JP5367997B2 - Method for producing expandable styrene resin particles - Google Patents

Method for producing expandable styrene resin particles Download PDF

Info

Publication number
JP5367997B2
JP5367997B2 JP2008090252A JP2008090252A JP5367997B2 JP 5367997 B2 JP5367997 B2 JP 5367997B2 JP 2008090252 A JP2008090252 A JP 2008090252A JP 2008090252 A JP2008090252 A JP 2008090252A JP 5367997 B2 JP5367997 B2 JP 5367997B2
Authority
JP
Japan
Prior art keywords
resin particles
styrene resin
expandable styrene
expandable
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008090252A
Other languages
Japanese (ja)
Other versions
JP2009242543A (en
Inventor
有一 上田
武彦 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008090252A priority Critical patent/JP5367997B2/en
Publication of JP2009242543A publication Critical patent/JP2009242543A/en
Application granted granted Critical
Publication of JP5367997B2 publication Critical patent/JP5367997B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、発泡性スチレン系樹脂粒子の製造方法に関するものである。詳しくは、成形性に優れた発泡スチレン系成形体を得ることが可能な、押出し機で溶融、混練後に造粒することにより得られる円柱状スチレン系樹脂粒子を用いて球状の発泡性スチレン系樹脂粒子を製造する方法に関する。   The present invention relates to a method for producing expandable styrene resin particles. Specifically, it is possible to obtain a foamed styrene-based molded article having excellent moldability, and a spherical foamable styrene-based resin using columnar styrene-based resin particles obtained by granulation after melting and kneading with an extruder. The present invention relates to a method for producing particles.

発泡性スチレン系樹脂粒子からなるスチレン系発泡体は、形状が整った多数のセルが集合した構造体であることから緩衝性、断熱性に優れ、電化製品等の緩衝材、食品の保冷箱、住宅用の断熱材等、多くの分野で利用されている。この様な発泡性スチレン系樹脂粒子の製造方法としては、従来から大別して下記の方法等が知られている。   Styrenic foam made of expandable styrenic resin particles is a structure in which a large number of well-shaped cells are gathered, so it has excellent buffering and heat insulation properties, such as buffer materials for electrical appliances, food cold boxes, It is used in many fields such as thermal insulation for housing. As methods for producing such expandable styrenic resin particles, the following methods and the like have been conventionally known.

(1)スチレン系単量体を各種添加剤と共に懸濁重合することで樹脂粒子を得て、更に発泡剤を含浸することで発泡性スチレン系樹脂粒子を得る重合反応を伴う製造方法。   (1) A production method involving a polymerization reaction in which resin particles are obtained by suspension polymerization of a styrene monomer together with various additives, and further, expandable styrene resin particles are obtained by impregnation with a foaming agent.

(2)スチレン系重合体を各種添加剤と共に押出し機等により所望の大きさに造粒し、更に発泡剤を含浸することで発泡性スチレン系樹脂粒子を得る重合反応を伴わない製造方法。   (2) A production method that does not involve a polymerization reaction in which a styrene polymer is granulated together with various additives to a desired size by an extruder or the like, and further impregnated with a foaming agent to obtain expandable styrene resin particles.

一方、近年、環境保全に対する関心の高まりの中、広範囲に使用されているスチレン系発泡体を回収し再利用しようという試みが広がっている。再利用の方法としては、焼却による熱回収、熱収縮後にポリスチレンとして再利用する方法等があるが、循環型リサイクルシステムを目指して、再度、発泡性スチレン系樹脂粒子に再生することは非常に有意義であり関心が高まってきている。   On the other hand, in recent years, with increasing interest in environmental conservation, attempts to recover and reuse styrene-based foams that have been widely used are expanding. Recycling methods include heat recovery by incineration, recycling as polystyrene after heat shrinkage, etc., but it is very meaningful to recycle again into expandable styrene resin particles aiming at a recycling type recycling system. And interest is growing.

このようなスチレン系発泡体への再生においては、重合体を出発原料として造粒する必要があることから上記(2)の製造方法を利用することが多い。また、上記(2)の製造方法は(1)と比べて生産効率が低い反面、多様な成分の混合が可能であることから利用価値の高い製造方法といえる。   In the regeneration to such a styrene-based foam, since it is necessary to granulate a polymer as a starting material, the production method (2) is often used. In addition, the production method (2) has a lower production efficiency than the method (1), but it can be said to be a production method with high utility value because various components can be mixed.

ころが、押出し機によりストランドをひき、ペレタイザーでカットすることにより造粒する場合、樹脂粒子は円柱状となってしまうだけでなく、ストランドをひく為に樹脂を溶融状態で引っ張り方向に延伸を加え、カットする為に急冷、固化することから、造粒した樹脂粒子には延伸力が内部ひずみとして残留してしまう。その為に、発泡性スチレン系樹脂粒子の製造に際して、この円柱状樹脂粒子に発泡剤を高温下で含浸すると樹脂が軟化することで応力緩和が生じ、延伸方向、即ち長さ方向に大きく収縮した扁平粒子となってしまうという問題があった。
And rollers to draw the strands by an extruder, if granulated by cutting with a pelletizer, the resin particles are not only becomes cylindrical, stretched in a direction pulling the resin to draw the strands in the molten state In addition, since the resin is rapidly cooled and solidified for cutting, the stretched force remains as internal strain in the granulated resin particles. Therefore, in the production of expandable styrene resin particles, if the columnar resin particles are impregnated with a foaming agent at a high temperature, the resin softens, resulting in stress relaxation and large shrinkage in the stretching direction, that is, the length direction. There was a problem of becoming flat particles.

造粒した樹脂粒子に残留してしまう内部ひずみを軽減させる方法として、ストランドをひくことなく、押出し機より押出すと同時に切断することで、球状の樹脂粒子を得て、この樹脂粒子に発泡剤を含浸させて発泡性スチレン系樹脂粒子を得る製造方法が提案されている(特許文献1参照)。ところが、この方法は押出し、カット、冷却の微妙な調整を行うことが難しく生産性の低下を引き起こし易いことに加え、含有量が安定しない異物を含むことが考えられる再生樹脂を原料として用いる場合は、押出しダイ内の樹脂圧力が変動することでミスカットが多いものになり易く、粒度が安定し難くいという欠点があった。   As a method of reducing internal strain that remains in the granulated resin particles, spherical resin particles are obtained by simultaneously extruding from an extruder without cutting the strand, and then cut into a foaming agent. There has been proposed a production method for obtaining expandable styrene resin particles by impregnating styrene (see Patent Document 1). However, this method is difficult to make fine adjustments of extrusion, cutting, and cooling, and it is easy to cause a decrease in productivity. The resin pressure in the extrusion die fluctuates, so that there are many miscuts, and the particle size is difficult to stabilize.

また、無延伸熱溶融して得られるスチレン系樹脂粒子に発泡剤を含浸させて発泡性スチレン系樹脂粒子を得る製造方法が提案されている(特許文献2参照)。この方法によれば内部ひずみが軽減されるという利点があるものの、発泡性スチレン系樹脂粒子に適したサイズに、直接、小粒径化することは困難である。小粒径化の為には別途、工程が必要になる為に生産性が低く、また、粒度が不均一になり易いという欠点があった。   In addition, a production method has been proposed in which expandable styrene resin particles are obtained by impregnating a styrene resin particles obtained by non-stretching heat melting with a foaming agent (see Patent Document 2). Although this method has the advantage of reducing internal strain, it is difficult to directly reduce the particle size to a size suitable for the expandable styrene resin particles. In order to reduce the particle size, a separate process is required, so that the productivity is low and the particle size tends to be uneven.

また、熱可塑性樹脂と発泡剤を溶融混練して、次いでダイヘッドから押出すと共に即時切断して得た粒子を急冷することで、発泡性熱可塑性樹脂粒子を得る製造方法が提案されている(特許文献3参照)。この方法によれば樹脂粒子内の残留応力は緩和されており、直接、発泡性熱可塑性樹脂粒子を製造することが可能であるが、造粒する時に発泡を抑制することが困難であることから、結局、生産性や収率に問題があった。また、短時間で溶融、急冷固化を施すことで発泡樹脂としての品質が不安定となり、得られた発泡体のセルが不均一となり外観が美麗な成形体が得られ難いという欠点があった。
特開平4−325534号公報 特開平6−87973号号公報 特開平6−32932号公報
In addition, a production method has been proposed in which foaming thermoplastic resin particles are obtained by melt-kneading a thermoplastic resin and a foaming agent, then extruding from a die head and then immediately cooling the particles obtained by immediate cutting (patent) Reference 3). According to this method, the residual stress in the resin particles is relaxed, and it is possible to directly produce foamable thermoplastic resin particles, but it is difficult to suppress foaming when granulating. After all, there were problems with productivity and yield. Further, when melted and rapidly solidified in a short time, the quality of the foamed resin becomes unstable, the cells of the obtained foam are non-uniform, and it is difficult to obtain a molded product having a beautiful appearance.
JP-A-4-325534 JP-A-6-87973 JP-A-6-32932

以上のような状況に鑑み、本発明は成形性に優れた発泡スチレン系成形体を得ることが可能な、押出し機で溶融、混練後に造粒することにより得られる円柱状スチレン系樹脂粒子を用いて球状の発泡性スチレン系樹脂粒子を製造する方法を提供することにある。   In view of the situation as described above, the present invention uses a cylindrical styrene resin particle obtained by granulation after melting and kneading with an extruder capable of obtaining a foamed styrene molded article having excellent moldability. Another object of the present invention is to provide a method for producing spherical expandable styrene resin particles.

上記問題を解決すべく鋭意検討したところ、以下の構成を採用することにより成形性に優れる発泡性スチレン系樹脂粒子を製造することが可能となる。   As a result of extensive studies to solve the above problems, it is possible to produce expandable styrene resin particles having excellent moldability by adopting the following configuration.

即ち、本発明は、以下の構成を有するものである。   That is, the present invention has the following configuration.

1). スチレン系樹脂を溶融、混練後に造粒することにより得られる円柱状スチレン系樹脂粒子を水性媒体中に分散させ、発泡剤を含浸させる発泡性スチレン系樹脂粒子の製造方法であって、円柱状スチレン系樹脂粒子の長さ方向を5%以上50%以下になるまで熱収縮させた後に発泡剤を添加、含浸させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。
1). A method of producing expandable styrene resin particles in which cylindrical styrene resin particles obtained by melting and kneading styrene resin after granulation are dispersed in an aqueous medium and impregnated with a foaming agent. systems added foaming agent the length direction of the resin particles after heat shrunk until 5 to 50%, and wherein the impregnating method of expandable styrene resin particles.

2). 前記熱収縮前の円柱状スチレン系樹脂粒子が、長さ/直径の比率が0.8以上3.0以下であることを特徴とする1)記載の発泡性スチレン系樹脂粒子の製造方法。
2). The method for producing expandable styrene resin particles according to 1) , wherein the columnar styrene resin particles before heat shrinkage have a length / diameter ratio of 0.8 or more and 3.0 or less.

3). 前記スチレン系樹脂が、50重量%以上の回収された再利用スチレン系樹脂を含んでいることを特徴とする1)または2)に記載の発泡性スチレン系樹脂粒子の製造方法。
3). The styrene resin, characterized in that it contains recycled styrenic resin recovered more than 50 wt%, 1) or 2) The method of producing expandable styrene resin particles according to.

本発明の製造方法により得られる発泡性スチレン系樹脂粒子は球状となり、成形性に優れた発泡スチレン系成形体を得ることができる。   The expandable styrene resin particles obtained by the production method of the present invention are spherical, and an expanded styrene molded article having excellent moldability can be obtained.

本発明の発泡性スチレン系樹脂粒子の製造方法は、スチレン系樹脂を溶融、混練後に造粒することにより得られる円柱状スチレン系樹脂粒子を水性媒体中に分散させ、発泡剤を含浸させる発泡性スチレン系樹脂粒子の製造方法であって、円柱状スチレン系樹脂粒子の長さ方向を5%以上50%以下になるまで熱収縮させた後に発泡剤を添加、含浸させる。   The method for producing expandable styrene resin particles of the present invention is a foaming property in which cylindrical styrene resin particles obtained by melting and kneading granulated styrene resin are dispersed in an aqueous medium and impregnated with a foaming agent. A method for producing styrene-based resin particles, in which a lengthwise direction of cylindrical styrene-based resin particles is thermally shrunk to 5% or more and 50% or less, and then a foaming agent is added and impregnated.

スチレン系樹脂粒子を構成する単量体組成としては、スチレン及びα−メチルスチレン、クロルスチレン、パラメチルスチレン、t−ブチルスチレン等の各種置換スチレンがあげられ、これら各種単量体成分を1種または2種以上から構成される。また、これら構成する単量体組成と共重合が可能な成分として、例えば、メチルアクリレート、ブチルアクリレート、メチルメタクリレート、エチルメタクリレート等のアクリル酸およびメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレート等が挙げられ、これら各種単量体を1種または2種以上を部分的に含んだ組成、更に、ジビニルベンゼン、アルキレングリコールジメタクリレート等の多官能性単量体を含んだ組成を用いることができる。   Examples of the monomer composition constituting the styrene resin particles include styrene and various substituted styrenes such as α-methylstyrene, chlorostyrene, paramethylstyrene, and t-butylstyrene. Or it is comprised from 2 or more types. Examples of components that can be copolymerized with the constituent monomer components include acrylic acid and methacrylic acid esters such as methyl acrylate, butyl acrylate, methyl methacrylate, and ethyl methacrylate, acrylonitrile, dimethyl fumarate, and ethyl fumarate. Use a composition containing one or more of these various monomers, and a composition containing a polyfunctional monomer such as divinylbenzene or alkylene glycol dimethacrylate. Can do.

本発明のスチレン系樹脂粒子を製造する方法としては、懸濁重合、塊状重合、乳化重合等により直接、重合体粒子を得る方法や、本来の目的に使用された後に回収された再利用発泡成形体を減容機等により減溶することにより得ることができる。   Examples of the method for producing the styrene resin particles of the present invention include a method of directly obtaining polymer particles by suspension polymerization, bulk polymerization, emulsion polymerization or the like, and reused foam molding recovered after being used for the original purpose. It can be obtained by dissolving the body with a volume reducer or the like.

円柱状スチレン系樹脂粒子は、小孔を有するダイヘッドを付した押出し機を通してスチレン系樹脂をストランド状にひき、回転カッターを有するペレタイザーで所望のサイズにカットする、いわゆるストランドカット方式により得ることができる。   The cylindrical styrenic resin particles can be obtained by a so-called strand cutting method in which a styrenic resin is drawn in a strand shape through an extruder with a die head having a small hole, and is cut into a desired size with a pelletizer having a rotary cutter. .

本発明において、発泡剤を添加、含浸させることで発泡性スチレン系樹脂粒子を得る為の円柱状スチレン系樹脂粒子は、小孔を有するダイヘッドを付した押出し機を通してスチレン系樹脂をストランド状にひき、回転カッターを有するペレタイザーでカットすることにより得ることができる。本願発明では円柱形スチレン系樹脂粒子を長さ方向を5%以上50%以下になるように熱収縮させたものを用いる。この熱収縮は、好ましくは5%以上30%以下である。収縮率が小さ過ぎる場合は内部ひずみの緩和が充分でないことから発泡剤の添加時に急激な変化を引き起こし、得られる発泡性スチレン系樹脂粒子は扁平状となり、収縮率が大き過ぎる場合は内部ひずみの緩和が大き過ぎることから、得られる発泡性スチレン系樹脂粒子は扁平状あるいはタマゴ型となる傾向がある。   In the present invention, columnar styrene resin particles for obtaining expandable styrene resin particles by adding and impregnating a foaming agent are obtained by drawing the styrene resin into strands through an extruder equipped with a die head having small holes. It can be obtained by cutting with a pelletizer having a rotary cutter. In the present invention, cylindrical styrene resin particles are used that are thermally contracted so that the length direction is 5% or more and 50% or less. This heat shrinkage is preferably 5% or more and 30% or less. If the shrinkage rate is too small, the internal strain is not sufficiently relaxed, causing a sudden change when the foaming agent is added, and the resulting expandable styrenic resin particles are flattened. Since the relaxation is too large, the resulting expandable styrene resin particles tend to be flat or egg-shaped.

本発明において、押出し機により作製した円柱状スチレン系樹脂粒子を熱収縮させる方法としては、特に限定されるものではないが、流動乾燥機により気相中で加温する方法や水性媒体中に分散させ液相中で加温させる方法があげられ、特に後者の方法では一連の装置で発泡性スチレン系樹脂粒子を製造することができ易いので好ましい。   In the present invention, the method for thermally shrinking the cylindrical styrene resin particles produced by an extruder is not particularly limited, but it may be a method of heating in a gas phase by a fluid dryer or a dispersion in an aqueous medium. And the method of heating in the liquid phase, and the latter method is particularly preferable because it is easy to produce expandable styrene resin particles with a series of apparatuses.

熱収縮させる方法としては、例えば円柱形スチレン系樹脂をそのガラス転移温度以上に保持することで可能となる。ガラス転移温度以上に保持する場合、その温度は特に制約はないが、ガラス転移温度〜ガラス転移温度+30度、さらには、ガラス転移温度〜ガラス転移温度+25度の範囲内に保持することが好ましい。
ガラス転移温度以上の温度に保持する時間としては、特に制約はないが、60分以下、さらには20分以下、さらに好ましくは5分以下が好ましい。ガラス転移温度以上の所定の温度になれば速やかに次の操作に移ってもよい。
As a method of heat shrinking, for example, a cylindrical styrene resin can be maintained at or above its glass transition temperature. When the glass transition temperature is maintained above the glass transition temperature, the temperature is not particularly limited, but it is preferable to maintain the temperature within the range of glass transition temperature to glass transition temperature + 30 ° C., more preferably glass transition temperature to glass transition temperature + 25 ° C.
Although there is no restriction | limiting in particular as time to hold | maintain to the temperature more than a glass transition temperature, 60 minutes or less, Furthermore, 20 minutes or less, More preferably, 5 minutes or less are preferable. If a predetermined temperature equal to or higher than the glass transition temperature is reached, the next operation may be started immediately.

発泡剤を加えた後、さらにガラス転移温度以上に保持することが好ましい。その際の温度としては、前記の温度範囲が好ましい。また保持時間としては1時間〜10時間、さらには2時間〜8時間が好ましい。   After adding the foaming agent, it is preferable to keep the glass transition temperature or higher. As the temperature at that time, the above temperature range is preferable. The holding time is preferably 1 hour to 10 hours, more preferably 2 hours to 8 hours.

なお、ガラス転移温度は公知の方法で測定可能であるが、例えば示差走査熱量計を用いて測定可能である。   In addition, although a glass transition temperature can be measured by a well-known method, it can be measured, for example using a differential scanning calorimeter.

本発明の熱収縮前の円柱状スチレン系樹脂粒子は、長さ/直径の比率が0.8以上3.0以下であることが好ましく、更に好ましくは0.9以上2.5以下である。比率が小さ過ぎる場合は得られる発泡性スチレン系樹脂粒子が扁平状になり易い傾向があり、比率が大き過ぎる場合はタマゴ型になり易い傾向がある。   The columnar styrenic resin particles before heat shrinkage of the present invention preferably have a length / diameter ratio of 0.8 or more and 3.0 or less, more preferably 0.9 or more and 2.5 or less. When the ratio is too small, the resulting expandable styrene resin particles tend to be flat, and when the ratio is too large, it tends to be an egg type.

本発明の円柱状スチレン系樹脂粒子は、溶融した樹脂をストランド状にひきとることから、カット面は楕円状となることがある。楕円状である場合の直径は、楕円の長径と短径の平均値として表すことができる。   Since the cylindrical styrene resin particles of the present invention draw the molten resin in a strand shape, the cut surface may be elliptical. The diameter in the case of an ellipse can be expressed as an average value of the major axis and the minor axis of the ellipse.

本発明のスチレン系樹脂粒子を分散させる水性媒体として、分散剤を含んだ水を用いることができる。ここでいう分散剤とは、一般的にスチレン系単量体の懸濁重合に用いられる分散剤、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド等の高分子分散剤、例えば、リン酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム等の難水溶性無機塩を用いることができる。そして、難水溶性無機塩を用いる場合には、α−オレフィンスルフォン酸ソーダ、ドデシルベンゼンスルフォン酸ソーダ等のアニオン性界面活性剤を併用すると分散安定性が増すので効果的であるため好ましい。   As an aqueous medium in which the styrene resin particles of the present invention are dispersed, water containing a dispersant can be used. The dispersant here is a dispersant generally used for suspension polymerization of a styrene monomer, for example, a polymer dispersant such as polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, such as calcium phosphate, hydroxyapatite, A poorly water-soluble inorganic salt such as magnesium pyrophosphate can be used. When a poorly water-soluble inorganic salt is used, it is preferable to use an anionic surfactant such as α-olefin sodium sulfonate or dodecylbenzene sodium sulfonate because it is effective in increasing dispersion stability.

本発明において用いる発泡剤は、沸点が重合体の軟化点以下である易揮発性有機化合物である。このような発泡剤としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン、シクロヘキサン等の脂環族炭化水素があげられる。   The blowing agent used in the present invention is a readily volatile organic compound having a boiling point equal to or lower than the softening point of the polymer. Examples of such blowing agents include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane, and alicyclic hydrocarbons such as cyclobutane, cyclopentane, and cyclohexane.

これらの発泡剤は、単独もしくは2種以上を併せて用いることができる。また、これら易揮発性有機化合物の中でもブタンあるいはペンタンが好ましく、更に好ましくはペンタンである。   These foaming agents can be used alone or in combination of two or more. Of these easily volatile organic compounds, butane or pentane is preferable, and pentane is more preferable.

その使用量は、スチレン系樹脂100重量部あたり好ましくは2重量部以上12重量部以下、より好ましくは3重量部以上8重量部以下である。2重量部以下では発泡性スチレン系樹脂粒子とした後の発泡力が得られ難く、また、12重量部以上では発泡力が過剰となる上に含浸工程での懸濁安定性が低下する。   The amount used is preferably 2 to 12 parts by weight, more preferably 3 to 8 parts by weight, per 100 parts by weight of the styrenic resin. If it is 2 parts by weight or less, it is difficult to obtain the foaming force after forming the expandable styrene resin particles, and if it is 12 parts by weight or more, the foaming force becomes excessive and the suspension stability in the impregnation step is lowered.

本発明におけるスチレン系樹脂には、一般的に発泡性スチレン系樹脂粒子を製造する際に添加される可塑剤、難燃剤、気泡調整剤等の各種添加剤が使用できる。可塑剤としては、例えば、ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、ヤシ油、パーム油、パーム核油等の植物油、ジオクチルアジペート、ジブチルセバケート等の脂肪族エステル、流動パラフィン等の有機炭化水素、トルエン、エチルベンゼン等の有機芳香族炭化水素等があげられ、これらは併用しても何ら差し支えない。   In the styrene resin in the present invention, various additives such as a plasticizer, a flame retardant, and a cell regulator generally added when producing expandable styrene resin particles can be used. Examples of the plasticizer include stearic acid triglyceride, palmitic acid triglyceride, lauric acid triglyceride, stearic acid diglyceride, stearic acid monoglyceride and other fatty acid glycerides, palm oil, palm oil, palm kernel oil and other vegetable oils, dioctyl adipate, dibutyl sebacate And aliphatic hydrocarbons such as liquid paraffin, and organic aromatic hydrocarbons such as toluene and ethylbenzene. These may be used in combination.

難燃剤としては、例えば、ハロゲン系難燃剤が挙げられ、具体的には、ヘキサブロムシクロドデカン、テトラブロムビスフェノールA及びジアリルエーテル、モノクロルペンタブロムシクロヘキサン等があげられる。気泡調整剤としては、例えば、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイド、ポリエチレンワックス等が挙げられる。   Examples of the flame retardant include halogen-based flame retardants, and specific examples include hexabromocyclododecane, tetrabromobisphenol A and diallyl ether, and monochloropentabromocyclohexane. Examples of the air conditioner include aliphatic bisamides such as methylene bis stearic acid amide and ethylene bis stearic acid amide, polyethylene wax, and the like.

このようにして得られた発泡性スチレン系樹脂粒子は球状となり、成形性に優れた発泡スチレン系成形体を得ることができる。   The foamable styrenic resin particles thus obtained are spherical, and a foamed styrenic molded article excellent in moldability can be obtained.

以下実施例及び比較例をあげるが、本発明はこれによって制限されるものではない。尚、操作、測定、評価方法のうち、上記に記載した以外の項目については以下の通り実施した。   Examples and Comparative Examples are given below, but the present invention is not limited thereby. In addition, among the operation, measurement, and evaluation methods, items other than those described above were performed as follows.

<押出し機による円柱状スチレン系樹脂粒子の製造>
50mmφ単軸押出し機に、スチレンの架橋していない単独重合体として市販されている発泡性スチレン系樹脂より得られた発泡成形体を減溶、粉砕することで得られたスチレン系樹脂を投入し、加熱溶融した後に小孔を有するダイよりストランド状に押出し、水中で急冷した後にペレタイザーで切断することで円柱状スチレン系樹脂粒子を得た。
<Manufacture of cylindrical styrene resin particles by an extruder>
A 50 mmφ single screw extruder was charged with a styrene resin obtained by dissolving and crushing a foam molded product obtained from a foamable styrene resin commercially available as a homopolymer not crosslinked with styrene. Then, after being melted by heating, it was extruded into a strand shape from a die having small holes, quenched in water, and then cut with a pelletizer to obtain cylindrical styrene resin particles.

ここで得た円柱状スチレン系樹脂粒子のガラス転移温度をセイコー電子工業株式会社製の示差走査熱量計(DSC5200)を用いて測定したところ102℃であった。   It was 102 degreeC when the glass transition temperature of the cylindrical styrene-type resin particle obtained here was measured using the differential scanning calorimeter (DSC5200) by Seiko Denshi Kogyo.

<樹脂粒子のサイズ測定>
サイズは各サンプル中から無作為に20粒を選択し、100分の1ミリメートルまで測定可能なノギスを用いて測定し、数平均値として算出した。
<Measurement of resin particle size>
As the size, 20 grains were randomly selected from each sample, measured using a caliper capable of measuring up to 1/100 mm, and calculated as a number average value.

(実施例1)
撹拌機を具備した反応器に、純水200重量部、第三リン酸カルシウム0.6重量部、α−オレフィンスルフォン酸ソーダ0.012重量部、食塩1重量部、及び表1に示すサイズの円柱状スチレン系樹脂粒子100重量部を入れ、攪拌下で昇温を開始した。加温された水媒体中で円柱状スチレン系樹脂粒子を熱収縮させる為に、第1昇温としては約1.5℃/分の割合で120℃まで昇温し、続いて95℃まで冷却した後にペンタン(ノルマル80重量%、イソ20重量%混合品)6重量部を加えた。
Example 1
In a reactor equipped with a stirrer, 200 parts by weight of pure water, 0.6 parts by weight of tribasic calcium phosphate, 0.012 parts by weight of sodium α-olefin sulfonate, 1 part by weight of sodium chloride, and a cylindrical shape having the size shown in Table 1 100 parts by weight of styrene resin particles were added, and the temperature was increased under stirring. In order to thermally contract the cylindrical styrene resin particles in a heated aqueous medium, the first temperature rise is about 120 ° C. at a rate of about 1.5 ° C./minute, and then cooled to 95 ° C. After that, 6 parts by weight of pentane (a mixture of normal 80% by weight and iso 20% by weight) was added.

昇温前及びペンタンを加える直前の円柱状スチレン系樹脂粒子のサイズは表1に示す。ペンタンを加えた後は再度、昇温することにより120℃で5時間の含浸を行った。含浸後、常温まで冷却した後に反応器より取り出し、洗浄、脱水、乾燥することで発泡性スチレン系樹脂粒子を得た。   Table 1 shows the size of the cylindrical styrenic resin particles before the temperature increase and immediately before the addition of pentane. After adding pentane, impregnation was performed at 120 ° C. for 5 hours by raising the temperature again. After impregnation, after cooling to room temperature, it was taken out from the reactor, washed, dehydrated and dried to obtain expandable styrene resin particles.

得られた発泡性スチレン系樹脂粒子を加圧式予備発泡機(大開工業製、BHP)にて嵩倍率50倍に予備発泡し、常温下で1日放置することで養生乾燥を行った。次いで、得られたスチレン系樹脂予備発泡粒子を成形機(ダイセン工業製、KR−57)にて300×450×20(t)mmサイズの金型にて発泡成形品を得た。得られた発泡性スチレン系樹脂粒子及び発泡成形体を用いて評価を行い表2に示す結果を得た。   The obtained expandable styrenic resin particles were pre-foamed at a bulk magnification of 50 times with a pressure type pre-foaming machine (manufactured by Daikai Kogyo Co., Ltd., BHP), and then cured and dried by allowing to stand at room temperature for 1 day. Subsequently, the obtained styrene-based resin pre-expanded particles were subjected to a foam-molded product with a 300 × 450 × 20 (t) mm size mold using a molding machine (manufactured by Daisen Industry, KR-57). Evaluation was performed using the obtained expandable styrene resin particles and the foamed molded article, and the results shown in Table 2 were obtained.

(実施例2)
表1に示すサイズの円柱状スチレン系樹脂粒子を用い、第1昇温としては約1.5℃/分の割合で110℃まで昇温した後に95℃まで冷却してペンタンを加えた以外は実施例1と同様にして発泡性スチレン系樹脂粒子を得て、表2に示す結果を得た。
(Example 2)
The columnar styrene resin particles having the sizes shown in Table 1 were used, except that the first temperature was raised to 110 ° C. at a rate of about 1.5 ° C./min, then cooled to 95 ° C. and pentane was added. In the same manner as in Example 1, expandable styrene resin particles were obtained, and the results shown in Table 2 were obtained.

(実施例3)
表1に示すサイズの円柱状スチレン系樹脂粒子を用い、第1昇温としては約1.5℃/分の割合で120℃まで昇温した後に95℃まで冷却してペンタンを加えた以外は実施例1と同様にして発泡性スチレン系樹脂粒子を得て、表2に示す結果を得た。
(Example 3)
The columnar styrene resin particles having the sizes shown in Table 1 were used, except that the first temperature was raised to 120 ° C. at a rate of about 1.5 ° C./min, then cooled to 95 ° C. and pentane was added. In the same manner as in Example 1, expandable styrene resin particles were obtained, and the results shown in Table 2 were obtained.

(実施例4〜5)
表1に示すサイズの円柱状スチレン系樹脂粒子を用い、第1昇温としては約1.5℃/分の割合で105℃まで昇温した後に95℃まで冷却してペンタンを加えた以外は実施例1と同様にして発泡性スチレン系樹脂粒子を得て、表2に示す結果を得た。
(Examples 4 to 5)
The columnar styrene resin particles having the sizes shown in Table 1 were used, except that the first temperature was raised to 105 ° C. at a rate of about 1.5 ° C./min, then cooled to 95 ° C. and pentane was added. In the same manner as in Example 1, expandable styrene resin particles were obtained, and the results shown in Table 2 were obtained.

(比較例1)
表1に示すサイズの円柱状スチレン系樹脂粒子を用い、第1昇温としては約1.5℃/分の割合で120℃まで昇温し、更に3時間保持した後に95℃まで冷却してペンタンを加えた以外は実施例1と同様にして発泡性スチレン系樹脂粒子を得て、表2に示す結果を得た。
(Comparative Example 1)
Using columnar styrene resin particles of the size shown in Table 1, the first temperature rise was raised to 120 ° C at a rate of about 1.5 ° C / minute, held for 3 hours, and then cooled to 95 ° C. Expandable styrene resin particles were obtained in the same manner as in Example 1 except that pentane was added, and the results shown in Table 2 were obtained.

(比較例2〜3)
表1に示すサイズの円柱状スチレン系樹脂粒子を用い、第1昇温としては約1.5℃/分の割合で95℃まで昇温した後に、直ちにペンタンを加えた以外は、実施例1と同様にして発泡性スチレン系樹脂粒子を得て、表2に示す結果を得た。
(Comparative Examples 2-3)
Example 1 except that the columnar styrene resin particles having the sizes shown in Table 1 were used, and the first temperature was raised to 95 ° C. at a rate of about 1.5 ° C./min, and then pentane was added immediately. In the same manner as above, expandable styrene resin particles were obtained, and the results shown in Table 2 were obtained.

Figure 0005367997
Figure 0005367997

Figure 0005367997
Figure 0005367997

Claims (3)

スチレン系樹脂を溶融、混練後に造粒することにより得られる円柱状スチレン系樹脂粒子を水性媒体中に分散させ、発泡剤を含浸させる発泡性スチレン系樹脂粒子の製造方法であって、円柱状スチレン系樹脂粒子の長さ方向を5%以上50%以下になるまで熱収縮させた後に発泡剤を添加、含浸させることを特徴とする発泡性スチレン系樹脂粒子の製造方法。 A method of producing expandable styrene resin particles in which cylindrical styrene resin particles obtained by melting and kneading styrene resin after granulation are dispersed in an aqueous medium and impregnated with a foaming agent. systems added foaming agent the length direction of the resin particles after heat shrunk until 5 to 50%, and wherein the impregnating method of expandable styrene resin particles. 前記熱収縮前の円柱状スチレン系樹脂粒子が、長さ/直径の比率が0.8以上3.0以下であることを特徴とする請求項1記載の発泡性スチレン系樹脂粒子の製造方法。 The method for producing expandable styrene resin particles according to claim 1 , wherein the columnar styrene resin particles before heat shrinkage have a length / diameter ratio of 0.8 to 3.0. . 前記スチレン系樹脂が、50重量%以上の回収された再利用スチレン系樹脂を含んでいることを特徴とする請求項1または2に記載の発泡性スチレン系樹脂粒子の製造方法。 The styrene resin, characterized in that it contains recycled styrenic resin recovered more than 50 wt%, the production method of the expandable styrene resin particles according to claim 1 or 2.
JP2008090252A 2008-03-31 2008-03-31 Method for producing expandable styrene resin particles Expired - Fee Related JP5367997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090252A JP5367997B2 (en) 2008-03-31 2008-03-31 Method for producing expandable styrene resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090252A JP5367997B2 (en) 2008-03-31 2008-03-31 Method for producing expandable styrene resin particles

Publications (2)

Publication Number Publication Date
JP2009242543A JP2009242543A (en) 2009-10-22
JP5367997B2 true JP5367997B2 (en) 2013-12-11

Family

ID=41304831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090252A Expired - Fee Related JP5367997B2 (en) 2008-03-31 2008-03-31 Method for producing expandable styrene resin particles

Country Status (1)

Country Link
JP (1) JP5367997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024049167A (en) * 2022-09-28 2024-04-09 積水化成品工業株式会社 Method for producing recycled expandable styrene resin particles, recycled expandable styrene resin particles, recycled pre-expanded styrene resin particles, and recycled styrene resin foamed molded product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136984A (en) * 1995-11-14 1997-05-27 Hitachi Chem Co Ltd Preparation of expandable styrene polymer particles, expandable styrene polymer particles and expansion-molded article prepared therefrom
JP4261676B2 (en) * 1999-04-26 2009-04-30 株式会社ジェイエスピー Production method of regenerated foaming styrene resin particles
JP2005015560A (en) * 2003-06-24 2005-01-20 Jsp Corp Regenerated expandable styrenic resin particle and its manufacturing method

Also Published As

Publication number Publication date
JP2009242543A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP2009536687A (en) Two-step process for producing expandable polystyrene particles with excellent heat insulation properties
JPWO2009096341A1 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
JP2009138146A (en) Foamable resin particle, its producing method, and foamed molding
JP5089920B2 (en) Expandable polyethylene resin particles and method for producing the same
JP2008156585A (en) Expandable styrenic resin particle and method for producing the same, styrenic resin expanded particle and styrenic resin expanded and molded product
JP5013529B2 (en) Slowly-flammable polyethylene resin particles, method for producing the same, polyethylene foam beads using the same, and resin molded products
JP5367997B2 (en) Method for producing expandable styrene resin particles
JP5943826B2 (en) Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles
JP4261676B2 (en) Production method of regenerated foaming styrene resin particles
JP6788428B2 (en) Manufacturing method of foamable styrene resin particles
JP2007211230A (en) Recycling process for collected styrenic resin
JP2004224977A (en) Self-extinguishable foaming styrene base resin particle, prefoamed particle and self-extinguishing foamed product
JP5128246B2 (en) Manufacturing method and molded product of recycle foamable polystyrene resin particles
JP5009681B2 (en) Regenerated expandable styrene resin particles and production method thereof
JP5338364B2 (en) Styrene resin particle foam molding
JPH06298983A (en) Production of expandable thermoplastic resin particle
JP2009235250A (en) Method for producing foamable styrenic resin particles
JP2006316176A (en) Method for producing regenerated foaming styrene resin particle
JP4052193B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
WO2014157643A1 (en) Method for producing foamed particles, apparatus for producing foamed particles, and foamed particles
JP5089919B2 (en) Expandable polyethylene resin particles and method for producing the same
JP4801801B2 (en) Expandable polyethylene resin particles and method for producing the same
JP2001181434A (en) Expandable styrene-based resin particle and colored expandable styrene-based resin particle
EP2164894A1 (en) Blowing agent impregnation enhancement in bead foam
JP4052234B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5367997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees