JP2013198984A - Fiber-reinforced thermoplastic resin structure and its manufacturing method - Google Patents

Fiber-reinforced thermoplastic resin structure and its manufacturing method Download PDF

Info

Publication number
JP2013198984A
JP2013198984A JP2012066806A JP2012066806A JP2013198984A JP 2013198984 A JP2013198984 A JP 2013198984A JP 2012066806 A JP2012066806 A JP 2012066806A JP 2012066806 A JP2012066806 A JP 2012066806A JP 2013198984 A JP2013198984 A JP 2013198984A
Authority
JP
Japan
Prior art keywords
core layer
fiber
thermoplastic resin
reinforced thermoplastic
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012066806A
Other languages
Japanese (ja)
Inventor
Masayuki Koshi
政之 越
Masaru Tateyama
勝 舘山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012066806A priority Critical patent/JP2013198984A/en
Publication of JP2013198984A publication Critical patent/JP2013198984A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced thermoplastic resin structure integrated with a low-gravity core layer and a surface membrane in a uniform and desirable state, and to provide its manufacturing method.SOLUTION: There is provided a manufacturing method of a fiber-reinforced thermoplastic resin structure which is characterized in that: an uncontinuous fiber-reinforced thermoplastic resin having initial density A is made to serve as a core layer; a molding base material is formed by arranging a surface membrane comprising a non-expansive fiber-reinforced thermoplastic resin on at least one face of the core layer; the core layer and the surface membrane are integrated with each other by heating and melting the molding base material; the core layer is expanded so that the core layer may have density B lower than the initial density A by developing a restoration force to a shape before the molding of the core layer to an uncontinuous reinforced fiber in the core layer; after that, the molding base material is set into a molding mold; and the molding base material is press-molded in the molding mold so that the density of the core layer may become density C between the density B and the initial density A. There is also provided a fiber-reinforced thermoplastic resin structure manufactured by the method.

Description

本発明は、繊維強化熱可塑性樹脂構造体およびその製造方法に関し、とくに、構造体肉厚内を低比重化して全体の軽量化をはかりつつ、比較的大型大面積の構造体を、高い機械特性を均一に発現させた状態で容易に製造可能な繊維強化熱可塑性樹脂構造体の製造方法と、その方法により製造された繊維強化熱可塑性樹脂構造体に関する。   TECHNICAL FIELD The present invention relates to a fiber-reinforced thermoplastic resin structure and a method for producing the same, and in particular, a relatively large large-area structure with high mechanical properties while reducing the overall weight by reducing the specific gravity in the thickness of the structure. TECHNICAL FIELD The present invention relates to a method for producing a fiber-reinforced thermoplastic resin structure that can be easily produced in a state where the above is uniformly expressed, and a fiber-reinforced thermoplastic resin structure produced by the method.

軽量で高い機械特性を有する繊維強化熱可塑性樹脂構造体は、種々の分野で適用されている。中でも、強化繊維を含有した熱可塑性樹脂からなるスタンパブル基材を用いて加熱、プレス成形することにより繊維強化熱可塑性樹脂構造体を製造する方法は、比較的大型の構造体を容易に製造可能なことから、軽量、高剛性を求められる各種構造体の製造に採用されている。   Fiber reinforced thermoplastic resin structures that are lightweight and have high mechanical properties are applied in various fields. Among them, the method of manufacturing a fiber-reinforced thermoplastic resin structure by heating and press-molding using a stampable base material made of a thermoplastic resin containing reinforcing fibers can easily manufacture a relatively large structure. For this reason, it has been adopted in the manufacture of various structures that require light weight and high rigidity.

この製造方法において、構造体の軽量化特性を保ちつつ高剛性等の高い機械特性を発現させ、かつ構造体表面に所望の意匠性を持たせるためには、内層を低比重の(例えば、発泡体構造の)繊維強化熱可塑性樹脂層からなるコア層とし、表層を中実の比較的薄い繊維強化熱可塑性樹脂層からなる表皮層(スキン層)とした構造が好ましい。   In this manufacturing method, in order to develop high mechanical properties such as high rigidity while maintaining the weight reduction characteristics of the structure and to give the structure surface a desired design, the inner layer has a low specific gravity (for example, foam A structure in which the core layer is composed of a fiber reinforced thermoplastic resin layer (with a body structure) and the surface layer is a skin layer (skin layer) composed of a solid, relatively thin fiber reinforced thermoplastic resin layer is preferable.

このような構造を実現する技術として、一対の金型間に、表皮材および予熱して厚み方向に5倍以上に膨張した抄造法繊維強化熱可塑性樹脂シートを重ね合うように供給したのち、膨張した抄造法繊維強化熱可塑性樹脂シートが40〜80%の厚みになるまで型締、圧縮し、基材繊維強化熱可塑性樹脂シート(コア層)と表皮材を一体化するようにした繊維強化熱可塑性樹脂成形体の製造方法が知られている(特許文献1)。   As a technique for realizing such a structure, the skin material and a paper-making method fiber-reinforced thermoplastic resin sheet that has been preheated and expanded five times or more in the thickness direction are supplied between the pair of molds so as to overlap each other, and then expanded. Paper-making method Fiber-reinforced thermoplastic with mold-clamping and compression until the fiber-reinforced thermoplastic resin sheet is 40-80% thick, so that the base fiber-reinforced thermoplastic resin sheet (core layer) and skin material are integrated. A method for producing a resin molded body is known (Patent Document 1).

特開平8−238638号公報JP-A-8-238638

しかしながら、上記特許文献1に記載の方法では、予熱により予め膨張させた(発泡させた)コア材と、表皮材とを、金型内にセットし、コア材の熱で表皮材の接触面を溶融させて、両材を一体化させるようにしているので、一体化の際の表皮材の接触面の溶融にばらつきが生じたり、局部的に接触面の溶融不良が生じたりする可能性がある。そのため、接着不良などの構造体の品質のばらつきや、両層間の接着力の不均一などの問題が生じるおそれがあり、この問題は、製造しようとする構造体が大型大面積になるほど顕在化してくる。   However, in the method described in Patent Document 1, the core material that has been expanded (foamed) in advance by preheating and the skin material are set in a mold, and the contact surface of the skin material is set by the heat of the core material. Since both materials are integrated by melting, there is a possibility that the melting of the contact surface of the skin material at the time of integration may vary or local contact defects may occur locally. . For this reason, there is a risk of problems such as poor quality of the structure, such as poor adhesion, and uneven adhesion between the two layers. This problem becomes more apparent as the structure to be manufactured becomes larger and larger in area. come.

そこで本発明の課題は、比較的大型大面積の構造体であっても、コア層と表皮材とを接着不良等を生じさせることなく均一な接着力をもって一体化でき、低比重のコア層と表皮材とが均一な望ましい状態で一体化され、所望の軽量性と高い機械特性とを容易にかつ確実に発現させることが可能な繊維強化熱可塑性樹脂構造体の製造方法と、その方法により製造された繊維強化熱可塑性樹脂構造体を提供することにある。   Therefore, the object of the present invention is to integrate a core layer and a skin material with a uniform adhesive force without causing poor adhesion, etc., even with a relatively large large-area structure, A method of manufacturing a fiber reinforced thermoplastic resin structure that can be integrated with a skin material in a desirable and uniform state, and can easily and reliably express desired lightness and high mechanical properties, and manufactured by the method. Another object of the present invention is to provide an improved fiber reinforced thermoplastic resin structure.

上記課題を解決するために、本発明に係る繊維強化熱可塑性樹脂構造体の製造方法は、加熱溶融時に膨張性を有する初期密度Aの不連続繊維強化熱可塑性樹脂をコア層とし、該コア層の少なくとも一面に加熱溶融時に非膨張性の繊維強化熱可塑性樹脂からなる表皮材を配置して成形用基材を形成し、
前記成形用基材を加熱し溶融させることにより前記コア層と前記表皮材とを一体化させるとともに、前記コア層中の前記不連続強化繊維にコア層成形前の形状への復元力を発現させて該コア層が前記初期密度Aよりも低い密度Bとなるように該コア層を膨張させ、
しかる後に、前記コア層が膨張した前記成形用基材を成形型内にセットし、前記コア層の密度が前記密度Bと前記初期密度Aの間の密度Cとなるように前記成形用基材を成形型内でプレス成形することを特徴とする方法からなる。ここで、初期密度Aとは、加熱溶融によるコア層の膨張が行われる前のコア層の密度のことである。
In order to solve the above-mentioned problems, a method for producing a fiber-reinforced thermoplastic resin structure according to the present invention uses a discontinuous fiber-reinforced thermoplastic resin having an initial density A having expandability when heated and melted as a core layer, and the core layer A base material for molding is formed by arranging a skin material made of a non-expandable fiber-reinforced thermoplastic resin on at least one surface of
By heating and melting the base material for molding, the core layer and the skin material are integrated, and the discontinuous reinforcing fibers in the core layer are made to develop a restoring force to the shape before molding the core layer. Expanding the core layer so that the core layer has a density B lower than the initial density A,
Thereafter, the molding base material in which the core layer is expanded is set in a molding die, and the molding base material has a density C between the density B and the initial density A. Is formed by press molding in a mold. Here, the initial density A is the density of the core layer before the core layer is expanded by heating and melting.

このような本発明に係る繊維強化熱可塑性樹脂構造体の製造方法においては、まず、膨張前の初期密度Aの不連続繊維強化熱可塑性樹脂からなるコア層と、該コア層の少なくとも一面に配置される非膨張性の繊維強化熱可塑性樹脂からなる表皮材とからなる成形用基材が形成され、その後に、この成形用基材が、例えば成形型(金型)外にて、加熱され溶融されることにより、コア層と表皮材とが一体化されるとともに、コア層中の不連続強化繊維にコア層成形前の形状への復元力(スプリングバック)を発現させて該コア層が初期密度Aよりも低い密度Bとなるように該コア層が膨張される。すなわち、成形型内にセットされる前の段階にて、密度Bとなるように膨張されたコア層と表皮材とが一体化された成形用基材が形成される。この一体化においては、成形用基材全体の加熱により、コア層と表皮材の双方の接触面が溶融されるので、両層間で局部的な溶融不良や溶融のばらつきが発生することが防止され、密度Bの低比重のコア層と表皮材とが均一な接着力をもってばらつきのない望ましい状態にて一体化される。この一体化の後に、成形用基材が成形型内にセットされ、コア層の密度が上記密度Bと初期密度Aの間の密度C(つまり、構造体の所望の軽量化とともに高い機械特性の実現が可能な密度C)となるように成形用基材が成形型内でプレス成形される。コア層と表皮材とが均一に一体化された状態でプレス成形されるので、成形される構造体も、とくに最終成形形態にて均一な一体化形態と均一な品質を実現できる。そして、最終成形形態にて、初期密度Aよりは低い所望の密度Cの(つまり、所望の膨張倍率とされた)コア層と、膨張されていない表皮材とが一体化された構造体となるので、とくにコア層が所望の低い密度Cとされることにより、構造体の所望の軽量化が達成され、コア層が所望の膨張倍率とされてコア層の厚みが膨張前の初期厚みに比べ適切に増大された状態とされることにより、構造体の所望の高い機械特性、とくに肉厚増大に伴う高い剛性が達成される。しかも、上記均一な一体化形態の実現により、これら優れた軽量性と高い機械特性が構造体全体にわたって均一に達成され、均一な品質が実現される。   In such a method for producing a fiber-reinforced thermoplastic resin structure according to the present invention, first, a core layer made of a discontinuous fiber-reinforced thermoplastic resin having an initial density A before expansion is disposed on at least one surface of the core layer. A base material for molding consisting of a non-expandable fiber-reinforced thermoplastic resin skin material is formed, and then the base material for molding is heated and melted outside the mold (mold), for example. As a result, the core layer and the skin material are integrated, and the discontinuous reinforcing fibers in the core layer are allowed to exhibit a restoring force (spring back) to the shape before the core layer is formed, so that the core layer is initially The core layer is expanded so that the density B is lower than the density A. That is, at the stage before being set in the molding die, a molding base material is formed in which the core layer and the skin material expanded so as to have a density B are integrated. In this integration, the contact surfaces of both the core layer and the skin material are melted by heating the entire molding base material, so that local melting defects and variations in melting are prevented from occurring between the two layers. The core layer and the skin material having a low specific gravity of density B are integrated with a uniform adhesive force in a desirable state without variation. After this integration, the molding base material is set in the mold, and the density of the core layer is a density C between the density B and the initial density A (that is, high mechanical properties as well as a desired weight reduction of the structure). The molding substrate is press-molded in a mold so as to achieve a density C) that can be realized. Since the core layer and the skin material are press-formed in a uniformly integrated state, the structure to be formed can also realize a uniform integrated form and uniform quality, particularly in the final formed form. In the final form, a core layer having a desired density C lower than the initial density A (that is, a desired expansion ratio) and an unexpanded skin material are integrated. Therefore, especially when the core layer has a desired low density C, the desired weight reduction of the structure is achieved, the core layer has a desired expansion ratio, and the thickness of the core layer is larger than the initial thickness before expansion. By being properly increased, the desired high mechanical properties of the structure, in particular the high stiffness associated with increased wall thickness, are achieved. In addition, by realizing the uniform integrated form, these excellent light weight and high mechanical properties are uniformly achieved throughout the entire structure, and uniform quality is realized.

上記本発明に係る繊維強化熱可塑性樹脂構造体の製造方法においては、コア層中に上記不連続強化繊維がランダムに分散されていることが好ましい。不連続強化繊維がランダムに分散されていると、成形用基材が加熱、溶融されてコア層中の不連続強化繊維にコア層成形前の形状への復元力が発現されコア層が膨張される際に、コア層全体にわたって均一な膨張が可能になり、また、均一に膨張されたコア層を有する成形用基材がプレス成形される際にも、均一な圧縮が可能になる。その結果、最終成形形態にてより均一な構造体品質の実現が可能になる。   In the method for producing a fiber-reinforced thermoplastic resin structure according to the present invention, it is preferable that the discontinuous reinforcing fibers are randomly dispersed in the core layer. If the discontinuous reinforcing fibers are randomly dispersed, the base material for molding is heated and melted, and the discontinuous reinforcing fibers in the core layer develop a restoring force to the shape before forming the core layer and the core layer is expanded. In this case, uniform expansion is possible over the entire core layer, and uniform compression is also possible when a molding substrate having a uniformly expanded core layer is press-molded. As a result, a more uniform structure quality can be realized in the final molded form.

上記コア層の不連続強化繊維の数平均繊維長としては、3〜50mmの範囲にあることが好ましい。数平均繊維長が3mm未満では、繊維同士の絡み度合が低くなるため上述の復元力が低くなり、コア層を所望の厚みまで膨張させることが難しくなるおそれがある。逆に、数平均繊維長が50mmを超えると、不連続強化繊維のランダムな分散が難しくなるおそれがあり、構造体品質の均一性が損なわれるおそれがある。   The number average fiber length of the discontinuous reinforcing fibers of the core layer is preferably in the range of 3 to 50 mm. If the number average fiber length is less than 3 mm, the degree of entanglement between the fibers decreases, so that the restoring force described above decreases, and it may be difficult to expand the core layer to a desired thickness. Conversely, if the number average fiber length exceeds 50 mm, random dispersion of discontinuous reinforcing fibers may be difficult, and the uniformity of the structure quality may be impaired.

コア層成形前の不連続強化繊維に望ましい分散性を付与するためには、例えば、熱可塑性樹脂含浸前の該不連続強化繊維が、抄紙あるいはカーディング法にて製造された強化繊維マットからなることが好ましい。抄紙法にて製造された強化繊維マットでは、容易に不連続強化繊維のランダムな分散が得られ、カーディング法にて製造された強化繊維マットでは、容易に不連続強化繊維のランダムな分散を得ることもできるし、分散された不連続強化繊維に意図的に適度の指向性を持たせることもできる。   In order to impart desirable dispersibility to the discontinuous reinforcing fibers before forming the core layer, for example, the discontinuous reinforcing fibers before impregnation with the thermoplastic resin are made of a reinforcing fiber mat manufactured by papermaking or carding. It is preferable. The reinforcing fiber mat manufactured by the papermaking method can easily obtain random dispersion of discontinuous reinforcing fibers, and the reinforcing fiber mat manufactured by the carding method can easily disperse random reinforcing fibers. It can also be obtained, or the dispersed discontinuous reinforcing fibers can be intentionally given appropriate directivity.

また、本発明に係る繊維強化熱可塑性樹脂構造体の製造方法においては、成形型内でのプレス成形の条件により、上記密度Cを上記初期密度Aの1/3倍以上1倍未満の範囲に制御することが好ましい。密度Cが初期密度Aの1/3倍未満では、最終形態でのコア層の膨張率が高過ぎ、コア層自体の強度、ひいては構造体の強度を望ましい強度に維持することが困難になるおそれがある。密度Cが初期密度Aの1倍になると、コア層が膨張前の状態まで戻ってしまうので、コア層膨張による構造体肉厚増大の効果がなくなり、該膨張による機械特性向上の効果がなくなる。   Further, in the method for producing a fiber-reinforced thermoplastic resin structure according to the present invention, the density C is in the range of 1/3 times or more to less than 1 time of the initial density A depending on the conditions of press molding in the mold. It is preferable to control. If the density C is less than 1/3 times the initial density A, the expansion rate of the core layer in the final form is too high, and it may be difficult to maintain the strength of the core layer itself, and thus the strength of the structure, at a desired strength. There is. When the density C becomes 1 time the initial density A, the core layer returns to the state before expansion, so that the effect of increasing the structure thickness due to the expansion of the core layer is lost, and the effect of improving the mechanical properties due to the expansion is lost.

上記プレス成形におけるプレス圧は、例えば、5MPa以下とすることが好ましい。これは、通常、6MPa以上のプレス圧を加えると、膨張されていたコア層が膨張前の状態まで戻ってしまう可能性がるので、膨張されていたコア層を適切に圧縮するために、プレス圧を適度に制御する必要があるからである。   It is preferable that the press pressure in the said press molding shall be 5 Mpa or less, for example. In general, when a pressing pressure of 6 MPa or more is applied, the expanded core layer may return to the state before expansion, and therefore, in order to properly compress the expanded core layer, press This is because the pressure needs to be controlled appropriately.

表皮材の強化繊維としては、とくに限定されないが、表皮材が非膨張性の繊維強化熱可塑性樹脂からなり、最終成形形態で構造体の表層を構成して、コア層と併せて構造体の強度を担うとともに、表層部位として構造体の剛性を支配することから、所望の方向に対して高い剛性(曲げ剛性等)を有することが好ましい。そのためには、表皮材の強化繊維が連続繊維からなることが好ましい。   The reinforcing fiber of the skin material is not particularly limited, but the skin material is made of a non-expandable fiber reinforced thermoplastic resin, constitutes the surface layer of the structure in the final molded form, and combines the strength of the structure with the core layer. It is preferable to have high rigidity (such as bending rigidity) with respect to a desired direction. For that purpose, it is preferable that the reinforcing fiber of the skin material is composed of continuous fibers.

また、表皮材として、強化繊維を一方向に引きそろえて熱可塑性樹脂を含浸させた表皮材を用いることができる。このような表皮材を使用すれば、比較的大型大面積の構造体であっても、容易に表皮材を所定の位置に配置できるようになる。またこの場合、表皮材として、強化繊維を一方向に引きそろえて熱可塑性樹脂を含浸させたテープ状基材を積層または編み込んだ板状の表皮材からなる形態を採ることができる。このような形態を採用すれば、比較的大型大面積の構造体であっても、容易に表皮材を所定の位置に配置できるとともに、表皮材に望ましい機械特性を容易に付与できるようになる。   As the skin material, a skin material in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin can be used. If such a skin material is used, even if it is a comparatively large-sized large-area structure, a skin material can be easily arrange | positioned in a predetermined position. Further, in this case, the skin material can be in the form of a plate-like skin material obtained by laminating or knitting a tape-like base material in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin. If such a form is adopted, even if the structure is a relatively large large-area structure, the skin material can be easily arranged at a predetermined position, and desired mechanical properties can be easily imparted to the skin material.

また、表皮材として、強化繊維織物を含む形態を採ることができる。このような形態を採用すれば、最終成形形態で構造体の表面に望ましい意匠性を持たせることも可能になる。また、強化繊維織物を含むことにより、構造体の表層を構成する表皮材自体の機械特性をより向上することも可能になるので、構造体全体としての機械特性の向上が可能になる。   Moreover, the form containing a reinforced fiber fabric can be taken as a skin material. If such a form is adopted, it becomes possible to give a desired design property to the surface of the structure in the final formed form. In addition, by including the reinforced fiber fabric, it is possible to further improve the mechanical properties of the skin material itself constituting the surface layer of the structure, so that the mechanical properties of the entire structure can be improved.

また、本発明に係る繊維強化熱可塑性樹脂構造体の製造方法においては、表皮材を、上記コア層の両面に配置することができる。このように構成すれば、適度に膨張された低比重のコア層を非膨張性の2つの表皮材で両側から挟んだ、いわゆるサンドイッチ構造となるので、構造体の軽量性と高い機械特性が一層容易に達成される。   Moreover, in the manufacturing method of the fiber reinforced thermoplastic resin structure which concerns on this invention, a skin material can be arrange | positioned on both surfaces of the said core layer. If comprised in this way, since it will be what is called a sandwich structure which sandwiched the moderately expanded low specific gravity core layer from both sides with two non-expandable skin materials, the light weight and high mechanical characteristics of the structure are further increased. Easily achieved.

本発明に係る構造体に使用される強化繊維としては、とくに限定されない。例えば、上記コア層および上記表皮材の少なくとも一方の強化繊維として、炭素繊維、ガラス繊維、アラミド繊維から選ばれる少なくとも1種を含む形態とすることができる。中でも、高い機械特性の実現、強度設計の容易性等を考慮すると、炭素繊維を含むことが好ましい。   The reinforcing fiber used in the structure according to the present invention is not particularly limited. For example, at least one selected from carbon fibers, glass fibers, and aramid fibers can be used as at least one reinforcing fiber of the core layer and the skin material. Among them, it is preferable to include carbon fiber in consideration of realization of high mechanical properties, ease of strength design, and the like.

また、本発明に係る構造体に使用される熱可塑性樹脂としても、とくに限定されない。例えば、コア層および表皮材の少なくとも一方の熱可塑性樹脂として、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ABS樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂の少なくとも1種を含む形態とすることができる。   Further, the thermoplastic resin used in the structure according to the present invention is not particularly limited. For example, a form containing at least one of a polyphenylene sulfide resin, a polyamide resin, a polyolefin resin, a polyester resin, an ABS resin, a polycarbonate resin, a polyacetal resin, and a polyether ether ketone resin as at least one thermoplastic resin of the core layer and the skin material It can be.

また、コア層および表皮材の熱可塑性樹脂が同種の樹脂からなると、両層の溶融接合による一体化が一層容易に行われる。   Further, when the thermoplastic resin of the core layer and the skin material is made of the same kind of resin, the two layers can be more easily integrated by fusion bonding.

本発明は、上記のような方法により製造された、上記コア層の密度が上記成形用基材形成時のコア層の初期密度Aよりも低い繊維強化熱可塑性樹脂構造体についても提供する。   The present invention also provides a fiber reinforced thermoplastic resin structure produced by the method as described above, wherein the density of the core layer is lower than the initial density A of the core layer when forming the molding substrate.

このように、本発明によれば、比較的大型大面積の構造体であっても、適度に低比重のコア層と表皮材とを均一な望ましい状態で一体化でき、所望の軽量性と高い機械特性とを兼ね備えた繊維強化熱可塑性樹脂構造体を、容易にかつ確実に得ることができる。   As described above, according to the present invention, a core layer and a skin material having a moderately low specific gravity can be integrated in a uniform and desirable state even in a relatively large large-area structure, and a desired lightweight property and high A fiber reinforced thermoplastic resin structure having both mechanical properties can be obtained easily and reliably.

本発明の一実施態様に係る繊維強化熱可塑性樹脂構造体の製造方法を示す工程フロー図である。It is a process flow figure showing a manufacturing method of a fiber reinforced thermoplastic resin structure concerning one embodiment of the present invention.

以下に、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る繊維強化熱可塑性樹脂構造体の製造方法を示している。本発明に係る製造方法においては、まず、図1(A)に示すように、例えば抄紙法により製造された強化繊維マットに熱可塑性樹脂を含浸させた、加熱溶融時に膨張性を有する初期密度Aの不連続繊維強化熱可塑性樹脂からなるコア層形成用基材1(すなわち、初期密度Aのコア層)の少なくとも一面に(図示例では両面に)、例えば連続強化繊維を一方向に引き揃えて熱可塑性樹脂を含浸させたテープ状基材を編み込んだ板状の部材で、かつ、加熱溶融時に非膨張性の繊維強化熱可塑性樹脂からなる表皮材2が配置されて成形用基材3が形成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a method for producing a fiber-reinforced thermoplastic resin structure according to an embodiment of the present invention. In the manufacturing method according to the present invention, first, as shown in FIG. 1 (A), for example, a reinforcing fiber mat manufactured by a papermaking method is impregnated with a thermoplastic resin, and has an initial density A having expandability when heated and melted. For example, continuous reinforcing fibers are aligned in one direction on at least one surface (both surfaces in the illustrated example) of the core layer forming base material 1 (that is, the core layer having an initial density A) made of the discontinuous fiber reinforced thermoplastic resin. A plate-like member knitted with a tape-like base material impregnated with a thermoplastic resin, and a skin material 2 made of a non-expandable fiber-reinforced thermoplastic resin at the time of heating and melting is arranged to form a base material 3 for molding. Is done.

次に、図1(B)に示すように、コア層形成用基材1の両面に表皮材2を配置した成形用基材3が、例えば、加熱手段としてのヒータ4、4間に位置されて、ヒータ4、4による加熱により、成形用基材3の全体が加熱され溶融される。この加熱、溶融ではコア層形成用基材1と表皮材2の双方の接触面が全面にわたって溶融されるので、コア層形成用基材1と表皮材2は均一な接合状態で一体化される。このとき同時に、図1(C)に示すように、コア層形成用基材1中の不連続強化繊維に該基材成形前の形状への復元力が発現され、該復元力(スプリングバック)を介して、上記初期密度Aよりも低い密度Bとなるようにコア層形成用基材1が膨張されて、膨張された密度Bのコア層5が形成される。このとき、非膨張性の繊維強化熱可塑性樹脂からなる表皮材2は実質的にそのままの形態に維持される。   Next, as shown in FIG. 1B, a molding base material 3 in which a skin material 2 is arranged on both surfaces of a core layer forming base material 1 is positioned between, for example, heaters 4 and 4 as heating means. Thus, the entire molding substrate 3 is heated and melted by heating by the heaters 4 and 4. In this heating and melting, the contact surfaces of both the core layer forming base material 1 and the skin material 2 are melted over the entire surface, so that the core layer forming base material 1 and the skin material 2 are integrated in a uniform bonded state. . At the same time, as shown in FIG. 1C, the discontinuous reinforcing fibers in the core layer forming base material 1 exhibit a restoring force to the shape before forming the base material, and the restoring force (spring back) The core layer forming base material 1 is expanded so as to have a density B lower than the initial density A, whereby the core layer 5 having the expanded density B is formed. At this time, the skin material 2 made of a non-expandable fiber-reinforced thermoplastic resin is maintained in a substantially intact form.

次に、密度Bとなるようにコア層5が膨張した上記成形用基材3が、図1(D)に示すように、成形型としての金型6内にセットされる。しかる後に、図1(E)に示すように、金型6が閉じられて型締めされ、金型6のキャビティ7内で5MPa以下のプレス圧にて成形用基材3に対してプレス成形が行われる。このプレス成形により、コア層5の密度が上記密度Bと前記初期密度Aの間の密度Cとなるように圧縮されて、密度Cのコア層8とされ、キャビティ7の形状に沿った所定形状の繊維強化熱可塑性樹脂構造体9が成形される。このプレス成形の後、金型6を開いて、所定形状に成形された繊維強化熱可塑性樹脂構造体9を取り出せばよい。   Next, the molding base material 3 in which the core layer 5 is expanded so as to have a density B is set in a mold 6 as a molding die, as shown in FIG. Thereafter, as shown in FIG. 1 (E), the mold 6 is closed and clamped, and press molding is performed on the molding substrate 3 with a pressing pressure of 5 MPa or less in the cavity 7 of the mold 6. Done. By this press molding, the core layer 5 is compressed so that the density of the core layer 5 becomes a density C between the density B and the initial density A, thereby forming the core layer 8 of the density C, and a predetermined shape along the shape of the cavity 7. The fiber reinforced thermoplastic resin structure 9 is molded. After this press molding, the mold 6 is opened, and the fiber reinforced thermoplastic resin structure 9 molded into a predetermined shape may be taken out.

上記のような成形においては、前述したように、金型6内にセットされる前の段階にて、密度Bとなるように膨張されたコア層5と表皮材2とが一体化された成形用基材3の形成においては、成形用基材3全体が加熱され、コア層形成用基材1と表皮材2の双方の接触面が全面にわたって溶融されるので、両層間で局部的な溶融不良や溶融のばらつきが発生することが防止され、密度Bの低比重のコア層5と表皮材2とが均一な接着力をもってばらつきのない望ましい状態にて一体化される。このように均一に一体化された状態でプレス成形されるので、成形される構造体9も最終成形形態にて均一な一体化形態となり、均一な品質が実現される。   In the molding as described above, as described above, the core layer 5 and the skin material 2 that have been expanded so as to have the density B are integrated in the stage before being set in the mold 6. In forming the base material 3, the entire molding base material 3 is heated and the contact surfaces of both the core layer forming base material 1 and the skin material 2 are melted over the entire surface. Occurrence of defects and variations in melting are prevented, and the core layer 5 having a low density B with the density B and the skin material 2 are integrated with a uniform adhesive force in a desirable state without variations. Since it is press-molded in such a uniformly integrated state, the structure 9 to be molded also becomes a uniform integrated form in the final molded form, and uniform quality is realized.

そして、最終成形形態にて、初期密度Aと密度Bの間の所望の密度Cのコア層8と、膨張されていない表皮材2とが一体化された繊維強化熱可塑性樹脂構造体9が成形されるが、とくにコア層8が目標とする所望の低い密度Cとされることにより、構造体9の所望の軽量化が達成されるとともに、コア層8の適切な厚みが確保されていることにより、構造体9の所望の高い機械特性、とくにコア層8の適切な厚みによる高い剛性が達成される。しかも、これら優れた軽量性と高い機械特性が構造体9の全体にわたって均一に達成され、構造体9の全体にわたって均一な品質が実現される。   And the fiber reinforced thermoplastic resin structure 9 by which the core layer 8 of the desired density C between the initial density A and the density B and the unexpanded skin material 2 were integrated in the last shaping | molding form is shape | molded. However, particularly when the core layer 8 has the desired low density C, the desired weight reduction of the structure 9 is achieved, and an appropriate thickness of the core layer 8 is ensured. This achieves the desired high mechanical properties of the structure 9, in particular high stiffness due to the appropriate thickness of the core layer 8. In addition, these excellent lightweight properties and high mechanical properties are uniformly achieved throughout the entire structure 9, and uniform quality is achieved throughout the entire structure 9.

本発明に係る繊維強化熱可塑性樹脂構造体およびその製造方法は、軽量性と高い機械特性がされるあらゆる繊維強化熱可塑性樹脂構造体の製造に適用可能であり、とくに、比較的大型大面積の構造体の製造に好適である。   The fiber reinforced thermoplastic resin structure and the method for producing the same according to the present invention can be applied to the production of any fiber reinforced thermoplastic resin structure having light weight and high mechanical properties. It is suitable for manufacturing a structure.

1 コア層形成用基材(初期密度Aのコア層)
2 表皮材
3 成形用基材
4 加熱手段としてのヒータ
5 密度Bのコア層
6 成形型としての金型
7 キャビティ
8 密度Cのコア層
9 繊維強化熱可塑性樹脂構造体
1 Core layer forming substrate (core layer with initial density A)
2 Skin material 3 Molding substrate 4 Heater 5 as heating means Density B core layer 6 Mold as mold 7 Cavity 8 Density C core layer 9 Fiber reinforced thermoplastic resin structure

Claims (15)

加熱溶融時に膨張性を有する初期密度Aの不連続繊維強化熱可塑性樹脂をコア層とし、該コア層の少なくとも一面に加熱溶融時に非膨張性の繊維強化熱可塑性樹脂からなる表皮材を配置して成形用基材を形成し、
前記成形用基材を加熱し溶融させることにより前記コア層と前記表皮材とを一体化させるとともに、前記コア層中の前記不連続強化繊維にコア層成形前の形状への復元力を発現させて該コア層が前記初期密度Aよりも低い密度Bとなるように該コア層を膨張させ、
しかる後に、前記コア層が膨張した前記成形用基材を成形型内にセットし、前記コア層の密度が前記密度Bと前記初期密度Aの間の密度Cとなるように前記成形用基材を成形型内でプレス成形することを特徴とする、繊維強化熱可塑性樹脂構造体の製造方法。
A discontinuous fiber reinforced thermoplastic resin having an initial density A that has expandability when heated and melted is used as a core layer, and a skin material made of a fiber reinforced thermoplastic resin that is non-expandable when heated and melted is disposed on at least one surface of the core layer. Forming a molding substrate,
By heating and melting the base material for molding, the core layer and the skin material are integrated, and the discontinuous reinforcing fibers in the core layer are made to develop a restoring force to the shape before molding the core layer. Expanding the core layer so that the core layer has a density B lower than the initial density A,
Thereafter, the molding base material in which the core layer is expanded is set in a molding die, and the molding base material has a density C between the density B and the initial density A. A method for producing a fiber-reinforced thermoplastic resin structure, characterized by press-molding in a mold.
前記コア層中に前記不連続強化繊維がランダムに分散されている、請求項1に記載の繊維強化熱可塑性樹脂構造体の製造方法。   The method for producing a fiber-reinforced thermoplastic resin structure according to claim 1, wherein the discontinuous reinforcing fibers are randomly dispersed in the core layer. 前記コア層の前記不連続強化繊維の数平均繊維長が3〜50mmである、請求項1または2に記載の繊維強化熱可塑性樹脂構造体の製造方法。   The manufacturing method of the fiber reinforced thermoplastic resin structure of Claim 1 or 2 whose number average fiber length of the said discontinuous reinforcement fiber of the said core layer is 3-50 mm. 前記コア層成形前の前記不連続強化繊維が、抄紙あるいはカーディング法にて製造された強化繊維マットからなる、請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The method for producing a fiber-reinforced thermoplastic resin structure according to any one of claims 1 to 3, wherein the discontinuous reinforcing fibers before forming the core layer are made of a reinforcing fiber mat manufactured by papermaking or a carding method. . 前記成形型内でのプレス成形の条件により、前記密度Cを前記初期密度Aの1/3倍以上1倍未満の範囲に制御する、請求項1〜4のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The fiber reinforced thermoplasticity according to any one of claims 1 to 4, wherein the density C is controlled in a range of 1/3 times or more and less than 1 time of the initial density A depending on the conditions of press molding in the mold. Manufacturing method of resin structure. 前記プレス成形におけるプレス圧を5MPa以下とする、請求項1〜5のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The manufacturing method of the fiber reinforced thermoplastic resin structure in any one of Claims 1-5 which sets the press pressure in the said press molding to 5 Mpa or less. 前記表皮材の強化繊維が連続繊維からなる、請求項1〜6のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The manufacturing method of the fiber reinforced thermoplastic resin structure in any one of Claims 1-6 in which the reinforced fiber of the said skin material consists of continuous fibers. 前記表皮材として、強化繊維を一方向に引きそろえて熱可塑性樹脂を含浸させた表皮材を用いる、請求項1〜7のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The method for producing a fiber-reinforced thermoplastic resin structure according to any one of claims 1 to 7, wherein a skin material in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin is used as the skin material. 前記表皮材が、強化繊維を一方向に引きそろえて熱可塑性樹脂を含浸させたテープ状基材を積層または編み込んだ板状の表皮材からなる、請求項8に記載の繊維強化熱可塑性樹脂構造体の製造方法。   The fiber-reinforced thermoplastic resin structure according to claim 8, wherein the skin material is a plate-like skin material obtained by laminating or braiding a tape-like base material in which reinforcing fibers are aligned in one direction and impregnated with a thermoplastic resin. Body manufacturing method. 前記表皮材が、強化繊維織物を含む、請求項1〜9のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The manufacturing method of the fiber reinforced thermoplastic resin structure in any one of Claims 1-9 in which the said skin material contains a reinforced fiber fabric. 前記表皮材を、前記コア層の両面に配置する、請求項1〜10のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The manufacturing method of the fiber reinforced thermoplastic resin structure in any one of Claims 1-10 which arrange | positions the said skin material on both surfaces of the said core layer. 前記コア層および前記表皮材の少なくとも一方の強化繊維として、炭素繊維、ガラス繊維、アラミド繊維から選ばれる少なくとも1種を含む、請求項1〜11のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The fiber-reinforced thermoplastic resin structure according to any one of claims 1 to 11, comprising at least one selected from carbon fiber, glass fiber, and aramid fiber as at least one reinforcing fiber of the core layer and the skin material. Manufacturing method. 前記コア層および前記表皮材の少なくとも一方の熱可塑性樹脂として、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ポリエステル樹脂、ABS樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂の少なくとも1種を含む、請求項1〜12のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   As the thermoplastic resin of at least one of the core layer and the skin material, including at least one of polyphenylene sulfide resin, polyamide resin, polyolefin resin, polyester resin, ABS resin, polycarbonate resin, polyacetal resin, polyether ether ketone resin, The manufacturing method of the fiber reinforced thermoplastic resin structure in any one of Claims 1-12. 前記コア層および前記表皮材の熱可塑性樹脂が同種の樹脂からなる、請求項1〜13のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法。   The manufacturing method of the fiber reinforced thermoplastic resin structure in any one of Claims 1-13 in which the thermoplastic resin of the said core layer and the said skin material consists of the same kind of resin. 請求項1〜14のいずれかに記載の繊維強化熱可塑性樹脂構造体の製造方法により製造された、前記コア層の密度が前記成形用基材形成時のコア層の初期密度Aよりも低い繊維強化熱可塑性樹脂構造体。   Fibers produced by the method for producing a fiber-reinforced thermoplastic resin structure according to any one of claims 1 to 14, wherein the density of the core layer is lower than the initial density A of the core layer when forming the molding substrate. Reinforced thermoplastic resin structure.
JP2012066806A 2012-03-23 2012-03-23 Fiber-reinforced thermoplastic resin structure and its manufacturing method Pending JP2013198984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066806A JP2013198984A (en) 2012-03-23 2012-03-23 Fiber-reinforced thermoplastic resin structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012066806A JP2013198984A (en) 2012-03-23 2012-03-23 Fiber-reinforced thermoplastic resin structure and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2013198984A true JP2013198984A (en) 2013-10-03

Family

ID=49519618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066806A Pending JP2013198984A (en) 2012-03-23 2012-03-23 Fiber-reinforced thermoplastic resin structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2013198984A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055258A (en) * 2012-09-13 2014-03-27 Mitsubishi Rayon Co Ltd Thermoplastic resin-based fiber-reinforced composite material for press molding and method for producing the material
CN104861184A (en) * 2014-02-21 2015-08-26 丰田自动车株式会社 Fiber-reinforced composite material and method for manufacturing same
JP2016016541A (en) * 2014-07-04 2016-02-01 日本ガスケット株式会社 Fiber reinforced resin and manufacturing method therefor
WO2018142971A1 (en) 2017-01-31 2018-08-09 東レ株式会社 Integrally molded body and method for producing same
US11370195B2 (en) 2017-04-28 2022-06-28 Kuraray Co., Ltd. Multilayer composite and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055258A (en) * 2012-09-13 2014-03-27 Mitsubishi Rayon Co Ltd Thermoplastic resin-based fiber-reinforced composite material for press molding and method for producing the material
CN104861184A (en) * 2014-02-21 2015-08-26 丰田自动车株式会社 Fiber-reinforced composite material and method for manufacturing same
JP2015157371A (en) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 Fiber-reinforced composite material and fiber-reinforced composite material producing method
US9890483B2 (en) 2014-02-21 2018-02-13 Toyota Jidosha Kabushiki Kaisha Fiber-reinforced composite material and method for manufacturing the same
JP2016016541A (en) * 2014-07-04 2016-02-01 日本ガスケット株式会社 Fiber reinforced resin and manufacturing method therefor
WO2018142971A1 (en) 2017-01-31 2018-08-09 東レ株式会社 Integrally molded body and method for producing same
KR20190113777A (en) 2017-01-31 2019-10-08 도레이 카부시키가이샤 Integrated molded body and method for producing the same
US11370195B2 (en) 2017-04-28 2022-06-28 Kuraray Co., Ltd. Multilayer composite and method for producing same

Similar Documents

Publication Publication Date Title
JP2013198984A (en) Fiber-reinforced thermoplastic resin structure and its manufacturing method
JP6005086B2 (en) Method for manufacturing composite structure
JP6213673B2 (en) COMPOSITE MATERIAL MOLDED BODY AND MANUFACTURING METHOD THEREOF
JP5971409B2 (en) Manufacturing method of fiber reinforced composite material molded article
CN105324233B (en) Carbon fibre composite
CN111201132B (en) Method for producing a flat composite component and composite component produced thereby
EP3042753B1 (en) Production method for fiber-reinforced components
EP0765737A1 (en) Sound absorbing component
JP5761867B2 (en) Method for producing fiber reinforced resin base material or resin molded body, and plasticizing dispenser used in this production method
JPH02258326A (en) Expansile fiber complex structure and its producing method
JP3907631B2 (en) Method for producing thermosetting FRP
JP2018202771A (en) Fiber laminated sheet member and method for producing fiber molded article using the fiber laminated sheet member
KR101995848B1 (en) Composite fiber component and method for producing a composite fiber component
JP3190533U (en) Fiber reinforced sheet
CN113226733A (en) Method for producing a thermoplastically deformable, fiber-reinforced, flat semifinished product
JP7030622B2 (en) Composite material structure and its formation method
JP2006205419A (en) Press mold, press molding machine and press molded product
CN113677512A (en) Dual expansion foam for closed mold composite manufacture
JPH0125707B2 (en)
EP1507646A1 (en) A method of producing a three-dimensional article having a sandwich structure
JP2018144274A (en) Molded product manufacturing method and molded product made from metal and fiber-reinforced composite material
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP7144881B1 (en) Laminates for pressing and pressed laminates
JP2007062393A (en) Method for producing thermosetting type fiber-reinforced plastic
JP2002220006A (en) Trim base and method of manufacturing it