c. アセンブリ
・ 封止材塗布
各光電極上に、スクリーン印刷により、封止用紫外線硬化樹脂を塗布した。
c. Assembly-Sealing material application | coating The ultraviolet curable resin for sealing was apply | coated by screen printing on each photoelectrode.

・ 貼り合わせ
次いで、対極を、光電極と上下に向かい合うように配置して対向させ貼り合わせた。
-Bonding Next, the counter electrode was disposed so as to face the photoelectrode in the up and down direction, and bonded to face each other.

・ 封止材の硬化
次いで、光電極側より、紫外線を照射し(3000mJ/cm、アイグラフィック製 ECS−601G−3)、封止材を硬化させた(電極間距離 約30μm)。
-Curing of encapsulant Next, ultraviolet rays were irradiated from the photoelectrode side (3000 mJ / cm 2 , ECS-601G-3 manufactured by iGraphic) to cure the encapsulant (distance between electrodes: about 30 μm).

・ 電解液注入
次いで、真空注入装置(アユミ工業製 LC−35)を用いて、モジュールの電解液注入孔より、電解液を注入した。
-Electrolyte solution injection | pouring Then, electrolyte solution was inject | poured from the electrolyte solution injection hole of the module using the vacuum injection apparatus (LC-35 by Ayumi Industry).

・ 注入孔の封止
次いで、電解液注入孔を、紫外線硬化樹脂を用いて封止した。
-Sealing of injection | pouring hole Then, electrolyte solution injection | pouring hole was sealed using ultraviolet curable resin.

d.得られた色素増感太陽電池の光電極は該電極保護隔壁により保護され、封止材料自体の流れによる汚染は見られなかった。   d. The photoelectrode of the obtained dye-sensitized solar cell was protected by the electrode protection partition wall, and contamination due to the flow of the sealing material itself was not observed.

以下に、色素増感太陽電池の性能に対する封止材の悪影響、及び本発明によって該影響を緩和することができる点について実証する。   Below, it demonstrates about the bad influence of the sealing material with respect to the performance of a dye-sensitized solar cell, and the point which can influence this influence by this invention.

A.評価用色素増感太陽電池の作製
以下の手順(1)、(2)、(3)、(4−1)、(5−1)または(1)、(2)、(3)、(4−2)、(5−2)で試験番号1〜4の色素増感太陽電池を作製し、その性能を比較することによって、封止材の有無による電池性能に対する影響、及び本願発明の電極保護用隔壁の電池性能に対する影響を評価した。
A. Preparation of dye-sensitized solar cell for evaluation The following procedures (1), (2), (3), (4-1), (5-1) or (1), (2), (3), (4 -2) By producing dye-sensitized solar cells having test numbers 1 to 4 in (5-2) and comparing their performance, the effect on the battery performance due to the presence or absence of the sealing material, and the electrode protection of the present invention The effect of partition walls on battery performance was evaluated.

図3には、光電極の作製の手順と上記試験番号1〜4の色素増感太陽電池との関係を示す。   In FIG. 3, the relationship between the preparation procedure of a photoelectrode and the dye-sensitized solar cell of the said test numbers 1-4 is shown.

(1)透明導電基板[SnO膜付きガラス板、20mm×120mm×4mm、日本板硝子(株)製]上に酸化チタンペースト[製品名 PST−18NR、PST−400C、触媒化成(株)製]を(5mm×96.4mm=4.82cm)の面積で塗布し、150℃で10分間乾燥させた。これにより約13μm[後記(2)での電極保護用隔壁形成後での500℃焼成後の値]の厚みの酸化チタン膜を形成させた。(1) Titanium oxide paste [Product name: PST-18NR, PST-400C, manufactured by Catalytic Chemical Co., Ltd.] on a transparent conductive substrate [glass plate with SnO 2 film, 20 mm × 120 mm × 4 mm, manufactured by Nippon Sheet Glass Co., Ltd.] Was applied in an area of (5 mm × 96.4 mm = 4.82 cm 2 ) and dried at 150 ° C. for 10 minutes. As a result, a titanium oxide film having a thickness of about 13 μm [a value after baking at 500 ° C. after forming the partition walls for electrode protection in (2) below] was formed.

このような、酸化チタン層を形成した透明導電基板を12枚作製した[図3(a)参照]。   Twelve such transparent conductive substrates on which a titanium oxide layer was formed were produced [see FIG. 3A].

(2)次いで、上記作製された酸化チタン層の周囲にガラスフリット(製品名 glass paste 1115A2ペースト、旭硝子(株)製)による電極保護用隔壁を形成させた後、500℃で20分間焼成した(酸化チタンとガラスフリットの同時焼成)。隔壁の形成には、スクリーン印刷法を用いた。   (2) Next, an electrode protection partition wall made of glass frit (product name glass paste 1115A2 paste, manufactured by Asahi Glass Co., Ltd.) was formed around the titanium oxide layer produced above, and then fired at 500 ° C. for 20 minutes ( Simultaneous firing of titanium oxide and glass frit). A screen printing method was used to form the partition walls.

該電極保護用隔壁としては、連続的に電極の周囲にガラスフリットの隔壁を形成させたもの(連続状電極保護用隔壁)6枚と、断続的に電極の周囲にガラスフリットの隔壁を形成させたもの(スリット状電極保護用隔壁)6枚をそれぞれ作製した。     As the electrode protection barrier ribs, six glass frit barrier ribs are continuously formed around the electrodes (continuous electrode protection barrier ribs), and glass frit barrier ribs are intermittently formed around the electrodes. 6 sheets of slits (slit electrode protection partition walls) were prepared.

前記連続状電極保護用隔壁の形状は、透明導電基板上、前記酸化チタン膜の各辺から0.2mmだけ離れた内辺を有し、幅が1mm、高さが約25μmである。また、長辺の長さ(外辺−外辺間)が98.8mm、短辺の長さ(外辺−外辺間)が7.4mmであった[図3(b)参照]。     The continuous electrode protection partition has an inner side on the transparent conductive substrate separated by 0.2 mm from each side of the titanium oxide film, a width of 1 mm, and a height of about 25 μm. Further, the length of the long side (between the outer side and the outer side) was 98.8 mm, and the length of the short side (between the outer side and the outer side) was 7.4 mm [see FIG. 3B].

前記スリット状電極保護用隔壁の形状は、前記連続状電極保護用隔壁の2つの長辺部分のそれぞれにつき、長さ6mmの孤立した隔壁4つを残すように長辺部分の隔壁を5箇所除去した形状に相当する。短辺を含む隔壁と前記孤立した隔壁との間隔はいずれも13mm、前記4つの孤立した隔壁間の隣接する間隔もそれぞれ13mmとなるように配置した(図3(e)参照)。     The shape of the slit-shaped electrode protection partition is such that five long-side partitions are removed so as to leave four isolated 6-mm partitions for each of the two long-side portions of the continuous electrode protection partition. It corresponds to the shape. The separation between the partition including the short side and the isolated partition was 13 mm, and the adjacent spacing between the four isolated partitions was 13 mm (see FIG. 3E).

(3)次いで、上記のようにして酸化チタン膜と電極保護用隔壁を形成した透明導電基板のそれぞれを、色素[N719:シス−ビス(イソチオシアナト)−ビス(2,2’−ビピリジン−4,4’−カルボキシレート)ルテニウム(II)ビス(テトラn−ブチルアンモニウム)]を濃度0.3mMで含有するアセトニトリル/t−ブタノール溶液に、25℃、18時間浸漬することによって、該酸化チタン膜に色素を吸着させ、アセトニトリルで洗浄後、エアーブロワーで乾燥させて連続状電極保護用隔壁を有する光電極とスリット状電極保護用隔壁を有する光電極をそれぞれ6枚ずつ得た。   (3) Next, each of the transparent conductive substrates on which the titanium oxide film and the electrode protection partition walls were formed as described above was transferred to the dye [N719: cis-bis (isothiocyanato) -bis (2,2′-bipyridine-4, 4′-carboxylate) ruthenium (II) bis (tetra-n-butylammonium)] in an acetonitrile / t-butanol solution containing 0.3 mM in concentration at 25 ° C. for 18 hours to form a titanium oxide film. The dye was adsorbed, washed with acetonitrile, and then dried with an air blower to obtain 6 photoelectrodes each having a continuous electrode protection partition and 6 photoelectrodes having a slit electrode protection partition.

(4−1)色素を吸着させた前記光電極のうち、連続状電極保護用隔壁を有する光電極とスリット状電極保護用隔壁を有する光電極それぞれ3枚ずつにつき、紫外線硬化樹脂からなる封止材の隔壁をスクリーン印刷し[連続状電極保護用隔壁を有する光電極につき図3(c)、スリット状電極保護用隔壁を有する光電極につき図3(f)参照]、電極間が約40μmとなるように対極(白金付きチタン板、110×15×0.2mm)を貼り合わせ、1℃で10分間、紫外線(高圧水銀ランプ、orc handy UV300、型式:orc HSL−300/B−FM)を照射して、封止材を硬化させ、それぞれのセルを得た。   (4-1) Among the photoelectrodes on which the dye has been adsorbed, sealing is made of an ultraviolet curable resin for each of three photoelectrodes having a continuous electrode protection partition and three photoelectrodes having a slit electrode protection partition. The partition walls of the material were screen-printed [see FIG. 3 (c) for photoelectrodes having continuous electrode protection partition walls, and FIG. 3 (f) for photoelectrodes having slit electrode protection partitions], and the gap between the electrodes was about 40 μm. The counter electrode (titanium plate with platinum, 110 × 15 × 0.2 mm) was bonded so that the ultraviolet rays (high pressure mercury lamp, orc handy UV300, model: orc HSL-300 / B-FM) were applied at 1 ° C. for 10 minutes. Irradiation was performed to cure the encapsulant, and each cell was obtained.

なお、封止材材料自体が、酸化チタン膜の方に流れ込むことのないように注意して作製し、実際にも流れ込んでいないことを確認した。   It was confirmed that the encapsulant material itself was made with care so as not to flow into the titanium oxide film, and that it did not actually flow in.

(5−1)次いで、(4−1)で得られたそれぞれのセルにつき、対極上の注入口より電解液(0.1M グアニジンジチオシアネート、0.1M ヨウ素、0.5M t−ブチルピリジン、0.6M ヨウ化ジメチルプロピルイミダゾリウム、溶媒:3−メトキシプロピオニトリル)を注入し、その後、該注入口を紫外線硬化樹脂を用いて、1℃で3分間、紫外線(高圧水銀ランプ、orc handy UV300、型式:orc HSL−300/B−FM)を照射して封止した。   (5-1) Next, for each cell obtained in (4-1), an electrolytic solution (0.1 M guanidine dithiocyanate, 0.1 M iodine, 0.5 M t-butylpyridine, 0.6M dimethylpropylimidazolium iodide, solvent: 3-methoxypropionitrile) was injected, and then the injection port was irradiated with ultraviolet curable resin at 1 ° C. for 3 minutes with ultraviolet light (high pressure mercury lamp, orc handy). UV300, model: orc HSL-300 / B-FM) and sealed.

得られた色素増感太陽電池のうち、連続状電極保護用隔壁を有するもの3枚を試験番号2、スリット状電極保護用隔壁を有するもの3枚を試験番号4とした(図3参照)。   Among the obtained dye-sensitized solar cells, three having a continuous electrode protection partition were designated as test number 2, and three having a slit-like electrode protection partition were designated as test number 4 (see FIG. 3).

(4−2)他方、色素を吸着させた前記光電極のうち、残りの、連続状電極保護用隔壁を有する光電極とスリット状電極保護用隔壁を有する光電極それぞれ3枚ずつにつき、前記電極保護用隔壁の外側の領域に高さ約40μmの樹脂シート[ハイミラン(商標)、形状、サイズについては上記封止材の隔壁の替わりに用いるものであることから、上記封止材の隔壁と同じ形状、サイズのものを使用]を置き、対極と合わせて、両電極をクリップで固定した。該樹脂シートは前記(4−1)にいう封止材の隔壁の代替であり、同様に両電極を絶縁する機能を果たすものとして用いた。したがって、前記(4−1)における封止材の隔壁の位置と同様になるように配置した[連続状電極保護用隔壁を有する光電極について図3(d)、スリット状電極保護用隔壁を有する光電極について図3(g)、の破線で囲まれた部分参照]。   (4-2) On the other hand, among the photoelectrodes on which the dye is adsorbed, the remaining three photoelectrodes each having a continuous electrode protection partition and a photoelectrode having a slit electrode protection partition Resin sheet having a height of about 40 μm in the outer region of the protective partition [Himiran (trademark), because the shape and size are used instead of the partition of the sealing material, the same as the partition of the sealing material The shape and size were used], and both electrodes were fixed with clips together with the counter electrode. The resin sheet was used as a substitute for the partition wall of the sealing material described in (4-1) above, and similarly used to perform the function of insulating both electrodes. Therefore, it is arranged to be the same as the position of the partition wall of the sealing material in the above (4-1) [Photo electrode having continuous electrode protection partition wall FIG. 3 (d), having slit electrode protection partition wall] For the photoelectrode, see the portion surrounded by the broken line in FIG.

(5−2)次いで、(4−2)で得られたそれぞれのセルに、両極の隙間から毛管現象を利用して電解液[上記(5−1)に記載のものと同じ]を注入した。   (5-2) Next, an electrolytic solution [same as described in (5-1) above] was injected into each cell obtained in (4-2) from the gap between the two electrodes using the capillary phenomenon. .

得られた対照用の色素増感太陽電池のうち、連続状電極保護用隔壁を有するもの3枚を試験番号1、スリット状電極保護用隔壁を有するもの3枚を試験番号3とした。   Among the obtained control dye-sensitized solar cells, three having a continuous electrode protection partition were designated as test number 1, and three having a slit-like electrode protection partition were designated as test number 3.

B.評価
上記A.のようにして作製された色素増感太陽電池(試験番号1〜4)につき、性能評価を実施し、下記の表1に示す結果を得た。
B. Evaluation A. above. Performance evaluation was performed on the dye-sensitized solar cells (test numbers 1 to 4) produced as described above, and the results shown in Table 1 below were obtained.

Figure 0005369353
Figure 0005369353

表中、Vocとは開放電圧、Jscとは短絡電流密度、FFとは曲線因子を意味する。セルサイズにいうサイズは、酸化チタン塗布面積(96.4mm×5mm)を意味する。   In the table, Voc means open circuit voltage, Jsc means short circuit current density, and FF means fill factor. The size referred to as the cell size means a titanium oxide coating area (96.4 mm × 5 mm).

また、表中の光電変換効率は、以下の条件で測定した。   Moreover, the photoelectric conversion efficiency in a table | surface was measured on condition of the following.

すなわち、ソーラーシュミレーター(山下電装社製)により、AM(エアマス、大気質量)1.5、100mW/cmの擬似太陽光を照射し、短絡電流密度、開放電圧、曲線因子(FF)を測定し、光電変換効率を下記の計算式(式1)に基づいて算出した。
(式1)
光電変換効率(%)=
100×[(短絡電流密度×開放電圧×曲線因子)/(照射太陽光エネルギー)]
上記表1の結果から、以下のことが実証されていることがわかる。
That is, with a solar simulator (manufactured by Yamashita Denso Co., Ltd.), AM (air mass, atmospheric mass) 1.5, 100 mW / cm 2 of simulated sunlight is irradiated, and short circuit current density, open circuit voltage, and fill factor (FF) are measured. The photoelectric conversion efficiency was calculated based on the following calculation formula (Formula 1).
(Formula 1)
Photoelectric conversion efficiency (%) =
100 × [(Short-circuit current density × Open circuit voltage × Curve factor) / (Irradiated solar energy)]
From the results of Table 1 above, it can be seen that the following has been demonstrated.

a. 試験番号1と試験番号2、あるいは試験番号3と試験番号4を比較することにより、封止材を使用していない試験番号1と試験番号3の色素増感太陽電池の光電変換効率が、それぞれ対応する封止材を使用している試験番号2と試験番号4の色素増感太陽電池の光電変換効率よりも高いことがわかる。   a. By comparing Test No. 1 and Test No. 2 or Test No. 3 and Test No. 4, the photoelectric conversion efficiencies of the dye-sensitized solar cells of Test No. 1 and Test No. 3 that do not use the sealing material are respectively It turns out that it is higher than the photoelectric conversion efficiency of the dye-sensitized solar cell of the test number 2 and the test number 4 which uses the corresponding sealing material.

これは、封止材を用いることで光電変換効率が低下したことを示している。   This has shown that the photoelectric conversion efficiency fell by using the sealing material.

この低下は、封止材として用いた樹脂からの放出ガス成分がセル性能に悪影響を及ぼしたものと推認される。   This decrease is presumed that the gas emission component from the resin used as the sealing material had an adverse effect on the cell performance.

b. 試験番号2と試験番号4を比較することにより、連続状電極保護用隔壁を用いた試験番号2の方が、スリット状電極保護用隔壁を用いた試験番号4よりも高い光電変換効率がでる傾向があることがわかる。   b. By comparing test number 2 and test number 4, test number 2 using the continuous electrode protection partition tends to have higher photoelectric conversion efficiency than test number 4 using the slit electrode protection partition. I understand that there is.

これは、電極保護用隔壁を設けることにより、電池の光電変換効率を向上させることができることを示している。   This has shown that the photoelectric conversion efficiency of a battery can be improved by providing an electrode protection partition.

c. 試験番号2では連続状電極保護用隔壁を有してはいるものの、対応する封止材を用いない試験番号1の光電変換効率よりもやや低いということは、さらに電極保護効果を向上させる余地のあることを示している。   c. Although test number 2 has a continuous electrode protection partition, it is slightly lower than the photoelectric conversion efficiency of test number 1 that does not use the corresponding sealing material, and there is room for further improving the electrode protection effect. It shows that there is.

そのためには、たとえば、用いた連続状電極保護用隔壁の高さ(試験番号1及び2では電極間距離が約40μmに対して、その約65%に相当する約25μmの高さを採用している)をより電極間距離に近い高さに上げたり、あるいは本実施例で用いたガラスフリットのかわりに、耐電解液性を有し、かつ硬化時のガス放出の少ないゴム状樹脂等の弾性材料を電極保護用隔壁として用い、かつその高さを電極間距離よりわずかに大きめに設定することで、2つの極を張り合わせた際に、電極間の空間を気密構造にするパッキンの働きをさせるようにして、光電極と封止材の隔壁との間をよりよく遮断することで、光電変換効率を更に向上させることができると考えられる。   For this purpose, for example, the height of the used continuous electrode protection partition wall (in Test Nos. 1 and 2, the distance between the electrodes is about 40 μm, and a height of about 25 μm corresponding to about 65% is adopted. The height of the resin is increased to a height closer to the distance between the electrodes, or instead of the glass frit used in this example, the elasticity of a rubber-like resin having an electrolytic solution resistance and a low gas emission during curing. By using a material as an electrode protection partition and setting its height slightly larger than the distance between the electrodes, when the two poles are bonded together, the space between the electrodes is made to act as an airtight structure. Thus, it is considered that the photoelectric conversion efficiency can be further improved by better blocking between the photoelectrode and the partition wall of the sealing material.

本発明の電極保護用隔壁を備えた光電極または対極を用いることで、光電極と対極とを封止材の隔壁で封止した場合の電極の汚染を防止できるため、作製過程に起因する性能の劣化のない色素増感太陽電池の作製に有利である。   By using the photoelectrode or counter electrode provided with the electrode protection partition wall of the present invention, it is possible to prevent contamination of the electrode when the photoelectrode and the counter electrode are sealed with the partition wall of the sealing material, so that the performance resulting from the manufacturing process This is advantageous for the production of a dye-sensitized solar cell that does not deteriorate.

Claims (10)

光電極と対極とを封止材からなる隔壁で封止して得られる色素増感太陽電池のための光電極であって、
透明導電基板上に形成された酸化物半導体層の周囲に沿って電極保護用隔壁が形成され、該電極保護用隔壁より外部に、封止材からなる隔壁配置予定部位が確保されており、前記電極保護用隔壁の高さが、対極と貼り合せた場合の対極と光電極との間の電極間距離未満であり、かつ該電極間距離の少なくとも20%以上あることを特徴とする光電極。
A photoelectrode for a dye-sensitized solar cell obtained by sealing a photoelectrode and a counter electrode with a partition made of a sealing material,
A partition wall for electrode protection is formed along the periphery of the oxide semiconductor layer formed on the transparent conductive substrate, and a partition arrangement planned portion made of a sealing material is secured outside the partition wall for electrode protection, A photoelectrode, wherein the height of the partition wall for electrode protection is less than the interelectrode distance between the counter electrode and the photoelectrode when bonded to the counter electrode, and is at least 20% or more of the interelectrode distance.
前記電極保護用隔壁が、酸化物半導体層の全周に渡って連続した隔壁として形成されていることを特徴とする請求項1に記載の光電極。 2. The photoelectrode according to claim 1, wherein the electrode protection partition is formed as a partition that is continuous over the entire circumference of the oxide semiconductor layer. 前記電極保護用隔壁が、少なくともその表面が絶縁性材料で形成されていることを特徴とする請求項1に記載の光電極。   The photoelectrode according to claim 1, wherein at least a surface of the partition wall for electrode protection is formed of an insulating material. 光電極と対極とを封止材からなる隔壁で封止して得られる色素増感太陽電池のための対極であって、
電極保護用隔壁を備え、該電極保護用隔壁は、封止材により光電極と貼り合わせる際に、該封止材の隔壁と酸化物半導体層の間の光電極領域の上部に位置するように、対極上に配置されており、前記電極保護用隔壁の高さが、光電極と貼り合せた場合の光電極と対極との間の電極間距離未満であり、かつ該電極間距離の少なくとも20%以上あることを特徴とする対極。
A counter electrode for a dye-sensitized solar cell obtained by sealing a photoelectrode and a counter electrode with a partition wall made of a sealing material,
An electrode protection partition is provided, and the electrode protection partition is positioned above the photoelectrode region between the partition wall of the sealing material and the oxide semiconductor layer when bonded to the photoelectrode by the sealing material. And the height of the partition wall for electrode protection is less than the interelectrode distance between the photoelectrode and the counterelectrode when bonded to the photoelectrode, and at least 20 of the interelectrode distance. % As a counter electrode.
前記電極保護用隔壁が、酸化物半導体層の全周に渡って連続した隔壁として形成されていることを特徴とする請求項に記載の対極。 The counter electrode according to claim 4 , wherein the electrode protection partition is formed as a partition that is continuous over the entire circumference of the oxide semiconductor layer. 前記電極保護用隔壁が、少なくともその表面が絶縁性材料で形成されていることを特徴とする請求項に記載の対極。 The counter electrode according to claim 4 , wherein at least a surface of the partition wall for electrode protection is formed of an insulating material. 請求項1、2、のいずれかに記載の光電極を備えた色素増感太陽電池。 According to claim 1, dye-sensitized solar cell having an optical electrode according to any of the three. 請求項のいずれかに記載の対極を備えた色素増感太陽電池。 Claim 4, 5, 6 dye-sensitized solar cell having a counter electrode according to any one of. 請求項1、2、のいずれかに記載の光電極の電極保護用隔壁より外部に、封止材からなる隔壁を形成し、次いで対極を貼り合わせることを特徴とする色素増感太陽電池の製造方法。 A dye-sensitized solar cell comprising: a partition wall made of a sealing material formed outside the electrode protection partition wall of the photoelectrode according to any one of claims 1, 2, and 3 ; Production method. 光電極に封止材からなる隔壁を形成し、次いで、対極を貼り合わせることにより色素増感太陽電池を製造する方法において、対極として請求項のいずれかに記載される電極保護用隔壁を備えた対極を用い、光電極と対極を貼り合わせた際に、前記電極保護用隔壁が前記封止材の隔壁と酸化物半導体層の間の光電極領域の上部に位置するように、前記封止材の隔壁を光電極上に形成することを特徴とする色素増感太陽電池の製造方法。 In the method for manufacturing a dye-sensitized solar cell by forming a partition wall made of a sealing material on a photoelectrode and then bonding the counter electrode, the electrode protection according to any one of claims 4 , 5 and 6 as a counter electrode. When the counter electrode provided with the barrier rib is used and the photoelectrode and the counter electrode are bonded together, the electrode protective barrier is positioned above the photoelectrode region between the barrier rib of the sealing material and the oxide semiconductor layer. A method for producing a dye-sensitized solar cell, comprising forming a partition wall of the sealing material on a photoelectrode.
JP2009542538A 2007-11-22 2008-11-14 Electrode provided with electrode protection partition and dye-sensitized solar cell provided with the electrode Expired - Fee Related JP5369353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009542538A JP5369353B2 (en) 2007-11-22 2008-11-14 Electrode provided with electrode protection partition and dye-sensitized solar cell provided with the electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007303670 2007-11-22
JP2007303670 2007-11-22
JP2009542538A JP5369353B2 (en) 2007-11-22 2008-11-14 Electrode provided with electrode protection partition and dye-sensitized solar cell provided with the electrode
PCT/JP2008/070807 WO2009066623A1 (en) 2007-11-22 2008-11-14 Electrode with electrode-protection partition wall and dye-sensitized solar cell comprising the electrode

Publications (2)

Publication Number Publication Date
JPWO2009066623A1 JPWO2009066623A1 (en) 2011-04-07
JP5369353B2 true JP5369353B2 (en) 2013-12-18

Family

ID=40667446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009542538A Expired - Fee Related JP5369353B2 (en) 2007-11-22 2008-11-14 Electrode provided with electrode protection partition and dye-sensitized solar cell provided with the electrode

Country Status (3)

Country Link
JP (1) JP5369353B2 (en)
TW (1) TW200947789A (en)
WO (1) WO2009066623A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761327B2 (en) * 2010-01-12 2011-08-31 シャープ株式会社 Wet solar cell and wet solar cell module
JP2014067650A (en) * 2012-09-27 2014-04-17 Hitachi Zosen Corp Dye-sensitized solar cell manufacturing method
JP6374774B2 (en) * 2014-11-21 2018-08-15 積水化学工業株式会社 Manufacturing method of solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306605A (en) * 1999-04-22 2000-11-02 Dainippon Ink & Chem Inc High polymer solid electrolyte for hardening active energy line and its manufacture
WO2002035636A1 (en) * 2000-10-20 2002-05-02 Dainippon Ink And Chemicals, Inc. Solid polymer electrolyte and cell containing the electrolyte
WO2007046499A1 (en) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306605A (en) * 1999-04-22 2000-11-02 Dainippon Ink & Chem Inc High polymer solid electrolyte for hardening active energy line and its manufacture
WO2002035636A1 (en) * 2000-10-20 2002-05-02 Dainippon Ink And Chemicals, Inc. Solid polymer electrolyte and cell containing the electrolyte
WO2007046499A1 (en) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2009066623A1 (en) 2011-04-07
TW200947789A (en) 2009-11-16
WO2009066623A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
EP2451005A1 (en) Wet type solar battery module
JP2009099476A (en) Dye-sensitized photoelectric conversion element and its manufacturing method
EP2421084A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4914660B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2009110796A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
EP2214250A1 (en) Electrode substrate for photoelectric conversion device, method for manufacturing electrode substrate for photoelectric conversion device, and photoelectric conversion device
JP5456054B2 (en) Wet solar cell and wet solar cell module
JPWO2009069551A1 (en) Electrode substrate for photoelectric conversion element
JP4868782B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5369353B2 (en) Electrode provided with electrode protection partition and dye-sensitized solar cell provided with the electrode
JP5397585B2 (en) Dye-sensitized solar cell and partition forming method
JP2010003556A (en) Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
JP2010003557A (en) Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
JP2006261090A (en) Dye-sensitized solar cell element
JP2006261089A (en) Dye-sensitized solar cell element
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2009259485A (en) Dye-sensitized solar battery, its manufacturing method and dye-sensitized solar battery module
JP5013226B2 (en) Integrated dye-sensitized solar cell module and manufacturing method thereof
JP2010198821A (en) Photoelectric conversion element
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
TW201639208A (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP5217342B2 (en) Electrode provided with short-circuit preventing layer and dye-sensitized solar cell provided with the electrode
JP2013157201A (en) Photoelectric conversion element module
JP2013051143A (en) Electrode for photoelectric conversion element and photoelectric conversion element
US20130327374A1 (en) Photoelectric conversion device and photoelectric conversion device module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5369353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees