JP5368759B2 - Charged particulate water supply device - Google Patents

Charged particulate water supply device Download PDF

Info

Publication number
JP5368759B2
JP5368759B2 JP2008246910A JP2008246910A JP5368759B2 JP 5368759 B2 JP5368759 B2 JP 5368759B2 JP 2008246910 A JP2008246910 A JP 2008246910A JP 2008246910 A JP2008246910 A JP 2008246910A JP 5368759 B2 JP5368759 B2 JP 5368759B2
Authority
JP
Japan
Prior art keywords
blower
charged fine
fine particle
discharge current
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008246910A
Other languages
Japanese (ja)
Other versions
JP2010075840A (en
Inventor
武志 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008246910A priority Critical patent/JP5368759B2/en
Publication of JP2010075840A publication Critical patent/JP2010075840A/en
Application granted granted Critical
Publication of JP5368759B2 publication Critical patent/JP5368759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make larger the ratio of the amount of generation of charged fine water droplets to the amount of air by an air blower than the ratio with conventional constitutions. <P>SOLUTION: An electrostatic atomization device 2 feeds water to an atomization electrode 21 from a water feed means and generates charged fine water droplets by applying a high voltage between the atomization electrode 21 and an opposite electrode 22. The air blower 3 feeds the charged fine water droplets generated by the electrostatic atomization device 2. The opposite electrode 22 is connected to a discharged-current detecting part 6 detecting discharged current, and a control part 4 increases or decreased the amount of air of the air blower 3 according to the increase or decrease of the discharged current detected by the discharged-current detecting part 6. Thus, the amount of air increases or decreases according to the amount of ozone generated and the ozone is diluted so that the concentration of the ozone may keep a reference value or less. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、静電霧化装置により発生させた帯電微粒子水を送風装置により送り出す帯電微粒子水供給装置に関するものである。   The present invention relates to a charged fine particle water supply device that sends out charged fine particle water generated by an electrostatic atomizer by a blower.

従来より、霧化電極に水供給手段から水を供給するとともに霧化電極に高電圧を印加することによりナノメーターサイズのミストである帯電微粒子水を発生させる静電霧化装置と、帯電微粒子水を送り出す送風装置とを備えた帯電微粒子水供給装置が提供されている。送風装置を備えることにより、帯電微粒子水を必要とする空間の隅々まで帯電微粒子水を行き渡らせることが可能になる。   Conventionally, an electrostatic atomizer that generates charged fine particle water that is nanometer-sized mist by supplying water from the water supply means to the atomization electrode and applying a high voltage to the atomization electrode, and charged fine particle water There is provided a charged fine particle water supply device provided with a blowing device for feeding out the water. By providing the blower, the charged fine particle water can be distributed to every corner of the space where the charged fine particle water is required.

静電霧化装置においては、帯電微粒子水の生成に伴って霧化電極において放電が生じることにより、帯電微粒子水とともにオゾンが発生することがある。オゾンが発生するのは、水供給手段から供給される水の量が不足したときであり、このとき電荷を運ぶ担体が帯電微粒子水だけでは不十分になりオゾンも電荷を運ぶ担体になるからである。したがって、この種の帯電微粒子水供給装置では、オゾンの濃度を規定値以下に制限することが要求される。   In the electrostatic atomizer, ozone may be generated together with the charged fine particle water by causing discharge at the atomization electrode as the charged fine particle water is generated. Ozone is generated when the amount of water supplied from the water supply means is insufficient. At this time, the carrier for carrying the charge is not sufficient for the charged fine particle water alone, and ozone becomes the carrier for carrying the charge. is there. Therefore, in this kind of charged fine particle water supply device, it is required to limit the ozone concentration to a specified value or less.

オゾンの濃度を規定値以下に制限する技術としては、オゾンの濃度を監視するとともにオゾンの濃度に上述の規定値に基づく制限値を設定しておき、オゾンの濃度が制限値に達すると、霧化電極への高電圧の印加を停止して帯電微粒子水の生成を停止させたり、霧化電極に高電圧を印加する時間割合を低減させて帯電微粒子水の生成量を低減させたりすることが考えられる。   As a technique for limiting the ozone concentration to a specified value or less, the ozone concentration is monitored, and a limit value based on the above specified value is set for the ozone concentration. When the ozone concentration reaches the limit value, The generation of charged fine particle water can be stopped by stopping the application of high voltage to the atomizing electrode, or the proportion of time during which the high voltage is applied to the atomizing electrode can be reduced. Conceivable.

また、送風手段の風量を複数段階に変更可能としている構成において、オゾンの濃度を規定値以下に制限するために、風量に応じて放電電流の大きさを変える構成も考えられている(特許文献1参照)。特許文献1に記載の構成では、風量が少ないときには放電電流を少なくすることで、オゾンの発生量を抑制し、結果的に風量に対するオゾンの発生量を低減することでオゾンの濃度を規定値以下に保つことを可能にしている。
特開2006−247478号公報
Further, in the configuration in which the air volume of the air blowing means can be changed in a plurality of stages, a configuration in which the magnitude of the discharge current is changed in accordance with the air volume in order to limit the ozone concentration to a specified value or less (Patent Document). 1). In the configuration described in Patent Document 1, when the air volume is small, the discharge current is reduced to suppress the amount of ozone generated. As a result, the amount of ozone generated with respect to the air volume is reduced, thereby reducing the ozone concentration to a specified value or less. Allowing you to keep on.
JP 2006-247478 A

ところで、静電霧化装置においては、上述したように水供給手段から供給される水の量が不足するとオゾンが発生しやすくなり、水の供給量は一定ではないから、オゾンの発生量は時間経過に伴って変動する。つまり、送風装置の風量が一定であると、オゾンの濃度は時間経過に伴って変動することになる。言い換えると、オゾンの濃度を規定値以下に制限するには、オゾンの発生量の変動分を見込んでオゾンの発生量が最大になるときを基準とし、さらに余裕を持つように風量を設定することが必要である。このことから、帯電微粒子水の発生量に対して風量が必要以上に大きくなり、結果的に送風装置の動作音による大きな騒音が発生するという問題を生じる。   By the way, in the electrostatic atomizer, as described above, if the amount of water supplied from the water supply means is insufficient, ozone is likely to be generated, and the amount of water supplied is not constant. It fluctuates with progress. That is, if the air volume of the air blower is constant, the ozone concentration varies with time. In other words, in order to limit the ozone concentration to below the specified value, the amount of ozone generated should be taken into account and the air volume should be set with a margin based on the maximum amount of ozone generated. is necessary. For this reason, the air volume becomes larger than necessary with respect to the generation amount of the charged fine particle water, and as a result, there arises a problem that a large noise is generated due to the operation sound of the blower.

逆に言えば、設定される風量に対する放電電流の大きさの比率を小さくしなければならないから、風量に対する帯電微粒子水の発生量が制限され、帯電微粒子水の効果として期待されている脱臭・アレルゲンの不活化・肌や髪の保湿などの様々な効果も減少するという問題を生じる。このことは、オゾン濃度を監視して、霧化電極への高電圧の印加を停止したり、霧化電極に高電圧を印加する時間割合を低減させる場合も同様である。   In other words, since the ratio of the discharge current to the set air volume must be reduced, the amount of charged particulate water generated relative to the air volume is limited, and the deodorization / allergen expected as an effect of charged particulate water Various problems such as inactivation of the skin and moisturizing the skin and hair are also reduced. The same applies to the case where the ozone concentration is monitored and the application of the high voltage to the atomizing electrode is stopped, or the time ratio during which the high voltage is applied to the atomizing electrode is reduced.

本発明は上記事由に鑑みて為されたものであり、その目的は、送風装置の風量に対する帯電微粒子水の発生量の割合を従来構成よりも大きくすることを可能にして、帯電微粒子水の発生量に対するオゾンの濃度の低減を可能にするとともに、送風装置の動作音を低減にも寄与する帯電微粒子水供給装置を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and the object of the present invention is to make it possible to make the ratio of the amount of charged fine particle water generated relative to the air volume of the blower larger than in the conventional configuration, and to generate charged fine particle water. An object of the present invention is to provide a charged fine particle water supply device that makes it possible to reduce the concentration of ozone with respect to the amount, and also contributes to a reduction in operating noise of the blower.

本発明は、霧化電極に水供給手段から水を供給するとともに霧化電極に高電圧を印加することにより帯電微粒子水を発生させる静電霧化装置と、帯電微粒子水を送り出す送風装置と、帯電微粒子水の発生量に応じた放電電流を検出する放電電流検出部と、送風装置の風量を制御する制御部とを備え、制御部は、放電電流検出部の検出結果を受けて帯電微粒子水の生成の際に生じたオゾン量を推定しオゾンの濃度が規定値以下に保たれるように、放電電流検出部による放電電流の検出値が大きいほど送風装置の風量を増加さる制御を行うことを特徴とする。 The present invention provides an electrostatic atomizer for generating charged fine particle water by supplying water from the water supply means to the atomization electrode and applying a high voltage to the atomization electrode, a blower device for sending out the charged fine particle water, A discharge current detection unit that detects a discharge current according to the amount of charged fine particle water generated; and a control unit that controls the air volume of the blower; the control unit receives the detection result of the discharge current detection unit and so that the concentration of the estimated ozone amount of ozone generated during the production is kept below a specified value, the discharge current detection unit according to the detection value control Ru increase the air volume is large enough feed air device of the discharge current and wherein and the child that is responsible for.

また、前記制御部は、前記送風装置に通電する時間と通電しない時間との割合を変えることにより送風装置の風量を制御する構成とするのが望ましい。   Moreover, it is desirable that the control unit be configured to control the air volume of the air blower by changing a ratio of a time during which the air blower is energized and a time during which the air blower is not energized.

さらに、前記送風装置は、送風羽根と送風羽根を回転駆動する駆動源とを備え、前記制御部は、駆動源の回転数を複数段階に切り替え可能であって、回転数の段階を切り替える際に時間経過に伴って回転数を徐々に移行させることが望ましい。   Further, the blower device includes a blower blade and a drive source that rotationally drives the blower blade, and the control unit can switch the number of rotations of the drive source in a plurality of stages, and when the number of rotations is switched. It is desirable to gradually shift the rotational speed as time elapses.

本発明の構成によれば、放電電流を監視するとともに放電電流の増減に伴って送風装置の風量を増減させるから、水の供給量の変動に伴うオゾンの発生量の変動を放電電流により監視することになり、オゾンの発生量の変動分を見込んで風量を設定する必要がなくなり、帯電微粒子水の発生量に対する風量を低減させることが可能になる。すなわち、帯電微粒子水の発生量に対する送風装置の動作音の低減につながる。また、送風装置の風量に対する帯電微粒子水の発生量の割合を大きくすることができるから、帯電微粒子水の発生量に対するオゾンの濃度の低減が可能になり、オゾンの濃度を低減しながらも帯電微粒子水の濃度を高めて帯電微粒子水に期待される効果を高めることが可能になる。   According to the configuration of the present invention, since the discharge current is monitored and the air volume of the blower is increased / decreased along with the increase / decrease of the discharge current, the fluctuation of the amount of ozone generated due to the fluctuation of the water supply amount is monitored by the discharge current. Therefore, it is not necessary to set the air volume in anticipation of fluctuations in the amount of ozone generated, and the air volume relative to the amount of charged fine particle water generated can be reduced. That is, it leads to reduction of the operation sound of the blower with respect to the generation amount of charged fine particle water. In addition, since the ratio of the amount of charged fine particle water generated to the air volume of the blower can be increased, it is possible to reduce the concentration of ozone with respect to the amount of charged fine particle water generated, and the charged fine particles while reducing the concentration of ozone. It is possible to increase the concentration of water and enhance the effect expected of charged fine particle water.

また、送風装置の風量を変化させるにあたって通電時間の割合を変える構成を採用すれば、送風装置の風量の制御を簡単な構成で行うことができるという利点がある。   Moreover, if the structure which changes the ratio of the electricity supply time in changing the air volume of an air blower is employ | adopted, there exists an advantage that control of the air volume of an air blower can be performed with a simple structure.

さらに、駆動源の回転数を複数段階に切り替えることにより送風装置の風量を可変とし、風量の切り替え時に時間経過に伴って回転数を徐々に移行させる構成では、送風羽根による風切音の変化が使用者に気付かれ難くなり、実質的に静音化されることになる。   Furthermore, in the configuration in which the air volume of the blower is made variable by switching the rotational speed of the drive source in a plurality of stages, and the rotational speed is gradually shifted with the passage of time when the air volume is switched, the change in the wind noise due to the air blowing blades It becomes difficult for the user to notice and the sound is substantially reduced.

本実施形態では、車室内に設置される帯電微粒子水供給装置を例示するが、本発明を車室内に用いる用途以外に使用することを制限するものではない。   In the present embodiment, the charged fine particle water supply device installed in the vehicle interior is illustrated, but the use of the present invention for purposes other than the application used in the vehicle interior is not limited.

帯電微粒子水供給装置は、図3に示すように、帯電微粒子水を発生させる静電霧化装置2を備える。静電霧化装置2は、図2に示すように、筐体1内に収容される。筐体1は、帯電微粒子水を送り出す送風装置3(図1参照)を内部に収容し、壁面に開設された送風口1aから帯電微粒子水を放出する。   As shown in FIG. 3, the charged fine particle water supply device includes an electrostatic atomizer 2 that generates charged fine particle water. The electrostatic atomizer 2 is accommodated in the housing 1 as shown in FIG. The housing 1 accommodates therein a blower 3 (see FIG. 1) for sending out charged fine particle water, and discharges the charged fine particle water from a blower opening 1a opened on the wall surface.

図3に示すように、静電霧化装置2は、先端部(図における上端部)を中央部より細くした霧化電極21と、絶縁材料からなり霧化電極21の先端部を内部に収容する筒体23と、霧化電極21に対向する形で筒体23の先端開口(図における上端開口)に配設される対向電極22と、霧化電極21を冷却するペルチェモジュール5と、ペルチェモジュール5に熱的に結合された放熱フィン7とを備え、霧化電極21と対向電極22には電源回路Eの出力電圧が印加される。電源回路Eは、対向電極22に対して相対的に高電圧となる電圧を霧化電極21に印加する。一般的な構成では、霧化電極21には対向電極22に対して負電位になる。   As shown in FIG. 3, the electrostatic atomizer 2 includes an atomizing electrode 21 having a tip portion (upper end portion in the drawing) made thinner than the central portion and a tip portion of the atomizing electrode 21 made of an insulating material. A cylindrical body 23, a counter electrode 22 disposed in a front end opening (upper end opening in the figure) of the cylindrical body 23 so as to face the atomizing electrode 21, a Peltier module 5 that cools the atomizing electrode 21, and a Peltier A radiation fin 7 thermally coupled to the module 5 is provided, and the output voltage of the power supply circuit E is applied to the atomizing electrode 21 and the counter electrode 22. The power supply circuit E applies a voltage that is relatively high to the counter electrode 22 to the atomizing electrode 21. In a general configuration, the atomizing electrode 21 has a negative potential with respect to the counter electrode 22.

筒体23の壁には、送風装置3からの風が流入する流入用開口23aが開設される。また、対向電極22は、筒体23内に流入した風が流出する貫通孔22aを備えるリング状に形成される。筒体23は、筐体1の内部において、貫通孔22aから流出した風が送風口1aから放出される位置に配設される。   In the wall of the cylindrical body 23, an inflow opening 23a through which the wind from the blower 3 flows is opened. The counter electrode 22 is formed in a ring shape having a through hole 22a through which the wind that has flowed into the cylindrical body 23 flows out. The cylindrical body 23 is disposed inside the housing 1 at a position where the wind that has flowed out of the through hole 22a is discharged from the blower opening 1a.

送風装置3は、送風羽根(図示せず)と、送風羽根を回転駆動する駆動源としてのモーター(図示せず)とを備え、筐体1の内部において、流入用開口23aより筒体23内に風が流入するように配設される。   The blower 3 includes a blower blade (not shown) and a motor (not shown) as a drive source for rotationally driving the blower blade, and inside the casing 23 inside the casing 1 through the inflow opening 23a. So that the wind flows into the

図1に示すように、対向電極22には放電電流検出部6が接続され、放電電流検出部6では霧化電極21と対向電極22との間を流れる放電電流を検出する。放電電流検出部6で検出される放電電流は、送風装置3の風量を制御する制御部4に入力され、制御部4では放電電流検出部6での検出結果である放電電流に応じて送風装置3の駆動源の回転数を制御する。制御部4における放電電流の増減に対する送風装置3の風量の制御に関しては後述する。   As shown in FIG. 1, the discharge current detector 6 is connected to the counter electrode 22, and the discharge current detector 6 detects a discharge current flowing between the atomizing electrode 21 and the counter electrode 22. The discharge current detected by the discharge current detection unit 6 is input to the control unit 4 that controls the air volume of the blower 3. In the control unit 4, the blower according to the discharge current that is the detection result of the discharge current detection unit 6. 3 is controlled. The control of the air volume of the blower 3 with respect to the increase and decrease of the discharge current in the control unit 4 will be described later.

次に、本実施形態の動作について説明する。ペルチェモジュール5に電圧を印加して霧化電極21を冷却すると、霧化電極21の表面に水が結露する。また、電源回路Eにより霧化電極21と対向電極22との間に高電圧が印加されるから、霧化電極21に付着した水滴は霧化電極21の先端部に移動する。すなわち、霧化電極21とペルチェモジュール5とにより水供給手段が形成されている。   Next, the operation of this embodiment will be described. When a voltage is applied to the Peltier module 5 to cool the atomizing electrode 21, water is condensed on the surface of the atomizing electrode 21. Further, since a high voltage is applied between the atomizing electrode 21 and the counter electrode 22 by the power supply circuit E, the water droplets attached to the atomizing electrode 21 move to the tip of the atomizing electrode 21. That is, the atomizing electrode 21 and the Peltier module 5 form water supply means.

霧化電極21の先端部に移動した水は、霧化電極21の先端部の周囲に生じている強電界により霧化電極21から離脱するとともに分裂し、筒体23内に帯電微粒子水を発生させる。筒体23内に発生した帯電微粒子水は、筒体23内に流入した風により、送風口1aより筐体1の外に放出される。   The water that has moved to the tip of the atomizing electrode 21 is separated from the atomizing electrode 21 by the strong electric field generated around the tip of the atomizing electrode 21 and is split to generate charged fine particle water in the cylindrical body 23. Let The charged fine particle water generated in the cylindrical body 23 is discharged out of the housing 1 from the blower opening 1a by the wind flowing into the cylindrical body 23.

ところで、霧化電極21と対向電極22との間に高電圧を印加したときに、水の供給量が適正範囲であれば帯電微粒子水が多量に生成されるが、水の供給量が過少であるときには帯電微粒子水のみでは電荷を運ぶことができず放電によってオゾンが発生する。オゾンは、放電電流が大きいほど多量に発生するから、制御部4では、放電電流を検出することによりオゾンの発生量を推定することができる。本実施形態では、制御部4において、放電電流検出部6による放電電流の検出値が大きいほど送風装置3の風量を増加させる制御を行い、オゾンを希釈する割合を高め、オゾン濃度が規定値以下に保たれるようにしている。   By the way, when a high voltage is applied between the atomizing electrode 21 and the counter electrode 22, a large amount of charged fine particle water is generated if the supply amount of water is in an appropriate range, but the supply amount of water is too small. In some cases, charged particulate water alone cannot carry charge, and ozone is generated by discharge. Since ozone is generated in a larger amount as the discharge current is larger, the control unit 4 can estimate the amount of ozone generated by detecting the discharge current. In the present embodiment, the control unit 4 performs control to increase the air volume of the blower 3 as the detection value of the discharge current by the discharge current detection unit 6 increases, and increases the rate of dilution of ozone, so that the ozone concentration is less than the specified value. So that it can be kept.

送風装置3は、上述したようにモーターを駆動源に用いているから、モーターへの給電電流をモーターの回転速度に比較して十分に高い周波数で断続させるとともに、通電する時間と通電しない時間との割合を調節することにより、モーターの回転数を調節する構成を採用している。たとえば、モーターが直流モーターであれば、電源との間にスイッチング素子を挿入しておき、スイッチング素子のオンオフの時間比を調節することにより、モーターの回転数を調節し、送風装置3の風量を調節する。   Since the air blower 3 uses the motor as a drive source as described above, the power supply current to the motor is intermittently interrupted at a sufficiently high frequency compared to the rotation speed of the motor, and the energization time and the non-energization time The structure which adjusts the rotation speed of the motor by adjusting the ratio of is adopted. For example, if the motor is a DC motor, a switching element is inserted between the motor and the on / off time ratio of the switching element to adjust the rotation speed of the motor, and the air volume of the blower 3 is adjusted. Adjust.

制御部4による送風装置3の制御例を以下に示す。本実施形態では、モーターの回転数を複数段階(3段階)に切り替える構成を採用している。具体的には、図4に示すように、モーターの回転数として5000rpm、6000rpm、9000rpmの3段階を選択可能としている。また、筐体1に設けた送風口1aを直径16mmの円形状に形成しており、モーターの回転数が5000rpm、6000rpm、9000rpmであるときに、送風口1aにおける風量が、それぞれ約0.6m/h、約0.8m/h、約1.2m/hになるものとする。 The example of control of the air blower 3 by the control part 4 is shown below. In this embodiment, the structure which switches the rotation speed of a motor in multiple steps (3 steps) is employ | adopted. Specifically, as shown in FIG. 4, three stages of 5000 rpm, 6000 rpm, and 9000 rpm can be selected as the motor rotation speed. Moreover, when the ventilation port 1a provided in the housing | casing 1 is formed in the circular shape with a diameter of 16 mm, and the rotation speed of a motor is 5000 rpm, 6000 rpm, and 9000 rpm, the air volume in the ventilation port 1a is about 0.6 m, respectively. 3 / h, about 0.8 m 3 / h, and about 1.2 m 3 / h.

ここで、制御部4では基準値として、放電電流が3μAであるときにモーターの回転数を5000rpm、6μAのときに6000rpm、9μAのときに9000rpmとしてあり、送風装置3の風量の最大値は9000rpmになっている。すなわち、静電霧化装置2の放電電流は9μAを超えることはない(この場合、霧化電極21と対向電極22との間が短絡している場合のような異常状態であるから他の保護機能が動作する)ものとし、放電電流が0〜3μAにおいて回転数5000rpmとし、3μAを超え6μA以下のときに回転数を6000rpmとし、6μAを超え9μA以下のときに回転数を9000rpmとするように風量を制御する。 Here, as a reference value in the control unit 4, the rotational speed of the motor is 5000 rpm when the discharge current is 3 μA, 6000 rpm when the discharge current is 6 μA, and 9000 rpm when the discharge current is 9 μA, and the maximum value of the air volume of the blower 3 is 9000 rpm. It has become. That is, the discharge current of the electrostatic atomizer 2 does not exceed 9 μA (in this case, since it is an abnormal state such as when the atomizing electrode 21 and the counter electrode 22 are short-circuited, other protections are provided). The function operates), when the discharge current is 0 to 3 μA, the rotational speed is 5000 rpm, the rotational speed is 6000 rpm when it exceeds 3 μA and 6 μA or less, and the rotational speed is 9000 rpm when it exceeds 6 μA and 9 μA or less. Control the air volume.

あるいはまた、制御部4において、放電電流と送風装置3の回転数との関係にヒステリシスを付与し、放電電流が上昇して3μAを超えると回転数を5000rpmから6000rpmに変更し、放電電流が下降して3μAを下回っても6000rpmを維持し、0μAになったときに5000rpmに戻すように制御してもよい。この場合、放電電流が上昇して6μAを超えると回転数を6000rpmから9000rpmに変更し、その後、放電電流が下降して6μAを下回っても9000rpmを維持し、放電電流が9μAに達するか、3μAになったときに6000rpmに戻すようにしてもよい。   Alternatively, the control unit 4 adds hysteresis to the relationship between the discharge current and the rotational speed of the blower 3, and when the discharge current increases and exceeds 3 μA, the rotational speed is changed from 5000 rpm to 6000 rpm, and the discharge current decreases. Then, even if it falls below 3 μA, it may be controlled to maintain 6000 rpm and return to 5000 rpm when 0 μA is reached. In this case, when the discharge current rises and exceeds 6 μA, the rotation speed is changed from 6000 rpm to 9000 rpm, and then the discharge current decreases and drops below 6 μA and maintains 9000 rpm. When it becomes, it may be made to return to 6000 rpm.

なお、風量を段階的に変化させるのではなく、連続的に変化させるようにしてもよい。たとえば、放電電流が3μAを下回る場合と9μAを超える場合とでは送風装置3を停止させ、放電電流が3〜6μAの範囲では回転数を5000〜6000rpmの間で補間し、放電電流が6〜9μAの間では回転数を6000〜9000rpmの間で補間するようにしてもよい。   Note that the air volume may be changed continuously instead of stepwise. For example, when the discharge current is less than 3 μA and when it exceeds 9 μA, the blower 3 is stopped. When the discharge current is in the range of 3 to 6 μA, the rotation speed is interpolated between 5000 to 6000 rpm, and the discharge current is 6 to 9 μA. The rotation number may be interpolated between 6000 and 9000 rpm.

送風装置3の風量を段階的に変化させるにあたり、回転数を切り替えるときには、元の回転数から移行する回転数へは時間経過に伴って徐々に回転数を変化させるのが望ましい。この制御により回転数が急に変化するのを防止でき、回転数を滑らかに変化させることによって、送風羽根による風切音の変化が使用者に気付かれ難くなり、実質的に静音化されることになる。   In changing the air volume of the blower 3 in a stepwise manner, when switching the rotation speed, it is desirable to gradually change the rotation speed from the original rotation speed to the rotation speed that shifts with time. This control can prevent the rotational speed from changing suddenly, and by smoothly changing the rotational speed, it becomes difficult for the user to notice the change in the wind noise caused by the blower blades, and it is substantially silenced. become.

上述のように本実施形態では、放電電流に応じて送風装置3の風量を増減させることによりオゾンの濃度を規定値以下に保つから、風量が定められている構成に比較すると、オゾンの発生量の変動に備えて風量に余裕を持たせる程度を少なくすることが可能であり、帯電微粒子水の発生量を従来構成と同程度とする場合には、送風装置3に用いるモーターの回転数を引き下げることが可能になり、結果的に送風装置3の動作音(送風羽根の風切音)を低減することができる。また、送風装置の風量に対する帯電微粒子水の発生量の割合が大きくなるから、帯電微粒子水の発生量に対するオゾンの濃度の低減が可能になり、オゾンの濃度を低減しながらも帯電微粒子水の濃度を高めて帯電微粒子水に期待される効果を高めることが可能になる。すなわち、車室内において、脱臭、ウイルス・カビ・細菌の繁殖の抑制、アレルゲンの不活化、搭乗者の肌・髪の保湿などの効果が期待できる。   As described above, in the present embodiment, the ozone concentration is kept below a specified value by increasing or decreasing the air volume of the blower 3 in accordance with the discharge current. Therefore, compared to a configuration in which the air volume is determined, the amount of ozone generated It is possible to reduce the amount of air flow in preparation for the fluctuation of the air flow, and when the generation amount of charged fine particle water is the same as that of the conventional configuration, the rotational speed of the motor used for the blower 3 is reduced. As a result, the operation sound of the blower 3 (wind noise of the blower blades) can be reduced. In addition, since the ratio of the amount of charged particulate water generated to the air volume of the blower increases, it becomes possible to reduce the concentration of ozone with respect to the amount of charged particulate water generated, and the concentration of charged particulate water while reducing the concentration of ozone. It is possible to increase the effect expected of charged fine particle water. That is, in the passenger compartment, effects such as deodorization, suppression of virus / mold / bacteria growth, inactivation of allergens, and moisture retention of passengers' skin and hair can be expected.

実施形態を示すブロック図である。It is a block diagram which shows embodiment. 同上の外観斜視図である。It is an external appearance perspective view same as the above. 同上に用いる静電霧化装置の概略構成図である。It is a schematic block diagram of the electrostatic atomizer used for the same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above.

符号の説明Explanation of symbols

2 静電霧化装置
3 送風装置
4 制御部
6 放電電流検出部
21 霧化電極
2 Electrostatic atomizer 3 Blower 4 Controller 6 Discharge current detector 21 Atomizing electrode

Claims (3)

霧化電極に水供給手段から水を供給するとともに霧化電極に高電圧を印加することにより帯電微粒子水を発生させる静電霧化装置と、帯電微粒子水を送り出す送風装置と、帯電微粒子水の発生量に応じた放電電流を検出する放電電流検出部と、送風装置の風量を制御する制御部とを備え、制御部は、放電電流検出部の検出結果を受けて帯電微粒子水の生成の際に生じたオゾン量を推定しオゾンの濃度が規定値以下に保たれるように、放電電流検出部による放電電流の検出値が大きいほど送風装置の風量を増加さる制御を行うことを特徴とする帯電微粒子水供給装置。 An electrostatic atomizer for supplying charged fine particle water by supplying water from the water supply means to the atomizing electrode and applying a high voltage to the atomizing electrode, a blower for sending charged fine particle water, and charged fine particle water A discharge current detection unit that detects a discharge current according to the generated amount; and a control unit that controls the air volume of the blower. The control unit receives the detection result of the discharge current detection unit and generates charged particulate water. and this concentration of ozone amount was estimated ozone produced is performed as kept below the specified value, the control Ru increases the air volume of the detected value is larger as feed air device of the discharge current due to the discharge current detection unit A charged fine particle water supply device. 前記制御部は、前記送風装置に通電する時間と通電しない時間との割合を変えることにより送風装置の風量を制御することを特徴とする請求項1に記載の帯電微粒子水供給装置。   The charged fine particle water supply device according to claim 1, wherein the control unit controls the air volume of the air blower by changing a ratio of a time during which the air blower is energized and a time during which the air blower is not energized. 前記送風装置は、送風羽根と送風羽根を回転駆動する駆動源とを備え、前記制御部は、駆動源の回転数を複数段階に切り替え可能であって、回転数の段階を切り替える際に時間経過に伴って回転数を徐々に移行させることを特徴とする請求項1または請求項2に記載の帯電微粒子水供給装置。   The blower device includes a blower blade and a drive source that rotationally drives the blower blade, and the control unit can switch the number of rotations of the drive source in a plurality of stages, and the time elapses when the number of rotations is switched. The charged fine particle water supply device according to claim 1, wherein the rotational speed is gradually shifted along with the charging.
JP2008246910A 2008-09-25 2008-09-25 Charged particulate water supply device Expired - Fee Related JP5368759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246910A JP5368759B2 (en) 2008-09-25 2008-09-25 Charged particulate water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246910A JP5368759B2 (en) 2008-09-25 2008-09-25 Charged particulate water supply device

Publications (2)

Publication Number Publication Date
JP2010075840A JP2010075840A (en) 2010-04-08
JP5368759B2 true JP5368759B2 (en) 2013-12-18

Family

ID=42206912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246910A Expired - Fee Related JP5368759B2 (en) 2008-09-25 2008-09-25 Charged particulate water supply device

Country Status (1)

Country Link
JP (1) JP5368759B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368844B2 (en) * 2009-03-25 2013-12-18 パナソニック株式会社 Air conditioner with electrostatic atomizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625267B2 (en) * 2004-04-08 2011-02-02 パナソニック電工株式会社 Electrostatic atomizer
JP4396580B2 (en) * 2005-06-01 2010-01-13 パナソニック電工株式会社 Electrostatic atomizer
JP4655691B2 (en) * 2005-03-08 2011-03-23 パナソニック電工株式会社 Electrostatic atomizer
JP4665839B2 (en) * 2006-06-08 2011-04-06 パナソニック電工株式会社 Electrostatic atomizer
JP2008183480A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Electrostatic atomizer

Also Published As

Publication number Publication date
JP2010075840A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
WO2013105352A1 (en) Air blowing device and air blowing method
JP4625267B2 (en) Electrostatic atomizer
JP4396580B2 (en) Electrostatic atomizer
EP2000216B1 (en) Electrostatically atomizing device
WO2007052583A1 (en) Electrostatic atomizer
JP4655691B2 (en) Electrostatic atomizer
JP5368844B2 (en) Air conditioner with electrostatic atomizer
JP2010032096A (en) Electrostatic atomizer and air conditioner using the same
JP5368759B2 (en) Charged particulate water supply device
JP4765772B2 (en) Electrostatic atomizer
JP2009274069A (en) Electrostatic atomizing device
US20110101134A1 (en) Electrostatic atomizing apparatus for vehicle
JP4821437B2 (en) Electrostatic atomizer
JP2011004922A (en) Scalp care device
JP2013034804A (en) Discharge product generating device
JP2010264455A (en) Method of moisturizing hair by ion mist and electrostatic atomizer
JP5314606B2 (en) Electrostatic atomization method
JP5149934B2 (en) Electrostatic atomizer and electrostatic atomizing method
JP5314368B2 (en) Electrostatic atomizer
CN115552792A (en) Fan control system, fan system, active ingredient generation system, fan control method, and program
JP4645528B2 (en) Electrostatic atomizer
JP2012066221A (en) Electrostatic atomizing device
WO2024154548A1 (en) Functional substance generation device
JP2012085960A (en) Mist generator and cosmetic apparatus
JP5330780B2 (en) Electrostatic atomizer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees