JP5365543B2 - surge absorber - Google Patents
surge absorber Download PDFInfo
- Publication number
- JP5365543B2 JP5365543B2 JP2010035238A JP2010035238A JP5365543B2 JP 5365543 B2 JP5365543 B2 JP 5365543B2 JP 2010035238 A JP2010035238 A JP 2010035238A JP 2010035238 A JP2010035238 A JP 2010035238A JP 5365543 B2 JP5365543 B2 JP 5365543B2
- Authority
- JP
- Japan
- Prior art keywords
- surge absorber
- glass tube
- discharge
- insulator
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
本発明は、落雷等で発生するサージから様々な機器を保護し、事故を未然に防ぐのに使用するサージアブソーバに関する。 The present invention relates to a surge absorber used for protecting various devices from a surge caused by a lightning strike or the like and preventing an accident in advance.
電話機、ファクシミリ、モデム等の通信機器用の電子機器が通信線との接続する部分、電源線、アンテナ或いはCRT駆動回路等、雷サージや静電気等の異常電圧(サージ電圧)による電撃を受けやすい部分には、異常電圧によって電子機器やこの機器を搭載するプリント基板の熱的損傷又は発火等による破壊を防止するために、サージアブソーバが接続されている。 Portions where electronic devices for communication equipment such as telephones, facsimiles, modems, etc. are connected to communication lines, power lines, antennas, CRT drive circuits, etc. A surge absorber is connected to prevent damage due to thermal damage or ignition of an electronic device or a printed circuit board on which the device is mounted due to an abnormal voltage.
従来、例えば特許文献1に示すように、セラミック絶縁体の碍子を封止したサージアブソーバが提案されている。このサージアブソーバは、絶縁性部材である碍子が放電ガスと共にガラス管内に収容され、ガラス管の両端に封止電極が高温加熱で封着された放電型サージアブソーバである。このようなサージアブソーバでは、サージ電圧が入力されると、放電が電界の方向に進む特性を有しているため、碍子の表面に沿って放電が生じてサージ電圧が吸収される。 Conventionally, for example, as shown in Patent Document 1, a surge absorber in which a ceramic insulator is sealed has been proposed. This surge absorber is a discharge type surge absorber in which an insulator as an insulating member is accommodated in a glass tube together with a discharge gas, and sealing electrodes are sealed at both ends of the glass tube by high-temperature heating. In such a surge absorber, when a surge voltage is input, the discharge proceeds in the direction of the electric field. Therefore, a discharge is generated along the surface of the insulator and the surge voltage is absorbed.
上記従来の技術には、以下の課題が残されている。
従来、絶縁性部材である碍子をガラス管に封入したサージアブソーバでは、放電が進むにつれて放電を形成する電極から電荷を帯びた飛散物が電界の方向に飛散して内部の碍子表面を汚損し、放電開始電圧の低下や絶縁抵抗の劣化を引き起こすおそれがあった。特に、繰り返し放電のような現象が起こった場合、放電特性の劣化が起こる場合があるという不都合があった。
The following problems remain in the conventional technology.
Conventionally, in a surge absorber in which an insulator which is an insulating member is sealed in a glass tube, as the discharge progresses, scattered objects charged with electric charges from the electrode forming the discharge are scattered in the direction of the electric field, and the internal insulator surface is damaged. There was a risk of causing a decrease in the discharge start voltage and deterioration of the insulation resistance. In particular, when a phenomenon such as repeated discharge occurs, there is a disadvantage that the discharge characteristics may be deteriorated.
本発明は、前述の課題に鑑みてなされたもので、飛散物による汚損を抑制し、放電特性の劣化を防止することができるサージアブソーバを提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a surge absorber that can suppress fouling due to scattered matter and prevent deterioration of discharge characteristics.
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のサージアブソーバは、ガラス管と、該ガラス管の両端開口部を閉塞して内部に放電ガスを封止する一対の封止電極と、両端に前記一対の封止電極を接触状態に配して前記ガラス管内に収納された板状の碍子と、を備え、前記碍子が、前記ガラス管の軸線に対して斜め状態に収納されていると共に、中間部分に前記軸線と平行な仮想線が遮られずに通過可能な空間を形成する変形部が設けられていることを特徴とする。 The present invention employs the following configuration in order to solve the above problems. That is, the surge absorber of the present invention is in a state in which a glass tube, a pair of sealing electrodes for closing the opening at both ends of the glass tube and sealing the discharge gas inside, and the pair of sealing electrodes at both ends are in contact with each other And a plate-like insulator housed in the glass tube, the insulator being housed in an oblique state with respect to the axis of the glass tube, and a virtual portion parallel to the axis in the middle portion It is characterized in that a deforming portion is provided which forms a space through which the line can pass without being blocked.
このサージアブソーバでは、碍子が、ガラス管の軸線に対して斜め状態に収納されていると共に、中間部分に軸線と平行な仮想線が遮られずに通過可能な空間を形成する変形部が設けられているので、放電が一対の封止電極の一方から碍子の表面を沿面放電して伸びるが、変形部で形成した空間まで達したときに対向する他方の封止電極へ直接、空間放電して進展する。すなわち、放電は電界の方向に進展しようとするが、斜めにガラス管内に収納された碍子に進路を遮られるため、碍子の表面に沿って沿面放電して進展する。さらに、この放電が、対向する他方の封止電極を直接臨める位置である変形部まで進展すると、斜めに封止された碍子の表面を沿面放電するよりも他方の封止電極へ直接、空間放電した方が最短路であるため、そのまま電界に従って変形部で形成された空間から他方の封止電極へ進展する。したがって、放電により封止電極から生じた汚損物が封止電極付近のみに付着し、変形部よりも反対側へは付着し難くなる。その結果、碍子の汚損が発生し難くなり、たとえ発生しても限定された箇所のみとなるので、繰り返し放電のような現象が生じても、放電特性の劣化が起こり難くなる。 In this surge absorber, the insulator is housed in an oblique state with respect to the axis of the glass tube, and a deformed portion is provided in the middle portion that forms a space through which an imaginary line parallel to the axis can pass without being blocked. Therefore, the discharge extends from one of the pair of sealing electrodes by creeping discharge on the insulator surface, but when it reaches the space formed by the deformed portion, it directly discharges to the other sealing electrode facing it. Progress. In other words, the discharge tends to progress in the direction of the electric field, but the path is obstructed by the insulator accommodated in the glass tube at an angle, and therefore, the discharge progresses along the surface of the insulator. Further, when this discharge progresses to the deformed portion where the other opposing sealing electrode directly faces, the space discharge directly to the other sealing electrode rather than creeping the surface of the diagonally sealed insulator. Since this is the shortest path, it proceeds from the space formed by the deformed portion to the other sealing electrode as it is according to the electric field. Therefore, the fouling material generated from the sealing electrode due to discharge adheres only to the vicinity of the sealing electrode, and hardly adheres to the opposite side of the deformed portion. As a result, the insulator is less likely to be stained, and even if it occurs, only a limited portion is generated. Therefore, even if a phenomenon such as repetitive discharge occurs, the discharge characteristics are hardly deteriorated.
また、本発明のサージアブソーバは、前記変形部が、幅を両端部よりも狭くした幅狭部であることを特徴とする。
すなわち、このサージアブソーバでは、変形部が、幅を両端部よりも狭くした幅狭部であるので、幅狭部の両側に形成された空間近傍まで沿面放電で進展した放電が幅狭部の両側から直接、対向する封止電極へ進展する。
In the surge absorber according to the present invention, the deformed portion is a narrow portion whose width is narrower than both end portions.
That is, in this surge absorber, since the deformed portion is a narrow portion whose width is narrower than both end portions, the discharge that has progressed by creeping discharge to the vicinity of the space formed on both sides of the narrow portion is on both sides of the narrow portion. It progresses directly to the opposing sealing electrode.
また、本発明のサージアブソーバは、前記変形部が、孔部であることを特徴とする。
すなわち、このサージアブソーバでは、変形部が、孔部であるので、孔部まで沿面放電で進展した放電が孔部から直接、対向する封止電極へ進展する。
In the surge absorber according to the present invention, the deformed portion is a hole.
That is, in this surge absorber, since the deformed portion is a hole, the discharge that has progressed by creeping discharge to the hole directly progresses from the hole to the opposing sealing electrode.
また、本発明のサージアブソーバは、前記変形部又はその近傍に、導電性材料で形成されたトリガ部が設けられていることを特徴とする。
すなわち、このサージアブソーバでは、変形部又はその近傍に、導電性材料で形成されたトリガ部が設けられているので、トリガ部を介してトリガ放電(コロナ放電)が生じることで、高い応答性を得ることができると共に、変形部の近傍まで沿面放電させ易くなる。
The surge absorber according to the present invention is characterized in that a trigger portion made of a conductive material is provided at or near the deformable portion.
That is, in this surge absorber, a trigger portion made of a conductive material is provided at or near the deformed portion. Therefore, a trigger discharge (corona discharge) is generated through the trigger portion, resulting in high responsiveness. It can be obtained and it becomes easy to cause creeping discharge to the vicinity of the deformed portion.
本発明によれば、以下の効果を奏する。
すなわち、本発明に係るサージアブソーバによれば、碍子が、ガラス管の軸線に対して斜め状態に収納されていると共に、中間部分に軸線と平行な仮想線が遮られずに通過可能な空間を形成する変形部が設けられているので、放電が電界に従って変形部から他方の封止電極へ直接、進展することで、飛散物による汚損を抑制し、放電特性の劣化を防止することができる。したがって、飛散物に起因する放電開始電圧の低下や絶縁抵抗の劣化が抑制され、繰り返し放電のような現象が生じても、放電特性の劣化が起こり難くなる。
The present invention has the following effects.
That is, according to the surge absorber according to the present invention, the insulator is housed in an oblique state with respect to the axis of the glass tube, and a space through which an imaginary line parallel to the axis is not obstructed can be passed through the intermediate portion. Since the deformation part to be formed is provided, the discharge directly progresses from the deformation part to the other sealing electrode in accordance with the electric field, so that contamination due to scattered matter can be suppressed and deterioration of the discharge characteristics can be prevented. Accordingly, a decrease in the discharge start voltage and deterioration of the insulation resistance due to the scattered matter are suppressed, and even if a phenomenon such as repeated discharge occurs, the discharge characteristics are hardly deteriorated.
以下、本発明に係るサージアブソーバの第1実施形態を、図1および図2を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。 Hereinafter, a first embodiment of a surge absorber according to the present invention will be described with reference to FIGS. 1 and 2. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.
本実施形態のサージアブソーバ1は、図1および図2に示すように、ガラス管2と、該ガラス管2の両端開口部を閉塞して内部に放電ガスを封止する一対の封止電極3と、両端に一対の封止電極3を接触状態に配してガラス管2内に収納された板状の碍子4と、を備えている。
上記碍子4は、ガラス管2の軸線2aに対して斜め状態に収納されていると共に、中間部分に軸線2aと平行な仮想線kが遮られずに通過可能な空間を形成する変形部4aが設けられている。そして、第1実施形態では、この変形部4aが、幅を両端部よりも狭くした幅狭部である。
As shown in FIGS. 1 and 2, the surge absorber 1 of the present embodiment includes a glass tube 2 and a pair of sealing electrodes 3 that closes both end openings of the glass tube 2 and seals a discharge gas therein. And a plate-like insulator 4 housed in the glass tube 2 with a pair of sealing electrodes 3 in contact with each other.
The insulator 4 is housed in an oblique state with respect to the axis 2a of the glass tube 2, and a deformable portion 4a that forms a space through which an imaginary line k parallel to the axis 2a can pass without being blocked in the middle portion. Is provided. And in 1st Embodiment, this deformation | transformation part 4a is a narrow part which made width narrower than both ends.
また、変形部4aには、カーボン等の導電性材料で形成されたトリガ部5が設けられている。本実施形態では、このトリガ部5が幅狭部である変形部4aの表裏面にそれぞれ形成されている。なお、このトリガ部5は、必要に応じて形成され、変形部4aの近傍に形成しても構わない。 The deformable portion 4a is provided with a trigger portion 5 made of a conductive material such as carbon. In this embodiment, this trigger part 5 is each formed in the front and back of the deformation | transformation part 4a which is a narrow part. In addition, this trigger part 5 may be formed as needed, and may be formed in the vicinity of the deformation | transformation part 4a.
上記ガラス管2は、鉛ガラス等で円筒状に形成されている。
上記封止電極3は、円柱状の電極部であり、ガラス管2に嵌め込まれて加熱処理によって融着されて密着状態に固定されている。
この封止電極3は、リード線6の一端が埋め込まれたスラグリードである。
The glass tube 2 is formed in a cylindrical shape with lead glass or the like.
The sealing electrode 3 is a cylindrical electrode portion, is fitted into the glass tube 2 and is fused by heat treatment and fixed in a close contact state.
The sealing electrode 3 is a slag lead in which one end of the lead wire 6 is embedded.
上記ガラス管2内に封入される放電ガスは、不活性ガス等であって、例えばHe,Ar,Ne,Xe,Kr,SF6,CO2,C3F8,C2F6,CF4,H2,大気等及びこれらの混合ガスが採用される。
上記碍子4は、アルミナ、ムライト、コランダムムライト等のセラミックス材料で薄板状に形成されている。なお、本実施形態の碍子4は、アルミナで形成されている。
この碍子4は、端部が円弧状とされた一対の扇状部が幅狭部である変形部4aで連結された上下対称の形状とされ、両端部から幅狭部である変形部4aに向かって漸次幅が狭くなって絞られている。すなわち、幅狭部の変形部4aによって両側に形成された空間に、仮想線kが碍子4に遮られずに通過可能な形状となっている。
The discharge gas sealed in the glass tube 2 is an inert gas or the like, for example, He, Ar, Ne, Xe, Kr, SF 6 , CO 2 , C 3 F 8 , C 2 F 6 , CF 4. , H 2 , the atmosphere, etc. and a mixed gas thereof are employed.
The insulator 4 is formed in a thin plate shape with a ceramic material such as alumina, mullite, corundum mullite. The insulator 4 of this embodiment is made of alumina.
The insulator 4 has a vertically symmetric shape in which a pair of fan-shaped portions having arcuate ends are connected by a deformable portion 4a having a narrow width, and is directed from both ends toward the deformable portion 4a having a narrow width. As a result, the width gradually narrows. In other words, the imaginary line k has a shape that can pass through the space formed on both sides by the deformed portion 4a of the narrow portion without being blocked by the insulator 4.
このサージアブソーバ1では、過電圧又は過電流が侵入すると、まず碍子4のトリガ部5と封止電極3との間でトリガ放電が行われ、このトリガ放電をきっかけに、さらに放電が進展して一対の封止電極3間で放電が行われることでサージが吸収される。この際、放電は電界の方向に進展しようとするが、斜めにガラス管2内に収納された碍子4に進路を遮られるため、碍子4の表面に沿って沿面放電して進展する。 In this surge absorber 1, when overvoltage or overcurrent enters, trigger discharge is first performed between the trigger portion 5 of the insulator 4 and the sealing electrode 3, and the discharge further develops triggered by this trigger discharge. Surge is absorbed by discharging between the sealing electrodes 3. At this time, the discharge tends to progress in the direction of the electric field, but the path is obstructed by the insulator 4 accommodated in the glass tube 2 at an angle, so that the discharge progresses along the surface of the insulator 4 along the surface.
さらに、この放電が、対向する他方の封止電極3を直接臨める位置である変形部4aまで進展すると、斜めに封止された碍子4の表面を沿面放電するよりも他方の封止電極3へ直接、空間放電した方が最短路であるため、そのまま電界に従って変形部4aから他方の封止電極3へ進展する。すなわち、幅狭部である変形部4aの両側に形成された空間近傍まで沿面放電で進展した放電が幅狭部の両側から直接、対向する封止電極へ進展する。なお、図中において放電の経路Rを、碍子4の表側では実線で示すと共に裏側では破線で示している。 Further, when this discharge progresses to the deformed portion 4a, which is a position that directly faces the other sealing electrode 3 that faces the other, the other sealing electrode 3 is moved to the other sealing electrode 3 rather than creeping the surface of the diagonally sealed insulator 4. Since the direction of direct space discharge is the shortest path, it proceeds from the deformed portion 4a to the other sealing electrode 3 as it is according to the electric field. That is, the discharge that has progressed by creeping discharge to the vicinity of the space formed on both sides of the deformed portion 4a that is the narrow portion directly progresses from both sides of the narrow portion to the opposing sealing electrode. In the drawing, the discharge path R is indicated by a solid line on the front side of the insulator 4 and indicated by a broken line on the back side.
このように本実施形態のサージアブソーバ1では、碍子4が、ガラス管2の軸線2aに対して斜め状態に収納されていると共に、中間部分に軸線2aと平行な仮想線kが遮られずに通過可能な空間を形成する変形部4aが設けられているので、放電が一対の封止電極3の一方から碍子4の表面を沿面放電して伸びるが、変形部4aまで達したときに対向する他方の封止電極3へ直接、空間放電して進展する。すなわち、変形部4aで形成された空間から碍子4の裏側に抜けて封止電極3へ放電する。 Thus, in the surge absorber 1 of the present embodiment, the insulator 4 is housed in an oblique state with respect to the axis 2a of the glass tube 2, and an imaginary line k parallel to the axis 2a is not obstructed at the intermediate portion. Since the deformable portion 4a that forms a passable space is provided, the discharge extends along the surface of the insulator 4 from one of the pair of sealing electrodes 3, but faces when it reaches the deformable portion 4a. It progresses by space discharge directly to the other sealing electrode 3. That is, it discharges from the space formed by the deformed portion 4 a to the back side of the insulator 4 and discharges to the sealing electrode 3.
したがって、放電により封止電極3で生じた汚損物が封止電極3付近のみに付着し、変形部4aよりも反対側へは付着し難くなる。その結果、碍子4の汚損が発生し難くなり、たとえ発生しても限定された箇所のみとなるので、繰り返し放電のような現象が生じても、放電特性の劣化が起こり難くなる。 Therefore, the fouling material generated in the sealing electrode 3 due to discharge adheres only to the vicinity of the sealing electrode 3 and hardly adheres to the opposite side of the deformed portion 4a. As a result, the insulator 4 is less likely to be stained, and even if it occurs, only a limited portion is generated. Therefore, even if a phenomenon such as repeated discharge occurs, the discharge characteristics are hardly deteriorated.
また、変形部4aに、導電性材料で形成されたトリガ部5が設けられているので、トリガ部5を介してトリガ放電(コロナ放電)が生じることで、高い応答性を得ることができると共に、変形部4aまで沿面放電させ易くなる。 Moreover, since the trigger part 5 made of a conductive material is provided in the deformable part 4a, trigger response (corona discharge) is generated through the trigger part 5, and thus high responsiveness can be obtained. It becomes easy to cause creeping discharge to the deformed portion 4a.
次に、本発明に係るサージアブソーバの第2実施形態について、図3を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。 Next, a second embodiment of the surge absorber according to the present invention will be described below with reference to FIG. Note that, in the following description of the embodiment, the same components described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.
第2実施形態と第1実施形態との異なる点は、第1実施形態では、変形部4aが幅狭部とされた碍子4をガラス管2内に斜めに収容しているのに対し、第2実施形態のサージアブソーバ21では、図3に示すように、変形部24aが孔部とされた碍子24をガラス管2内に斜めに収容している点である。
この第2実施形態のサージアブソーバ21では、長方形状の碍子24の中央部に幅方向に長い楕円形状の孔部が変形部24aとして形成されている。すなわち、変形部24aの孔部内を軸線2aに平行な仮想線kが通過可能になっている。
The difference between the second embodiment and the first embodiment is that, in the first embodiment, the deformed portion 4a is housed obliquely in the glass tube 2 while the deformed portion 4a is a narrow portion. In the surge absorber 21 according to the second embodiment, as shown in FIG. 3, the insulator 24 in which the deformed portion 24 a is a hole is accommodated in the glass tube 2 obliquely.
In the surge absorber 21 of the second embodiment, an elliptical hole that is long in the width direction is formed as a deformed portion 24 a in the center of a rectangular insulator 24. That is, an imaginary line k parallel to the axis 2a can pass through the hole of the deformable portion 24a.
また、第2実施形態では、トリガ部5が碍子24の表裏面において孔部である変形部24aの左右にそれぞれ形成されている。
したがって、第2実施形態のサージアブソーバ21では、変形部24aが、孔部であるので、孔部の変形部24aまで沿面放電で進展した放電が孔部から直接、対向する封止電極3へ進展する。
Moreover, in 2nd Embodiment, the trigger part 5 is each formed in the left and right of the deformation | transformation part 24a which is a hole in the front and back of the insulator 24. As shown in FIG.
Therefore, in the surge absorber 21 of the second embodiment, since the deformed portion 24a is a hole, the discharge that has progressed by creeping discharge to the deformed portion 24a of the hole directly progresses from the hole to the opposing sealing electrode 3. To do.
次に、本発明に係るサージアブソーバを、上記各実施形態に基づいて実際に作製した実施例により評価した結果を具体的に説明する。 Next, the results of evaluating the surge absorber according to the present invention by examples actually produced based on the above-described embodiments will be specifically described.
上記第1実施形態のサージアブソーバ1の実施例として、端部の幅:2.5mm、厚さ:0.5mm、幅狭部である変形部4aの幅:1mmとした碍子4を、内径2.5mmのガラス管2内に斜め状態に収納させた実施例1と、上記第2実施形態のサージアブソーバ21の実施例として、端部の幅:2.5mm、厚さ:0.5mm、孔部である変形部24aの孔径:1mmとした碍子24を、内径2.5mmのガラス管2内に斜め状態に収納させた実施例2と、を作製した。 As an example of the surge absorber 1 of the first embodiment, an insulator 4 having an end width of 2.5 mm, a thickness of 0.5 mm, and a width of a deformed portion 4a which is a narrow portion of 1 mm is set to an inner diameter of 2 mm. Example 1 housed in a slanted state in a 5 mm glass tube 2 and an example of the surge absorber 21 of the second embodiment, end width: 2.5 mm, thickness: 0.5 mm, hole Example 2 in which an insulator 24 having a hole diameter of 1 mm of the deformed portion 24a, which is a portion, was accommodated in an oblique state in a glass tube 2 having an inner diameter of 2.5 mm, was produced.
また、上記実施例に対する比較例として、図4に示すように、実施例1の碍子4を同様のガラス管2の軸線2aに沿って立設状態にガラス管2に収納させた比較例1のサージアブソーバ31と、図5に示すように、実施例2の碍子24を同様のガラス管2の軸線2aに沿って立設状態にガラス管2に収納させた比較例2のサージアブソーバ41と、を作製した。 Moreover, as a comparative example with respect to the above-described embodiment, as shown in FIG. 4, the insulator 4 of Embodiment 1 is stored in the glass tube 2 in a standing state along the axis 2 a of the similar glass tube 2. As shown in FIG. 5, the surge absorber 31 and the surge absorber 41 of Comparative Example 2 in which the insulator 24 of Example 2 is housed in the glass tube 2 in a standing state along the axis 2 a of the similar glass tube 2, Was made.
さらに、マイクロギャップ式のサージアブソーバとして、図6に示すように、両端に一対のキャップ電極53を配したサージ吸収素子である円柱状碍子54を、ガラス管2の軸線2aに対して斜め状態にして一対の封止電極3間に配して封止した比較例3のサージアブソーバ51も作製した。なお、上記円柱状碍子54の外周面には、TiN等の導電性皮膜54aが形成されていると共に放電ギャップとしてマイクロギャップ54bが形成されて導電性皮膜54aが分割されている。このマイクロギャップ54bの幅は、50μmに設定した。 Further, as a microgap type surge absorber, as shown in FIG. 6, a cylindrical insulator 54, which is a surge absorbing element having a pair of cap electrodes 53 disposed at both ends, is inclined with respect to the axis 2 a of the glass tube 2. The surge absorber 51 of Comparative Example 3 was also prepared by sealing between a pair of sealing electrodes 3. A conductive film 54a such as TiN is formed on the outer peripheral surface of the cylindrical insulator 54, and a micro gap 54b is formed as a discharge gap to divide the conductive film 54a. The width of the micro gap 54b was set to 50 μm.
これらの実施例および比較例について、その寿命特性について調べた。なお、寿命特性の評価は、8/20μs波形のインパルス電流200Aを繰り返し印加し、100V/sで直流電圧を印加して1mAが観測された時点までの最大電圧を直流放電開始電圧Vsとして測定した。この評価の結果を、以下の表1に示す。なお、印加回数に対する直流放電開始電圧Vsのグラフについて、本発明の実施例1と比較例1とを代表的に図7に示す。 The life characteristics of these examples and comparative examples were examined. The life characteristics were evaluated by repeatedly applying an impulse current 200A having an 8/20 μs waveform, applying a DC voltage at 100 V / s, and measuring the maximum voltage up to the point when 1 mA was observed as the DC discharge start voltage Vs. . The results of this evaluation are shown in Table 1 below. In addition, about the graph of the DC discharge start voltage Vs with respect to the frequency | count of application, Example 1 of this invention and the comparative example 1 are shown typically in FIG.
この評価の結果、比較例1〜3のいずれも1000回印加後に直流放電開始電圧Vsが低下してしまったのに対し、実施例1および実施例2では、1000回印加後でも直流放電開始電圧Vsに劣化は見られなかった。 As a result of this evaluation, in all of Comparative Examples 1 to 3, the DC discharge start voltage Vs decreased after 1000 times of application, whereas in Examples 1 and 2, the DC discharge start voltage even after 1000 times of application. There was no deterioration in Vs.
なお、本発明の技術範囲は上記各実施形態および上記各実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.
1,21,31,41,51…サージアブソーバ、2…ガラス管、2a…ガラス管の軸線、3…封止電極、4,24,54…碍子、5…トリガ部、4a,24a…変形部、k…仮想線、R…放電の経路 1, 21, 31, 41, 51 ... surge absorber, 2 ... glass tube, 2a ... axis of glass tube, 3 ... sealing electrode, 4, 24, 54 ... insulator, 5 ... trigger part, 4a, 24a ... deformation part , K ... virtual line, R ... discharge path
Claims (4)
該ガラス管の両端開口部を閉塞して内部に放電ガスを封止する一対の封止電極と、
両端に前記一対の封止電極を接触状態に配して前記ガラス管内に収納された板状の碍子と、を備え、
前記碍子が、前記ガラス管の軸線に対して斜め状態に収納されていると共に、中間部分に前記軸線と平行な仮想線が遮られずに通過可能な空間を形成する変形部が設けられていることを特徴とするサージアブソーバ。 A glass tube,
A pair of sealing electrodes for closing the opening at both ends of the glass tube and sealing the discharge gas inside;
A pair of insulators arranged in contact with the pair of sealing electrodes at both ends and housed in the glass tube; and
The insulator is housed in an oblique state with respect to the axis of the glass tube, and a deforming portion is provided in the middle portion that forms a space through which an imaginary line parallel to the axis can pass without being blocked. Surge absorber characterized by that.
前記変形部が、幅を両端部よりも狭くした幅狭部であることを特徴とするサージアブソーバ。 The surge absorber according to claim 1,
The surge absorber, wherein the deformed portion is a narrow portion whose width is narrower than both end portions.
前記変形部が、孔部であることを特徴とするサージアブソーバ。 The surge absorber according to claim 1,
The surge absorber, wherein the deformed portion is a hole.
前記変形部又はその近傍に、導電性材料で形成されたトリガ部が設けられていることを特徴とするサージアブソーバ。 In the surge absorber according to any one of claims 1 to 3,
A surge absorber characterized in that a trigger portion made of a conductive material is provided at or near the deformable portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010035238A JP5365543B2 (en) | 2010-02-19 | 2010-02-19 | surge absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010035238A JP5365543B2 (en) | 2010-02-19 | 2010-02-19 | surge absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011171189A JP2011171189A (en) | 2011-09-01 |
JP5365543B2 true JP5365543B2 (en) | 2013-12-11 |
Family
ID=44685083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010035238A Expired - Fee Related JP5365543B2 (en) | 2010-02-19 | 2010-02-19 | surge absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5365543B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6044379B2 (en) * | 2013-02-14 | 2016-12-14 | 三菱マテリアル株式会社 | surge absorber |
JP6922774B2 (en) * | 2018-02-14 | 2021-08-18 | 三菱マテリアル株式会社 | Surge protection element |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4123977B2 (en) * | 2003-02-28 | 2008-07-23 | 三菱マテリアル株式会社 | Chip-type surge absorber and manufacturing method thereof |
JP5003888B2 (en) * | 2007-08-31 | 2012-08-15 | 三菱マテリアル株式会社 | surge absorber |
-
2010
- 2010-02-19 JP JP2010035238A patent/JP5365543B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011171189A (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7636228B2 (en) | Arrester | |
JP5365543B2 (en) | surge absorber | |
US20140376147A1 (en) | Esd protection device | |
TW201739132A (en) | Surge protection element | |
KR101450417B1 (en) | Electrostatic protection component and production method therefor | |
JP6157587B2 (en) | Surge voltage arrester | |
JP2007242404A (en) | Surge absorber | |
JP6623158B2 (en) | Surge arrester | |
JP6939648B2 (en) | Surge protection element | |
TWI440271B (en) | Surge absorber | |
JP6979173B2 (en) | Surge protection element | |
JP6922774B2 (en) | Surge protection element | |
US10439366B2 (en) | Discharge tube having discharge active layer(s) | |
JP7035505B2 (en) | Surge protection element | |
JP6521313B2 (en) | surge absorber | |
JP6850994B2 (en) | Surge protection element | |
Li et al. | The application of spark gaps on audio jack for ESD protection | |
JP2003077617A (en) | Arrester for low voltage power system | |
JP6579443B2 (en) | Surge protective element | |
JP6668720B2 (en) | Surge protection element | |
JP2017168294A (en) | Surge protective element | |
JP3299584B2 (en) | Arrester | |
JPH01186579A (en) | Microgap type surge absorption element | |
JP5050777B2 (en) | surge absorber | |
JP2005276986A (en) | Parallel type lightning arrester and technique of parallel type lightning arresting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130813 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130826 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5365543 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |