JP5362471B2 - Molding method of composite fiber body - Google Patents

Molding method of composite fiber body Download PDF

Info

Publication number
JP5362471B2
JP5362471B2 JP2009171003A JP2009171003A JP5362471B2 JP 5362471 B2 JP5362471 B2 JP 5362471B2 JP 2009171003 A JP2009171003 A JP 2009171003A JP 2009171003 A JP2009171003 A JP 2009171003A JP 5362471 B2 JP5362471 B2 JP 5362471B2
Authority
JP
Japan
Prior art keywords
density layer
low
molding
molding material
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009171003A
Other languages
Japanese (ja)
Other versions
JP2011025439A (en
Inventor
忠和 成富
文明 武林
邦明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasai Kogyo Co Ltd
Original Assignee
Kasai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasai Kogyo Co Ltd filed Critical Kasai Kogyo Co Ltd
Priority to JP2009171003A priority Critical patent/JP5362471B2/en
Publication of JP2011025439A publication Critical patent/JP2011025439A/en
Application granted granted Critical
Publication of JP5362471B2 publication Critical patent/JP5362471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of molding a composite fiber body having mild gradient in change of density of a high density layer and a low density layer in the thickness direction, and effective as a sound absorbing interior material. <P>SOLUTION: Only the lower face side of a molding material 1A is compressed and molded as the high density layer 1a of a desired thickness under temperature control of a lower mold 2B, in a process of heating and pressurizing by a primary mold 2. The primary mold 2 is opened to restore the low density layer 1b on the upper surface of the molding material 1A, and in a state that hot air is sent to the molding material 1A and it is heated to a prescribed temperature, the molding material 1A is cold-pressed by a secondary mold 3, to thereby compress and mold the low density layer 1b to a prescribed thickness and density. Thus, the composite fiber body 1 is formed having mild gradient in the change of density of the high density layer 1a and low density layer 1b, and effective as the sound absorbing interior material. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、天然繊維,化学繊維や熱可塑性繊維からなる主繊維と、バインダーとしてこれよりも低融点の熱可塑性繊維とが不織状に交絡,混合した複合繊維体の成形方法、より詳しくは、厚み方向で高密度層と低密度層とに密度変化した複合繊維体の成形方法に関する。   The present invention relates to a method for forming a composite fiber body in which a main fiber composed of natural fiber, chemical fiber or thermoplastic fiber and a thermoplastic fiber having a lower melting point as a binder are entangled and mixed in a non-woven manner, more specifically The present invention also relates to a method for forming a composite fiber body in which the density is changed between a high-density layer and a low-density layer in the thickness direction.

前記厚み方向で高密度層と低密度層とに密度変化した複合繊維体は、例えば、自動車のダッシュインシュレータやルーフトリム等の吸音性内装材として用いられる。   The composite fiber body in which the density is changed between the high-density layer and the low-density layer in the thickness direction is used as a sound-absorbing interior material such as a dash insulator and a roof trim of an automobile.

前記吸音性内装材に代表されるダッシュインシュレータは、一側面を低密度層とし他側面を高密度層とした2層構造体として構成され、前記低密度層をダッシュパネルの車室内側の側面に密接させて重合配置し、高密度層が車室内に露出した状態でクリップ等の止着部材により取付けられる。   A dash insulator typified by the sound-absorbing interior material is configured as a two-layer structure in which one side surface is a low-density layer and the other side surface is a high-density layer, and the low-density layer is formed on the side surface of the dash panel on the vehicle interior side. They are placed in close contact with each other and attached with a fastening member such as a clip with the high-density layer exposed in the passenger compartment.

このダッシュインシュレータは、一般的には予め所定形状に熱プレス成形された高密度繊維体を適宜の接着剤を介して低密度繊維体に積層し、これを加熱成形型により所定形状,所定厚みに熱プレス成形した積層構造体として構成される。   In general, this dash insulator is formed by laminating a high-density fiber body that has been hot-press-molded in advance into a predetermined shape on a low-density fiber body through an appropriate adhesive, and then forming this into a predetermined shape and thickness using a thermoforming mold It is configured as a laminated structure formed by hot press molding.

前記ダッシュインシュレータは、ダッシュパネル面に密着した低密度層でエンジンルーム側の騒音を吸収し、車室内に露出した高密度層の保形機能により所要の取付剛性が確保されるが、この高密度層でもエンジンルーム側からの騒音の遮断および車室側の騒音を吸収して音の反射を抑制し、総合的に車室内の静粛性を高められる吸音効果が求められている。   The dash insulator absorbs the noise on the engine room side with a low-density layer that is in close contact with the dash panel surface, and the required mounting rigidity is ensured by the shape retention function of the high-density layer that is exposed in the passenger compartment. There is also a demand for a sound absorbing effect that can also block noise from the engine room and absorb noise on the passenger compartment side to suppress reflection of the sound and improve the quietness of the passenger compartment comprehensively.

ところが、ダッシュインシュレータが前述のように低密度繊維体と高密度繊維体との積層構造体であると、これら繊維体の密度変化が急激なため、車室内に露出した高密度繊維体による車室内騒音の反射量が大きくなって、ダッシュインシュレータの吸音性能を阻害することが指摘されている。   However, if the dash insulator is a laminated structure of low-density fiber bodies and high-density fiber bodies as described above, the density change of these fiber bodies is abrupt. It has been pointed out that the amount of noise reflection increases, impairing the sound absorption performance of the dash insulator.

一方、近年では例えば特許文献1に示されているように、主繊維と熱可塑性結合材からなるバインダーとを混合した成形材料を、該バインダーの軟化溶融温度に加熱してプレスし、その際に該成形材料の片面を高温下でプレスし、他方の面を低温下でプレスすることにより、両面の密度が異なる板状に成形する技術が提案されている。   On the other hand, in recent years, for example, as shown in Patent Document 1, a molding material in which a main fiber and a binder made of a thermoplastic binder are mixed is heated to the softening and melting temperature of the binder and pressed. A technique has been proposed in which one side of the molding material is pressed at a high temperature and the other side is pressed at a low temperature to form a plate having different densities on both sides.

特開2001−322137号公報JP 2001-322137 A

前記特許文献1の技術によれば、厚み方向で高密度層と低密度層とに密度変化し、その密度の変化勾配が緩やかな板状の繊維体が成形可能である。しかし、熱プレスの一対の金型温度を高温と低温とに設定して成形材料を熱プレス成形するために、吸音に要求される低密度層と高密度層とを層状に形成する場合に、これら金型の温度管理および金型による成形材料の加圧時間管理が難しく、前記ダッシュインシュレータのように吸音性能,音の透過損失に優れた吸音性内装材として有効な、厚み方向で高密度層と低密度層とに密度変化し、かつ、その密度の変化勾配が緩やかな繊維成形体を簡単に得ることはできない。   According to the technique of Patent Document 1, it is possible to mold a plate-like fibrous body that changes in density into a high-density layer and a low-density layer in the thickness direction and has a gentle gradient in the density change. However, in order to heat press molding a molding material by setting the temperature of a pair of hot press molds to a high temperature and a low temperature, when forming a low density layer and a high density layer required for sound absorption in layers, It is difficult to control the temperature of these molds and pressurizing time of the molding material by the molds, and it is effective as a sound-absorbing interior material with excellent sound absorption performance and sound transmission loss like the dash insulator. It is not possible to easily obtain a fiber molded body in which the density changes to a low density layer and the density change gradient is gentle.

そこで、本発明は簡単な方法により、厚み方向で高密度層と低密度層とに密度変化し、かつ、その密度の変化勾配が緩やかで、吸音性内装材として用いて有効な複合繊維体を得ることができる複合繊維体の成形方法を提供するものである。   Therefore, the present invention provides a composite fiber body that changes in density into a high density layer and a low density layer in the thickness direction by a simple method, and has a gentle gradient in density change, and is effective as a sound-absorbing interior material. A method of forming a composite fiber body that can be obtained is provided.

本発明の複合繊維体の成形方法にあっては、主繊維と、これよりも低融点の熱可塑性繊維からなるバインダーとが混合した繊維集合体を成形素材として、前記成形素材を1次成形型によりその一側面を圧縮成形加工に必要な所要温度に加熱した状態で圧縮して、該成形素材の一側面に所要厚みの高密度層を成形する工程と、前記1次成形型を型開きして、前記成形素材の高密度化されていない低密度層を復元させる工程と、前記成形素材の復元された低密度層を、流体熱媒により前記圧縮成形加工に必要な所要温度に加熱する工程と、前記低密度層が加熱された成形素材を、2次成形型により所定形状に加圧成形して、前記低密度層を所要の厚みに圧縮成形する工程と、を含むことを特徴としている。   In the method for molding a composite fiber body according to the present invention, a fiber aggregate in which main fibers and a binder made of a thermoplastic fiber having a lower melting point than that are mixed is used as a molding material, and the molding material is used as a primary molding die. And compressing in a state where one side is heated to a required temperature required for compression molding, forming a high-density layer having a required thickness on one side of the molding material, and opening the primary mold. A step of restoring the non-densified low-density layer of the molding material, and a step of heating the restored low-density layer of the molding material to a required temperature required for the compression molding by a fluid heat medium And a step of pressure-molding a molding material in which the low-density layer is heated into a predetermined shape with a secondary molding die, and compression-molding the low-density layer to a required thickness. .

この発明の特徴によれば、前記1次成形型により加熱,圧縮する工程で成形素材の片面のみを所要厚みの高密度層として形成するため、要求される密度の高密度層を形成するための金型の温度管理および加工時間管理を容易に行うことができる。   According to the feature of the present invention, only one surface of the molding material is formed as a high-density layer having a required thickness in the process of heating and compressing by the primary mold, and thus a high-density layer having a required density is formed. The temperature control and processing time management of the mold can be easily performed.

そして、成形素材の片面に高密度層が形成されると、1次成形型を型開きして一旦低密度層を復元し、これに熱風等の流体熱媒を送り込んで所要温度に加熱するため、この低密度層の加熱温度管理および加熱時間管理を容易に行えると共に、低密度層の全体に熱風を行き渡らせて加熱時間を短縮することができる。   When a high-density layer is formed on one side of the molding material, the primary mold is opened to temporarily restore the low-density layer, and a fluid heat medium such as hot air is sent to this and heated to the required temperature. The heating temperature and the heating time of the low density layer can be easily managed, and the heating time can be shortened by spreading hot air over the entire low density layer.

このようにして、成形素材の低密度層がくまなく熱風により所定温度に加熱された段階で、2次成形型により該成形素材を所定形状に加圧成形するので、要求される密度の低密度層を短時間で、かつ、容易に圧縮加工することができると共に、該低密度層の密度の安定化を図ることが可能となり、高密度層と低密度層との密度の変化勾配が緩やかな複合繊維体が得られる。   In this way, when the low density layer of the molding material is heated to a predetermined temperature with hot air throughout, the molding material is pressure-molded into a predetermined shape by the secondary mold, so that the required density is low. The layer can be easily compressed in a short time and the density of the low density layer can be stabilized, and the gradient of density change between the high density layer and the low density layer is gentle. A composite fiber body is obtained.

また、本発明の複合繊維体の成形方法にあっては、主繊維と、これよりも低融点の熱可塑性繊維からなるバインダーとが混合した繊維集合体を成形素材として、前記成形素材を1次成形型によりその一側面を圧縮成形加工に必要な所要温度に加熱した状態で圧縮して、該成形素材の一側面に所要厚みの高密度層を形成する工程と、前記1次成形型の非加熱側の金型内を通して、前記成形素材の高密度化されていない低密度層に全体的に冷却風を導入して該低密度層を低温保持する工程と、前記低密度層が低温保持された成形素材を2次成形型により加圧して前記高密度層を低密度層と共に所定形状に加圧成形する工程と、前記2次成形型を型開きして、成形素材の低密度層を高密度層の加工形状に沿って復元させる工程と、を含むことを特徴としている。   In the method for molding a composite fiber body according to the present invention, a fiber aggregate in which a main fiber and a binder made of a thermoplastic fiber having a lower melting point than this fiber are used as a molding material. A step of compressing one side of the molding material in a state heated to a required temperature required for compression molding to form a high-density layer having a required thickness on one side of the molding material; A process of introducing cooling air entirely into the non-densified low-density layer of the molding material through the heating-side mold to keep the low-density layer at a low temperature, and the low-density layer is kept at a low temperature Pressing the molded material with a secondary mold to press-mold the high-density layer together with the low-density layer into a predetermined shape, and opening the secondary mold to increase the low-density layer of the molding material. And a step of restoring along the processing shape of the density layer. It is.

この発明の特徴によれば、前記1次成形型により加熱,圧縮する工程で成形素材の片面のみを所要厚みの高密度層として形成するため、要求される密度の高密度層を形成するための金型の温度管理および加圧時間管理を容易に行うことができる。   According to the feature of the present invention, only one surface of the molding material is formed as a high-density layer having a required thickness in the process of heating and compressing by the primary mold, and thus a high-density layer having a required density is formed. The mold temperature control and pressurization time management can be easily performed.

そして、成形素材の片面に高密度層の形成後もしくは高密度層の形成過程で、1次成形型の非加熱側の金型内を通して前記成形素材の高密度化されていない低密度層に全体的に冷却風を導入して該低密度層を低温保持するため、前記高密度層の低密度層側への高密度化の進行が抑制され、要求される所要厚みの高密度層を容易に形成することが可能となる。   Then, after forming the high-density layer on one side of the molding material or in the process of forming the high-density layer, the whole of the molding material is not densified through the mold on the non-heating side of the primary molding die. Since cooling air is introduced to keep the low density layer at a low temperature, the progress of densification of the high density layer toward the low density layer is suppressed, and the high density layer having the required thickness can be easily formed. It becomes possible to form.

このようにして、成形素材の片面側の高密度層の高密度化の進行が抑制され、かつ、低密度層が低温保持された状態で該成形素材を2次成形型により所定形状に加圧成形した後、該2次成形型を型開きして前記成形素材の低密度層を高密度層の加工形状に沿って復元させるので、要求される所要厚みと所要密度の低密度層を容易に成形することができると共に、該低密度層の密度の安定化を図ることが可能となり、高密度層と低密度層との密度の変化勾配が緩やかな複合繊維体が得られる。   In this way, the progress of densification of the high-density layer on one side of the molding material is suppressed, and the molding material is pressed into a predetermined shape by the secondary molding die while the low-density layer is kept at a low temperature. After molding, the secondary mold is opened to restore the low-density layer of the molding material along the processed shape of the high-density layer, so that the low-density layer with the required thickness and required density can be easily obtained. In addition to being able to be molded, it is possible to stabilize the density of the low-density layer, and a composite fiber body in which the density change gradient between the high-density layer and the low-density layer is gentle can be obtained.

本発明によれば、始めに成形素材の片面側のみを高密度化して所要厚み,所要密度の高密度層を形成するので、高密度層を形成するための成形金型の温度管理および加圧時間管理が容易となる。   According to the present invention, since only one side of the molding material is first densified to form a high-density layer having a required thickness and required density, temperature control and pressurization of the molding die for forming the high-density layer are performed. Time management becomes easy.

この高密度層の形成に続いて、成形素材の高密度化されていない低密度層を、成形型を型開きして一旦復元させた状態で該低密度層内にその圧縮成形加工に適した温度の熱風等の流体熱媒を送り込み,あるいは、前記高密度層の形成時に前記低密度層に冷却風を送り込んで該低密度層を低温保持して、前記成形素材を2次的に所定形状に加圧成形するので、要求される密度および厚みの高密度層と低密度層からなり、かつ、その密度の変化勾配が緩やかな2層構造の複合繊維体を容易に得ることができる。   Following the formation of this high-density layer, the low-density layer of the molding material that has not been densified is suitable for compression molding in the low-density layer after the mold is opened and restored once. A fluid heat medium such as hot air at a temperature is sent, or cooling air is sent to the low-density layer when the high-density layer is formed, and the low-density layer is kept at a low temperature, so that the molding material is secondarily shaped into a predetermined shape. Therefore, it is possible to easily obtain a composite fiber body having a two-layer structure including a high-density layer and a low-density layer having a required density and thickness, and a gentle gradient of density change.

本発明の第1実施形態を示す工程図。Process drawing which shows 1st Embodiment of this invention. 本発明の第2実施形態を示す工程図。Process drawing which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す工程図。Process drawing which shows 3rd Embodiment of this invention. 本発明の方法によって得られた複合繊維体の厚み方向の密度の変化勾配を、従来の積層構造体のものと比較して示すグラフ。The graph which shows the change gradient of the density of the thickness direction of the composite fiber body obtained by the method of this invention compared with the thing of the conventional laminated structure.

以下、本発明の実施形態を図面と共に詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の方法の第1実施形態を示し、高密度層と低密度層との2層構造からなる複合繊維体1の成形素材1Aの片面に高密度層1aを形成する1次成形型2と、この片面に高密度層1aが形成された成形素材1Aを所定の形状に加圧成形する2次成形型3とが用いられている。   FIG. 1 shows a first embodiment of the method of the present invention, in which a high-density layer 1a is formed on one side of a molding material 1A of a composite fiber body 1 having a two-layer structure of a high-density layer and a low-density layer. A mold 2 and a secondary molding mold 3 that press-molds a molding material 1A having a high-density layer 1a formed on one side thereof into a predetermined shape are used.

本発明における複合繊維体とは、天然繊維,化学繊維や適宜の熱可塑性繊維からなる主繊維と、これよりも低融点の適宜の熱可塑性繊維とが不織状に交絡,混合した成形繊維体を意味し、その成形素材とは、前記主繊維と、これよりも低融点の前記熱可塑性繊維をバインダーとして用いて、これら主繊維とバインダーとを任意の配合割合で混合した繊維集合体を意味している。   The composite fiber body in the present invention is a molded fiber body in which a main fiber made of natural fiber, chemical fiber or appropriate thermoplastic fiber and an appropriate thermoplastic fiber having a lower melting point than this are entangled and mixed in a non-woven form. The molding material means a fiber assembly in which the main fiber and the thermoplastic fiber having a melting point lower than the main fiber are used as a binder, and the main fiber and the binder are mixed at an arbitrary blending ratio. doing.

この第1実施形態では、前記1次成形型2として、上型2Aおよび下型2Bとも平板状に形成した金型が用いられ、下型2Bには加熱温度調整が可能なホットプレートが用いられる。   In the first embodiment, as the primary mold 2, a mold formed in a flat plate shape is used for both the upper mold 2 </ b> A and the lower mold 2 </ b> B, and a hot plate capable of adjusting the heating temperature is used for the lower mold 2 </ b> B. .

図1に示す工程(a)において、前記1次成形型2の上型2Aと下型2Bとにより、前記成形素材1Aが平板状に圧縮成形加工される。この工程(a)では前記下型2Bが成形素材1Aの下面側の圧縮成形加工に必要な所要温度、即ち、成形素材1Aに用いられる前記バインダー(熱可塑性繊維)の表面が軟化,溶融する温度以上に加熱調整されている。この下型2Bに当接した成形素材1Aの下面側が、該下型2Bによる加熱下で所定時間加圧されることにより、成形素材1Aの下面側に所要厚みの高密度層1aが圧縮成形される。   In the step (a) shown in FIG. 1, the molding material 1 </ b> A is compression-molded into a flat plate shape by the upper mold 2 </ b> A and the lower mold 2 </ b> B of the primary mold 2. In this step (a), the lower mold 2B is required for compression molding on the lower surface side of the molding material 1A, that is, the temperature at which the surface of the binder (thermoplastic fiber) used in the molding material 1A is softened and melted. The heating is adjusted as described above. The lower surface side of the molding material 1A in contact with the lower mold 2B is pressed for a predetermined time under heating by the lower mold 2B, so that the high-density layer 1a having a required thickness is compression molded on the lower surface side of the molding material 1A. The

前記成形素材1Aの高密度層1aの密度および成形厚みは、前記下型2Bの加熱温度と、該下型2Bと上型2Aとによる成形素材1Aの加圧力と加圧時間の設定によって任意に調整される。   The density and molding thickness of the high-density layer 1a of the molding material 1A can be arbitrarily set by setting the heating temperature of the lower mold 2B and the pressure and pressing time of the molding material 1A by the lower mold 2B and the upper mold 2A. Adjusted.

図1に示す工程(b)では、前記1次成形型2の上型2Aと下型2Bとが型開きされ、この1次成形型2の型開きにより、前記成形素材1Aの高密度化されていない上面側の低密度層1bが自体の弾性によりほぼ元の自由厚み状態にまで復元する。そして、前記低密度層1bが復元された状態で、前記上型2Aに上下方向に貫通して形成された複数の通路2aを通して、該低密度層1bにその圧縮成形加工に必要な前記所要温度に加熱された流体熱媒、例えば熱風が供給される。この熱風の供給は、前述のように上型2Aを上下方向に貫通した複数の通路2aを介して低密度層1bの面直方向に行われ、これにより、熱風が低密度層1bの隅々にまで行き渡って、該低密度層1bが短時間のうちに所要の圧縮成形加工温度にまで加熱される。   In the step (b) shown in FIG. 1, the upper mold 2A and the lower mold 2B of the primary mold 2 are opened, and the mold 1A is densified by the mold opening of the primary mold 2. The low-density layer 1b on the upper surface side that is not restored is restored to its original free thickness state by its own elasticity. Then, with the low density layer 1b restored, the required temperature required for compression molding of the low density layer 1b through a plurality of passages 2a formed through the upper mold 2A in the vertical direction. A heated fluid heat medium such as hot air is supplied. The supply of hot air is performed in the direction perpendicular to the low density layer 1b through the plurality of passages 2a penetrating the upper mold 2A in the vertical direction as described above, whereby hot air is supplied to every corner of the low density layer 1b. The low density layer 1b is heated to the required compression molding temperature within a short time.

このとき、前記下型2Bによる前記高密度層1aの加熱状態を継続しておいてもよいが、前記低密度層1bへの熱風導入によって高密度層1aをその加圧成形可能温度に維持させることが可能であるため、該下型2Bの加熱電源をオフにして消費電力を低減することもできる。   At this time, the heating state of the high-density layer 1a by the lower mold 2B may be continued, but the high-density layer 1a is maintained at the pressure molding temperature by introducing hot air into the low-density layer 1b. Therefore, the heating power of the lower mold 2B can be turned off to reduce power consumption.

このようにして、前記低密度層1bが熱風加熱された成形素材1Aは、図1に示す工程(c),(d)で、2次成形型3によりコールドプレスして所定形状に加圧成形される。   In this way, the molding material 1A in which the low density layer 1b is heated with hot air is cold-pressed by the secondary molding die 3 into a predetermined shape in steps (c) and (d) shown in FIG. Is done.

この2次成形型3は、上型であるコア型3Aと下型であるキャビティ型3Bとで構成されている。   The secondary mold 3 includes a core mold 3A that is an upper mold and a cavity mold 3B that is a lower mold.

前記工程(b)により低密度層1bが所要の圧縮成形加工温度に熱風加熱された成形素材1Aは前記工程(c)に移行され、コア型3Aとキャビティ型3Bとにより所要時間コールドプレスされ、例えば工程(c)にて示すように成形素材1Aの中央部分と両側部とで低密度層1bの厚み寸法が異なる所要の凹凸形状に加圧成形される。   The molding material 1A in which the low-density layer 1b is heated with hot air to the required compression molding processing temperature in the step (b) is transferred to the step (c) and cold-pressed by the core die 3A and the cavity die 3B for a required time, For example, as shown in the step (c), it is pressure-molded into a required concavo-convex shape in which the thickness dimension of the low density layer 1b is different between the central portion and both side portions of the molding material 1A.

この工程(c)により所要形状に加圧成形されて、成形素材1Aの高密度層1aと低密度層1bとが冷却固化すると、工程(d)においてコア型3Aとキャビティ型3Bとが型開きされて、下面側に高密度層1aと上面側に低密度層1bとを有する2層構造の所定形状の複合繊維体1が型抜きして得られる。   When the high-density layer 1a and the low-density layer 1b of the molding material 1A are pressure-molded in this step (c) and cooled and solidified, the core mold 3A and the cavity mold 3B are opened in the step (d). Thus, a composite fiber body 1 of a predetermined shape having a two-layer structure having a high density layer 1a on the lower surface side and a low density layer 1b on the upper surface side is obtained by die cutting.

前記工程(b)において、成形素材1Aの復元された低密度層1bを熱風で加熱した例を示しているが、流体熱媒として熱風の他に、水蒸気または熱水を用いることも可能である。   In the step (b), an example in which the restored low density layer 1b of the molding material 1A is heated with hot air is shown, but it is also possible to use water vapor or hot water as a fluid heat medium in addition to hot air. .

以上の第1実施形態の方法によれば、前記1次成形型2により加熱,圧縮する工程で成形素材1Aの下面側(片面)のみを所要厚みの高密度層1aとして形成するため、下型2Bの加熱温度を適切に設定して、上,下型2A,2Bによる成形素材1Aの加圧力と加圧時間を適切に設定すればよいので、前記従来技術のような上,下型の加熱温度バランスと、この加熱温度と加圧時間とのバランスを考慮する必要がなく、要求される密度および厚みの高密度層1aを形成するための金型の温度管理および加圧時間管理を容易にすることができる。   According to the method of the first embodiment described above, since only the lower surface side (one surface) of the molding material 1A is formed as the high-density layer 1a having the required thickness in the process of heating and compressing with the primary molding die 2, the lower mold The heating temperature of 2B can be set appropriately, and the pressing force and pressurization time of the molding material 1A by the upper and lower molds 2A, 2B can be appropriately set. There is no need to consider the temperature balance and the balance between the heating temperature and the pressurization time, and the temperature control and pressurization time management of the mold for forming the high-density layer 1a having the required density and thickness are facilitated. can do.

そして、成形素材1Aの下面側に高密度層1bが形成されると、1次成形型2を型開きして一旦上面側の低密度層1bを復元し、これに熱風等の流体熱媒を送り込んで所要温度に加熱するため、この低密度層1bの加熱温度管理および加熱時間管理を容易に行える。   When the high-density layer 1b is formed on the lower surface side of the molding material 1A, the primary molding die 2 is opened to temporarily restore the lower-density layer 1b on the upper surface side, and a fluid heat medium such as hot air is applied thereto. Since it sends in and heats to required temperature, the heating temperature management and heating time management of this low density layer 1b can be performed easily.

しかも、前述のように低密度層1bを一旦復元した状態でこれに流体熱媒を送り込むため、低密度層1bの全体に流体熱媒を行き渡らせて加熱時間を短縮することができると共に、加熱温度の保温性も良好にすることができる。   In addition, since the fluid heat medium is sent to the low density layer 1b once restored as described above, the fluid heat medium can be spread over the entire low density layer 1b to shorten the heating time. The heat retention of the temperature can also be improved.

このようにして、成形素材1Aの低密度層1bがくまなく(隅々まで)熱風(流体熱媒)により所定温度に加熱された段階で、2次成形型3により該成形素材1Aを所定形状にコールドプレスして加圧成形するので、要求される密度および厚みの低密度層1bを短時間で、かつ、容易に圧縮加工することができると共に、該低密度層1bの密度を安定化することができる。   In this way, when the low density layer 1b of the molding material 1A is heated to a predetermined temperature by hot air (fluid heat medium) all over (to every corner), the secondary molding die 3 forms the molding material 1A into a predetermined shape. Therefore, the low density layer 1b having the required density and thickness can be easily compressed in a short time and the density of the low density layer 1b is stabilized. be able to.

この結果、例えば自動車用ダッシュインシュレータに代表される吸音性内装材として好適な、高密度層1aと低密度層1bの各密度,厚みが安定して、かつ、これらの密度の変化勾配が緩やかな複合繊維体1を容易に得ることができる。即ち、図4はこのようにして得られたダッシュインシュレータとしての複合繊維体1の厚み方向の密度の変化勾配を示している。同図において破線bに示すように、高密度繊維体と低密度繊維体とを熱プレス成形して積層構造体として得られた従来のダッシュインシュレータでは、その厚み方向の密度が前記積層の境界部分で急激に変化しているのに対して、本発明の方法によって得られたダッシュインシュレータにあっては、同図の実線aに示すように、高密度層と低密度層の密度の変化勾配が緩やかになっていることが判る。   As a result, the density and thickness of the high-density layer 1a and the low-density layer 1b, which are suitable as a sound-absorbing interior material represented by, for example, automobile dash insulators, are stable, and the gradient of change in these densities is gentle. The composite fiber body 1 can be obtained easily. That is, FIG. 4 shows the density change gradient in the thickness direction of the composite fiber body 1 as a dash insulator obtained in this way. In the conventional dash insulator obtained as a laminated structure by hot press-molding a high-density fiber body and a low-density fiber body, as shown by a broken line b in FIG. On the other hand, in the dash insulator obtained by the method of the present invention, as shown by a solid line a in FIG. It turns out that it is loose.

因みに、前記成形素材1Aの高密度層1aと低密度層1bとを、熱プレスにより単工程で成形しようとすると、前述のように金型の温度管理,加圧時間管理が難しくなる上、成形素材1Aの内部まで適正温度に加熱することが困難となり、成形性が悪化したり、成形時間が多大となるばかりでなく、各層の密度が不安定となる可能性がある。   Incidentally, if the high-density layer 1a and the low-density layer 1b of the molding material 1A are to be molded in a single process by hot pressing, it becomes difficult to control the temperature and pressurization time of the mold as described above. It becomes difficult to heat the inside of the material 1A to an appropriate temperature, and not only the moldability is deteriorated and the molding time is increased, but also the density of each layer may become unstable.

図2は本発明の方法の第2実施形態を示し、この第2実施形態では1次成形型21は、上型であるコア型21Aと下型であるキャビティ型21Bとで構成されていて、この1次成形型21により成形素材1Aを所要の凹凸形状に予備成形するようにしている。   FIG. 2 shows a second embodiment of the method of the present invention. In this second embodiment, the primary mold 21 is composed of a core mold 21A as an upper mold and a cavity mold 21B as a lower mold. The primary molding die 21 preliminarily molds the molding material 1A into a required uneven shape.

この第2実施形態では前記第1実施形態と同様に、1次成形型21により成形素材1Aの下面側(片面)のみを加熱,圧縮して所要厚みの高密度層1aとして形成するようにしている。   In the second embodiment, as in the first embodiment, only the lower surface side (one surface) of the molding material 1A is heated and compressed by the primary molding die 21 to form the high-density layer 1a having the required thickness. Yes.

従って、前記キャビティ側(下型)21Bは、適宜のヒータを内蔵した加熱型として構成されている。   Therefore, the cavity side (lower mold) 21B is configured as a heating mold incorporating a proper heater.

図2に示す工程(a)でコア型21Aとキャビティ型21Bとの間に成形素材1Aが供給されると、工程(b)でこれらコア型21Aとキャビティ型21Bとにより成形素材1Aが所要の凹凸形状に予備成形される。この工程(b)ではキャビティ型21Bが前記第1実施形態と同様に、成形素材1Aの下面側(片面)を圧縮成形加工に必要な前記所要温度に加熱管理されている。従って、成形素材1Aはその下面側のみが加圧,圧縮されて該下面側に所要厚みの高密度層1aが形成される。   When the molding material 1A is supplied between the core mold 21A and the cavity mold 21B in the step (a) shown in FIG. 2, the molding material 1A is required by the core mold 21A and the cavity mold 21B in the step (b). Pre-formed into a concavo-convex shape. In this step (b), similarly to the first embodiment, the cavity mold 21B is heated and managed at the required temperature required for compression molding processing on the lower surface side (one surface) of the molding material 1A. Therefore, only the lower surface side of the molding material 1A is pressurized and compressed, and the high-density layer 1a having a required thickness is formed on the lower surface side.

図2に示す工程(c)では、コア型21Aとキャビティ型21Bとが型開きされ、成形素材1Aの前記(b)の工程で高密度化されていない上面側の低密度層1bを一旦自体の弾性により元の自由厚み状態にまで復元させる。そして、この低密度層1bが復元された状態で、前記コア型21Aに上下方向に貫通して形成された複数の通路21aを通して、該低密度層1Aにその圧縮成形加工に必要な前記所要温度に加熱された流体熱媒、例えば熱風が供給される。これは前記第1実施形態における図1に示す工程(b)と全く同様で、前記熱風は前記低密度層1Aにほぼ面直方向に送り込まれる。   In the step (c) shown in FIG. 2, the core die 21A and the cavity die 21B are opened, and the low-density layer 1b on the upper surface side which has not been densified in the step (b) of the molding material 1A is once temporarily formed. It is restored to the original free thickness state by the elasticity of. Then, in a state where the low density layer 1b is restored, the required temperature required for the compression molding process of the low density layer 1A through the plurality of passages 21a formed through the core mold 21A in the vertical direction. A heated fluid heat medium such as hot air is supplied. This is exactly the same as the step (b) shown in FIG. 1 in the first embodiment, and the hot air is sent into the low-density layer 1A in a substantially perpendicular direction.

このようにして、前記低密度層1bが熱風加熱された成形素材1Aは、図2に示す工程(d)で、2次成形型31によりコールドプレスして所定の最終形状に加圧成形される。   In this way, the molding material 1A in which the low-density layer 1b is heated with hot air is cold-pressed by the secondary molding die 31 into a predetermined final shape in the step (d) shown in FIG. .

この2次成形型31は、前記1次成形型21と同様に上型であるコア型31Aと下型であるキャビティ型31Bとで構成されるが、前記コア型31Aの所要部位、例えば工程(d)にて図示するように型面の中央位置と両側端位置とには凸部31aが形成されていて、該2次成形型31に部分的に型クリアランスを極端に小さくした高密度層成形部分が構成されるようにしている。   Similar to the primary mold 21, the secondary mold 31 includes a core mold 31 </ b> A that is an upper mold and a cavity mold 31 </ b> B that is a lower mold. As shown in FIG. 4D, high-density layer molding in which convex portions 31a are formed at the center position and both end positions of the mold surface, and the mold clearance is partially made extremely small in the secondary molding die 31. The part is made up.

前記工程(c)により低密度層1bが所要の圧縮成形加工温度に熱風加熱された成形素材1Aは前記工程(d)に移行され、コア型31Aとキャビティ型31Bとにより所要時間コールドプレスされ、所要の最終凹凸形状に加圧成形される。このとき、前記コア型31Aの凸部31aの形成部分では、型クリアランスが極端に小さくされているため、成形素材1Aのこれら凸部31aに対応する部分では前記低密度層1bの圧縮度合が他の一般部分よりも極端に大きくなるため、当該部分では前記低密度層1bが高密度化して、成形素材1Aの上下面に亘って高密度層1aの厚みが増大される。   The molding material 1A in which the low density layer 1b is heated with hot air to the required compression molding processing temperature in the step (c) is transferred to the step (d), and is cold pressed by the core die 31A and the cavity die 31B for a required time, It is pressure-molded into the required final uneven shape. At this time, since the mold clearance is extremely small in the portion where the convex portion 31a of the core mold 31A is formed, the degree of compression of the low density layer 1b is different in the portion corresponding to the convex portion 31a of the molding material 1A. Therefore, the density of the low-density layer 1b is increased in the portion, and the thickness of the high-density layer 1a is increased over the upper and lower surfaces of the molding material 1A.

従って、この第2実施形態の方法によれば、前記第1実施形態と同様の作用効果が得られる他、得られた複合繊維体1には、部分的に表裏面に亘って高密度層1aの厚みが増大された高剛性部1a´が形成される。従って、この高剛性部1a´をダッシュパネル等への相手部材への固定部とすることにより、取付剛性を高められる複合繊維体1とすることができる。   Therefore, according to the method of the second embodiment, the same effect as that of the first embodiment can be obtained, and the obtained composite fiber body 1 has a high density layer 1a partially over the front and back surfaces. A highly rigid portion 1a ′ having an increased thickness is formed. Therefore, by using the high-rigidity portion 1a ′ as a fixing portion to the mating member to the dash panel or the like, it is possible to obtain the composite fiber body 1 that can increase the attachment rigidity.

前記第1,第2実施形態では、何れも1次成形型2,21の下型の2B,21Bを加熱型とし、上型2A,21Aから流体熱媒である熱風を送り込むようにしているが、これは、上型2A,21Aを加熱型とし、下型2B,21Bから熱風を送り込むようにしてもよいことは勿論である。   In both the first and second embodiments, the lower molds 2B and 21B of the primary molds 2 and 21 are used as heating molds, and hot air that is a fluid heat medium is fed from the upper molds 2A and 21A. Of course, the upper molds 2A and 21A may be heated, and hot air may be sent from the lower molds 2B and 21B.

図3は本発明の第3実施形態を示すもので、この第3実施形態に用いられる1次成形型2と、2次成形型3は、前記第1実施形態の成形方法に用いられたものと同様のものである。   FIG. 3 shows a third embodiment of the present invention. The primary molding die 2 and the secondary molding die 3 used in the third embodiment are those used in the molding method of the first embodiment. Is the same.

この第3実施形態の方法で前記第1実施形態の方法と異なる点は、図3に示す工程(a)で1次成形型2の上型2Aと下型2Bとによる、成形素材1Aの下面側(片面)に所要厚みの高密度層1aの成形時に、該高密度層1aの成形過程でもしくは成形直後に、上型2Aの通路2aを介して成形素材1Aの上面側の低密度層1bに全体的に冷却風を導入して該低密度層1bを低温保持するようにした点である。   The method of the third embodiment is different from the method of the first embodiment in that the lower surface of the molding material 1A is formed by the upper mold 2A and the lower mold 2B of the primary mold 2 in the step (a) shown in FIG. The low density layer 1b on the upper surface side of the molding material 1A is formed through the passage 2a of the upper mold 2A in the molding process of the high density layer 1a or immediately after the molding at the time of molding the high density layer 1a having the required thickness on the side (one side). This is the point that the cooling air is entirely introduced to keep the low density layer 1b at a low temperature.

図3に示す工程(a)では、前記高密度層1aの形成後、上型2Aと下型2Bとを型開きして、成形素材1Aの上面側の低密度層1bを一旦復元させた状態で該低密度層1bに冷却風を面直方向に送り込むようにしているが、前記高密度層1aの成形過程で低密度層1bに冷却風を送り込むことも可能である。   In the step (a) shown in FIG. 3, after the high-density layer 1a is formed, the upper mold 2A and the lower mold 2B are opened, and the low-density layer 1b on the upper surface side of the molding material 1A is once restored. The cooling air is sent to the low-density layer 1b in the direction perpendicular to the plane, but it is also possible to send the cooling air to the low-density layer 1b in the molding process of the high-density layer 1a.

このように低密度層1bが低温保持された状態で図3に示す工程(b)で、2次成形型3により成形素材1Aをコア型3Aとキャビティ型3Bとでコールドプレスすると、高密度層1aがこれらコア型3Aとキャビティ型3Bの型面の凹凸形状に成形される。このとき、低密度層1bは低温保持された状態にあるため、圧縮されても弾性により自己復元性を保有している。そこで、前記高密度層1aの冷却固化後、図3に示す工程(c)でこれらコア型2Aとキャビティ型2Bとを型開きすると、前記低密度層1bが高密度層1aの加工形状に沿って所要の厚みに復元した複合繊維体1が得られる。   When the molding material 1A is cold-pressed with the core mold 3A and the cavity mold 3B by the secondary molding die 3 in the step (b) shown in FIG. 1a is formed into the concavo-convex shape of the mold surfaces of the core mold 3A and the cavity mold 3B. At this time, since the low density layer 1b is kept at a low temperature, even if it is compressed, it retains its self-restoring property by elasticity. Therefore, after the high-density layer 1a is cooled and solidified, when the core mold 2A and the cavity mold 2B are opened in the step (c) shown in FIG. 3, the low-density layer 1b follows the processed shape of the high-density layer 1a. Thus, the composite fiber body 1 restored to the required thickness is obtained.

この第3実施形態の方法によれば、前記第1,第2実施形態と同様に前記1次成形型2により加熱,圧縮する工程で成形素材1Aの下面側(片面)のみを所要厚みの高密度層1aとして形成するため、要求される密度および厚みの高密度層1aを形成するための金型の温度管理および加圧時間管理を容易にすることができる。   According to the method of the third embodiment, as in the first and second embodiments, only the lower surface side (one surface) of the molding material 1A has a high required thickness in the process of heating and compressing by the primary mold 2. Since it is formed as the density layer 1a, temperature management and pressurization time management of the mold for forming the high density layer 1a having the required density and thickness can be facilitated.

そして、成形素材1Aの下面側(片面)に高密度層1aの形成後もしくは形成過程で、1次成形型2の非加熱側の金型である上型2A内を通して前記成形素材1Aの高密度化されていない上面側の低密度層1bに全体的に冷却風を導入して該低密度層1bを低温保持するため、前記高密度層1aの低密度層1b側への高密度化の進行が抑制され、要求される所要厚みの高密度層1aを容易に形成することが可能となる。   Then, after or during the formation of the high-density layer 1a on the lower surface side (one surface) of the molding material 1A, the high density of the molding material 1A passes through the upper mold 2A that is a non-heating-side mold of the primary molding die 2. In order to keep the low-density layer 1b at a low temperature by introducing cooling air entirely into the low-density layer 1b on the upper surface side that is not formed, the density of the high-density layer 1a toward the low-density layer 1b is increased. Is suppressed, and the high-density layer 1a having a required thickness can be easily formed.

このようにして、成形素材1Aの下面側(片面側)の高密度層1aの高密度化の進行が抑制され、かつ、低密度層1bが低温保持された状態で該成形素材1Aを2次成形型3により所定形状に加圧成形した後、該2次成形型3を型開きして前記成形素材1Aの低密度層1bを高密度層1aの加工形状に沿って復元させるので、要求される所要厚みと所要密度の低密度層1bを容易にすることができる。   In this way, the progress of the densification of the high-density layer 1a on the lower surface side (one surface side) of the molding material 1A is suppressed, and the molding material 1A is secondarily placed in a state where the low-density layer 1b is kept at a low temperature. After being pressure-molded into a predetermined shape by the molding die 3, the secondary molding die 3 is opened to restore the low density layer 1b of the molding material 1A along the processed shape of the high density layer 1a. Therefore, the low density layer 1b having the required thickness and the required density can be facilitated.

即ち、前記低密度層1bは2次成形型3の型開きにより圧縮前の状態に復元するので、ほぼ均一な厚みと密度が安定状態に保たれ、しかも、高密度層1aと低密度層1bとの密度の変化勾配が緩やかな複合繊維体1を得ることができる。   That is, since the low density layer 1b is restored to the state before compression by the mold opening of the secondary mold 3, the substantially uniform thickness and density are maintained in a stable state, and the high density layer 1a and the low density layer 1b are maintained. Thus, it is possible to obtain a composite fiber body 1 having a gentle gradient in density.

特に、この第3実施形態の方法によれば、前述のように成形素材1Aの低密度層1bが、2次成形型3による加圧成形後の型開きにより圧縮前の状態に復元するので、厚みと密度が均一な低密度層1bを有する吸音性内装材を得る場合に有効である。   In particular, according to the method of the third embodiment, as described above, the low density layer 1b of the molding material 1A is restored to the state before compression by the mold opening after the pressure molding by the secondary molding die 3. This is effective for obtaining a sound-absorbing interior material having a low-density layer 1b having a uniform thickness and density.

なお、前記第1〜第3実施形態において、2次成形型2,21,3のコールドプレスによる加圧成形時に、成形体のトリム,ピアスを同時に行ってもよい。   In the first to third embodiments, trimming and piercing of the molded body may be performed at the same time when the secondary molding dies 2, 21, 3 are cold-formed by cold pressing.

1…複合繊維体
1A…成形素材
1a…高密度層
1b…低密度層
2…1次成形型
2A…上型
2a…通路
2B…下型
3…2次成形型
3A…コア型(上型)
3B…キャビティ型(下型)
21…1次成形型
21A…コア型(上型)
21a…通路
21B…キャビティ型(下型)
31…2次成形型
31A…コア型(上型)
31a…凸部(高密度層成形部分)
31b…キャビティ型(下型)
DESCRIPTION OF SYMBOLS 1 ... Composite fiber body 1A ... Molding material 1a ... High density layer 1b ... Low density layer 2 ... Primary mold 2A ... Upper mold 2a ... Passage 2B ... Lower mold 3 ... Secondary mold 3A ... Core mold (upper mold)
3B ... Cavity mold (lower mold)
21 ... Primary mold 21A ... Core mold (upper mold)
21a ... passage 21B ... cavity type (lower mold)
31 ... Secondary mold 31A ... Core mold (upper mold)
31a ... convex part (high density layer molding part)
31b ... Cavity mold (lower mold)

Claims (3)

主繊維と、これよりも低融点の熱可塑性繊維からなるバインダーとが混合した繊維集合体を成形素材として、
前記成形素材を1次成形型によりその一側面を圧縮成形加工に必要な所要温度に加熱した状態で圧縮して、該成形素材の一側面に所要厚みの高密度層を形成する工程と、
前記1次成形型を型開きして、前記成形素材の前記高密度化されていない低密度層を復元させる工程と、
前記成形素材の復元された低密度層を、流体熱媒により前記圧縮成形加工に必要な所要温度に加熱する工程と、
前記低密度層が流体熱媒により加熱された成形素材を、2次成形型により所定形状に加圧成形して、前記低密度層を所要の厚みに圧縮成形する工程と、を含むことを特徴とする複合繊維体の成形方法。
As a molding material, a fiber assembly in which the main fiber and a binder made of thermoplastic fiber having a lower melting point than this are mixed,
Compressing the molding material with a primary mold in a state where one side is heated to a required temperature required for compression molding, and forming a high-density layer with a required thickness on one side of the molding material;
Opening the primary mold and restoring the non-densified low density layer of the molding material;
Heating the restored low density layer of the molding material to a required temperature required for the compression molding by a fluid heat medium;
A step of pressure-molding a molding material in which the low-density layer is heated by a fluid heat medium into a predetermined shape using a secondary molding die, and compression-molding the low-density layer to a required thickness. A method for forming a composite fiber body.
前記2次成形型に部分的に型クリアランスを小さくした高密度層成形部分を設定し、該高密度層成形部分で前記成形素材の低密度層の圧縮度合いを部分的に高めて高密度化し、前記高密度層の厚みを増大させることを特徴とする請求項1に記載の複合繊維体の成形方法。   A high-density layer molding part in which the mold clearance is partially reduced is set in the secondary molding die, and the compression density of the low-density layer of the molding material is partially increased in the high-density layer molding part to increase the density, The method for molding a composite fiber body according to claim 1, wherein the thickness of the high-density layer is increased. 主繊維と、これよりも低融点の熱可塑性繊維からなるバインダーとが混合した繊維集合体を成形素材として、
前記成形素材を1次成形型によりその一側面を圧縮成形加工に必要な所要温度に加熱した状態で圧縮して、該成形素材の一側面に所要厚みの高密度層を形成する工程と、
前記1次成形型の非加熱側の金型内を通して、前記成形素材の高密度化されていない低密度層に全体的に冷却風を導入して該低密度層を低温保持する工程と、
前記低密度層が低温保持された成形素材を2次成形型により加圧して前記高密度層を低密度層と共に所定形状に加圧成形する工程と、
前記2次成形型を型開きして、成形素材の低密度層を高密度層の加工形状に沿って復元させる工程と、を含むことを特徴とする複合繊維体の成形方法。
As a molding material, a fiber assembly in which the main fiber and a binder made of thermoplastic fiber having a lower melting point than this are mixed,
Compressing the molding material with a primary mold in a state where one side is heated to a required temperature required for compression molding, and forming a high-density layer with a required thickness on one side of the molding material;
Through the inside of the mold on the non-heating side of the primary molding die, introducing a cooling air entirely into the non-densified low-density layer of the molding material to keep the low-density layer at a low temperature;
Pressing the molding material in which the low density layer is held at a low temperature by a secondary molding die to press the high density layer into a predetermined shape together with the low density layer;
And a step of opening the secondary mold and restoring the low density layer of the molding material along the processed shape of the high density layer.
JP2009171003A 2009-07-22 2009-07-22 Molding method of composite fiber body Active JP5362471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171003A JP5362471B2 (en) 2009-07-22 2009-07-22 Molding method of composite fiber body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171003A JP5362471B2 (en) 2009-07-22 2009-07-22 Molding method of composite fiber body

Publications (2)

Publication Number Publication Date
JP2011025439A JP2011025439A (en) 2011-02-10
JP5362471B2 true JP5362471B2 (en) 2013-12-11

Family

ID=43634776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171003A Active JP5362471B2 (en) 2009-07-22 2009-07-22 Molding method of composite fiber body

Country Status (1)

Country Link
JP (1) JP5362471B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462696B2 (en) * 2010-04-26 2014-04-02 河西工業株式会社 Molding method and mold for composite fiber body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348172B2 (en) * 1997-08-05 2002-11-20 アラコ株式会社 Molding method of fiber elastic body
JP3235721B2 (en) * 1997-08-08 2001-12-04 河西工業株式会社 Molding method of laminated molded body
JP4154638B2 (en) * 1999-11-04 2008-09-24 トヨタ紡織株式会社 Manufacturing method for interior materials
JP2001322137A (en) * 2000-05-17 2001-11-20 Shikoku Seni Hanbai Kk Method for thermoforming molding using thermoplastic binding material as binder
JP4257818B2 (en) * 2000-12-14 2009-04-22 河西工業株式会社 Soundproof material for vehicle and method for manufacturing the same

Also Published As

Publication number Publication date
JP2011025439A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP4828658B1 (en) Sound insulation for vehicles
US20060105661A1 (en) Thermoplastic formed panel, intermediate panel for the fabrication thereof, and method for fabricating said panel and said intermediate panel
EP0765737B1 (en) Sound absorbing component
CN102821933A (en) Method for producing an SMC multi-layer component
JP6082145B1 (en) Soundproof material for vehicle and method for manufacturing the same
US20050140059A1 (en) Method and device for producing nonwoven moulded bodies
JP2004515662A (en) Method and product for controlling thermo-hysteresis during thermoforming of a three-dimensional fiber composite structure
MX2015006509A (en) Method for producing at least two-layer components, and component.
JP5511366B2 (en) Molding method of composite fiber body
JP5362471B2 (en) Molding method of composite fiber body
CN109808287A (en) The production method for having preceding wall sound-isolation pad in the automobile of the soft or hard structure of sound absorption function
CN107848471B (en) Method for forming a panel for acoustic protection mounted opposite to heat and sound sources of a vehicle
JP2013198984A (en) Fiber-reinforced thermoplastic resin structure and its manufacturing method
KR20180015110A (en) Method for manufacturing automotive trim and soundproof panel
KR101421951B1 (en) Side insulator and manufacturing method thereof
JP5462696B2 (en) Molding method and mold for composite fiber body
JP2010274479A (en) Method of manufacturing interior part for vehicle
CN202528927U (en) Heat-insulating pad for front automotive cabin
JP5185513B2 (en) Method for producing fiber molded body containing foam
KR100903024B1 (en) Manufacturing method for sound absorbing and insulating material for automobile and sound absorbing and insulating material thereby
JP2022175267A (en) Molding die and manufacturing method for molded structure
KR100903025B1 (en) Manufacturing method for sound absorbing and insulating material for automobile and sound absorbing and insulating material thereby
JP2007197872A (en) Nonwoven fabric member and method for producing the same and duct composed of the nonwoven fabric member
JP3585201B2 (en) Molding material for wood-based molding substrate, wood-based molding substrate using the same, and method for producing the same
JP2021049683A (en) Method for manufacturing interior material for vehicle and interior material for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Ref document number: 5362471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150