JP5363720B2 - Non-contact transfer device and transfer core - Google Patents

Non-contact transfer device and transfer core Download PDF

Info

Publication number
JP5363720B2
JP5363720B2 JP2007296654A JP2007296654A JP5363720B2 JP 5363720 B2 JP5363720 B2 JP 5363720B2 JP 2007296654 A JP2007296654 A JP 2007296654A JP 2007296654 A JP2007296654 A JP 2007296654A JP 5363720 B2 JP5363720 B2 JP 5363720B2
Authority
JP
Japan
Prior art keywords
opening
transmission
core
width
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007296654A
Other languages
Japanese (ja)
Other versions
JP2009123943A (en
Inventor
靖之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2007296654A priority Critical patent/JP5363720B2/en
Publication of JP2009123943A publication Critical patent/JP2009123943A/en
Application granted granted Critical
Publication of JP5363720B2 publication Critical patent/JP5363720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To thin a thickness, to lighten a weight, and to prevent a transmission efficiency of charge electric power or information from a noncontact transception device from getting low. <P>SOLUTION: An electronic timepiece 100 for transceiving noncontactly the charge electric power or the information from a charger 500 is provided with a secondary side core 120 having a protrusion 121 in the vicinity of its central part, and arranged substantially coaxially opposed to a primary side core 520, when transceiving the electric power or the information from the charger 500, and a secondary side coil 110 wound around the protrusion 121, the secondary side core 120 has a through-hole 150, an opening area or an opening width of an opening part 150a in a face side opposed to the primary side core 520 is different from an opening area or an opening width of an opening part 150b in a face side not opposed to the primary side core 520, in the through-hole 150, and the secondary side coil 110 transceives the electric power or the information from the charger 500, by generating an induced electromotive force from a magnetic flux generated by a primary side coil 510 and the primary side core 520. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、コイルを巻装したコアを有する非接触伝送装置から非接触で充電電力または情報を授受する非接触授受装置および授受側コアに関するものである。   The present invention relates to a contactless transmission / reception apparatus and a transmission / reception core that transmit and receive charging power or information in a contactless manner from a contactless transmission apparatus having a core wound with a coil.

近年、電磁誘導などの非接触による方法で、電子機器(非接触授受装置)に対して充電電力または情報を伝送する非接触伝送装置が開示されている。例えば、電子機器には電源として2次電池等の充電式電池が搭載され、充電装置(非接触伝送装置)から該電子機器の2次電池等への充電方法としては、電磁誘導などの非接触による方法が一般的となってきている。   2. Description of the Related Art In recent years, non-contact transmission devices that transmit charging power or information to an electronic device (non-contact transfer device) by a non-contact method such as electromagnetic induction have been disclosed. For example, a rechargeable battery such as a secondary battery is mounted on an electronic device as a power source, and a method for charging a secondary battery or the like of the electronic device from a charging device (non-contact transmission device) is a non-contact method such as electromagnetic induction. The method by is becoming common.

また、薄型化され、かつ充電電力を効率よく伝送する1次コア(伝送側コア)を備えた充電装置(電源装置)、および該充電装置から充電電力を授受する2次コア(授受側コア)を備えた電子機器が開示されている(例えば、特許文献1参照)。図14は、特許文献1における電源装置550の1次コア530と電子機器600の2次コア620を説明する断面図である。図14に示すように、特許文献1の技術では、1次コイル510が巻装された1次コア530の形状をI型とし、2次コイル610が巻装された2次コア620の形状をT型として構成することで、1次側の電源装置550(非接触伝送装置)で発生した磁束(M3、M4)を全面で受けることができる薄型の2次コイル610が実現でき、2次コイル610に効率よく非接触エネルギー(充電電力)を伝送できるようになっている。   In addition, a charging device (power supply device) having a primary core (transmission-side core) that is thin and efficiently transmits charging power, and a secondary core (delivery-side core) that transfers charging power from the charging device. (For example, refer patent document 1). 14 is a cross-sectional view illustrating the primary core 530 of the power supply device 550 and the secondary core 620 of the electronic device 600 in Patent Document 1. As shown in FIG. 14, in the technique of Patent Document 1, the shape of the primary core 530 around which the primary coil 510 is wound is I-type, and the shape of the secondary core 620 around which the secondary coil 610 is wound is used. By configuring as a T type, a thin secondary coil 610 capable of receiving the magnetic flux (M3, M4) generated by the primary power supply device 550 (non-contact transmission device) on the entire surface can be realized, and the secondary coil can be realized. The non-contact energy (charging power) can be efficiently transmitted to 610.

また、携帯電話機等の電子機器の軽量化に寄与する無接点電磁誘導式充電機構(図15における充電装置500および電子機器700)が開示されている(例えば、特許文献2参照)。図15は、特許文献2における無接点電磁誘導式充電機構の1次コイル510と2次コイル710を説明する断面図である。特許文献2の技術では、2次コイル710のコア720において、1次コイル510のコア520の電磁誘導に殆ど寄与しない磁束密度の低い部分を削っても、1次・2次コイル間の非接触エネルギー(充電電力)の伝送効率が、殆ど落ちないことを利用しており、図15に示すように、2次コイル710のコア720における磁束密度の低い部分に貫通孔750(または凹部でも可)を設けて、2次コイル710のコア720の軽量化、すなわち無接点電磁誘導式充電機構の軽量化を図っている。   Further, a non-contact electromagnetic induction charging mechanism (charging device 500 and electronic device 700 in FIG. 15) that contributes to weight reduction of electronic devices such as mobile phones is disclosed (for example, see Patent Document 2). FIG. 15 is a cross-sectional view illustrating a primary coil 510 and a secondary coil 710 of a contactless electromagnetic induction charging mechanism in Patent Document 2. In the technique of Patent Document 2, even if the portion of the core 720 of the secondary coil 710 that has a low magnetic flux density that hardly contributes to the electromagnetic induction of the core 520 of the primary coil 510 is cut away, the primary and secondary coils are not in contact with each other. Utilizing the fact that the transmission efficiency of energy (charging power) hardly decreases. As shown in FIG. 15, a through-hole 750 (or a recess is also possible) in a portion where the magnetic flux density of the core 720 of the secondary coil 710 is low. To reduce the weight of the core 720 of the secondary coil 710, that is, to reduce the weight of the contactless electromagnetic induction charging mechanism.

ここで、2次側(電子機器)を非接触式の電子時計とした場合、電子時計の薄型化を可能にすることは、電子時計のビジュアルやデザインの自由度を向上させる。また、電子時計の軽量化を可能にすることは、利用者にとって携帯し易くなる等の利便性が向上する。従って、近年では、非接触式による充電方法を利用する場合だけでなくとも、薄型で軽量な電子時計の設計を可能とすることが望まれている。   Here, when the secondary side (electronic device) is a non-contact type electronic timepiece, enabling the electronic timepiece to be thin improves the visual and design freedom of the electronic timepiece. In addition, enabling the weight reduction of the electronic timepiece improves convenience such as ease of carrying for the user. Therefore, in recent years, it has been desired to make it possible to design a thin and lightweight electronic timepiece, not only when a non-contact charging method is used.

特開平9−130998号公報JP-A-9-130998 特開平11−195545号公報JP-A-11-195545

しかしながら、非接触式の電子時計において、その内部で使用する2次電池には、薄型という視点から主にコイン型の電池が用いられるのが一般的であるが、上記従来技術である特許文献1、2の技術では、2次電池を2次側コア(電子時計側のコア)の下部もしくは上部に配置することしかできない。その結果、2次側コアの厚さに加えて2次電池の厚さが必要となるため、電子時計(電子機器)の薄型化が困難となっていた。また、2次電池だけでなく、他の電子部品を電子時計の内部に配置する場合にも同様となり、電子時計の薄型化が困難となっていた。   However, in a non-contact type electronic timepiece, a secondary battery used therein is generally a coin-type battery mainly from the viewpoint of thinness. In the second technique, the secondary battery can only be disposed below or above the secondary side core (electronic watch side core). As a result, since the thickness of the secondary battery is required in addition to the thickness of the secondary core, it is difficult to reduce the thickness of the electronic timepiece (electronic device). Further, not only the secondary battery but also other electronic components are arranged inside the electronic timepiece, and it is difficult to make the electronic timepiece thinner.

ここで、例えば、電子時計を薄型化するために2次側コアを取り除き、2次側コアを取り除いたことにより形成された空間である2次側コイルの空芯部分に、2次電池等を配置するという方法が考えられるが、この方法では、2次側コアが取り除かれたことにより充電装置による非接触によるエネルギー(充電電力)の伝送効率を降下させてしまうため好ましくない。   Here, for example, in order to reduce the thickness of the electronic timepiece, the secondary core is removed, and a secondary battery or the like is attached to the air core portion of the secondary coil, which is a space formed by removing the secondary core. Although the method of arrange | positioning can be considered, since the secondary side core is removed, since the transmission efficiency of the energy (charging power) by the non-contact by a charging device will fall, it is not preferable.

本発明は、上記に鑑みてなされたものであって、2次電池等を配置可能な貫通孔を形成することで薄型化および軽量化するとともに、該貫通孔を設けても非接触伝送装置からの充電電力または情報の伝送効率を降下させない非接触授受装置および授受側コアを提供することを目的とするものである。   The present invention has been made in view of the above, and it is possible to reduce the thickness and weight by forming a through hole in which a secondary battery or the like can be arranged, and from the non-contact transmission device even if the through hole is provided. It is an object of the present invention to provide a contactless transmission / reception apparatus and a transmission / reception side core that do not lower the charging power or the transmission efficiency of information.

上述した課題を解決し、目的を達成するために、請求項1にかかる発明は、伝送側コイルを巻装した伝送側コアを有する非接触伝送装置から充電電力または情報を非接触で授受する非接触授受装置において、中央付近に凸部を有し、前記非接触伝送装置から前記充電電力または情報を授受される際、前記伝送側コアと略同軸上に対向して配置される授受側コアと、前記凸部に巻装された授受側コイルとを備え、前記授受側コアは、貫通孔を有し、前記貫通孔は、前記伝送側コアの対向面側の第1開口部と、前記伝送側コアと対向しない面側の第2開口部との開口面積または開口幅が異なっており、前記授受側コイルの中空部の幅は、前記第1開口部の幅および前記第2開口部の幅よりも大きく、前記授受側コイルは、前記伝送側コイルと前記伝送側コアとにより発生された磁束を検出して誘導起電力を発生することで、前記非接触伝送装置から前記充電電力または情報を授受することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the invention according to claim 1 is a non-contact transmission / reception of non-contact charging power or information from a non-contact transmission device having a transmission side core wound with a transmission side coil. In the contact transfer device, a transfer side core having a convex portion near the center and disposed substantially coaxially with the transmission side core when the charging power or information is transferred from the non-contact transmission device , and a wound has been exchanged coil to said convex portion, wherein the transfer side core has a through hole, the through hole has a first opening in a surface facing the transmission side core, wherein The opening area or the opening width of the second opening on the surface side not facing the transmission-side core is different, and the width of the hollow portion of the receiving and receiving side coil is the width of the first opening and the width of the second opening. greater than the width, the transfer coil, the transmission coil and the front By generating the induced electromotive force by detecting the magnetic flux generated by the transmission-side core, characterized by exchanging the charge power or information from the non-contact transmission device.

また、請求項2にかかる発明は、請求項1に記載の非接触授受装置において、前記貫通孔は、断面形状が凸型であり、前記第1開口部の開口面積が前記第2開口部の開口面積より小さいことを特徴とする。   The invention according to claim 2 is the non-contact transfer device according to claim 1, wherein the through-hole has a convex cross-sectional shape, and the opening area of the first opening is the same as that of the second opening. It is smaller than the opening area.

また、請求項3にかかる発明は、請求項1または2に記載の非接触授受装置において、前記貫通孔は、前記第2開口部の開口幅が、前記第1開口部の開口幅より拡幅していることを特徴とする。   The invention according to claim 3 is the non-contact transfer device according to claim 1 or 2, wherein the through hole has an opening width of the second opening wider than an opening width of the first opening. It is characterized by.

また、請求項4にかかる発明は、請求項1〜3のいずれか一つに記載の非接触授受装置において、前記貫通孔は、前記第1開口部の開口幅が、前記伝送側コイルが巻装された前記伝送側コアの中央付近の凸部の外形幅または前記伝送側コイルの中空部の幅のいずれか一方より大きく、かつ前記伝送側コイルの外形幅より小さいことを特徴とする。   According to a fourth aspect of the present invention, in the non-contact transfer device according to any one of the first to third aspects, the through hole has an opening width of the first opening, and the transmission side coil is wound. It is characterized in that it is larger than either the outer width of the convex portion near the center of the transmission-side core or the width of the hollow portion of the transmission-side coil and smaller than the outer width of the transmission-side coil.

また、請求項5にかかる発明は、請求項4に記載の非接触授受装置において、前記貫通孔は、前記第1開口部の開口幅が、前記伝送側コイルで発生し前記非接触授受装置の筐体を通過する際の磁束の面積が、前記授受側コアを通過する磁束を極端に小さくしない範囲となる最大幅で拡幅していることを特徴とする。   According to a fifth aspect of the present invention, in the contactless transmission / reception apparatus according to the fourth aspect, the through hole has an opening width of the first opening generated in the transmission side coil. The area of the magnetic flux when passing through the housing is widened with a maximum width that is within a range that does not extremely reduce the magnetic flux passing through the delivery-side core.

また、請求項6にかかる発明は、請求項1〜5のいずれか一つに記載の非接触授受装置において、前記充電電力または情報を蓄積する電力蓄積部をさらに備え、前記貫通孔は、前記第2開口部の開口幅が、前記電力蓄積部の外形幅と略同一長さであることを特徴とする。   The invention according to claim 6 is the non-contact transfer device according to any one of claims 1 to 5, further comprising a power storage unit that stores the charging power or information, wherein the through hole includes the The opening width of the second opening is approximately the same length as the outer width of the power storage unit.

また、請求項7にかかる発明は、請求項6に記載の非接触授受装置において、前記貫通孔は、その厚さが、前記電力蓄積部の厚さと略同一厚さであることを特徴とする。   The invention according to claim 7 is the non-contact transfer device according to claim 6, wherein the thickness of the through hole is substantially the same as the thickness of the power storage unit. .

また、請求項8にかかる発明は、非接触伝送装置における伝送側コイルと伝送側コアとにより発生された磁束を検出して誘導起電力を発生することで、前記非接触伝送装置から前記充電電力または情報を授受する授受側コアにおいて、前記授受側コアは、中央付近に凸部および貫通孔を有し、前記非接触伝送装置から充電電力または情報を授受される際、前記伝送側コアと略同軸上に対向して配置され、前記貫通孔は、前記伝送側コアの対向面側の第1開口部と、前記伝送側コアと対向しない面側の第2開口部との開口面積または開口幅が異なっていて、前記授受側コイルの中空部の幅は、前記第1開口部の幅および前記第2開口部の幅よりも大きいことを特徴とする。 Further, the invention according to claim 8 detects the magnetic flux generated by the transmission side coil and the transmission side core in the non-contact transmission device to generate an induced electromotive force, so that the charging power from the non-contact transmission device. Alternatively, in the sending / receiving core for sending / receiving information, the sending / receiving core has a convex portion and a through hole in the vicinity of the center, and is substantially the same as the transmission-side core when charging power or information is sent / received from the non-contact transmission device. The through-holes are arranged so as to face each other on the same axis, and the through hole has an opening area or an opening width between a first opening on the opposite surface side of the transmission-side core and a second opening on the surface side that does not face the transmission-side core. And the width of the hollow portion of the transmitting / receiving coil is larger than the width of the first opening and the width of the second opening .

本発明によれば、2次電池等を配置可能な貫通孔を形成することで薄型化および軽量化するとともに、該貫通孔を設けても非接触伝送装置からの充電電力または情報の伝送効率を降下させないという効果を奏する。   According to the present invention, a through-hole in which a secondary battery or the like can be placed is formed to reduce the thickness and weight, and even if the through-hole is provided, charging power or information transmission efficiency from the non-contact transmission device is improved. It has the effect of not being lowered.

以下に添付図面を参照して、この発明にかかる非接触授受装置の最良な実施の形態を詳細に説明する。以下では、本発明の非接触授受装置を電子時計に適用した例を示すが、これに限定されることなく、例えば、携帯電話などの携帯機器や、電気シェーバーや電動歯ブラシ等の電子機器など、2次電池を備えており、非接触伝送装置である充電装置によって充電されることが可能な機器であれば非接触授受装置として適用可能である。   Exemplary embodiments of a non-contact transfer device according to the present invention will be explained below in detail with reference to the accompanying drawings. In the following, an example in which the non-contact transfer device of the present invention is applied to an electronic timepiece is shown, but is not limited thereto, for example, a portable device such as a mobile phone, an electronic device such as an electric shaver or an electric toothbrush, Any device that includes a secondary battery and can be charged by a charging device that is a non-contact transmission device is applicable as a non-contact transfer device.

(実施の形態1)
実施の形態1にかかる電子時計は、1次側コイル(伝送側コイル)を巻装した1次側コア(伝送側コア)を有する充電装置から充電電力を非接触で授受するものである。図1は、実施の形態1にかかる電子時計100および充電装置500の構成を示す説明図である。なお、図1では、充電装置500における送電部分および電子時計100における受電部分に関する構成を示しており、他の構成については省略している。
(Embodiment 1)
The electronic timepiece according to the first embodiment exchanges charging power in a non-contact manner from a charging device having a primary side core (transmission side core) around which a primary side coil (transmission side coil) is wound. FIG. 1 is an explanatory diagram illustrating configurations of the electronic timepiece 100 and the charging device 500 according to the first embodiment. Note that FIG. 1 shows a configuration related to a power transmission portion in the charging device 500 and a power receiving portion in the electronic timepiece 100, and other configurations are omitted.

まず、電子時計100について説明する。図1に示すように、電子時計100の受電部分は、中央付近に凸部121を有する2次側コア120と、2次側コイル110とを主に備えている。   First, the electronic timepiece 100 will be described. As shown in FIG. 1, the power receiving portion of the electronic timepiece 100 mainly includes a secondary side core 120 having a convex portion 121 near the center and a secondary side coil 110.

2次側コア120は、磁気特性を有する主成分がマンガン系の金属で形成されたフェライトコアなどであり、充電装置500から充電電力を充電される際に、充電装置の1次側コア520と略同軸上に対向して配置されている。   The secondary side core 120 is a ferrite core or the like whose main component having magnetic properties is made of a manganese-based metal. When the charging power is charged from the charging device 500, the secondary side core 120 and the primary side core 520 of the charging device Oppositely arranged on the same axis.

凸部121は、2次側コア120の中央付近に設けられた円柱状の凸部であり、さらに中央内部に貫通孔150を有している。   The convex portion 121 is a columnar convex portion provided near the center of the secondary core 120, and further has a through hole 150 inside the center.

貫通孔150は、図1に示すように、垂直方向の断面形状が凸形状で、水平方向の断面は円形状となっており、充電装置500の1次側コア520に対向する対向面側の開口部150aと、1次側コアと対向しない面側の開口部150bとの開口面積または開口幅が異なっている。すなわち、貫通孔150は、開口部150aの開口面積が開口部150bの開口面積より小さくなっており、開口部150aの開口径(開口幅)をh1、開口部150bの開口径(開口幅)をh2とし、h1<h2の関係を満たしている。また、貫通孔150の断面形状が凸型となっていることにより、2次側コア120における充電装置500と対向する側に鍔部121aが形成されている。また、貫通孔150は、開口部150bの開口径が、2次側コア120が磁束飽和しない範囲まで開口部150aの開口径より拡幅している。   As shown in FIG. 1, the through-hole 150 has a convex cross-sectional shape in the vertical direction and a circular cross-section in the horizontal direction, and is on the opposite surface side facing the primary core 520 of the charging device 500. The opening area or the opening width of the opening 150a and the opening 150b on the surface side that does not face the primary core are different. That is, in the through hole 150, the opening area of the opening 150a is smaller than the opening area of the opening 150b, the opening diameter (opening width) of the opening 150a is h1, and the opening diameter (opening width) of the opening 150b is set. h2 is satisfied, and the relationship of h1 <h2 is satisfied. In addition, since the cross-sectional shape of the through hole 150 is a convex shape, the flange 121a is formed on the side of the secondary core 120 that faces the charging device 500. Moreover, the through-hole 150 is wider than the opening diameter of the opening part 150a until the opening diameter of the opening part 150b is the range in which the secondary side core 120 does not saturate the magnetic flux.

2次側コイル110は、2次側コア120における凸部121に巻装された電線であり、2次側コア120とともに磁束を発生させるものである。   The secondary side coil 110 is an electric wire wound around the convex portion 121 of the secondary side core 120, and generates a magnetic flux together with the secondary side core 120.

次に、充電装置500について説明する。図1に示すように、充電装置500の送電部分は、中央付近に凸部521を有する1次側コア520と、1次側コイル510とを主に備えている。   Next, the charging apparatus 500 will be described. As shown in FIG. 1, the power transmission part of the charging device 500 mainly includes a primary core 520 having a convex portion 521 near the center and a primary coil 510.

1次側コア520は、磁気特性を有する主成分がマンガン系の金属で形成されたフェライトコアなどであり、上述したように中央付近に凸部521を有する。   The primary core 520 is a ferrite core or the like whose main component having magnetic properties is formed of a manganese-based metal, and has the convex portion 521 near the center as described above.

凸部521は、1次側コア120の中央付近に設けられた円柱状の凸部である。   The convex portion 521 is a columnar convex portion provided near the center of the primary core 120.

1次側コイル510は、1次側コア520における凸部521に巻装された電線であり、1次側コア520とともに磁束を発生させるものである。   The primary side coil 510 is an electric wire wound around the convex portion 521 in the primary side core 520 and generates magnetic flux together with the primary side core 520.

ここで、充電装置500から電子時計100への充電方法について説明する。充電装置側では、AC電源等から供給された電力を交流電流から直流電流に整流し、整流された電力を交流電流に変換した後に、1次側コア520に巻装された1次側コイル510に供給し、1次側コア520と1次側コイル510とにより磁束を発生する。そして、電子時計100の2次側コイル110に交流電磁界(誘導起電力)を発生させることで、電子時計100に非接触で電力を送電する。   Here, a charging method from the charging device 500 to the electronic timepiece 100 will be described. On the charging device side, power supplied from an AC power source or the like is rectified from alternating current to direct current, and the rectified power is converted into alternating current, and then the primary coil 510 wound around the primary core 520 is used. The primary side core 520 and the primary side coil 510 generate magnetic flux. Then, electric power is transmitted to the electronic timepiece 100 in a non-contact manner by generating an AC electromagnetic field (induced electromotive force) in the secondary coil 110 of the electronic timepiece 100.

一方、電子時計100側では、1次側コイル110に発生した交流電磁界を検出し、当該交流電磁界に応じた誘導起電力を発生することで、充電装置500から非接触で電力を受電する。そして、受電した電力を直流電流に整流し、充電電力として2次電池に蓄積する。   On the other hand, on the electronic timepiece 100 side, the AC electromagnetic field generated in the primary coil 110 is detected, and an induced electromotive force corresponding to the AC electromagnetic field is generated to receive power from the charging device 500 in a non-contact manner. . Then, the received power is rectified into a direct current and stored in the secondary battery as charging power.

次に、従来技術を用いた電子時計の構成について説明する。図2は、充電装置500および従来技術の電子時計700の構成を示す説明図である。なお、図2では、図1と同様に、充電装置500における送電部分および電子時計700における受電部分(特許文献2参照)に関する構成を示しており、他の構成については省略している。ここで、充電装置500の送電部分の構成および機能については、図1と同様であるため説明を省略する。   Next, the configuration of an electronic timepiece using a conventional technique will be described. FIG. 2 is an explanatory diagram showing the configuration of the charging device 500 and the conventional electronic timepiece 700. In FIG. 2, as in FIG. 1, the configuration related to the power transmission portion in the charging device 500 and the power receiving portion in the electronic timepiece 700 (see Patent Document 2) is shown, and the other configurations are omitted. Here, the configuration and function of the power transmission part of the charging device 500 are the same as those in FIG.

図2に示すように、電子時計700の受電部分は、中央付近に凸部721を有する2次側コア720と、2次側コイル710とを主に備えている。ここで、2次側コイル710の構成および機能は、本実施の形態の電子時計100における2次側コイル110と同様であるため説明を省略する。   As shown in FIG. 2, the power receiving portion of the electronic timepiece 700 mainly includes a secondary side core 720 having a convex portion 721 near the center and a secondary side coil 710. Here, the configuration and function of the secondary side coil 710 are the same as those of the secondary side coil 110 in the electronic timepiece 100 of the present embodiment, and thus the description thereof is omitted.

2次側コア720は、磁気特性を有する主成分がマンガン系の金属で形成されたフェライトコアなどである。   The secondary core 720 is a ferrite core whose main component having magnetic properties is formed of a manganese-based metal.

凸部721は、2次側コア720の中央付近に設けられた円柱状の凸部であり、さらに中央内部に貫通孔750を有している。   The convex portion 721 is a columnar convex portion provided near the center of the secondary side core 720, and further has a through hole 750 inside the center.

貫通孔750は、2次側コア720の磁束密度が低い部分に設けられており、開口径(開口幅)がh1の円柱状となっている。なお、図2における磁束M1、M2は、1次側コア520と1次側コイル510とから発生した磁束の流れを示しており、図2を参照すると、貫通孔750が2次側コア720における磁束密度の低い部分に設けられていることがわかる。   The through-hole 750 is provided in a portion where the magnetic flux density of the secondary core 720 is low, and has a cylindrical shape with an opening diameter (opening width) of h1. Note that the magnetic fluxes M1 and M2 in FIG. 2 indicate the flow of magnetic flux generated from the primary side core 520 and the primary side coil 510. Referring to FIG. It can be seen that the magnetic flux density is provided in a portion having a low magnetic flux density.

ここで、従来技術の電子時計700における2次側コイル710に流れる電流について説明する。図3は、2次側コイル710に流れる電流の電流値と2次側コア720の貫通孔750の開口径(開口幅)との関係を示すグラフである。図3の点aは、図2における従来技術の電子時計700(貫通孔750の開口径(開口幅)がh1)において、2次側コイル710に流れる電流の電流値をプロットしたものである。   Here, the current that flows through the secondary coil 710 in the electronic timepiece 700 of the prior art will be described. FIG. 3 is a graph showing the relationship between the current value of the current flowing through the secondary coil 710 and the opening diameter (opening width) of the through hole 750 of the secondary core 720. A point a in FIG. 3 is a plot of the current value of the current flowing through the secondary coil 710 in the conventional electronic timepiece 700 in FIG. 2 (the opening diameter (opening width) of the through hole 750 is h1).

次に、従来技術の電子時計700(図2参照)における貫通孔750の開口径をh1からh3、h2へと徐々に拡幅していった場合の電流について説明する。図4は、貫通孔750の開口径をh3に拡幅した場合の従来技術の電子時計700の構成を示す図である。図5は、貫通孔750の開口径をh2に拡幅した場合の従来技術の電子時計700の構成を示す図である。ここで、貫通孔750の開口径は、h1<h3<h2の関係を満たしている。図4に示すように、h3は、1次側コイル510の外径(外形幅)と略同一径である。また、図5に示すように、h2は、1次側コイル510の外径(外形幅)より大きい径である。   Next, the current when the opening diameter of the through hole 750 in the conventional electronic timepiece 700 (see FIG. 2) is gradually widened from h1 to h3 and h2 will be described. FIG. 4 is a diagram showing a configuration of a conventional electronic timepiece 700 when the opening diameter of the through hole 750 is widened to h3. FIG. 5 is a diagram showing a configuration of a conventional electronic timepiece 700 when the opening diameter of the through hole 750 is widened to h2. Here, the opening diameter of the through hole 750 satisfies the relationship of h1 <h3 <h2. As shown in FIG. 4, h <b> 3 has substantially the same diameter as the outer diameter (outer width) of the primary coil 510. Further, as shown in FIG. 5, h <b> 2 is a diameter larger than the outer diameter (outer width) of the primary coil 510.

図3の折れ線bは、従来技術の電子時計700における貫通孔750の開口径をh1からh3、h2へと徐々に拡幅していった場合、2次側コイル710に流れる電流の電流値を数点プロットして繋げたものである。図3を参照すると、貫通孔750の開口径をh1から徐々に広げてh3まで達した場合が点b1である。さらに貫通孔750の開口径をh3から徐々に広げてh2まで達した場合が点b2である。   The broken line b in FIG. 3 shows the current value of the current flowing in the secondary coil 710 as the opening diameter of the through-hole 750 in the prior art electronic timepiece 700 gradually increases from h1 to h3 and h2. It is connected by dot plot. Referring to FIG. 3, the point b1 is a case where the opening diameter of the through-hole 750 is gradually increased from h1 to reach h3. Further, the point b2 is a case where the opening diameter of the through hole 750 is gradually increased from h3 and reaches h2.

このように、従来技術の電子時計700は、貫通孔750の開口径がh3を越えた地点から、2次側コイル710に流れる電流が少なくなっていく。これは、1次側コイル510により誘起された磁束が、1次側コア520に収束されて2次側コア720に向かう際、図5のように貫通孔750の開口径が広がり過ぎていると、磁束が2次側コア720と2次側コイル710に届きにくいためである。   As described above, in the conventional electronic timepiece 700, the current flowing through the secondary coil 710 decreases from the point where the opening diameter of the through hole 750 exceeds h3. This is because when the magnetic flux induced by the primary side coil 510 is converged on the primary side core 520 toward the secondary side core 720, the opening diameter of the through hole 750 is too wide as shown in FIG. This is because the magnetic flux hardly reaches the secondary side core 720 and the secondary side coil 710.

次に、本実施の形態の電子時計100における貫通孔150の開口部150bの開口径をh1からh3、h2へと徐々に拡幅していった場合の電流について説明する。h1、h3、およびh2の長さは上述した従来技術の電子時計700の場合と同様である。   Next, a current when the opening diameter of the opening 150b of the through hole 150 in the electronic timepiece 100 of the present embodiment is gradually widened from h1 to h3 and h2 will be described. The lengths h1, h3, and h2 are the same as those of the above-described conventional electronic timepiece 700.

図3の折れ線cは、電子時計100における貫通孔150の開口部150bの開口径をh1からh3、h2へと徐々に拡幅していった場合、2次側コイル110に流れる電流の電流値を数点プロットして繋げたものである。なお、貫通孔150の開口部150aの開口径は保持した状態であるためh1のままである。図3を参照すると、貫通孔150の開口部150bの開口径をh1から徐々に広げてh3まで達した場合が点c1である。さらに貫通孔150の開口部150bの開口径をh3から徐々に広げてh2まで達した場合が点c2である。   A broken line c in FIG. 3 indicates the current value of the current flowing in the secondary coil 110 when the opening diameter of the opening 150b of the through hole 150 in the electronic timepiece 100 is gradually widened from h1 to h3 and h2. It is connected by plotting several points. In addition, since the opening diameter of the opening 150a of the through-hole 150 is the state hold | maintained, it is still h1. Referring to FIG. 3, the point c1 is a case where the opening diameter of the opening 150b of the through hole 150 is gradually increased from h1 to reach h3. Furthermore, the point c2 is a case where the opening diameter of the opening 150b of the through-hole 150 is gradually increased from h3 and reaches h2.

このように、本実施の形態の電子時計100は、貫通孔150の開口部150bの開口径(開口幅)がh1からh3、h2と変化しても、2次側コイル110に流れる電流はほぼ一定であり、従来技術の電子時計700における貫通孔750の開口径がh1〜h3の場合とほぼ同等の電流が流れていることになる。   Thus, in the electronic timepiece 100 of the present embodiment, even if the opening diameter (opening width) of the opening 150b of the through hole 150 changes from h1 to h3 and h2, the current flowing through the secondary coil 110 is almost equal. In other words, a current substantially equal to that in the case where the opening diameters of the through holes 750 in the electronic timepiece 700 of the prior art are h1 to h3 flows.

このように、実施の形態1の電子時計100では、2次側コア120に断面形状が凸型の貫通孔150を設けた場合でも、2次側コイル110に流れる電流を従来技術の電子時計700の2次側コイル710に流れる電流とほぼ同程度に保つことができ、伝送効果を降下させない。また、貫通孔150の開口部150bの開口径をh1〜h2の範囲内に設定すれば、2次側コイル110に流れる電流をほぼ一定に保つことができるため、開口径をh1〜h2の範囲で自由に変更することが可能である(図1ではh2となっている)。従って、開口部150bの開口径がh1〜h2の範囲である貫通孔150に形成される空間に、基板や2次電池などの電子部品を配置することができるため、電子時計100を薄型化および軽量化することができる。   As described above, in the electronic timepiece 100 according to the first embodiment, even when the secondary core 120 is provided with the through hole 150 having a convex cross section, the current flowing in the secondary side coil 110 is supplied to the electronic timepiece 700 of the prior art. The current flowing in the secondary coil 710 can be maintained at substantially the same level as that of the secondary coil 710, and the transmission effect is not lowered. In addition, if the opening diameter of the opening 150b of the through hole 150 is set within the range of h1 to h2, the current flowing through the secondary coil 110 can be kept substantially constant, so the opening diameter is within the range of h1 to h2. Can be freely changed (in FIG. 1, h2). Therefore, since electronic parts such as a substrate and a secondary battery can be arranged in a space formed in the through hole 150 in which the opening diameter of the opening 150b is in the range of h1 to h2, the electronic watch 100 can be thinned and The weight can be reduced.

なお、貫通孔150の開口部150bをさらに拡幅させて開口径がh2を越えた場合、2次側コア120の開口部150bの周りの厚さh´が極端に狭くなるため、2次側コア120の製造が困難となるだけでなく、2次側コア120の磁束飽和を招くことがある。このような場合は、2次側コイル110の内径(中空部の幅)を大きくしたり、2次側コア120のB−H特性の優れている材質を使用することで2次側コア120の製造困難の問題を回避することができる。   When the opening 150b of the through-hole 150 is further widened and the opening diameter exceeds h2, the thickness h ′ around the opening 150b of the secondary core 120 becomes extremely narrow, so the secondary core In addition to making the manufacture of 120 difficult, magnetic flux saturation of the secondary core 120 may be caused. In such a case, it is possible to increase the inner diameter of the secondary coil 110 (the width of the hollow portion) or to use a material having excellent B-H characteristics of the secondary core 120 so that the secondary core 120 can be used. The problem of difficulty in manufacturing can be avoided.

(実施の形態2)
実施の形態1の電子時計100は、貫通孔150における充電装置と対向しない面側の開口部150bの開口径をh1〜h2の範囲で変更可能に構成されていたが、本実施の形態の電子時計は、貫通孔における充電装置と対向する対向面の開口部の開口径を変更する場合について説明する。
(Embodiment 2)
The electronic timepiece 100 according to the first embodiment is configured such that the opening diameter of the opening 150b on the surface side that does not face the charging device in the through hole 150 can be changed in the range of h1 to h2. The timepiece will be described with respect to a case where the opening diameter of the opening portion of the facing surface facing the charging device in the through hole is changed.

まず、実施の形態1の電子時計100における貫通孔150の開口部150aの開口径をh1からh3、h2へと徐々に拡幅していった場合の実験について説明する。なお、貫通孔150の開口部150bの開口径はh2に保持した状態である。h1、h3、およびh2の長さは実施の形態1の場合と同様である。   First, an experiment in the case where the opening diameter of the opening 150a of the through hole 150 in the electronic timepiece 100 of Embodiment 1 is gradually widened from h1 to h3 and h2 will be described. In addition, the opening diameter of the opening 150b of the through hole 150 is in a state of being held at h2. The lengths of h1, h3, and h2 are the same as in the first embodiment.

図6は、貫通孔150の開口部150aの開口径をh3に拡幅した場合の実施の形態1の電子時計100の構成を示す図である。図7は、貫通孔150の開口部150aの開口径をh2に拡幅した場合の実施の形態1の電子時計100の構成を示す図である。また、図8は、電子時計100に流れる電流の電流値と2次側コア120の貫通孔150の開口部150aの開口径との関係を示すグラフである。   FIG. 6 is a diagram illustrating a configuration of the electronic timepiece 100 according to the first embodiment when the opening diameter of the opening 150a of the through hole 150 is widened to h3. FIG. 7 is a diagram illustrating a configuration of the electronic timepiece 100 according to the first embodiment when the opening diameter of the opening 150a of the through hole 150 is widened to h2. FIG. 8 is a graph showing the relationship between the current value of the current flowing through the electronic timepiece 100 and the opening diameter of the opening 150 a of the through hole 150 of the secondary core 120.

図8の折れ線dは、実施の形態1の電子時計100における貫通孔150の開口部150aの開口径をh1〜h2に拡幅した場合に、2次側コイル110に流れる電流の電流値を数点プロットして繋げたものである。また、折れ線eは、実施の形態1の電子時計100における貫通孔150の開口部150aの開口径をh1〜h2に拡幅した場合に、図示しない2次側コイル110および2次側コア120の直下にある筐体部分に発生している渦電流損の値を数点プロットして繋げたものである。また、折れ線fは、実施の形態1の電子時計100における貫通孔150の開口部150aの開口径をh1〜h2に拡幅した場合に、2次側コイル110に流れる電流の電流値と、該筐体部分を含めたモデル全体に発生している渦電流損の値と、1次側コイル510の銅損の値とにより算出した伝送効率の値を数点プロットして繋げたものである。   The broken line d in FIG. 8 shows several values of the current flowing through the secondary coil 110 when the opening diameter of the opening 150a of the through hole 150 in the electronic timepiece 100 of Embodiment 1 is widened to h1 to h2. Plotted and connected. The broken line e is directly below the secondary coil 110 and the secondary core 120 (not shown) when the opening diameter of the opening 150a of the through hole 150 in the electronic timepiece 100 of Embodiment 1 is widened to h1 to h2. The values of the eddy current loss occurring in the casing portion in FIG. In addition, the broken line f indicates the current value of the current flowing through the secondary coil 110 when the opening diameter of the opening 150a of the through hole 150 in the electronic timepiece 100 of Embodiment 1 is widened to h1 to h2, and the housing. The transmission efficiency value calculated from the value of the eddy current loss occurring in the entire model including the body part and the value of the copper loss of the primary coil 510 is connected by plotting several points.

ここで、上記の伝送効率の算出方法を説明する。2次側コイル110に流れる電流の電流値と、該筐体部分を含めたモデル全体に発生している渦電流損の値と、1次側コイル510の銅損の値とにより伝送効率を算出する場合は、以下の数式により算出できる。

Figure 0005363720
Here, a method for calculating the transmission efficiency will be described. The transmission efficiency is calculated from the current value of the current flowing through the secondary coil 110, the value of the eddy current loss occurring in the entire model including the casing portion, and the value of the copper loss of the primary coil 510. When doing so, it can be calculated by the following formula.
Figure 0005363720

なお、上記式の分母には、本来、ヒステリシス損なども挙げられるが、渦電流損や銅損と比較すると、相対的にヒステリシス損の値が少ないため、本実施の形態における伝送効率の算出方法では、ヒステリシス損などを省略し、上記の式を採用している。   The denominator of the above formula originally includes hysteresis loss, but since the value of hysteresis loss is relatively small compared to eddy current loss and copper loss, the calculation method of transmission efficiency in the present embodiment Then, the hysteresis loss and the like are omitted, and the above formula is adopted.

図8を参照すると、貫通孔150の開口部150aの開口径がh1〜h3の範囲においては、2次側コイル110に流れる電流はほぼ一定である(折れ線d参照)のに対して、筐体に流れる渦電流が減少している(折れ線e参照)ことから、伝送効率が向上している(折れ線f参照)。   Referring to FIG. 8, the current flowing through the secondary coil 110 is substantially constant (see the broken line d) when the opening diameter of the opening 150a of the through hole 150 is in the range of h1 to h3, whereas the housing Since the eddy current flowing through the line decreases (see the broken line e), the transmission efficiency is improved (see the broken line f).

また、貫通孔150の開口部150aの開口径がh3〜h2の範囲においては、2次側コイル110に流れる電流と、筐体に流れる渦電流が共に減少している(折れ線d、e参照)。この場合、筐体に流れる渦電流が減少しているが、2次側コイル110に流れる電流が筐体に流れる渦電流と比較して急激に減少しているため、結果的に伝送効率は低下している。ただし、筐体の渦電流と筐体以外の部分の渦電流とを比較した場合、筐体の渦電流は顕著に変化するが、筐体以外の部分の渦電流の変化は微小であるので、筐体の渦電流の変化分が伝送効率に直接影響して、上記のような伝送効率となる。   Further, when the opening diameter of the opening 150a of the through hole 150 is in the range of h3 to h2, both the current flowing through the secondary coil 110 and the eddy current flowing through the housing are reduced (see the broken lines d and e). . In this case, the eddy current flowing through the housing is reduced, but the current flowing through the secondary coil 110 is drastically reduced as compared with the eddy current flowing through the housing, resulting in a decrease in transmission efficiency. doing. However, when comparing the eddy current of the housing and the eddy current of the portion other than the housing, the eddy current of the housing changes significantly, but the change of the eddy current of the portion other than the housing is minute, The change in the eddy current of the housing directly affects the transmission efficiency, and the transmission efficiency is as described above.

このような実験を繰り返した結果、次に記載する効果が得られた。まず第1に、貫通孔150の開口部150aの開口径を拡幅していくと、筐体に流れる渦電流が減少していくこと。第2に、貫通孔150の開口部150aの開口径を、1次側コイル510の外径(外形幅)より小さい範囲内において決定すれば、2次側コイル110に流れる電流はほぼ一定に保たれること。これを踏まえて、本実施の形態の電子時計200の貫通孔250の開口部250aの開口径を設定した場合を図9に示す。   As a result of repeating such experiments, the following effects were obtained. First, as the opening diameter of the opening 150a of the through-hole 150 is increased, the eddy current flowing through the housing decreases. Second, if the opening diameter of the opening 150a of the through hole 150 is determined within a range smaller than the outer diameter (outer width) of the primary coil 510, the current flowing through the secondary coil 110 is kept substantially constant. To be drunk. Based on this, FIG. 9 shows a case where the opening diameter of the opening 250a of the through hole 250 of the electronic timepiece 200 of the present embodiment is set.

図9は、実施の形態2にかかる電子時計200および充電装置500の構成を示す説明図である。ここで、充電装置500の構成および機能は、実施の形態1における充電装置と同様であるため説明を省略する。図9に示すように、電子時計200の受電部分は、中央付近に凸部221を有する2次側コア220と、2次側コイル210とを主に備えている。ここで、2次側コイル210の構成および機能は、実施の形態1の2次側コイルと同様であるため説明を省略する。   FIG. 9 is an explanatory diagram illustrating configurations of the electronic timepiece 200 and the charging device 500 according to the second embodiment. Here, the configuration and function of charging apparatus 500 are the same as those of charging apparatus in Embodiment 1, and therefore description thereof is omitted. As shown in FIG. 9, the power receiving portion of the electronic timepiece 200 mainly includes a secondary side core 220 having a convex portion 221 near the center and a secondary side coil 210. Here, since the configuration and function of the secondary coil 210 are the same as those of the secondary coil of the first embodiment, the description thereof is omitted.

2次側コア220は、磁気特性を有する主成分がマンガン系の金属で形成されたフェライトコアなどであり、充電装置500から充電電力を充電される際に、充電装置の1次側コア520と略同軸上に対向して配置されている。   The secondary side core 220 is a ferrite core or the like whose main component having magnetic characteristics is formed of a manganese-based metal. When the charging power is charged from the charging device 500, the secondary side core 220 and the primary side core 520 of the charging device Oppositely arranged on the same axis.

凸部221は、2次側コア220の中央付近に設けられた円柱状の凸部であり、さらに中央内部に貫通孔250を有している。   The convex portion 221 is a columnar convex portion provided near the center of the secondary side core 220, and further has a through hole 250 inside the center.

貫通孔250は、図9に示すように、垂直方向の断面形状が凸形状で、水平方向の断面は円形状となっており、充電装置500の1次側コア520に対向する対向面側の開口部250aと、1次側コアと対向しない面側の開口部250bとの開口面積が異なっている。すなわち、貫通孔250は、開口部250aの開口面積が開口部250bの開口面積より小さくなっており、開口部250aの開口径をh3、開口部250bの開口径をh2となっている。   As shown in FIG. 9, the through-hole 250 has a convex cross-sectional shape in the vertical direction and a circular cross-section in the horizontal direction, and is on the opposite surface side facing the primary core 520 of the charging device 500. The opening area of the opening 250a is different from that of the opening 250b on the surface side that does not face the primary core. That is, in the through hole 250, the opening area of the opening 250a is smaller than the opening area of the opening 250b, the opening diameter of the opening 250a is h3, and the opening diameter of the opening 250b is h2.

また、貫通孔250は、より良い伝送効率を得られる電子時計200として構成するには、図9に示すように、2次側コア220の貫通孔250の開口部250aを、1次側コイル510が巻装された1次側コア520の中央付近の凸部521の直径(外形幅)L1または1次側コイル510の内径(中空部の幅)より大きく、かつ1次側コイル510の外径(外形幅)L2より小さい範囲にすることが望ましい。   Further, in order to configure the through-hole 250 as an electronic timepiece 200 that can obtain better transmission efficiency, as shown in FIG. 9, the opening 250 a of the through-hole 250 of the secondary-side core 220 is formed on the primary-side coil 510. Is larger than the diameter (outer width) L1 of the convex part 521 near the center of the primary side core 520 or the inner diameter (width of the hollow part) of the primary side coil 510 and the outer diameter of the primary side coil 510. (Outer width) It is desirable to make the range smaller than L2.

なお、1次側コア520や1次側コイル510の形状、2次側コア220や2次側コイル210の形状は、本実施の形態に限定されるものではない。ただし、これらの形状が本実施の形態で示した形状と異なる場合、または充電装置500(1次側)と電子時計200(2次側)の縦方向の距離が本実施の形態と異なる場合は、それぞれ異なる形状、距離に基づいて上述した実験を行って最適な開口径250aの長さにする必要がある。   In addition, the shape of the primary side core 520 and the primary side coil 510, the shape of the secondary side core 220 and the secondary side coil 210 are not limited to this Embodiment. However, when these shapes are different from those shown in this embodiment, or when the vertical distance between the charging device 500 (primary side) and the electronic timepiece 200 (secondary side) is different from this embodiment. It is necessary to perform the above-described experiment based on different shapes and distances to obtain an optimum opening diameter 250a.

このように、実施の形態2の電子時計200では、実施の形態1の効果に加えて、2次側コア220の貫通孔250の開口部250aを、1次側コア520の中央付近の凸部521の直径L1または1次側コイル510の内径より大きく、かつ1次側コイル510の外径L2より小さい範囲に設定することで、充電装置500から電子時計200への充電電力の伝送を効率よく行うことができる。また、図示しない2次側コイル210および2次側コア220の直下にある筐体部分に発生する渦電流を抑制して、該渦電流による筐体の発熱を防止することができる。   As described above, in the electronic timepiece 200 of the second embodiment, in addition to the effects of the first embodiment, the opening 250a of the through hole 250 of the secondary core 220 is formed as a convex portion near the center of the primary core 520. By setting the range to be larger than the diameter L1 of the 521 or the inner diameter of the primary coil 510 and smaller than the outer diameter L2 of the primary coil 510, transmission of charging power from the charging device 500 to the electronic timepiece 200 is efficiently performed. It can be carried out. Further, it is possible to suppress eddy currents that are generated in a casing part directly below the secondary coil 210 and the secondary core 220 (not shown), and to prevent heat generation of the casing due to the eddy currents.

(実施の形態2の変形例)
次に、実施の形態2の電子時計200に対する電磁界シミュレーション解析を示す。図10および図11は、電子時計200に対する電磁界シミュレーション解析の結果を示す図である。図10では、2次側コア220に備えた貫通孔250の開口部250aの開口径(開口幅)が、1次側コア520の中央付近の凸部521の直径(外形幅)L1より大きく、かつ1次側コイル510の外径(外形幅)L2より小さく構成されたモデル(1/2モデル)である(開口径=h3の場合)。また、図11は、2次側コア220に備えた貫通孔250の開口部250aの開口径が、1次側コア520の凸部521の直径L1より小さく構成されたモデル(1/2モデル)である(開口径=h1の場合)。
(Modification of Embodiment 2)
Next, an electromagnetic field simulation analysis for the electronic timepiece 200 according to the second embodiment will be described. 10 and 11 are diagrams showing the results of electromagnetic field simulation analysis for the electronic timepiece 200. FIG. In FIG. 10, the opening diameter (opening width) of the opening 250a of the through-hole 250 provided in the secondary core 220 is larger than the diameter (outer width) L1 of the convex portion 521 near the center of the primary core 520, In addition, this is a model (1/2 model) configured to be smaller than the outer diameter (outer width) L2 of the primary coil 510 (when the opening diameter is h3). FIG. 11 shows a model (1/2 model) in which the opening diameter of the opening 250a of the through-hole 250 provided in the secondary core 220 is smaller than the diameter L1 of the convex portion 521 of the primary core 520. (When opening diameter = h1).

図10に示すように、電子時計200の筐体を通過している磁束は、主に1次側コイル510の凸部521の直上に集中しており、通過している面積は当該箇所付近に限定されている。一方、図11に示すように、電子時計200の筐体を通過する磁束は、1次側コア520と1次側コイル510の直上に集中しており、図10と比較すると、電子時計200の筐体を通過する磁束の面積が大きくなっている。   As shown in FIG. 10, the magnetic flux passing through the casing of the electronic timepiece 200 is mainly concentrated immediately above the convex portion 521 of the primary side coil 510, and the passing area is in the vicinity of the location. Limited. On the other hand, as shown in FIG. 11, the magnetic flux passing through the casing of the electronic timepiece 200 is concentrated immediately above the primary side core 520 and the primary side coil 510. The area of the magnetic flux passing through the housing is increased.

このような電磁界シミュレーション解析では、図10、11のいずれの電子時計200においても2次側コイル210を鎖交する磁束の量(2次側コイル210に流れる電流)はほぼ一定としているが、電子時計200の筐体で発生する渦電流は図10の方が小さい。従って、両者を比較すると、図11の充電装置500より図10の充電装置500の方が電子時計200への充電電力の伝送効率がよくなるという結果となっている。つまり、シミュレーション解析の結果により推奨されるのは、図10の電子時計200となる。   In such electromagnetic field simulation analysis, the amount of magnetic flux interlinking the secondary coil 210 (current flowing through the secondary coil 210) is substantially constant in both the electronic timepieces 200 of FIGS. The eddy current generated in the casing of the electronic timepiece 200 is smaller in FIG. Therefore, a comparison between the two results in that the charging device 500 of FIG. 10 is more efficient in transmitting charging power to the electronic timepiece 200 than the charging device 500 of FIG. That is, the electronic timepiece 200 shown in FIG. 10 is recommended based on the result of the simulation analysis.

このような構成において、充電装置500の1次側コア520および1次側コイル510とから発生する磁束の量は、充電装置500の構成が同じことにより、図10と図11とでは、ほぼ同等となっている。また、2次側コイル210に鎖交する磁束もほぼ一定となっているため、両者の違いとしては電子時計200の筐体に流れる渦電流のみとなる。従って、貫通孔250は、開口部250aの開口径は、1次側コイル510に発生し電子時計200の筐体を通過する際の磁束の面積が、2次側コア220を通過する磁束を極端に小さくしない範囲となる最大幅まで拡幅して構成するのが望ましい。   In such a configuration, the amount of magnetic flux generated from the primary core 520 and the primary coil 510 of the charging device 500 is substantially the same in FIGS. 10 and 11 because the configuration of the charging device 500 is the same. It has become. Further, since the magnetic flux linked to the secondary coil 210 is also substantially constant, the only difference between them is the eddy current flowing in the casing of the electronic timepiece 200. Accordingly, in the through hole 250, the opening diameter of the opening 250 a is such that the area of the magnetic flux generated in the primary side coil 510 and passing through the casing of the electronic timepiece 200 is extremely large than the magnetic flux passing through the secondary side core 220. It is desirable to increase the width up to the maximum width that will not be reduced.

例えば、図8を参照して説明すると、図10における開口部250aの開口径は、図8のh3(横軸)であり、図11における開口部250aの開口径は、図8のh1(横軸)である。そして、開口径がh1からh3までの範囲では、2次側コイル210に得られる電流はほぼ一定であるのに対して、2次側コア220に流れる渦電流は、開口径がh1からh3になるに従い減少している。つまり、開口径がh1からh3になるに従って、2次側への伝送効率は向上することになる。また、図示していないが、開口部250aの開口径をh1より小さくした場合や開口部250aを有さない場合は、筐体に流れる渦電流(電流の損失)は直線的に大きくなるが、2次側コイル210に流れる電流はほぼ一定であるため、伝送効率は開口部250aの開口径がh1の場合より悪くなる。すなわち、開口径がh3の場合が、2次側コイル210に流れる電流が極端に小さくならない範囲となる開口径の最大幅であるため、開口部250aの開口径がh3であることが望ましい。   For example, referring to FIG. 8, the opening diameter of the opening 250a in FIG. 10 is h3 (horizontal axis) in FIG. 8, and the opening diameter of the opening 250a in FIG. 11 is h1 (horizontal) in FIG. Axis). In the range of the opening diameter from h1 to h3, the current obtained in the secondary coil 210 is substantially constant, whereas the eddy current flowing through the secondary core 220 has an opening diameter from h1 to h3. As it becomes, it decreases. That is, the transmission efficiency to the secondary side is improved as the opening diameter is changed from h1 to h3. Although not shown, when the opening diameter of the opening 250a is smaller than h1 or when the opening 250a is not provided, the eddy current (current loss) flowing through the housing increases linearly. Since the current flowing through the secondary coil 210 is substantially constant, the transmission efficiency is worse than when the opening diameter of the opening 250a is h1. That is, when the opening diameter is h3, which is the maximum width of the opening diameter in a range where the current flowing through the secondary coil 210 does not become extremely small, it is desirable that the opening diameter of the opening 250a is h3.

また、図10と図11の電子時計200の筐体における渦電流の差分に関して、図10の電子時計200における該差分に対応する磁束は空気中に放出されていることになる。すなわち、図10の電子時計200においては、その渦電流の差分に対応する磁束が空気中に放出されることにより、その分だけ電子時計200の筐体に発生する渦電流を抑制することができ、渦電流による筐体の発熱を防止することができる。   Further, regarding the difference in eddy currents in the housing of the electronic timepiece 200 of FIGS. 10 and 11, the magnetic flux corresponding to the difference in the electronic timepiece 200 of FIG. 10 is released into the air. That is, in the electronic timepiece 200 of FIG. 10, the magnetic flux corresponding to the difference between the eddy currents is released into the air, so that the eddy current generated in the housing of the electronic timepiece 200 can be suppressed accordingly. The heat generation of the housing due to the eddy current can be prevented.

(実施の形態3)
本実施の形態の電子時計では、2次側コアに設けられた貫通孔における充電装置と対向しない側の開口部の開口径(開口幅)を、電子時計の内部に備えられる2次電池の外径(外形幅)と略同一長さとしたものである。
(Embodiment 3)
In the electronic timepiece of the present embodiment, the opening diameter (opening width) of the opening on the side that does not face the charging device in the through hole provided in the secondary side core is outside the secondary battery provided inside the electronic timepiece. The length is substantially the same as the diameter (outer width).

図12は、実施の形態3にかかる電子時計300および充電装置500の構成を示す説明図である。ここで、充電装置500の構成および機能は、実施の形態1における充電装置と同様であるため説明を省略する。図12に示すように、電子時計300の受電部分は、中央付近に凸部321を有する2次側コア320と、2次側コイル310と、2次電池10を主に備えている。ここで、2次側コイル310の構成および機能は、実施の形態1の2次側コイルと同様であるため説明を省略する。   FIG. 12 is an explanatory diagram illustrating configurations of the electronic timepiece 300 and the charging device 500 according to the third embodiment. Here, the configuration and function of charging apparatus 500 are the same as those of charging apparatus in Embodiment 1, and therefore description thereof is omitted. As shown in FIG. 12, the power receiving portion of the electronic timepiece 300 mainly includes a secondary side core 320 having a convex portion 321 near the center, a secondary side coil 310, and the secondary battery 10. Here, the configuration and function of the secondary side coil 310 are the same as those of the secondary side coil of the first embodiment, and thus the description thereof is omitted.

2次電池10は、充電装置500から受電した充電電力を蓄積するものである。   The secondary battery 10 accumulates the charging power received from the charging device 500.

2次側コア320は、磁気特性を有する主成分がマンガン系の金属で形成されたフェライトコアなどであり、充電装置500から充電電力を充電される際に、充電装置の1次側コア520と略同軸上に対向して配置されている。   The secondary side core 320 is a ferrite core or the like whose main component having magnetic properties is formed of a manganese-based metal. When the charging power is charged from the charging device 500, the secondary side core 320 and the primary side core 520 of the charging device Oppositely arranged on the same axis.

凸部321は、2次側コア320の中央付近に設けられた円柱状の凸部であり、さらに中央内部に貫通孔350を有している。   The convex portion 321 is a columnar convex portion provided near the center of the secondary side core 320, and further has a through hole 350 inside the center.

貫通孔350は、図12に示すように、垂直方向の断面形状が凸形状で、水平方向の断面は円形状となっており、充電装置500の1次側コア520に対向する対向面側の開口部350aと、1次側コアと対向しない面側の開口部350bとの開口面積が異なっている。すなわち、貫通孔350は、開口部350aの開口面積が開口部350bの開口面積より小さくなっており、開口部350bの開口径はh3、開口部350bの開口径はW1となっている。また、貫通孔350は、開口部350bの開口径W1が、2次電池10の外径W2と略同一長さ、もしくはやや大きい長さに形成されており、2次側コア320の貫通孔内に形成された空間に2次電池10が配置可能となる。   As shown in FIG. 12, the through-hole 350 has a convex cross-sectional shape in the vertical direction and a circular cross-section in the horizontal direction, and is on the opposite surface side facing the primary core 520 of the charging device 500. The opening areas of the opening 350a and the opening 350b on the surface side that does not face the primary core are different. That is, in the through hole 350, the opening area of the opening 350a is smaller than the opening area of the opening 350b, the opening diameter of the opening 350b is h3, and the opening diameter of the opening 350b is W1. In addition, the through hole 350 is formed such that the opening diameter W1 of the opening 350b is substantially the same as or slightly larger than the outer diameter W2 of the secondary battery 10, and the through hole 350 is formed in the through hole of the secondary core 320. Thus, the secondary battery 10 can be placed in the space formed.

このように、実施の形態3にかかる電子時計300では、貫通孔350の開口部350bの開口径W1を2次電池10の外径W2と略同一長さ、もしくはやや大きい長さに形成することで、2次側コア320の貫通孔内に形成された空間に2次電池10が配置可能となる。従って、電子時計300の内部において、2次側コア320と2次電池10とを配置する空間を別個に設ける必要がなくなり、電子時計300を薄型化することができる。さらに、2次側コア320の内部に2次電池10を納めることができるため、2次側コア320は、2次電池10等の部品を保護することが可能となるため、2次電池10などの重要な部品の保護部としての役割を果たすことができる。   As described above, in the electronic timepiece 300 according to the third embodiment, the opening diameter W1 of the opening 350b of the through hole 350 is formed to be substantially the same length as the outer diameter W2 of the secondary battery 10 or slightly larger. Thus, the secondary battery 10 can be arranged in the space formed in the through hole of the secondary core 320. Therefore, it is not necessary to provide a space for arranging the secondary core 320 and the secondary battery 10 inside the electronic timepiece 300, and the electronic timepiece 300 can be thinned. Furthermore, since the secondary battery 10 can be accommodated in the secondary core 320, the secondary core 320 can protect components such as the secondary battery 10, and so on. It can serve as a protective part for important parts.

なお、本実施の形態にかかる電子時計300では、2次側コア320の貫通孔350の開口部150bの開口径を2次電池10の外径と略同一長さもしくはやや大きくする構成としているが、2次側コア320の内部に納める部品が2次電池ではなく、他の電子部品または基板を備えた場合は、貫通孔350の開口部150bの開口径をそれらの電子部品等の外径もしくは直径に合わせることで、同様に薄型化および保護部としての役割を果たすことができる。   The electronic timepiece 300 according to the present embodiment is configured such that the opening diameter of the opening 150b of the through hole 350 of the secondary core 320 is substantially the same as or slightly larger than the outer diameter of the secondary battery 10. When the component housed in the secondary core 320 is not a secondary battery but includes another electronic component or a substrate, the opening diameter of the opening 150b of the through hole 350 is set to the outer diameter of the electronic component or the like. By matching with the diameter, it can similarly serve as a thin part and a protective part.

(実施の形態4)
本実施の形態の電子時計では、2次側コアに設けられた貫通孔における充電装置と対向しない側の厚さを、電子時計の内部に備えられている2次電池の厚さと略同一厚さとしたものである。
(Embodiment 4)
In the electronic timepiece of the present embodiment, the thickness of the through hole provided in the secondary side core that does not face the charging device is substantially the same as the thickness of the secondary battery provided in the electronic timepiece. It is a thing.

図13は、実施の形態4にかかる電子時計400および充電装置500の構成を示す説明図である。ここで、充電装置500の構成および機能は、実施の形態1における充電装置と同様であるため説明を省略する。図13に示すように、電子時計400の受電部分は、中央付近に凸部421を有する2次側コア420と、2次側コイル410と、2次電池10を主に備えている。ここで、2次側コイル410の構成および機能は、実施の形態1の2次側コイルと同様であるため説明を省略する。   FIG. 13 is an explanatory diagram illustrating configurations of the electronic timepiece 400 and the charging device 500 according to the fourth embodiment. Here, the configuration and function of charging apparatus 500 are the same as those of charging apparatus in Embodiment 1, and therefore description thereof is omitted. As shown in FIG. 13, the power receiving portion of the electronic timepiece 400 mainly includes a secondary side core 420 having a convex portion 421 near the center, a secondary side coil 410, and the secondary battery 10. Here, the configuration and function of the secondary side coil 410 are the same as those of the secondary side coil of the first embodiment, and thus the description thereof is omitted.

2次電池10は、充電装置500から受電した充電電力を蓄積するものである。   The secondary battery 10 accumulates the charging power received from the charging device 500.

2次側コア420は、磁気特性を有する主成分がマンガン系の金属で形成されたフェライトコアなどであり、充電装置500から充電電力を充電される際に、充電装置500の1次側コア520と略同軸上に対向して配置されている。   The secondary side core 420 is a ferrite core or the like whose main component having magnetic properties is formed of a manganese-based metal, and the primary side core 520 of the charging device 500 is charged when charging power is charged from the charging device 500. Are arranged on the same axis and facing each other.

凸部421は、2次側コア420の中央付近に設けられた円柱状の凸部であり、さらに中央内部に貫通孔450を有している。   The convex portion 421 is a columnar convex portion provided near the center of the secondary side core 420, and further has a through hole 450 inside the center.

貫通孔450は、図13に示すように、垂直方向の断面形状が凸形状で、水平方向の断面は円形状となっており、充電装置500の1次側コア520に対向する対向面側の開口部450aと、1次側コアと対向しない面側の開口部450bとの開口面積が異なっている。すなわち、貫通孔450は、開口部450aの開口面積が開口部450bの開口面積より小さくなっており、開口部450aの開口径(開口幅)はh3となっている。また、貫通孔450は、開口部450b側の厚さT1が、2次電池10の厚さT2と略同一厚さに形成されており、2次側コア420の貫通孔450の内部に設けられた空間に2次電池10が配置可能となる。   As shown in FIG. 13, the through-hole 450 has a convex cross-sectional shape in the vertical direction and a circular cross-section in the horizontal direction, and is on the opposite surface side facing the primary core 520 of the charging device 500. The opening area of the opening 450a is different from that of the opening 450b on the surface side not facing the primary core. That is, in the through hole 450, the opening area of the opening 450a is smaller than the opening area of the opening 450b, and the opening diameter (opening width) of the opening 450a is h3. In addition, the through hole 450 has a thickness T 1 on the opening 450 b side that is substantially the same as the thickness T 2 of the secondary battery 10, and is provided inside the through hole 450 of the secondary core 420. The secondary battery 10 can be placed in the space.

このように、実施の形態4にかかる電子時計400では、貫通孔450の開口部450b側の厚さT1を、2次電池10の厚さT2と略同一厚さに形成することで、貫通孔450の開口部450b側に形成された空間に2次電池等をほぼ隙間なく配置することができる。従って、2次側コア420の上方などに配置される2次電池等(基板や電子回路、モジュールなどの電子部品)の配置がし易く、かつ電子時計400内部の部品の平行性を保ち易くする。   As described above, in the electronic timepiece 400 according to the fourth embodiment, the thickness T1 on the opening 450b side of the through hole 450 is formed to be substantially the same as the thickness T2 of the secondary battery 10, thereby A secondary battery or the like can be arranged in the space formed on the side of the opening 450b of the 450 with almost no gap. Accordingly, it is easy to arrange a secondary battery or the like (an electronic component such as a substrate, an electronic circuit, or a module) disposed above the secondary core 420, and to keep the parallelism of the components inside the electronic timepiece 400. .

本実施の形態における2次側コアの凸部は、2次側コアの中央付近に円柱状に設けられているが、これに限定されることはない。すなわち、コイルを巻装可能な形状であればいずれの形状で設けられていてもよく、例えば、角柱形状や、水平方向の断面が四角形や半円などの形状で形成してもよく、さらに左右対称に形成されていなくてもよい。また、本実施の形態における2次側コアは、マンガン系のフェライトコアなどで形成されているが、他の材料により形成された部材を任意に組み合わせて2次側コアを形成して、その周りにコイルを巻装してもよい。   Although the convex part of the secondary side core in this Embodiment is provided in the column shape near the center of the secondary side core, it is not limited to this. That is, it may be provided in any shape as long as the coil can be wound, for example, it may be formed in a prismatic shape, a horizontal cross section in the shape of a quadrangle, a semicircle, etc. It may not be formed symmetrically. In addition, the secondary core in the present embodiment is formed of a manganese-based ferrite core or the like, but the secondary core is formed by arbitrarily combining members formed of other materials. A coil may be wound around.

また、本実施の形態における貫通孔は、水平方向の断面が円形状となっているが、これに限定されることはない。すなわち、貫通している孔であれば他の形状でもよく、例えば、水平方向の断面が四角形や半円などの形状で形成してもよく、さらに左右対称に形成されていなくてもよい。   Further, the through hole in the present embodiment has a circular cross section in the horizontal direction, but is not limited thereto. That is, as long as it is a through-hole, other shapes may be used. For example, the horizontal cross section may be formed in a shape such as a quadrangle or a semicircle, and may not be formed symmetrically.

実施の形態1にかかる電子時計100および充電装置500の構成を示す説明図である。2 is an explanatory diagram showing configurations of an electronic timepiece 100 and a charging device 500 according to a first embodiment. FIG. 充電装置500および従来技術の電子時計700の構成を示す説明図である。It is explanatory drawing which shows the structure of the charging device 500 and the electronic timepiece 700 of a prior art. 2次側コイル710に流れる電流の電流値と2次側コア720の貫通孔750の開口径(開口幅)との関係を示すグラフである。6 is a graph showing the relationship between the current value of the current flowing through the secondary coil 710 and the opening diameter (opening width) of the through hole 750 of the secondary core 720. 貫通孔750の開口径をh3に拡幅した場合の従来技術の電子時計700の構成を示す図である。It is a figure which shows the structure of the electronic timepiece 700 of the prior art at the time of expanding the opening diameter of the through-hole 750 to h3. 貫通孔750の開口径をh2に拡幅した場合の従来技術の電子時計700の構成を示す図である。It is a figure which shows the structure of the electronic timepiece 700 of the prior art at the time of expanding the opening diameter of the through-hole 750 to h2. 貫通孔150の開口部150aの開口径をh3に拡幅した場合の実施の形態1の電子時計100の構成を示す図である。FIG. 3 is a diagram showing a configuration of the electronic timepiece 100 according to the first embodiment when the opening diameter of the opening 150a of the through hole 150 is widened to h3. 貫通孔150の開口部150aの開口径をh2に拡幅した場合の実施の形態1の電子時計100の構成を示す図である。FIG. 3 is a diagram showing a configuration of the electronic timepiece 100 according to the first embodiment when the opening diameter of the opening 150a of the through hole 150 is widened to h2. 電子時計100に流れる電流の電流値と2次側コア120の貫通孔150の開口部150aの開口径との関係を示すグラフである。5 is a graph showing the relationship between the current value of the current flowing through the electronic timepiece 100 and the opening diameter of the opening 150a of the through hole 150 of the secondary core 120. 実施の形態2にかかる電子時計200および充電装置500の構成を示す説明図である。FIG. 6 is an explanatory diagram illustrating configurations of an electronic timepiece 200 and a charging device 500 according to a second embodiment. 電子時計200に対する電磁界シミュレーション解析の結果を示す図である。It is a figure which shows the result of the electromagnetic field simulation analysis with respect to the electronic timepiece. 電子時計200に対する電磁界シミュレーション解析の結果を示す図である。It is a figure which shows the result of the electromagnetic field simulation analysis with respect to the electronic timepiece. 実施の形態3にかかる電子時計300および充電装置500の構成を示す説明図である。FIG. 6 is an explanatory diagram showing configurations of an electronic timepiece 300 and a charging device 500 according to a third embodiment. 実施の形態4にかかる電子時計400および充電装置500の構成を示す説明図である。FIG. 6 is an explanatory diagram illustrating configurations of an electronic timepiece 400 and a charging device 500 according to a fourth embodiment. 特許文献1における電源装置550の1次コイル530と電子機器600の2次コイル620を説明する断面図である。10 is a cross-sectional view illustrating a primary coil 530 of a power supply device 550 and a secondary coil 620 of an electronic device 600 in Patent Document 1. FIG. 特許文献2における無接点電磁誘導式充電機構の1次コイル510と2次コイル710を説明する断面図である。6 is a cross-sectional view illustrating a primary coil 510 and a secondary coil 710 of a contactless electromagnetic induction charging mechanism in Patent Document 2. FIG.

符号の説明Explanation of symbols

10 2次電池
100,200,300,400 電子時計
110,210,310,410 2次側コイル
120,220,320,420 2次側コア
121,221,321,421 凸部
121a 鍔部
150,250,350,450 貫通孔
150a,250a,350a,450a,150b,250b,350b,450b 開口部
500 充電装置
510 1次側コイル
520 1次側コア
10 Secondary battery 100, 200, 300, 400 Electronic timepiece 110, 210, 310, 410 Secondary side coil 120, 220, 320, 420 Secondary side core 121, 221, 321, 421 Convex part 121a collar part 150, 250 , 350, 450 Through hole 150a, 250a, 350a, 450a, 150b, 250b, 350b, 450b Opening 500 Charging device 510 Primary coil 520 Primary core

Claims (8)

伝送側コイルを巻装した伝送側コアを有する非接触伝送装置から充電電力または情報を非接触で授受する非接触授受装置において、
中央付近に凸部を有し、前記非接触伝送装置から前記充電電力または情報を授受される際、前記伝送側コアと略同軸上に対向して配置される授受側コアと、
前記凸部に巻装された授受側コイルと
を備え、
前記授受側コアは、貫通孔を有し、
前記貫通孔は、前記伝送側コアの対向面側の第1開口部と、前記伝送側コアと対向しない面側の第2開口部との開口面積または開口幅が異なっており、
前記授受側コイルの中空部の幅は、前記第1開口部の幅および前記第2開口部の幅よりも大きく、
前記授受側コイルは、前記伝送側コイルと前記伝送側コアとにより発生された磁束を検出して誘導起電力を発生することで、前記非接触伝送装置から前記充電電力または情報を授受することを特徴とする非接触授受装置。
In a non-contact transfer device that transfers charging power or information in a non-contact manner from a non-contact transmission device having a transmission-side core wound with a transmission-side coil.
A transfer side core that has a convex portion near the center and is disposed substantially coaxially with the transmission side core when the charging power or information is transferred from the non-contact transmission device;
A receiving and receiving side coil wound around the convex part ;
With
The delivery side core has a through hole,
The through hole is different in opening area or opening width between the first opening on the facing surface side of the transmission side core and the second opening on the surface side not facing the transmission side core,
The width of the hollow portion of the delivery side coil is larger than the width of the first opening and the width of the second opening,
The transfer side coil receives and transfers the charging power or information from the non-contact transmission device by detecting the magnetic flux generated by the transmission side coil and the transmission side core and generating an induced electromotive force. A non-contact transfer device.
前記貫通孔は、断面形状が凸型であり、前記第1開口部の開口面積が前記第2開口部の開口面積より小さいことを特徴とする請求項1に記載の非接触授受装置。   2. The non-contact transfer device according to claim 1, wherein the through hole has a convex cross-sectional shape, and an opening area of the first opening is smaller than an opening area of the second opening. 前記貫通孔は、前記第2開口部の開口幅が、前記第1開口部の開口幅より拡幅していることを特徴とする請求項1または2に記載の非接触授受装置。   3. The non-contact transfer device according to claim 1, wherein an opening width of the second opening is wider than an opening width of the first opening. 前記貫通孔は、前記第1開口部の開口幅が、前記伝送側コイルが巻装された前記伝送側コアの中央付近の凸部の外形幅または前記伝送側コイルの中空部の幅のいずれか一方より大きく、かつ前記伝送側コイルの外形幅より小さいことを特徴とする請求項1〜3のいずれか一つに記載の非接触授受装置。   In the through hole, the opening width of the first opening portion is either the outer width of the convex portion near the center of the transmission side core around which the transmission side coil is wound or the width of the hollow portion of the transmission side coil. The contactless transmission / reception apparatus according to claim 1, wherein the contactless transmission / reception apparatus is larger than one and smaller than an outer width of the transmission-side coil. 前記貫通孔は、前記第1開口部の開口幅が、前記伝送側コイルで発生し前記非接触授受装置の筐体を通過する際の磁束の面積が、前記授受側コアを通過する磁束を極端に小さくしない範囲となる最大幅で拡幅していることを特徴とする請求項4に記載の非接触授受装置。   In the through hole, the opening width of the first opening is generated in the transmission side coil, and the area of the magnetic flux when passing through the housing of the non-contact transfer device is extremely high in the magnetic flux passing through the transfer side core. The non-contact transfer device according to claim 4, wherein the non-contact transfer device is widened with a maximum width which is a range not to be reduced. 前記充電電力または情報を蓄積する電力蓄積部をさらに備え、
前記貫通孔は、前記第2開口部の開口幅が、前記電力蓄積部の外形幅と略同一長さであることを特徴とする請求項1〜5のいずれか一つに記載の非接触授受装置。
A power storage unit for storing the charging power or information;
6. The contactless transmission / reception according to claim 1, wherein an opening width of the second opening portion is substantially the same as an outer width of the power storage portion. apparatus.
前記貫通孔は、その厚さが、前記電力蓄積部の厚さと略同一厚さであることを特徴とする請求項6に記載の非接触授受装置。   The contactless transmission / reception apparatus according to claim 6, wherein a thickness of the through hole is substantially the same as a thickness of the power storage unit. 非接触伝送装置における伝送側コイルと伝送側コアとにより発生された磁束を検出して誘導起電力を発生することで、前記非接触伝送装置から前記充電電力または情報を授受する授受側コアにおいて、
前記授受側コアは、中央付近に凸部および貫通孔を有し、前記非接触伝送装置から充電電力または情報を授受される際、前記伝送側コアと略同軸上に対向して配置され、
前記貫通孔は、前記伝送側コアの対向面側の第1開口部と、前記伝送側コアと対向しない面側の第2開口部との開口面積または開口幅が異なっていて、
前記授受側コイルの中空部の幅は、前記第1開口部の幅および前記第2開口部の幅よりも大きいことを特徴とする授受側コア。
In the sending / receiving core that sends and receives the charging power or information from the contactless transmission device by detecting the magnetic flux generated by the transmission side coil and the transmission side core in the contactless transmission device and generating an induced electromotive force,
The transfer side core has a convex portion and a through hole in the vicinity of the center, and when the charging power or information is transferred from the non-contact transmission device, is disposed substantially coaxially with the transmission side core,
The through hole is different in opening area or opening width between the first opening on the opposite side of the transmission side core and the second opening on the side not facing the transmission side core ,
The delivery-side core characterized in that the width of the hollow portion of the delivery-side coil is larger than the width of the first opening and the width of the second opening .
JP2007296654A 2007-11-15 2007-11-15 Non-contact transfer device and transfer core Expired - Fee Related JP5363720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296654A JP5363720B2 (en) 2007-11-15 2007-11-15 Non-contact transfer device and transfer core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296654A JP5363720B2 (en) 2007-11-15 2007-11-15 Non-contact transfer device and transfer core

Publications (2)

Publication Number Publication Date
JP2009123943A JP2009123943A (en) 2009-06-04
JP5363720B2 true JP5363720B2 (en) 2013-12-11

Family

ID=40815775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296654A Expired - Fee Related JP5363720B2 (en) 2007-11-15 2007-11-15 Non-contact transfer device and transfer core

Country Status (1)

Country Link
JP (1) JP5363720B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437618B2 (en) * 2008-10-17 2014-03-12 リコーエレメックス株式会社 Non-contact transmission device
JP5294793B2 (en) * 2008-10-17 2013-09-18 リコーエレメックス株式会社 Non-contact transmission device
JP2010219330A (en) * 2009-03-17 2010-09-30 Ricoh Elemex Corp Primary coil and secondary coil of contactless energy transmission device, method of determining coil conditions of contactless energy transmission device
JP5653587B2 (en) * 2009-03-17 2015-01-14 リコーエレメックス株式会社 Primary core of non-contact energy transmission device, charging device for non-contact charging equipment
JP5603558B2 (en) * 2009-03-17 2014-10-08 リコーエレメックス株式会社 Non-contact energy transmission device, electronic watch, charging device
JP2013533607A (en) * 2010-05-28 2013-08-22 コーニンクレッカ フィリップス エヌ ヴェ Improved receiver coil
JP5818431B2 (en) * 2010-12-21 2015-11-18 東海旅客鉄道株式会社 Transformer
US20150295416A1 (en) * 2011-10-07 2015-10-15 Powerbyproxi Limited Transmitter for an inductive power transfer
JP6241783B2 (en) * 2013-09-19 2017-12-06 パナソニックIpマネジメント株式会社 Imaging apparatus and imaging system
KR101657570B1 (en) 2014-08-19 2016-09-20 한국과학기술원 pickup with core slit for wireless power transmission system weight reduction
CN107077963B (en) 2014-09-26 2021-08-06 苹果公司 Transmitter for inductive power transfer system
KR102535513B1 (en) * 2016-03-11 2023-05-23 엘지전자 주식회사 Display apparatus
KR101927215B1 (en) * 2016-07-11 2018-12-11 한국과학기술원 Power Feeding Apparatus Strong to Deviation
TW201812807A (en) * 2018-01-04 2018-04-01 富達通科技股份有限公司 Magnetic conductor structure composed of multiple magnetic conductors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024784B2 (en) * 1990-09-26 2000-03-21 株式会社ブリヂストン Tire internal monitoring device
JP3430803B2 (en) * 1996-06-25 2003-07-28 松下電工株式会社 Non-contact power transmission device
JPH11195545A (en) * 1997-12-27 1999-07-21 Hosiden Corp Electromagnetic-inducing charging mechanism without making, secondary coil used for this, and core of the secondary coil
JP3654223B2 (en) * 2001-09-14 2005-06-02 松下電工株式会社 Non-contact transformer
JP3957152B2 (en) * 2002-02-13 2007-08-15 リコーエレメックス株式会社 Wristwatch type transmitter
US8193767B2 (en) * 2006-03-24 2012-06-05 Kabushiki Kaisha Toshiba Power receiving device, and electronic apparatus and non-contact charger using the same

Also Published As

Publication number Publication date
JP2009123943A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5363720B2 (en) Non-contact transfer device and transfer core
JP6427228B2 (en) Wireless power supply system, power feeding device, and power receiving device
WO2012132535A1 (en) Power-receiving coil, power-reception device, and contactless power-transmission system
TWI504097B (en) Power supply and portable equipment
JP6025893B2 (en) Wireless power supply system
JP2002199598A (en) Contactless battery charger
TW201421848A (en) Wireless power transmission apparatus
JP6059522B2 (en) Wireless power supply system, power supply device, power reception device, and magnetic field space forming method
JPH11195545A (en) Electromagnetic-inducing charging mechanism without making, secondary coil used for this, and core of the secondary coil
JP2014187724A (en) Secondary power-receiving apparatus and charging stand and secondary power-receiving apparatus
CN105103407A (en) Power-receiving device
JP6048787B2 (en) Magnetic sheet, transmission coil component and non-contact charging device
JP2009164279A (en) Non-contact transfer device
JP2019079870A (en) Transmission coil component for non-contact power supply, method of manufacturing the same, and non-contact power supply device
KR101338769B1 (en) Wireless energy receiver
JP2010219330A (en) Primary coil and secondary coil of contactless energy transmission device, method of determining coil conditions of contactless energy transmission device
JP5294793B2 (en) Non-contact transmission device
JP2015002580A (en) Wireless charging device
WO2017051821A1 (en) Power reception/feeding device
EP2860741B1 (en) Contactless power supply mechanism and secondary coil for contactless power supply mechanism
JPH11341712A (en) Power supply
JP2015079847A (en) Non-contact charge module, battery pack and electronic apparatus
JP6135748B2 (en) Power receiving coil, power receiving device, and non-contact power transmission system
JP5603558B2 (en) Non-contact energy transmission device, electronic watch, charging device
KR20160121361A (en) Apparatus for receiving power wirelessly and power supply apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Ref document number: 5363720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees