JP5361199B2 - Phosphor and light emitting device - Google Patents

Phosphor and light emitting device Download PDF

Info

Publication number
JP5361199B2
JP5361199B2 JP2008018037A JP2008018037A JP5361199B2 JP 5361199 B2 JP5361199 B2 JP 5361199B2 JP 2008018037 A JP2008018037 A JP 2008018037A JP 2008018037 A JP2008018037 A JP 2008018037A JP 5361199 B2 JP5361199 B2 JP 5361199B2
Authority
JP
Japan
Prior art keywords
phosphor
light
light emitting
emission
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008018037A
Other languages
Japanese (ja)
Other versions
JP2009179662A (en
Inventor
亮介 平松
直寿 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008018037A priority Critical patent/JP5361199B2/en
Priority to PCT/JP2008/071177 priority patent/WO2009096082A1/en
Priority to US12/388,067 priority patent/US20090189514A1/en
Publication of JP2009179662A publication Critical patent/JP2009179662A/en
Application granted granted Critical
Publication of JP5361199B2 publication Critical patent/JP5361199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/06102Disposition the bonding areas being at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

A lithium calcium silicate luminescent material is provided, which includes a tetragonal crystal phase containing Li, Ca, Si and O, and an activator containing Eu. The luminescent material exhibits a peak wavelength of emission spectrum falling within a wavelength region of 470 to 490 nm when excited by light having an emission peak falling within a wavelength region of 360 to 460 nm.

Description

本発明は、蛍光体および発光装置に関する。   The present invention relates to a phosphor and a light emitting device.

発光ダイオード(Light−emitting Diode:LED)は、励起光源としてのLEDチップと蛍光体との組み合わせから構成され、その組み合わせによって様々な色の発光色を実現することができる。白色光を放出する白色LED発光装置には、波長360〜500nmの光を放出するLEDチップと蛍光体との組み合わせが用いられている。   A light-emitting diode (LED) is composed of a combination of an LED chip as an excitation light source and a phosphor, and various combinations of light emission colors can be realized. A white LED light emitting device that emits white light uses a combination of an LED chip that emits light having a wavelength of 360 to 500 nm and a phosphor.

例えば、紫外または近紫外領域の光を放つLEDチップと、蛍光体混合物との組み合わせが挙げられる。蛍光体混合物には、青色系蛍光体、緑色ないし黄色系蛍光体、および赤色系蛍光体が含有される。白色LED発光装置に用いられる蛍光体には、励起光源であるLEDチップの発光波長360〜500nmの近紫外線領域から青色領域の光をよく吸収し、かつ効率よく可視光を発光することが求められている。   For example, a combination of an LED chip that emits light in the ultraviolet or near ultraviolet region and a phosphor mixture may be mentioned. The phosphor mixture contains a blue phosphor, a green to yellow phosphor, and a red phosphor. Phosphors used in white LED light-emitting devices are required to absorb light in the blue region from the near ultraviolet region having an emission wavelength of 360 to 500 nm of the LED chip that is the excitation light source and to emit visible light efficiently. ing.

白色LED発光装置に用いられる青色蛍光体としては、BaMgAl1017:Eu蛍光体が知られている(例えば、特許文献1参照)。しかしながら、この青色蛍光体は380nm以上410nm以下の近紫外領域の光を放つLEDチップと組み合わせて使用した場合、使用する励起光源のピーク波長により発光強度が大きく変化してしまう。そのため、使用するLEDチップの発光波長のバラツキによって、使用する青色蛍光体の量を調整する必要があった。 A BaMgAl 10 O 17 : Eu phosphor is known as a blue phosphor used in white LED light emitting devices (see, for example, Patent Document 1). However, when this blue phosphor is used in combination with an LED chip that emits light in the near ultraviolet region of 380 nm or more and 410 nm or less, the emission intensity greatly varies depending on the peak wavelength of the excitation light source used. Therefore, it is necessary to adjust the amount of the blue phosphor to be used according to the variation in the emission wavelength of the LED chip to be used.

なお、ユーロピウムで付活されたリチウムアルカリ土類金属ケイ酸塩蛍光体として、Li2(Sr0.88,Ca0.1,Eu0.02)SiO4蛍光体が提案されている。かかる蛍光体は、光源としての青色LEDと組み合わせて白色光が得られている(例えば、特許文献2参照)。
特開2007−39517号公報 特開2006−232906号公報
As a lithium alkaline earth metal silicate phosphor activated with europium, a Li 2 (Sr 0.88 , Ca 0.1 , Eu 0.02 ) SiO 4 phosphor has been proposed. In such a phosphor, white light is obtained in combination with a blue LED as a light source (see, for example, Patent Document 2).
JP 2007-39517 A JP 2006-232232 A

本発明は、360nm〜460nmに発光ピークを有する光で励起されて発光する青色蛍光体、およびかかる蛍光体を用いた発光装置を提供することを目的とする。   An object of the present invention is to provide a blue phosphor that emits light when excited by light having an emission peak at 360 nm to 460 nm, and a light emitting device using the phosphor.

本発明の一態様にかかるリチウムカルシウム珪酸化物蛍光体は、Li,Ca,Si,およびOを含む結晶相と、Euを含む付活剤とを含有し、下記一般式(A)で表わされる組成を有することを特徴とする。
Li a (Ca 1-x1-y1 ,M x1 ,Eu y1 b Si c d (A)
ここで、MはBa,Sr,およびMgからなる群から選択される少なくとも1種であり、x1,y1,a,b,c,およびdは、以下に示す範囲内である。
0<x1≦0.4 (1); 0<y1≦0.08 (2)
1.9≦a≦2.1 (3); 0.9≦b≦1.1 (4)
0.9≦c≦1.1 (5); 3.9≦d≦4.2 (6)
The lithium calcium silicate phosphor according to one embodiment of the present invention contains a crystal phase containing Li, Ca, Si, and O and an activator containing Eu, and is represented by the following general formula (A). characterized in that it have a.
Li a (Ca 1-x1- y1, M x1, Eu y1) b Si c O d (A)
Here, M is at least one selected from the group consisting of Ba, Sr, and Mg, and x1, y1, a, b, c, and d are within the following ranges.
0 <x1 ≦ 0.4 (1); 0 <y1 ≦ 0.08 (2)
1.9 ≦ a ≦ 2.1 (3); 0.9 ≦ b ≦ 1.1 (4)
0.9 ≦ c ≦ 1.1 (5); 3.9 ≦ d ≦ 4.2 (6)

本発明の一態様にかかる発光装置は、360nm以上460nm以下の波長領域に発光ピークを有する光を発する発光素子と、
前記発光素子上に設けられ、蛍光体を含む発光層とを具備し、
前記蛍光体の少なくとも一部は、前述のリチウムカルシウム珪酸化物蛍光体であることを特徴とする。
A light-emitting device according to one embodiment of the present invention includes a light-emitting element that emits light having an emission peak in a wavelength region of 360 nm or more and 460 nm or less;
A light emitting layer provided on the light emitting element and containing a phosphor;
At least a part of the phosphor is the above-described lithium calcium silicate phosphor.

本発明によれば、360nm〜460nmに発光ピークを有する光で励起されて発光する青色蛍光体、およびかかる蛍光体を用いた発光装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the blue fluorescent substance light-emitted by being excited by the light which has an emission peak in 360 nm-460 nm, and the light-emitting device using this fluorescent substance are provided.

以下、本発明の実施形態を説明する。以下に示す実施の形態は、本発明の技術思想を具現化するための蛍光体および発光装置を例示するものであり、本発明は以下のものに限定されない。   Embodiments of the present invention will be described below. The following embodiments exemplify phosphors and light emitting devices for embodying the technical idea of the present invention, and the present invention is not limited to the following.

また、本明細書は特許請求の範囲に示される部材を、実施形態に特定するものではない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は本発明の範囲を限定する趣旨ではなく、単なる説明例に過ぎない。なお、各図面が示す部材の大きさや位置関係等は説明を明確にするため誇張していることがある。さらに、同一の名称、符号については同一、もしくは同質の部材を示しており、詳細な説明を省略する。本発明を構成する各要素は、複数の要素を同一の部材で構成して、同一の部材で複数の要素を兼用する態様としてもよく、逆に同一の部材の機能を複数の部材で分担して実現することもできる。   Moreover, this specification does not specify the member shown by the claim as embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention, but are merely illustrative examples. It should be noted that the size and positional relationship of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, the same name and reference numeral indicate the same or the same members, and detailed description thereof is omitted. Each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by the same member, and conversely, the function of the same member is shared by the plurality of members. Can also be realized.

本発明者らは、検討および研究を重ねた結果、360nm以上460nm以下の領域に発光ピークを有する光で励起した際、発光スペクトルのピーク波長が470nm以上490nm以下の波長領域に示すリチウムカルシウム珪酸化物蛍光体を見出した。本明細書においてリチウムカルシウム珪酸化物蛍光体とは、Li,Ca,SiおよびOを含む結晶相を有する蛍光体をさす。付活剤としてユーロピウムが含有され、しかも正方晶の結晶構造を有するので、本発明の実施形態にかかる蛍光体は、360nm以上460nm以下の領域にピークを有する光で励起されて発光する。   As a result of repeated studies and researches, the present inventors have shown that lithium calcium silicate having a peak wavelength of an emission spectrum in a wavelength region of 470 nm or more and 490 nm or less when excited with light having an emission peak in a region of 360 nm or more and 460 nm or less. A phosphor was found. In this specification, the lithium calcium silicate phosphor refers to a phosphor having a crystal phase containing Li, Ca, Si and O. Since europium is contained as an activator and has a tetragonal crystal structure, the phosphor according to the embodiment of the present invention is excited by light having a peak in a region of 360 nm to 460 nm and emits light.

リチウムカルシウム珪酸化物は、通常、下記一般式(B)で表わすことができる。   Lithium calcium silicate can usually be represented by the following general formula (B).

LiaCabSicd (B)
a,b,cおよびdは、以下に示す範囲内であれば実質的に化学量論組成比とみなすことができるので、発光効率が大きく損なわれることはない。なお、正確な化学量論組成比は、a=2、b=1、c=1、d=4である。
Li a Ca b Si c O d (B)
Since a, b, c, and d can be regarded substantially as a stoichiometric composition ratio within the range shown below, the luminous efficiency is not greatly impaired. The exact stoichiometric composition ratio is a = 2, b = 1, c = 1, and d = 4.

1.9≦a≦2.1 (3); 0.9≦b≦1.1 (4)
0.9≦c≦1.1 (5); 3.9≦d≦4.2 (6)
360nmより短波長の紫外発光LEDは、製造コストが高く、電気から光への変換効率が低い。しかも、蛍光体が分散される樹脂の劣化が大きいことから、実用面で励起波長の下限は360nmに規定される。一方、460nmを越える波長で励起した際には、目的とする発光スペクトルはほとんど得られないために、励起波長の上限は460nmに規定される。
1.9 ≦ a ≦ 2.1 (3); 0.9 ≦ b ≦ 1.1 (4)
0.9 ≦ c ≦ 1.1 (5); 3.9 ≦ d ≦ 4.2 (6)
An ultraviolet light emitting LED having a wavelength shorter than 360 nm has a high manufacturing cost and low conversion efficiency from electricity to light. Moreover, since the resin in which the phosphor is dispersed is greatly deteriorated, the lower limit of the excitation wavelength is specified to 360 nm in practical use. On the other hand, when excitation is performed at a wavelength exceeding 460 nm, the target emission spectrum is hardly obtained, so the upper limit of the excitation wavelength is defined as 460 nm.

なお、発光スペクトルとは、ピーク波長が470nm以上490nm以下の波長領域で測定された発光バンドの半値幅が40nm以内のスペクトルをさす。発光スペクトルは、360nm以上460nm以下の波長領域に発光ピークを有する光によって蛍光体を励起し、得られる発光を分光光度計により測定して、求めることができる。励起源としては、例えば、390nmの近紫外領域LED、および460nm青色領域LED等を用いることができ、分光光度計としては、例えば、大塚電子(株)IMUC−7000等が挙げられる。   Note that the emission spectrum refers to a spectrum having a full width at half maximum of 40 nm or less in the emission band measured in a wavelength region having a peak wavelength of 470 nm or more and 490 nm or less. The emission spectrum can be obtained by exciting the phosphor with light having an emission peak in a wavelength region of 360 nm or more and 460 nm or less, and measuring the obtained emission with a spectrophotometer. As an excitation source, for example, a 390 nm near-ultraviolet region LED, a 460 nm blue region LED, or the like can be used. As a spectrophotometer, for example, Otsuka Electronics Co., Ltd. IMUC-7000 can be used.

本発明の一実施形態にかかるリチウムカルシウム珪酸化物蛍光体は、下記一般式(A)で表わすことができる。   The lithium calcium silicate phosphor according to one embodiment of the present invention can be represented by the following general formula (A).

Lia(Ca1-x1-y1,Mx1,Euy1bSicd (A)
上記一般式(A)中、Euの含有量(y1)は0より大きい。Euが含有されない場合(y1=0)には、360〜460nmに発光ピークを有する光で励起したところで、発光スペクトルを得ることはできない。しかしながら、Euの含有量が多すぎる場合には、濃度消光現象が生じて、Lia(Ca1-x1-y1,Mx1,Euy1bSicd蛍光体の発光強度が弱くなる。こうした不都合を避けるために、Euの含有量(y1)の上限は0.08に規定される。さらにy1は、0.01≦y1≦0.06での範囲内であることがより好ましい。
Li a (Ca 1-x1- y1, M x1, Eu y1) b Si c O d (A)
In the general formula (A), the Eu content (y1) is greater than zero. When Eu is not contained (y1 = 0), an emission spectrum cannot be obtained when excited with light having an emission peak at 360 to 460 nm. However, when the content of Eu is too much, the concentration quenching occurs phenomenon, Li a (Ca 1-x1 -y1, M x1, Eu y1) b Si c O d phosphor emission intensity is weakened. In order to avoid such inconvenience, the upper limit of the Eu content (y1) is defined as 0.08. Furthermore, y1 is more preferably in the range of 0.01 ≦ y1 ≦ 0.06.

本発明の実施形態にかかる蛍光体は、360nm以上460nm以下の領域に発光ピークを有する光で励起した際、半値幅が40nm以内でピーク波長が470nm以上490nm以下の波長領域に発光スペクトル示す。また、粉末X線回折分析法(X−ray diffractometry:XRD)測定の結果、本発明の実施形態にかかる蛍光体の結晶構造は正方晶であることが確認された。こうした結晶構造は、各元素の含有量に起因するものであり、発光色にも密接に関連することが本発明者らによって見出された。   The phosphor according to the embodiment of the present invention exhibits an emission spectrum in a wavelength region having a full width at half maximum of 40 nm and a peak wavelength of 470 nm to 490 nm when excited with light having an emission peak in a region of 360 nm to 460 nm. Moreover, as a result of the powder X-ray diffraction analysis (XRD) measurement, it was confirmed that the crystal structure of the phosphor according to the embodiment of the present invention is a tetragonal crystal. It has been found by the present inventors that such a crystal structure is caused by the content of each element and is closely related to the emission color.

ユーロピウム付活リチウムアルカリ土類金属ケイ酸塩蛍光体としては、従来、Li2(Sr0.88,Ca0.1,Eu0.02)SiO4蛍光体が知られている。この蛍光体は、光源としての青色LEDと組み合わせて白色光が得られているので、Li2(Sr0.88,Ca0.1,Eu0.02)SiO4蛍光体の発光色は黄色である。同様の母体組成でアルカリ土類金属元素であるSrの割合が多くなると、結晶構造が六方晶となる。すなわち、ユーロピウム付活リチウムアルカリ土類金属ケイ酸塩蛍光体において、結晶構造が六方晶になると黄色発光すると考えられる。 Conventionally known as europium-activated lithium alkaline earth metal silicate phosphors are Li 2 (Sr 0.88 , Ca 0.1 , Eu 0.02 ) SiO 4 phosphors. Since this phosphor is combined with a blue LED as a light source to obtain white light, the emission color of the Li 2 (Sr 0.88 , Ca 0.1 , Eu 0.02 ) SiO 4 phosphor is yellow. When the ratio of Sr, which is an alkaline earth metal element, increases with the same matrix composition, the crystal structure becomes hexagonal. That is, in the europium activated lithium alkaline earth metal silicate phosphor, it is considered that yellow light emission occurs when the crystal structure becomes hexagonal.

このように、これまでユーロピウム付活リチウムアルカリ土類金属ケイ酸塩蛍光体で知られているのは、黄色発光のみであった。結晶構造により発光色が変化することは、これまで知られておらず、本発明者らによって初めて得られた知見である。すなわち、母体組成のアルカリ土類金属元素でCaの割合が多くなると、結晶構造が正方晶となり、青色発光することが本発明者らによって見出された。すなわち、前記一般式(A)において、Caの含有量(1-x1-y1)が0.59以上になると、青色発光が得られる。   Thus, only yellow light emission has been known so far for europium activated lithium alkaline earth metal silicate phosphors. The fact that the emission color changes depending on the crystal structure has not been known so far, and is a finding obtained for the first time by the present inventors. That is, the present inventors have found that when the proportion of Ca in the alkaline earth metal element of the matrix composition increases, the crystal structure becomes tetragonal and emits blue light. That is, in the general formula (A), when the Ca content (1-x1-y1) is 0.59 or more, blue light emission is obtained.

なお、上記一般式(A)に示されるように、カルシウムサイトの一部をバリウム、ストロンチウム、およびマグネシウムなどから選択される2価の陽イオン(M)で置換することができる。リチウムカルシウム珪酸化物中においては、CaとM(MはBa、Sr、Mgのいずれか1種類以上の元素である)とは、完全に固溶した状態で存在する。置換元素の中で、SrはCaと同じ2価の陽イオンでイオン半径も比較的近い。このため、結晶構造への影響が小さく、置換元素として好ましい。また、付活元素として使用するEuは、Caよりイオン半径が大きい。したがって、Caよりイオン半径の小さいMgは、置換量が少ない場合や付活元素濃度が高い場合に好ましい。以上のことから、Mとしては(Sr、またはMg)が好ましい。   As shown in the general formula (A), a part of the calcium site can be substituted with a divalent cation (M) selected from barium, strontium, magnesium and the like. In lithium calcium silicate, Ca and M (M is one or more elements of Ba, Sr, and Mg) exist in a completely solid solution state. Among the substitutional elements, Sr is the same divalent cation as Ca and has a relatively close ionic radius. For this reason, the influence on the crystal structure is small, and it is preferable as a substitution element. Moreover, Eu used as an activator has an ionic radius larger than Ca. Therefore, Mg having an ionic radius smaller than Ca is preferable when the substitution amount is small or the concentration of the activating element is high. From the above, M is preferably (Sr or Mg).

Mの含有量(x1)が多すぎると結晶構造が六方晶ではなくなってしまう。その結果、360nm以上460nm以下の波長領域に発光ピークを有する光で励起しても、青色発光は得られない。置換元素がSrの場合には、575nm付近にピーク波長を有する黄色発光を有する蛍光体となってしまう。   If the M content (x1) is too large, the crystal structure will not be hexagonal. As a result, even when excited with light having an emission peak in a wavelength region of 360 nm to 460 nm, blue light emission cannot be obtained. When the substitution element is Sr, a phosphor having a yellow light emission having a peak wavelength near 575 nm is obtained.

MとしてSrが含有される場合には、含有量(x1)は0.39以下が好ましく、0.2以下がより好ましい。   When Sr is contained as M, the content (x1) is preferably 0.39 or less, and more preferably 0.2 or less.

Baはイオン半径がCaと大きく異なるため、母体としてのLi2CaSiO4に添加できる量に制限がある。含有量(x1)の上限は0.2に規定される。Baの場合、x1は0.2以下がより好ましい。 Since Ba has an ion radius that is significantly different from that of Ca, there is a limit to the amount that can be added to Li 2 CaSiO 4 as a base material. The upper limit of the content (x1) is defined as 0.2. In the case of Ba, x1 is more preferably 0.2 or less.

また、Mgの場合には、含有量(x1)は0.4以下が好ましく、0.05以下がより好ましい。   In the case of Mg, the content (x1) is preferably 0.4 or less, and more preferably 0.05 or less.

発光特性の低下を引き起こさない範囲内であれば、少量のナトリウム、カリウム、ルビジウム、およびセシウムから選択される少なくとも1種でリチウムサイトを置換してもよい。同様に、シリコンサイトを少量のゲルマニウムで置換することもできる。   The lithium site may be substituted with a small amount of at least one selected from sodium, potassium, rubidium, and cesium as long as the emission characteristics are not deteriorated. Similarly, silicon sites can be replaced with a small amount of germanium.

本発明の実施形態にかかる蛍光体における各元素の含有量は、例えば以下のような手法により分析することができる。Ca,M,Eu,およびSiなどの金属元素の分析にあたっては、合成された蛍光体をアルカリ融解する。得られた融解物を、例えば、サーモフィッシャーサイエンティフィック(株)IRIS Advantage、エスアイアイ・ナノテクノロジー(株)SPS1200AR等を用いて、内部標準のICP発光分光法にて分析する。また、非金属元素Oを分析するには、合成された蛍光体を不活性ガス融解する。融解物を、例えばLECO社製TC−600等を用いて、赤外吸収法にて分析する。非金属元素Nは、合成された蛍光体を不活性ガス融解する。これを、例えばLECO社製TC−600等により熱伝導度法にて分析を行なう。こうして、蛍光体の組成が求められる。   The content of each element in the phosphor according to the embodiment of the present invention can be analyzed by the following method, for example. In analyzing metal elements such as Ca, M, Eu, and Si, the synthesized phosphor is alkali-melted. The obtained melt is analyzed by internal standard ICP emission spectroscopy using, for example, Thermo Fisher Scientific IRIS Advantage, SII Nanotechnology SPS1200AR, and the like. In order to analyze the nonmetallic element O, the synthesized phosphor is melted with an inert gas. The melt is analyzed by an infrared absorption method using, for example, TC-600 manufactured by LECO. The nonmetallic element N melts the synthesized phosphor in an inert gas. This is analyzed by a thermal conductivity method using, for example, TC-600 manufactured by LECO. Thus, the composition of the phosphor is required.

上述したような本発明の実施形態にかかる蛍光体を、360nm以上460nm以下の波長領域に発光ピークを有する発光素子と組み合わせて、本発明の実施形態にかかるLED発光装置が得られる。付活剤としてのEuを含有する特定の組成のリチウムカルシウム珪酸化物蛍光体が発光層に含有されることから、本発明の実施形態にかかるLED発光装置は、従来の蛍光体を用いたLED発光装置よりも、効率および演色性が高められる。   The LED according to the embodiment of the present invention can be obtained by combining the phosphor according to the embodiment of the present invention as described above with a light emitting element having a light emission peak in a wavelength region of 360 nm to 460 nm. Since the lithium calcium silicate phosphor having a specific composition containing Eu as an activator is contained in the light emitting layer, the LED light emitting device according to the embodiment of the present invention is an LED emitting device using a conventional phosphor. Efficiency and color rendering are improved over the device.

本発明の実施形態にかかる蛍光体は、例えば以下の方法により製造することができる。出発原料としては、構成元素の酸化物または窒化物粉末を用いることができる。出発原料を所定量秤量し、結晶成長剤を加えてボールミル等で混合する。例えば、Eu原料としてはEu23等、Ca原料としてはCaCO3およびCaO等が挙げられる。Ba原料としてはBaCO3およびBaO等、Sr原料としてはSrCO3およびSrO等が挙げられる。また、Mg原料としてはMgCO3およびMgO等を用いることができ、Si原料としてはSiO2等が挙げられる。酸化物等の出発原料は、目的とされる化合物の組成比に合わせて調合する。原料粉末は、例えば溶媒を使用しない乾式混合法により混合することができる。あるいは、エタノール等の有機溶媒を使用した湿式混合法を採用してもよい。 The phosphor according to the embodiment of the present invention can be manufactured, for example, by the following method. As starting materials, oxides or nitride powders of constituent elements can be used. A predetermined amount of the starting material is weighed, a crystal growth agent is added, and they are mixed by a ball mill or the like. For example, Eu raw material includes Eu 2 O 3 and the like, and Ca raw material includes CaCO 3 and CaO. Examples of the Ba material include BaCO 3 and BaO, and examples of the Sr material include SrCO 3 and SrO. Further, MgCO 3 and MgO can be used as the Mg raw material, and SiO 2 and the like can be cited as the Si raw material. Starting materials such as oxides are prepared according to the composition ratio of the target compound. The raw material powder can be mixed, for example, by a dry mixing method that does not use a solvent. Alternatively, a wet mixing method using an organic solvent such as ethanol may be employed.

結晶成長剤としては、塩化アンモニウムなどのアンモニウムの塩化物、フッ化物、臭化物、あるいは沃化物などや、アルカリ金属の塩化物、フッ化物、臭化物、あるいは沃化物などが挙げられる。さらに、アルカリ土類金属の塩化物、フッ化物、臭化物、あるいは沃化物などを用いてもよい。吸湿性の増加を防止するために、結晶成長剤の添加量は、原料粉末全体の0.01重量%以上0.3重量%以下程度とすることが好ましい。   Examples of the crystal growth agent include ammonium chlorides such as ammonium chloride, fluorides, bromides, and iodides, and alkali metal chlorides, fluorides, bromides, and iodides. Further, an alkaline earth metal chloride, fluoride, bromide, or iodide may be used. In order to prevent an increase in hygroscopicity, the amount of the crystal growth agent added is preferably about 0.01% by weight to 0.3% by weight of the whole raw material powder.

こうした原料粉末を混合してなる混合原料を坩堝等の容器に収容し、熱処理を行なって焼成品を得る。熱処理は、N2、ArまたはN2/H2、Ar/H2雰囲気中で行なわれる。かかる雰囲気中で熱処理を行なうことによって、原料の吸湿性防止や蛍光体の母体を合成するとともに、原料として使用した酸化物中のユーロピウムの還元を促進することができる。熱処理の条件は、600℃〜1000℃、2〜48時間とすることが好ましい。温度が低すぎる場合、あるいは時間が短すぎる場合には、原料粉末を十分に反応させることが困難となる。一方、温度が高すぎる場合、あるいは時間が長すぎる場合には、原料粉末または生成物が昇華するおそれがある。 A mixed raw material obtained by mixing such raw material powders is housed in a container such as a crucible and heat-treated to obtain a fired product. The heat treatment is performed in an N 2 , Ar or N 2 / H 2 , Ar / H 2 atmosphere. By performing heat treatment in such an atmosphere, it is possible to prevent the hygroscopicity of the raw material, synthesize the phosphor base material, and promote the reduction of europium in the oxide used as the raw material. The heat treatment conditions are preferably 600 ° C. to 1000 ° C. and 2 to 48 hours. When the temperature is too low or when the time is too short, it is difficult to sufficiently react the raw material powder. On the other hand, if the temperature is too high or if the time is too long, the raw material powder or product may sublime.

得られた焼成品を粉砕して、再度容器に収容し、N2/H2またはAr/H2雰囲気中で二次焼成を行なうこともできる。二次焼成の際の粉砕は特に規定されず、乳鉢等を用いて、一次焼成品の塊を砕いて表面積が増大すればよい。 The obtained baked product can be pulverized and accommodated in a container again, and secondary calcination can be performed in an N 2 / H 2 or Ar / H 2 atmosphere. The pulverization at the time of the secondary firing is not particularly defined, and the surface area may be increased by crushing the lump of the primary fired product using a mortar or the like.

上述した方法により、Eu含有量(y1)=0のLi2CaSiO4を作製した。Euが含有されていないので、これは蛍光体ではない。また、Eu含有量(y1)=0.04かつSr含有量(x1)=0.96のLi2(Sr0.96,Eu0.04)SiO4蛍光体を作製した。この蛍光体は、Sr含有量(x1)が0.4を超えており、XRD測定により結晶構造が六方晶であることが確認された。 Li 2 CaSiO 4 with Eu content (y1) = 0 was produced by the method described above. This is not a phosphor because it does not contain Eu. In addition, a Li 2 (Sr 0.96 , Eu 0.04 ) SiO 4 phosphor having Eu content (y1) = 0.04 and Sr content (x1) = 0.96 was prepared. This phosphor, Sr content (x1) is Ri Contact exceeds 0.4, the crystal structure is hexagonal was confirmed by XRD measurements.

また、Eu含有量(y1)=0.04のLi2(Ca0.96,Eu0.04)SiO4蛍光体を作製した。この蛍光体は、Euが付活剤として含有されており、XRD測定により結晶構造が正方晶であることが確認された Further, a Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor having an Eu content (y1) = 0.04 was produced. This phosphor contained Eu as an activator, and the crystal structure was confirmed to be tetragonal by XRD measurement .

得られた蛍光体をピーク波長389nmの近紫外LEDで励起して、発光スペクトルを測定した。その結果を、図1に示す。図示するように、Li2(Ca0.96,Eu0.04)SiO4蛍光体からは、ピーク波長480nm、半値幅30nmのEu2+に起因する発光スペクトルが得られた。図1には示していないが、Li2CaSiO4からは、発光スペクトルは得られなかった。また、Li2(Sr0.96,Eu0.04)SiO4蛍光体からは、ピーク波長575nm、半値幅130nmの黄色発光が得られた。 The obtained phosphor was excited by a near ultraviolet LED having a peak wavelength of 389 nm, and an emission spectrum was measured. The result is shown in FIG. As shown in the figure, an emission spectrum caused by Eu 2+ having a peak wavelength of 480 nm and a half-value width of 30 nm was obtained from the Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor. Although not shown in FIG. 1, an emission spectrum was not obtained from Li 2 CaSiO 4 . Further, yellow light emission having a peak wavelength of 575 nm and a half-value width of 130 nm was obtained from the Li 2 (Sr 0.96 , Eu 0.04 ) SiO 4 phosphor.

一般的に、2価のユーロピウムを付活した蛍光体において、結晶構造が同一の母体結晶を有する場合には、ユーロピウムが置換する元素のイオン半径が大きくなるにしたがって、ピーク波長は短波長側にシフトする。これは、置換したユーロピウムが近接する周り原子からの影響が小さくなることに起因する。すなわち、結晶場からの影響が小さくなるために、ユーロピウムの5d準位のエネルギー分裂が小さくなることに起因すると考えられている。   In general, in a phosphor activated with divalent europium, when it has a base crystal having the same crystal structure, the peak wavelength becomes shorter as the ion radius of the element substituted by europium increases. shift. This is because the influence from surrounding atoms with which the substituted europium is adjacent becomes small. That is, it is considered that the effect from the crystal field is reduced, and the energy splitting of the 5d level of europium is reduced.

なお、ストロンチウムのイオン半径は、カルシウムのイオン半径より大きいことが知られている。Euで付活された蛍光体の場合には、カルシウムを使用したLi2(Ca,Eu)SiO4蛍光体より、ストロンチウムを使用したLi2(Sr,Eu)SiO4蛍光体の方が長波長にピークを有する。これは、Li2(Ca,Eu)SiO4蛍光体とLi2(Sr,Eu)SiO4蛍光体においてユーロピウムの周辺環境が異なっていることが原因である。すなわち、Li2(Ca,Eu)SiO4蛍光体とLi2(Sr,Eu)SiO4蛍光体とは結晶構造が異なることから、全く異なる発光特性を有している。 It is known that the ionic radius of strontium is larger than that of calcium. In the case of a phosphor activated with Eu, the Li 2 (Sr, Eu) SiO 4 phosphor using strontium has a longer wavelength than the Li 2 (Ca, Eu) SiO 4 phosphor using calcium. Have a peak. This is because the surrounding environment of europium is different between the Li 2 (Ca, Eu) SiO 4 phosphor and the Li 2 (Sr, Eu) SiO 4 phosphor. That is, the Li 2 (Ca, Eu) SiO 4 phosphor and the Li 2 (Sr, Eu) SiO 4 phosphor have different light emission characteristics because they have different crystal structures.

Li2CaSiO4を母体とするユーロピウム付活蛍光体は、正方晶の結晶構造を有しており、結晶構造よりユーロピウム周辺に比較的大きな空間を有する。このため、青色から緑色発光の蛍光体となる。上述したように、リチウムアルカリ土類金属珪酸化物蛍光体において結晶構造により発光色が変化する知見は、本発明者等によってはじめて見出された。 Europium activated phosphors based on Li 2 CaSiO 4 have a tetragonal crystal structure and a relatively large space around the europium than the crystal structure. For this reason, it becomes a phosphor emitting blue to green light. As described above, the inventors discovered for the first time that the present inventors have found that the luminescent color changes depending on the crystal structure in the lithium alkaline earth metal silicate phosphor.

また、Li2(Ca0.99,Eu0.01)SiO4蛍光体およびLi2(Ca0.912,Sr0.048,Eu0.04)SiO4蛍光体を、上述した方法により作製した。得られた蛍光体を、ピーク波長391nmの近紫外LEDで励起して、発光スペクトルを測定した。その結果を、図2および図3にそれぞれ示す。 In addition, Li 2 (Ca 0.99 , Eu 0.01 ) SiO 4 phosphor and Li 2 (Ca 0.912 , Sr 0.048 , Eu 0.04 ) SiO 4 phosphor were produced by the method described above. The obtained phosphor was excited by a near-ultraviolet LED having a peak wavelength of 391 nm, and an emission spectrum was measured. The results are shown in FIGS. 2 and 3, respectively.

図2に示されるように、近紫外光励起によりLi2(Ca0.99,Eu0.01)SiO4蛍光体からは、ピーク波長479nm、半値幅32nmのEu2+に起因する発光が得られた。また、図3に示されるように、近紫外光励起によりLi2(Ca0.912,Sr0.048,Eu0.04)SiO4蛍光体からは、ピーク波長480nm、半値幅33nmのEu2+に起因する発光が得られた。 As shown in FIG. 2, light emission due to Eu 2+ having a peak wavelength of 479 nm and a half-value width of 32 nm was obtained from the Li 2 (Ca 0.99 , Eu 0.01 ) SiO 4 phosphor by near ultraviolet light excitation. In addition, as shown in FIG. 3, light emission caused by Eu 2+ having a peak wavelength of 480 nm and a half-value width of 33 nm is obtained from the Li 2 (Ca 0.912 , Sr 0.048 , Eu 0.04 ) SiO 4 phosphor by near ultraviolet light excitation. It was.

次に、励起光の波長を変更してLi2(Ca0.96,Eu0.04)SiO4蛍光体を励起して、発光スペクトルを測定した。励起光の波長は、380nm、400nm、420nm、および440nmとした。それぞれの励起光で得られた発光スペクトルを、図4に示す。いずれの波長で励起した場合も、Li2(Ca0.96,Eu0.04)SiO4蛍光体から青色発光が確認される。また、励起光が長波長化するにしたがって、発光強度は低下するものの、380nmから440nmの励起波長領域で発光強度は25%程度の低下が確認されたのみである。 Next, the emission spectrum was measured by exciting the Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor by changing the wavelength of the excitation light. The wavelengths of the excitation light were 380 nm, 400 nm, 420 nm, and 440 nm. The emission spectrum obtained with each excitation light is shown in FIG. When excited at any wavelength, blue emission is confirmed from the Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor. In addition, although the emission intensity decreases as the excitation light becomes longer, the emission intensity is only confirmed to decrease by about 25% in the excitation wavelength region from 380 nm to 440 nm.

このように、本実施形態の蛍光体から得られる発光スペクトルは、360nm以上460nm以下の領域に発光ピークを有する光で励起した際、発光強度の変化は40%以内である。これは、BaMgAl1017:Eu蛍光体などの従来の青色蛍光体と比較して、非常に小さい。例えば、BaMgAl1017:Eu蛍光体は、370nm以上420nm以下というより狭い波長範囲においても、発光強度の変化は75%にも達する。 Thus, the emission spectrum obtained from the phosphor of this embodiment has a change in emission intensity of 40% or less when excited by light having an emission peak in a region of 360 nm or more and 460 nm or less. This is very small compared to conventional blue phosphors such as BaMgAl 10 O 17 : Eu phosphor. For example, in the BaMgAl 10 O 17 : Eu phosphor, the change in emission intensity reaches 75% even in a narrow wavelength range of 370 nm to 420 nm.

そのために、BaMgAl1017:Eu蛍光体は380nm以上410nm以下の近紫外領域の光を放つLEDチップと組み合わせて使用した場合、使用する励起光源のピーク波長により発光強度が大きく変化してしまう。さらに、使用するLEDチップの発光波長のバラツキによって、使用する青色蛍光体の量を調整する必要が生じることもある。 Therefore, when the BaMgAl 10 O 17 : Eu phosphor is used in combination with an LED chip that emits light in the near ultraviolet region of 380 nm or more and 410 nm or less, the emission intensity greatly varies depending on the peak wavelength of the excitation light source used. Furthermore, the amount of blue phosphor to be used may need to be adjusted depending on the variation in the emission wavelength of the LED chip to be used.

しかしながら、上述したように本発明の実施形態にかかる青色蛍光体は、励起波長による発光強度の変化が小さい。このため、使用するLEDチップの発光波長のバラツキ程度では、青色蛍光体の量を調整する必要は生じることなく、非常に使用しやすい蛍光体である。   However, as described above, the blue phosphor according to the embodiment of the present invention has a small change in emission intensity due to the excitation wavelength. For this reason, it is a phosphor that is very easy to use without the necessity of adjusting the amount of the blue phosphor when the emission wavelength of the LED chip to be used is about to vary.

上記一般式(A)で表わされる組成の蛍光体について、励起スペクトルを測定した。その結果、470nm付近と発光ピーク波長の周辺まで励起帯が存在することが確認され、励起スペクトルは、例えば(株)日立製作所F−3000蛍光分光光度計を用いて、拡散散乱法にて蛍光体粉末の測定を行なって得ることができる。   The excitation spectrum was measured for the phosphor having the composition represented by the general formula (A). As a result, it was confirmed that an excitation band existed around 470 nm and the vicinity of the emission peak wavelength, and the excitation spectrum was obtained by a diffuse scattering method using, for example, Hitachi F-3000 fluorescence spectrophotometer. It can be obtained by measuring the powder.

図5には、Li2(Ca0.96,Eu0.04)SiO4蛍光体の480nmの発光を観測した励起スペクトル示す。図5より、Li2(Ca0.96,Eu0.04)SiO4蛍光体は、250nmから470nmの波長範囲で励起可能なことがわかる。また、360nm以上450nm以下の波長領域における励起スペクトルの変化が緩やかであることがわかる。この励起スペクトルの変化が緩やかなであるため、360nm以上460nm以下の波長領域において励起波長が変化しても、発光強度の変化率が少なくなる。 FIG. 5 shows an excitation spectrum obtained by observing light emission of 480 nm of the Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor. FIG. 5 shows that the Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor can be excited in the wavelength range of 250 nm to 470 nm. Moreover, it turns out that the change of the excitation spectrum in a wavelength range of 360 nm or more and 450 nm or less is moderate. Since the excitation spectrum changes slowly, even if the excitation wavelength changes in the wavelength region of 360 nm or more and 460 nm or less, the rate of change of the emission intensity decreases.

また、Li2(Ca0.99,Eu0.01)SiO4蛍光体、およびLi2(Sr0.96,Eu0.04)SiO4蛍光体の結晶相を同定するために、粉末X線回折分析法(X−ray diffractometry:XRD)により回折パターンを測定し、測定した回折パターンをJCPDS(Joint Committee on Powder Diffraction Standards)カードと比較して結晶相の同定を行なった。 In order to identify the crystal phases of Li 2 (Ca 0.99 , Eu 0.01 ) SiO 4 phosphor and Li 2 (Sr 0.96 , Eu 0.04 ) SiO 4 phosphor, powder X-ray diffraction analysis (X-ray diffractometry) is used. : XRD), the diffraction pattern was measured, and the measured diffraction pattern was compared with a JCPDS (Joint Committee on Powder Diffraction Standards) card to identify the crystal phase.

XRD測定は、合成した蛍光体サンプルを、例えば(株)マック・サイエンス社(ブルーカー・エイエックスエス(株))M18XHF22−SRA等によって蛍光体サンプルの回折パターンを測定し、JCPDSカードとの比較を行なうことができる。 The XRD measurement is performed by measuring the diffraction pattern of the synthesized phosphor sample using, for example, Mach Science Co., Ltd. (Bruker AXS Co., Ltd.) M18XHF 22 -SRA, etc. A comparison can be made.

Li2(Ca0.99,Eu0.01)SiO4蛍光体、およびLi2(Sr0.96,Eu0.04)SiO4蛍光体について、XRD測定を行なった。得られたX線回折パターンを、図6および図7にそれぞれ示す。得られた回折パターンは、JCPDSカード#27−290の正方晶系Li2CaSiO4相の回折パターンとほぼ一致した。この結果より、ユーロピウムを付活したLia1(Ca1-x1-y1,Mx1,Euy1b1Sic1d1蛍光体においては、CaとEuとが固溶していることがわかる。 XRD measurement was performed on the Li 2 (Ca 0.99 , Eu 0.01 ) SiO 4 phosphor and the Li 2 (Sr 0.96 , Eu 0.04 ) SiO 4 phosphor. The obtained X-ray diffraction patterns are shown in FIGS. 6 and 7, respectively. The obtained diffraction pattern almost coincided with the diffraction pattern of the tetragonal Li 2 CaSiO 4 phase of JCPDS card # 27-290. From this result, it can be seen that in Li a1 (Ca 1-x1 -y1 , M x1 , Eu y1 ) b1 SiC1 O d1 phosphor activated with europium, Ca and Eu are dissolved.

また、Li2(Sr0.96,Eu0.04)SiO4蛍光体から得られた回折パターンは、JCPDSカード#55−217の六方晶系Li2SrSiO4相の回折パターンとほぼ一致した。 Further, the diffraction pattern obtained from the Li 2 (Sr 0.96 , Eu 0.04 ) SiO 4 phosphor almost coincided with the diffraction pattern of the hexagonal Li 2 SrSiO 4 phase of JCPDS card # 55-217.

また、前記一般式(A)で表わされる組成を有する蛍光体は、上述したようにXRD測定において正方晶系Li2CaSiO4相のピークほぼ一致していれば、正方晶系Li2CaSiO4相が生成しているといえる。 The phosphor having a composition represented by the general formula (A), if the substantially match the peak of the tetragonal Li 2 CaSiO 4 phase in the XRD measurement as described above, tetragonal Li 2 CaSiO 4 phases Can be said to be generated.

合成された蛍光体は、付活剤元素EuやM等の添加元素が置換しているので、XRD測定で得られた回折ピークは、置換元素のイオン半径による格子定数の変化が影響する。そのためJCPDSカード#27−290に記載されているLi2CaSiO4相の回折パターンとは、正確には一致しないことがある。しかしながら、2θが数度ピークシフトしていても、こうした回折パターンは、Li2CaSiO4相の回折パターンと同一であるとみなすことができる。リチウムサイトへの1価の陽イオン元素の置換やシリコンサイトへの4価の陽イオン元素の置換においても同様のピークシフトが生じる。 Since the synthesized phosphor is substituted with additive elements such as activator elements Eu and M, the diffraction peak obtained by XRD measurement is affected by a change in lattice constant due to the ion radius of the substituted element. Therefore, the diffraction pattern of the Li 2 CaSiO 4 phase described in JCPDS card # 27-290 may not exactly match. However, even if 2θ has a peak shift of several degrees, such a diffraction pattern can be regarded as the same as the diffraction pattern of the Li 2 CaSiO 4 phase. A similar peak shift occurs when a monovalent cation element is substituted into the lithium site or a tetravalent cation element is substituted into the silicon site.

さらに、Li2(Ca0.96,Eu0.04)SiO4蛍光体について、蛍光顕微鏡観察を行なった。顕微鏡観察は合成した蛍光体サンプルを、例えば(株)ニコンECLIPSE80i等により、365nm励起光などにより蛍光体の発光を観察することにより行なった。蛍光顕微鏡観察の結果から、合成したLi2(Ca0.96,Eu0.04)SiO4蛍光体は、粒径が5μmから30μm程度で365nm〜435nmの励起光により均一に青色発光している粒子であることが確認された。 Further, the Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor was observed with a fluorescence microscope. Microscopic observation was performed by observing the phosphor light emission with a 365 nm excitation light or the like using, for example, Nikon ECLIPSE 80i Co., Ltd. From the result of the fluorescence microscope observation, the synthesized Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor is a particle that has a particle diameter of about 5 μm to 30 μm and emits blue light uniformly by excitation light of 365 nm to 435 nm. Was confirmed.

図8に、Li2(Ca0.96,Eu0.04)SiO4蛍光体の365nm励起による顕微鏡観察結果を示す。 FIG. 8 shows the result of microscopic observation of Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor by 365 nm excitation.

本発明の実施形態にかかる蛍光体は、基本的には、上述したように原料粉末を混合し、焼成することによって製造することができる。焼成後の蛍光体は、発光装置などに適用する際には、純水などを用いた洗浄等の後処理を適宜施すことが望まれる。この洗浄においてもLia1(Ca1-x1-y1,Mx1,Euy1b1Sic1d1蛍光体は消光がほとんど認められないため、安定な蛍光体であることがわかる。よって、本発明の実施形態にかかる蛍光体は大気中でも、水溶液中でも安定であるために、焼成後のサンプルに実施される後処理の自由度は非常に大きい。 The phosphor according to the embodiment of the present invention can be basically manufactured by mixing and firing the raw material powder as described above. When the phosphor after firing is applied to a light emitting device or the like, it is desirable to appropriately perform post-treatment such as washing with pure water or the like. Even in this cleaning, the Li a1 (Ca 1-x1-y1 , M x1 , Eu y1 ) b1 SicC1 O d1 phosphor hardly shows quenching, so that it can be seen that it is a stable phosphor. Therefore, since the phosphor according to the embodiment of the present invention is stable in the air and in an aqueous solution, the degree of freedom of post-processing performed on the sample after baking is very large.

さらに、製造された蛍光体粒子の表面には、防湿などの必要に際し、シリコーン樹脂、エポキシ樹脂、フッ素樹脂、テトラエトキシシラン(TEOS)、シリカ、ケイ酸亜鉛、ケイ酸アルミニウム、カルシウムポリフォスフェート、シリコーンオイル、およびシリコーングリースから選択される少なくとも一種からなる表層材が塗布されることもある。ケイ酸亜鉛およびケイ酸アルミニウムは、例えばZnO・cSiO2(1≦c≦4)、およびAl23・dSiO2(1≦d≦10)でそれぞれ表わされる。 Furthermore, on the surface of the manufactured phosphor particles, when necessary for moisture prevention, silicone resin, epoxy resin, fluororesin, tetraethoxysilane (TEOS), silica, zinc silicate, aluminum silicate, calcium polyphosphate, A surface layer material made of at least one selected from silicone oil and silicone grease may be applied. Zinc silicate and aluminum silicate are represented by, for example, ZnO · cSiO 2 (1 ≦ c ≦ 4) and Al 2 O 3 · dSiO 2 (1 ≦ d ≦ 10), respectively.

表層材によって、蛍光体粒子表面が完全に覆われている必要はなく、その一部が露出していてもよい。蛍光体粒子の表面に、上述したような材質からなる表層材が存在していれば、その効果が得られる。表層材は、その分散液または溶液を用いて蛍光体粒子表面に配置することができる。分散液または溶液中に粒子を所定時間浸漬した後、加熱等により乾燥させることによって表層材が配置される。蛍光体としての本来の機能を損なうことなく、表層材の効果を得るために、表層材は、蛍光体粒子の0.1〜5%程度の体積割合で存在することが好ましい。   It is not necessary that the surface of the phosphor particle is completely covered by the surface layer material, and a part thereof may be exposed. If a surface layer material made of the above-described material is present on the surface of the phosphor particles, the effect can be obtained. The surface layer material can be disposed on the surface of the phosphor particles using the dispersion or solution. After immersing the particles in the dispersion or solution for a predetermined time, the surface layer material is disposed by drying by heating or the like. In order to obtain the effect of the surface layer material without impairing the original function as the phosphor, the surface layer material is preferably present in a volume ratio of about 0.1 to 5% of the phosphor particles.

また、本発明の実施形態にかかる蛍光体は、使用する発光装置への塗布方法に応じて分級される。例えば、360〜430nmの励起光を使用した通常の白色LEDなどにおいては、蛍光体は5〜50μm程度に分級して使用される。蛍光体の粒径が1μm以下のように小さくなりすぎると、表面の非発光層の割合が増加し、発光強度が低下してしまう。一方、粒径が大きすぎるとLEDに塗布する際、塗布装置に蛍光体が目詰まりして歩留りが低下するのに加え、得られる発光装置の色ムラの原因となる。こうした不都合を避けるために、本発明の実施形態にかかる蛍光体は、5〜50μm程度に分級して使用することが好ましい。   Moreover, the phosphor according to the embodiment of the present invention is classified according to the coating method to the light emitting device to be used. For example, in a normal white LED using excitation light of 360 to 430 nm, the phosphor is classified to about 5 to 50 μm and used. When the particle size of the phosphor is too small, such as 1 μm or less, the ratio of the non-light emitting layer on the surface increases and the emission intensity decreases. On the other hand, if the particle size is too large, the phosphor is clogged in the coating device when it is applied to the LED, resulting in a decrease in yield and causing color unevenness in the resulting light emitting device. In order to avoid such inconvenience, the phosphor according to the embodiment of the present invention is preferably used after being classified to about 5 to 50 μm.

上述したように、ユーロピウムを付活したリチウムカルシウムケイ酸塩蛍光体を360nm以上460nm以下の領域にピーク波長を有する励起光により励起すると、ユーロピウムに起因する半値幅が40nm以内でピーク波長が470nm以上490nm以下の波長領域に発光が得られる。また、本発明の実施形態にかかる蛍光体を、波長360nm以上460nm以下の領域に発光ピークを有する発光素子と組み合わせることによって、高効率で高演色性の発光装置が得られる。発光素子としては、LEDチップおよびレーザーダイオードのいずれを用いてもよい。   As described above, when a lithium calcium silicate phosphor activated with europium is excited with excitation light having a peak wavelength in a region of 360 nm or more and 460 nm or less, the half-value width due to europium is within 40 nm and the peak wavelength is 470 nm or more. Light emission is obtained in a wavelength region of 490 nm or less. Further, by combining the phosphor according to the embodiment of the present invention with a light emitting element having a light emission peak in a wavelength region of 360 nm or more and 460 nm or less, a light emitting device with high efficiency and high color rendering can be obtained. As the light emitting element, either an LED chip or a laser diode may be used.

本発明の実施形態にかかる蛍光体は、青色系蛍光体である。したがって、黄色蛍光体と組み合わせて用いることによって、白色発光装置を得ることができる。また、緑色系蛍光体および赤色蛍光体と組み合わせて用いた場合、あるいは黄色系蛍光体および赤色系蛍光体と組み合わせて用いた場合にも、白色発光装置を得ることができる。例えば、近紫外領域の光源を使用する場合には、本発明の実施形態にかかる蛍光体に加えて、緑色系蛍光体および赤色系蛍光体と組み合わせることにより白色発光装置を提供することができる。   The phosphor according to the embodiment of the present invention is a blue phosphor. Therefore, a white light emitting device can be obtained by using in combination with a yellow phosphor. Also, a white light emitting device can be obtained when used in combination with a green phosphor and a red phosphor, or when used in combination with a yellow phosphor and a red phosphor. For example, when a near-ultraviolet light source is used, a white light emitting device can be provided by combining with a green phosphor and a red phosphor in addition to the phosphor according to the embodiment of the present invention.

緑色系蛍光体または黄色系蛍光体は、510nm以上580nm以下の波長領域に主発光ピークを有する蛍光体ということができる。例えば、(Sr,Ca,Ba)2SiO4:Eu、Ca3(Sc,Mg)2Si312:Ce、CaSc24:Ce等のケイ酸塩蛍光体、(Y,Gd)3(Al,Ga)512:Ce、BaMgAl1017:Eu,Mn等のアルミン酸塩蛍光体、(Ca,Sr,Ba)Ga24:Eu等の硫化物蛍光体、(Ca,Sr,Ba)Si222:Eu等のアルカリ土類酸窒化物蛍光体、(Y,La,Gd,Lu)2Si334:Tb,Ce、(La,Y,Gd,Lu)3Si8411:Tb,Ce等の希土類ケイ酸窒化物蛍光体などが挙げられる。なお、主発光ピークとは、これまで文献、特許などで報告されている発光スペクトルのピーク強度が最も大きくなる波長のことである。蛍光体作製時の少量の元素添加やわずかな組成変動による10nm程度の発光ピークの変化などはこれまで報告されている主発光ピークとみなすことができる。 The green phosphor or the yellow phosphor can be referred to as a phosphor having a main emission peak in a wavelength region of 510 nm or more and 580 nm or less. For example, silicate phosphors such as (Sr, Ca, Ba) 2 SiO 4 : Eu, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce, BaMgAl 10 O 17: Eu, aluminate phosphor such as Mn, (Ca, Sr, Ba ) Ga 2 S 4: sulfide phosphor such as Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : alkaline earth oxynitride phosphors such as Eu, (Y, La, Gd, Lu) 2 Si 3 O 3 N 4 : Tb, Ce, (La, Y, Gd , Lu) 3 Si 8 O 4 N 11 : rare earth silicate nitride phosphors such as Tb and Ce. The main emission peak is a wavelength at which the peak intensity of the emission spectrum reported so far in the literature and patents is the largest. Changes in the emission peak of about 10 nm due to the addition of a small amount of elements during the production of the phosphor or slight composition fluctuations can be regarded as the main emission peak reported so far.

赤色系蛍光体は、580nm以上680nm以下の橙色から赤色の波長領域に主発光ピークを有する蛍光体ということができる。赤色蛍光体としては、例えば(Sr,Ca,Ba)2SiO4:Eu等のケイ酸塩蛍光体、Li(Eu,Sm)W28等のタングステン酸塩蛍光体、3.5MgO・0.5MgF・GeO2:Mn4+等の酸フッ化物蛍光体、YVO4:Eu等の酸化物蛍光体、(La,Gd,Y)22S:Eu等の酸硫化物蛍光体、(Ca,Sr,Ba)S:Eu等の硫化物蛍光体、(Sr,Ba,Ca)2Si58:Eu、(Sr,Ca)AlSiN3:Eu等の窒化物蛍光体などを使用することができる。 The red phosphor can be said to be a phosphor having a main emission peak in the orange to red wavelength region of 580 nm to 680 nm. Examples of red phosphors include silicate phosphors such as (Sr, Ca, Ba) 2 SiO 4 : Eu, tungstate phosphors such as Li (Eu, Sm) W 2 O 8 , and 3.5 MgO · 0. .5MgF · GeO 2 : Oxyfluoride phosphor such as Mn 4+ , oxide phosphor such as YVO 4 : Eu, oxysulfide phosphor such as (La, Gd, Y) 2 O 2 S: Eu, (Ca , Sr, Ba) S: Eu and other sulfide phosphors, (Sr, Ba, Ca) 2 Si 5 N 8 : Eu, (Sr, Ca) AlSiN 3 : Eu and other nitride phosphors Can do.

上述した蛍光体の他に、橙色蛍光体等も用途に応じて使用することができる。   In addition to the phosphor described above, an orange phosphor or the like can be used depending on the application.

図9に、本発明の一実施形態にかかる発光装置の断面を示す。   FIG. 9 shows a cross section of a light emitting device according to an embodiment of the present invention.

図示する発光装置は、樹脂ステム200はリードフレームを成形してなるリード201およびリード202と、これに一体成形されてなる樹脂部203とを有する。樹脂部203は、上部開口部が底面部より広い凹部205を有しており、この凹部の側面には反射面204が設けられる。   In the illustrated light emitting device, the resin stem 200 includes a lead 201 and a lead 202 formed by molding a lead frame, and a resin portion 203 formed integrally therewith. The resin portion 203 has a concave portion 205 whose upper opening is wider than the bottom portion, and a reflective surface 204 is provided on the side surface of the concave portion.

凹部205の略円形底面中央部には、発光チップ206がAgペースト等によりマウントされている。発光チップ206としては、紫外発光を行なうもの、あるいは可視領域の発光を行なうものを用いることができる。例えば、GaAs系、GaN系等の半導体発光ダイオード等を用いることが可能である。発光チップ206の電極(図示せず)は、Auなどからなるボンディングワイヤ207および208によって、リード201およびリード202にそれぞれ接続されている。なお、リード201および202の配置は、適宜変更することができる。   A light emitting chip 206 is mounted with Ag paste or the like at the center of the substantially circular bottom surface of the recess 205. As the light-emitting chip 206, a chip that emits ultraviolet light or a chip that emits light in the visible region can be used. For example, it is possible to use semiconductor light emitting diodes such as GaAs and GaN. The electrodes (not shown) of the light emitting chip 206 are connected to the leads 201 and 202 by bonding wires 207 and 208 made of Au or the like, respectively. The arrangement of the leads 201 and 202 can be changed as appropriate.

樹脂部203の凹部205内には、蛍光層209が配置される。この蛍光層209は、本発明の実施形態にかかる蛍光体210を、例えばシリコーン樹脂からなる樹脂層211中に5wt%以上50wt%以下の割合で分散することによって形成することができる。蛍光体は、有機材料である樹脂や無機材料であるガラスなど種々のバインダーによって、付着させることができる。   A fluorescent layer 209 is disposed in the recess 205 of the resin portion 203. The phosphor layer 209 can be formed by dispersing the phosphor 210 according to the embodiment of the present invention in a resin layer 211 made of, for example, a silicone resin at a rate of 5 wt% or more and 50 wt% or less. The phosphor can be attached by various binders such as an organic material resin and an inorganic material glass.

有機材料のバインダーとしては、上述したシリコーン樹脂の他にエポキシ樹脂、アクリル樹脂など耐光性に優れた透明樹脂が適している。無機材料のバインダーとしてはアルカリ土類ホウ酸塩等を使用した低融点ガラス等、粒径の大きな蛍光体を付着させるために超微粒子のシリカ、アルミナ等、沈殿法により得られるアルカリ土類リン酸塩等が適している。これらのバインダーは、単独でも2種以上を組み合わせて用いてもよい。   As the binder for the organic material, a transparent resin excellent in light resistance such as an epoxy resin and an acrylic resin is suitable in addition to the above-described silicone resin. Low-melting glass using alkaline earth borate or the like as a binder for inorganic materials, such as ultrafine silica, alumina, etc., for attaching phosphors with large particle diameter, alkaline earth phosphate obtained by precipitation method Salt etc. are suitable. These binders may be used alone or in combination of two or more.

また、蛍光層に使用される蛍光体には、必要に応じて表面にコーティング処理を施すことができる。この表面コーティングにより、蛍光体が熱、湿度、紫外線等の外的要因から劣化が防止される。さらに、蛍光体の分散性を調整することが可能となり、蛍光体層の設計を容易に行なうことができる。   Further, the phosphor used in the fluorescent layer can be coated on the surface as necessary. This surface coating prevents the phosphor from being deteriorated by external factors such as heat, humidity, and ultraviolet rays. Further, the dispersibility of the phosphor can be adjusted, and the phosphor layer can be easily designed.

発光チップ206としては、n型電極とp型電極とを同一面上に有するフリップチップ型のものを用いることも可能である。この場合には、ワイヤの断線や剥離、ワイヤによる光吸収等のワイヤに起因した問題を解消して、信頼性の高い高輝度な半導体発光装置が得られる。また、発光チップ206にn型基板を用いて、次のような構成とすることもできる。具体的には、n型基板の裏面にn型電極を形成し、基板上の半導体層上面にはp型電極を形成して、n型電極またはp型電極をリードにマウントする。p型電極またはn型電極は、ワイヤにより他方のリードに接続することができる。発光チップ206のサイズ、凹部205の寸法および形状は、適宜変更することができる。   As the light emitting chip 206, a flip chip type having an n-type electrode and a p-type electrode on the same surface can be used. In this case, problems caused by the wires such as wire breakage and peeling and light absorption by the wires are solved, and a highly reliable and high-luminance semiconductor light-emitting device can be obtained. In addition, an n-type substrate may be used for the light emitting chip 206 to have the following configuration. Specifically, an n-type electrode is formed on the back surface of the n-type substrate, a p-type electrode is formed on the upper surface of the semiconductor layer on the substrate, and the n-type electrode or the p-type electrode is mounted on a lead. The p-type electrode or the n-type electrode can be connected to the other lead by a wire. The size of the light emitting chip 206 and the size and shape of the recess 205 can be changed as appropriate.

図10には、本発明の他の実施形態にかかる発光装置の断面図を示す。図示する発光装置は、樹脂ステム100と、その上にマウントされた半導体発光素子106Fと、この半導体発光素子106Fを覆う封止体111とを有する。封止樹脂ステム100は、リードフレームから形成されたリード101、102と、これと一体的に成型されてなる樹脂部103とを有する。リード101、102は、それぞれの一端が近接対向するように配置されている。リード101、102の他端は、互いに反対方向に延在し、樹脂部103から外部に導出されている。   FIG. 10 is a cross-sectional view of a light emitting device according to another embodiment of the present invention. The illustrated light-emitting device includes a resin stem 100, a semiconductor light-emitting element 106F mounted thereon, and a sealing body 111 that covers the semiconductor light-emitting element 106F. The sealing resin stem 100 includes leads 101 and 102 formed from a lead frame, and a resin portion 103 molded integrally therewith. The leads 101 and 102 are arranged so that one ends of the leads 101 and 102 face each other. The other ends of the leads 101 and 102 extend in opposite directions and are led out from the resin portion 103 to the outside.

樹脂部103には開口部105が設けられ、開口部の底面には、保護用ツェナー・ダイオード106Eが接着剤107によってマウントされている。保護用ツェナー・ダイオード106Eの上には、半導体発光素子106Fが実装されている。すなわち、リード101の上にダイオード106Eがマウントされている。ダイオード106Eからリード102にワイヤ109が接続されている。   An opening 105 is provided in the resin portion 103, and a protective Zener diode 106 E is mounted on the bottom surface of the opening by an adhesive 107. A semiconductor light emitting element 106F is mounted on the protective Zener diode 106E. That is, the diode 106E is mounted on the lead 101. A wire 109 is connected to the lead 102 from the diode 106E.

半導体発光素子106Fは、樹脂部103の内壁面に取り囲まれており、この内壁面は光取り出し方向に向けて傾斜し、光を反射する反射面104として作用する。開口部105内に充填された封止体111は、蛍光体110を含有している。半導体発光素子106Fは、保護用ツェナー・ダイオード106Eの上に積層されている。蛍光体110として、本発明の実施形態にかかる蛍光体が用いられる。   The semiconductor light emitting element 106F is surrounded by the inner wall surface of the resin portion 103, and this inner wall surface is inclined toward the light extraction direction and acts as a reflection surface 104 that reflects light. The sealing body 111 filled in the opening 105 contains the phosphor 110. The semiconductor light emitting element 106F is stacked on the protective Zener diode 106E. As the phosphor 110, the phosphor according to the embodiment of the present invention is used.

以下に、発光装置のチップ周辺部分について詳細に説明する。図11に示されるように、保護用ダイオード106Eは、n型シリコン基板150の表面にp型領域152が形成されたプレーナ構造を有する。p型領域152にはp側電極154が形成され、基板150の裏面にはn側電極156が形成されている。このn側電極156に対向して、ダイオード106Eの表面にもn側電極158が形成されている。こうした2つのn側電極156と158とは、ダイオード106Eの側面に設けられた配線層160によって接続される。さらに、p側電極154およびn側電極158が設けられたダイオード106Eの表面には、高反射膜162が形成されている。高反射膜162は、発光素子106Fから放出される光に対して高い反射率を有する膜である。   Hereinafter, a chip peripheral portion of the light emitting device will be described in detail. As shown in FIG. 11, the protective diode 106 </ b> E has a planar structure in which a p-type region 152 is formed on the surface of an n-type silicon substrate 150. A p-side electrode 154 is formed in the p-type region 152, and an n-side electrode 156 is formed on the back surface of the substrate 150. Opposing the n-side electrode 156, an n-side electrode 158 is also formed on the surface of the diode 106E. These two n-side electrodes 156 and 158 are connected by a wiring layer 160 provided on the side surface of the diode 106E. Further, a highly reflective film 162 is formed on the surface of the diode 106E provided with the p-side electrode 154 and the n-side electrode 158. The high reflection film 162 is a film having a high reflectance with respect to light emitted from the light emitting element 106F.

半導体発光素子106Fにおいては、バッファ層122、n型コンタクト層123、n型クラッド層132、活性層124、p型クラッド層125、およびp型コンタクト層126が、透光性基板138の上に順次積層されている。さらに、n側電極127がn型コンタクト層123の上に形成され、p側電極128がp型コンタクト層126の上に形成されている。活性層124から放出される光は、透光性基板138を透過して取り出される。   In the semiconductor light emitting device 106F, the buffer layer 122, the n-type contact layer 123, the n-type cladding layer 132, the active layer 124, the p-type cladding layer 125, and the p-type contact layer 126 are sequentially formed on the translucent substrate 138. Are stacked. Further, the n-side electrode 127 is formed on the n-type contact layer 123, and the p-side electrode 128 is formed on the p-type contact layer 126. Light emitted from the active layer 124 passes through the light-transmitting substrate 138 and is extracted.

このような構造の発光素子106Fは、バンプを介してダイオード106Eにフリップ・チップ・マウントされている。具体的には、バンプ142によって、発光素子106Fのp側電極128がダイオード106Eのn側電極158に電気的に接続されている。また、バンプ144によって、発光素子106Fのn側電極127が、ダイオード106Eのp側電極154に電気的に接続されている。ダイオード106Eのp側電極154には、ワイヤ109がボンディングされ、このワイヤ109はリード102に接続されている。   The light emitting element 106F having such a structure is flip-chip mounted on the diode 106E via bumps. Specifically, the p-side electrode 128 of the light emitting element 106F is electrically connected to the n-side electrode 158 of the diode 106E by the bump 142. Further, the n-side electrode 127 of the light emitting element 106F is electrically connected to the p-side electrode 154 of the diode 106E by the bump 144. A wire 109 is bonded to the p-side electrode 154 of the diode 106E, and the wire 109 is connected to the lead 102.

図17には、砲弾型の発光装置の例を示す。半導体発光素子51は、リード50’にマウント材52を介して実装され、プレディップ材54で覆われる。ワイヤ53により、リード50が半導体発光素子51に接続され、キャスティング材55で封入されている。プレディップ材54中には、本発明の実施形態にかかる蛍光体が含有される。   FIG. 17 shows an example of a bullet-type light emitting device. The semiconductor light emitting element 51 is mounted on the lead 50 ′ via the mount material 52 and covered with the pre-dip material 54. A lead 50 is connected to the semiconductor light emitting element 51 by a wire 53 and is enclosed by a casting material 55. The pre-dip material 54 contains the phosphor according to the embodiment of the present invention.

上述したように、本発明の実施形態にかかる発光装置、例えば白色LEDは半値幅の狭い青色蛍光体を使用している。そのため、蛍光ランプ代替の一般照明としてだけでなく、カラーフィルターなどのフィルターと光源を組み合わせて使用される発光デバイス、例えば液晶用バックライト用の光源等としても最適である。従来の白色LEDは、広帯域発光の蛍光体を組み合わせているので、可視光領域全体に広域のスペクトル光を有する。このために、白色LEDとカラーフィルターを組み合わせた場合には、光源である白色LEDの光量の大部分がフィルターにより吸収されてしまうという欠点を有していた。   As described above, a light emitting device according to an embodiment of the present invention, for example, a white LED uses a blue phosphor having a narrow half width. Therefore, it is not only suitable as a general illumination alternative to a fluorescent lamp, but also suitable as a light emitting device used in combination with a filter such as a color filter and a light source, for example, a light source for a backlight for liquid crystal. A conventional white LED has a broad spectrum light in the entire visible light region because it combines a phosphor emitting broadband light. For this reason, when a white LED and a color filter are combined, there is a drawback that most of the light amount of the white LED as a light source is absorbed by the filter.

しかしながら、本発明の実施形態にかかる白色LEDは、半値幅が狭いスペクトルの光を組み合わせることも可能であるため、フィルターと組み合わせた際には、特定の波長を効率よく利用することができる。特に、緑色蛍光体として(Y,La,Gd,Lu)2Si334:Tb,Ce、(La,Y,Gd,Lu)3Si8411:Tb,Ce等の希土類ケイ酸窒化物蛍光体を用い、赤色蛍光体として3.5MgO・0.5MgF・GeO2:Mn4+等の酸フッ化物蛍光体、(La,Gd,Y)22S:Eu等の酸硫化物蛍光体を使用した場合には、本発明の実施形態にかかる蛍光体による青色成分だけでなく、緑色成分および赤色成分も半値幅の狭いスペクトル光となり、発光装置から放出される白色光を効率よく利用することができる。具体的には、液晶のバックライト光源などに最適である。 However, since the white LED according to the embodiment of the present invention can also combine light with a narrow half-value width spectrum, it can efficiently use a specific wavelength when combined with a filter. In particular, rare earth such as (Y, La, Gd, Lu) 2 Si 3 O 3 N 4 : Tb, Ce, (La, Y, Gd, Lu) 3 Si 8 O 4 N 11 : Tb, Ce as green phosphors. Silica nitride phosphor is used, and red phosphor such as 3.5MgO · 0.5MgF · GeO 2 : Mn 4+ oxyfluoride phosphor, (La, Gd, Y) 2 O 2 S: Eu, etc. When the oxysulfide phosphor is used, not only the blue component by the phosphor according to the embodiment of the present invention, but also the green component and the red component become spectral light with a narrow half width, and the white light emitted from the light emitting device. Can be used efficiently. Specifically, it is most suitable for a liquid crystal backlight light source.

以下、実施例および比較例を示して本発明をさらに詳細に説明するが、本発明はその趣旨を越えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further in detail, this invention is not limited to a following example, unless the meaning is exceeded.

参考例1)
Li2(Ca0.96,Eu0.04)SiO4蛍光体を調製した。原料粉末としては、Li2CO3粉末14.8g、CaCO3粉末19.2g、SiO2粉末12.7g、およびEu23粉末1.4gを用意した。さらに、結晶成長剤として、0.3gのNH4Clを添加して、ボールミルで均一に混合した。
( Reference Example 1)
A Li 2 (Ca 0.96 , Eu 0.04 ) SiO 4 phosphor was prepared. As raw material powders, 14.8 g of Li 2 CO 3 powder, 19.2 g of CaCO 3 powder, 12.7 g of SiO 2 powder, and 1.4 g of Eu 2 O 3 powder were prepared. Further, 0.3 g of NH 4 Cl was added as a crystal growth agent and mixed uniformly with a ball mill.

得られた混合原料を焼成容器に収容し、以下の焼成条件で焼成した。まず、N2/H2の還元性雰囲気中、700℃〜1000℃で3〜24時間焼成して、一次焼成品を得た。 The obtained mixed raw material was accommodated in a firing container and fired under the following firing conditions. First, firing was performed at 700 ° C. to 1000 ° C. for 3 to 24 hours in a reducing atmosphere of N 2 / H 2 to obtain a primary fired product.

得られた一次焼成品を粉砕して再び坩堝に収容し、炉内に配置して、炉内を真空で窒素置換した。さらに、水素濃度5%以上99%未満のN2/H2の還元性雰囲気中、700℃〜1000℃で2〜24時間焼成して、二次焼成品を得た。得られた二次焼成品を水中で粉砕、篩後、吸引ろ過により脱水した。 The obtained primary fired product was pulverized and again stored in a crucible, placed in a furnace, and the inside of the furnace was replaced with nitrogen in a vacuum. Further, it was baked at 700 ° C. to 1000 ° C. for 2 to 24 hours in a reducing atmosphere of N 2 / H 2 having a hydrogen concentration of 5% or more and less than 99% to obtain a secondary baked product. The obtained secondary fired product was pulverized in water, sieved, and dehydrated by suction filtration.

最後に、乾燥機中100℃で乾燥し、さらに篩を通して、本実施例の蛍光体が得られた。得られた参考例1の蛍光体をICP発光分光法により定量分析を実施した結果、ほぼ仕込みどおりの組成であることを確認した。 Finally, it was dried at 100 ° C. in a dryer, and further passed through a sieve to obtain the phosphor of this example. As a result of quantitative analysis of the obtained phosphor of Reference Example 1 by ICP emission spectroscopy, it was confirmed that the composition was almost as prepared.

さらに、下記表1に示すように各構成元素の含有量を変化させて、参考例2,3,実施例および比較例1の蛍光体を作製した。また、市販品のBaMgAl1017:Eu蛍光体を比較例2とする。比較例1の蛍光体にはCaが含有されず、Srのみで構成された蛍光体である。また、表1には390nm励起による各蛍光体のピーク波長、結晶構造、380nm励起の場合のピーク強度と420nm励起の場合のピーク強度変化を記載した。

Figure 0005361199
Furthermore, as shown in Table 1 below, phosphors of Reference Examples 2 and 3, Examples 4 to 9 and Comparative Example 1 were prepared by changing the content of each constituent element. A commercially available BaMgAl 10 O 17 : Eu phosphor is used as Comparative Example 2. The phosphor of Comparative Example 1 does not contain Ca and is a phosphor composed only of Sr. Table 1 shows the peak wavelength, crystal structure, peak intensity in the case of 380 nm excitation, and change in peak intensity in the case of 420 nm excitation.
Figure 0005361199

図1を参照して説明したように、比較例1の蛍光体、Caが含有されずSrのみで構成されている公知の蛍光体では、結晶構造は六方晶系を有し、400nm励起でピーク波長575nmを有し、半値幅130nmの黄色発光が得られた。   As described with reference to FIG. 1, the phosphor of Comparative Example 1, which is a known phosphor that does not contain Ca and is composed only of Sr, has a hexagonal crystal structure and peaks at 400 nm excitation. Yellow light emission having a wavelength of 575 nm and a full width at half maximum of 130 nm was obtained.

また、比較例2のBaMgAl1017:Eu蛍光体は400nm励起でピーク波長450nmを有し、半値幅55nmの青色発光が得られる。しかしながら、励起波長が380nmから420nmまで変化すると、ピーク波長の強度比は75%も低下してしまい、励起波長に対する発光強度の依存性が強い。そのため白色光などを設計する際、励起光源などのバラツキによって添加する蛍光体の量を大きく変化させなければならないといった欠点を有する。 Moreover, the BaMgAl 10 O 17 : Eu phosphor of Comparative Example 2 has a peak wavelength of 450 nm when excited with 400 nm, and can emit blue light with a half-value width of 55 nm. However, when the excitation wavelength changes from 380 nm to 420 nm, the intensity ratio of the peak wavelength decreases by 75%, and the dependence of the emission intensity on the excitation wavelength is strong. For this reason, when designing white light or the like, there is a disadvantage that the amount of the phosphor to be added must be largely changed due to variations in the excitation light source or the like.

それに対して、実施例の蛍光体は400nmなどの近紫外光励起により、ピーク波長480nmを有し、半値幅30nmの青色発光が得られる。また、励起波長が380nmから420nmまで変化しても、ピーク波長の強度比は16%程度しか変化しないために、励起波長に対する発光強度の依存性があまりない。そのため励起光源などのバラツキによっても、添加する蛍光体の量はほとんど変化しない In contrast, the phosphor of the example has a peak wavelength of 480 nm and can emit blue light with a half-value width of 30 nm by excitation with near ultraviolet light such as 400 nm. Further, even if the excitation wavelength changes from 380 nm to 420 nm, the intensity ratio of the peak wavelength changes only by about 16%, so that the emission intensity is not very dependent on the excitation wavelength. For this reason, the amount of the phosphor to be added hardly changes even when the excitation light source varies .

市販の黄色蛍光体である(Y,Gd)3(Al,Ga)512:Ce蛍光体と、青色LEDチップとを組み合わせて白色LED発光装置を作製した。この白色LED装置を比較例3とする。具体的には、図10に示す通り、バンプを介してLEDチップが実装されており、フリップチップと呼ばれる構造の発光装置となる。比較例3の白色LED装置を蛍光体の混合割合を調整して、色温度4000Kに調整した。色温度4000Kに調整した白色LED発光装置は、平均演色評価数Ra=67であった。平均演色評価数Raは、白色LED発光装置から得られた発光スペクトルから求めることができる。 A white LED light-emitting device was fabricated by combining a commercially available yellow phosphor (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce phosphor and a blue LED chip. This white LED device is referred to as Comparative Example 3. Specifically, as shown in FIG. 10, an LED chip is mounted via bumps, and a light emitting device having a structure called a flip chip is obtained. The white LED device of Comparative Example 3 was adjusted to a color temperature of 4000K by adjusting the mixing ratio of the phosphors. The white LED light emitting device adjusted to a color temperature of 4000 K had an average color rendering index Ra = 67. The average color rendering index Ra can be obtained from the emission spectrum obtained from the white LED light emitting device.

参考例1の蛍光体を加えたこと以外は比較例3と同様にして、樹脂混合物を調製した。得られた樹脂混合物を用いる以外は前述と同様の手法により、白色LED発光装置を作製した。この白色LED装置を実施例13とする。実施例13の白色LED装置を蛍光体の混合割合を調整して、色温度4000Kに調整した。色温度4000Kに調整した時の発光スペクトルを図13に示す。色温度4000Kに調整した白色LED発光装置は、平均演色評価数Ra=69であった。 A resin mixture was prepared in the same manner as Comparative Example 3 except that the phosphor of Reference Example 1 was added. A white LED light-emitting device was produced in the same manner as described above except that the obtained resin mixture was used. This white LED device is referred to as Example 13. The white LED device of Example 13 was adjusted to a color temperature of 4000K by adjusting the mixing ratio of the phosphors. An emission spectrum when the color temperature is adjusted to 4000K is shown in FIG. The white LED light emitting device adjusted to a color temperature of 4000 K had an average color rendering index Ra = 69.

実施例13と比較例3とを比較すると演色性が改善し、比較例より優れた平均演色評価数Raを示すことがわかる。   Comparing Example 13 and Comparative Example 3, it can be seen that the color rendering properties are improved, and the average color rendering index Ra is superior to that of the Comparative Example.

また、参考例3の蛍光体と、合成した緑色蛍光体である(Y,La,Gd,Lu)2Si334:Tb,Ce蛍光体と、市販の赤色蛍光体である(La,Gd,Y)22S:Eu蛍光体とを、混合して蛍光体混合物を得た。この蛍光体混合物をシリコーン樹脂に分散させて、樹脂混合物を調製した。得られた樹脂混合物をピーク波長391nmの近紫外LEDチップと組み合わせて、白色LED発光装置を作製した。具体的には、図11に示すような表面実装構造の発光装置を作製した。この白色LED装置を、実施例14とする。 Further, the phosphor of Reference Example 3, the synthesized green phosphor (Y, La, Gd, Lu) 2 Si 3 O 3 N 4 : Tb, Ce phosphor, and a commercially available red phosphor (La , Gd, Y) 2 O 2 S: Eu phosphor was mixed to obtain a phosphor mixture. This phosphor mixture was dispersed in a silicone resin to prepare a resin mixture. The obtained resin mixture was combined with a near-ultraviolet LED chip having a peak wavelength of 391 nm to produce a white LED light-emitting device. Specifically, a light emitting device having a surface mounting structure as shown in FIG. 11 was manufactured. This white LED device is referred to as Example 14.

実施例14の白色LED装置を蛍光体の混合割合を調整して、色温度4000Kに調整した時の発光スペクトルを図14に示す。色温度4000Kに調整した白色LED発光装置は、平均演色評価数Ra=68であった。   FIG. 14 shows an emission spectrum when the white LED device of Example 14 is adjusted to a color temperature of 4000 K by adjusting the mixing ratio of the phosphors. The white LED light emitting device adjusted to a color temperature of 4000 K had an average color rendering index Ra = 68.

従来の蛍光体かかる蛍光体の発光スペクトル。Emission spectrum of the phosphor according to the conventional phosphor. 参考例の蛍光体の発光スペクトル。The emission spectrum of the phosphor of the reference example . 本発明の実施形態にかかる蛍光体の発光スペクトル。The emission spectrum of the fluorescent substance concerning one Embodiment of this invention. 参考例の蛍光体の発光スペクトル。The emission spectrum of the phosphor of the reference example . 参考例の蛍光体の励起スペクトル。The excitation spectrum of the phosphor of the reference example . 参考例の蛍光体のX線回折パターン。The X-ray-diffraction pattern of the fluorescent substance of a reference example . 従来の蛍光体のX線回折パターン。X-ray diffraction pattern of a conventional phosphor. 参考例の蛍光体の365nm励起による顕微写真。The micrograph by 365 nm excitation of the fluorescent substance of a reference example . 本発明の一実施形態にかかる発光装置の断面図。1 is a cross-sectional view of a light emitting device according to an embodiment of the present invention. 本発明の他の実施形態にかかる発光装置の断面図。Sectional drawing of the light-emitting device concerning other embodiment of this invention. 発光素子の拡大図。The enlarged view of a light emitting element. 本発明の他の実施形態にかかる発光装置の断面図。Sectional drawing of the light-emitting device concerning other embodiment of this invention. 本発明の一実施形態にかかる白色LED発光装置の発光スペクトル。The emission spectrum of the white LED light-emitting device concerning one Embodiment of this invention. 本発明の他の実施形態にかかる白色LED発光装置の発光スペクトル。The emission spectrum of the white LED light-emitting device concerning other embodiment of this invention.

符号の説明Explanation of symbols

200…樹脂ステム; 201…リード; 202…リード; 203…樹脂部
204…反射面; 205…凹部; 206…発光チップ
207…ボンディングワイヤ; 208…ボンディングワイヤ; 209…蛍光層
210…蛍光体; 211…樹脂層; 100…樹脂ステム; 101…リード
102…リード; 103…樹脂部; 104…反射面; 105…開口部
106E…ツェナー・ダイオード; 106F…半導体発光素子; 107…接着剤
109…ボンディングワイヤ; 110…蛍光体; 111…封止体
122…バッファ層; 123…n型コンタクト層; 124…活性層
125…p型クラッド層; 126…p型コンタクト層; 127…n側電極
128…p側電極; 132…n型クラッド層; 138…透光性基板
142…バンプ; 144…バンプ; 150…n型シリコン基板
152…p型領域; 154…p側電極; 156…n側電極; 158…n側電極
160…配線層; 162…高反射膜; 50,50’…リード
51…半導体発光素子; 52…マウント材; 53…ボンディングワイヤ
54…プレディップ材; 55…キャスティング材。
200 ... Resin stem; 201 ... Lead; 202 ... Lead; 203 ... Resin portion 204 ... Reflecting surface; 205 ... Recessed portion; 206 ... Light emitting chip 207 ... Bonding wire; 208 ... Bonding wire; 209 ... Phosphor layer 210 ... Phosphor; DESCRIPTION OF SYMBOLS ... Resin layer; 100 ... Resin stem; 101 ... Lead 102 ... Lead; 103 ... Resin part; 104 ... Reflecting surface; 105 ... Opening part 106E ... Zener diode; 106F ... Semiconductor light emitting element; 107 ... Adhesive 109 ... Bonding wire 110 ... phosphor; 111 ... encapsulant 122 ... buffer layer; 123 ... n-type contact layer; 124 ... active layer 125 ... p-type cladding layer; 126 ... p-type contact layer; 127 ... n-side electrode 128 ... p-side 132; n-type cladding layer; 138 ... translucent substrate 142 ... bump; 144 ... Bump; 150 ... n-type silicon substrate 152 ... p-type region; 154 ... p-side electrode; 156 ... n-side electrode; 158 ... n-side electrode 160 ... wiring layer; 162 ... high reflection film; DESCRIPTION OF SYMBOLS 51 ... Semiconductor light emitting element; 52 ... Mounting material; 53 ... Bonding wire 54 ... Pre-dip material; 55 ... Casting material.

Claims (8)

Li,Ca,SiおよびOを含む正方晶系の結晶相と、
Euを含む付活剤と
を含有し、
下記一般式(A)で表わされる組成を有することを特徴とするリチウムカルシウム珪酸化物蛍光体。
Li a (Ca 1-x1-y1 ,M x1 ,Eu y1 b Si c d (A)
ここで、MはBa,Sr,およびMgからなる群から選択される少なくとも1種であり、x1,y1,a,b,c,およびdは、以下に示す範囲内である。
0<x1≦0.4 (1); 0<y1≦0.08 (2)
1.9≦a≦2.1 (3); 0.9≦b≦1.1 (4)
0.9≦c≦1.1 (5); 3.9≦d≦4.2 (6)
A tetragonal crystal phase containing Li, Ca, Si and O;
Containing an activator containing Eu,
A lithium calcium silicate phosphor having a composition represented by the following general formula (A).
Li a (Ca 1-x1- y1, M x1, Eu y1) b Si c O d (A)
Here, M is at least one selected from the group consisting of Ba, Sr, and Mg, and x1, y1, a, b, c, and d are within the following ranges.
0 <x1 ≦ 0.4 (1); 0 <y1 ≦ 0.08 (2)
1.9 ≦ a ≦ 2.1 (3); 0.9 ≦ b ≦ 1.1 (4)
0.9 ≦ c ≦ 1.1 (5); 3.9 ≦ d ≦ 4.2 (6)
上記一般式(A)においてa=2、b=1、c=1、d=4であることを特徴とする請求項に記載のリチウムカルシウム珪酸化物蛍光体。 A = 2, b = 1, c = 1, lithium calcium silicate compound phosphor according to claim 1, characterized in that d = a 4 in the general formula (A). M=Srであることを特徴とする請求項1または2に記載のリチウムカルシウム珪酸化物蛍光体。 3. The lithium calcium silicate phosphor according to claim 1, wherein M = Sr. 前記蛍光体を360nm以上460nm以下にピークを有する光で励起した場合、発光スペクトルのピーク波長を470nm以上490nm以下の波長領域に有することを特徴とする請求項1乃至のいずれか1項に記載の蛍光体。 When excited the phosphor with light having a peak at 360nm or 460nm or less, according to any one of claims 1 to 3, characterized in that it has a peak wavelength of the emission spectrum to 490nm or less in the wavelength region above 470nm Phosphor. 前記蛍光体の発光波長の半値幅は40nm以下であることを特徴とする請求項1乃至のいずれか1項に記載のリチウムカルシウム珪酸化物蛍光体。 FWHM of lithium calcium silicate compound phosphor according to any one of claims 1 to 4, characterized in that at 40nm or less of the emission wavelength of the phosphor. 360nm以上460nm以下の波長領域に発光ピークを有する光を発する発光素子と、
蛍光体を含む発光層とを具備し、
前記蛍光体の少なくとも一部は、請求項1乃至のいずれか1項に記載の蛍光体であることを特徴とする発光装置。
A light emitting element that emits light having an emission peak in a wavelength region of 360 nm to 460 nm;
A light emitting layer containing a phosphor,
Wherein at least a portion of the phosphor, the light emitting device which is a phosphor according to any one of claims 1 to 5.
前記発光層は、580nm以上680nm以下の領域に主発光ピークを有する第2の蛍光体を含むことを特徴とする請求項に記載の発光装置。 The light emitting device according to claim 6 , wherein the light emitting layer includes a second phosphor having a main light emission peak in a region of 580 nm to 680 nm. 前記発光層は、510nm以上580nm以下の領域に主発光ピークを有する第3の蛍光体を含むことを特徴とする請求項またはに記載の発光装置。 The EML emitting device according to claim 6 or 7, characterized in that it comprises a third luminescent material having a major emission peak in a region over 510 nm 580 nm.
JP2008018037A 2008-01-29 2008-01-29 Phosphor and light emitting device Expired - Fee Related JP5361199B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008018037A JP5361199B2 (en) 2008-01-29 2008-01-29 Phosphor and light emitting device
PCT/JP2008/071177 WO2009096082A1 (en) 2008-01-29 2008-11-14 Luminescent material
US12/388,067 US20090189514A1 (en) 2008-01-29 2009-02-18 Luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018037A JP5361199B2 (en) 2008-01-29 2008-01-29 Phosphor and light emitting device

Publications (2)

Publication Number Publication Date
JP2009179662A JP2009179662A (en) 2009-08-13
JP5361199B2 true JP5361199B2 (en) 2013-12-04

Family

ID=40524183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018037A Expired - Fee Related JP5361199B2 (en) 2008-01-29 2008-01-29 Phosphor and light emitting device

Country Status (2)

Country Link
JP (1) JP5361199B2 (en)
WO (1) WO2009096082A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293667B2 (en) * 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
TWI426629B (en) * 2009-10-05 2014-02-11 Everlight Electronics Co Ltd White-light emitting device and preparation method and application of the same
JP2012117029A (en) * 2010-11-11 2012-06-21 Sumitomo Chemical Co Ltd Method for producing phosphor material
JP2012132000A (en) * 2010-12-02 2012-07-12 Niigata Univ Method for producing crystalline substance
JP2012131999A (en) * 2010-12-02 2012-07-12 Niigata Univ Crystalline substance, and light-emitting device and white led using the same
JP2013232479A (en) 2012-04-27 2013-11-14 Toshiba Corp Semiconductor light-emitting device
WO2013166663A1 (en) * 2012-05-08 2013-11-14 海洋王照明科技股份有限公司 Metal nanoparticle-coating silicate luminescent material and preparation method therefor
US20150275083A1 (en) * 2012-10-31 2015-10-01 Ocean's King Lighting Science & Technology Co., Ltd Silicate luminescent material and preparation method therefor
KR102237112B1 (en) * 2014-07-30 2021-04-08 엘지이노텍 주식회사 Light emitting device and light suource module
US10505080B2 (en) * 2016-08-12 2019-12-10 Osram Opto Semiconductors Gmbh Lighting device
US10711192B2 (en) 2016-08-12 2020-07-14 Osram Oled Gmbh Lighting device
DE102016121692A1 (en) 2016-08-12 2018-02-15 Osram Gmbh Phosphor and method of making a phosphor
WO2019029849A1 (en) 2016-11-11 2019-02-14 Osram Opto Semiconductors Gmbh Dimmable light source
JP7050774B2 (en) 2016-11-11 2022-04-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of phosphors, luminaires and luminaires
DE102018205464A1 (en) 2017-11-10 2019-05-16 Osram Opto Semiconductors Gmbh LIGHTING DEVICE AND USE OF A LIGHTING DEVICE
CN108659824B (en) * 2018-06-07 2021-04-06 东莞理工学院 Spectrum-adjustable alkali metal silicate luminescent material for white light LED and preparation method thereof
CN110361339A (en) * 2019-05-31 2019-10-22 衢州康鹏化学有限公司 The detection method of chloride in imidodisulfuryl fluoride lithium salt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238399A1 (en) * 2002-08-22 2004-02-26 Philips Intellectual Property & Standards Gmbh Device for producing radiation for disinfecting water, air or surfaces comprises a discharge vessel containing a gas filling, units for igniting and maintaining an excimer discharge, and a coating containing a light-emitting compound
JP4899319B2 (en) * 2005-02-23 2012-03-21 住友化学株式会社 White LED
JP2006232906A (en) * 2005-02-23 2006-09-07 Sumitomo Chemical Co Ltd Fluorescent substance and light-emitting apparatus using the same

Also Published As

Publication number Publication date
JP2009179662A (en) 2009-08-13
WO2009096082A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5361199B2 (en) Phosphor and light emitting device
JP4413955B2 (en) Phosphor and light emitting device
JP4199267B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP4314279B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP4836429B2 (en) Phosphor and light emitting device using the same
JP4869317B2 (en) Red phosphor and light emitting device using the same
JP2009035673A (en) Fluorescent material and light-emitting device
US7857994B2 (en) Green emitting phosphors and blends thereof
JP5190475B2 (en) Phosphor and light emitting device using the same
KR100774028B1 (en) Fluorescent Substance, Method of Manufacturing Fluorescent Substance, and Light Emitting Device Using the Fluorescent Substance
JP5134788B2 (en) Method for manufacturing phosphor
JP5421205B2 (en) Light emitting device
WO2013137144A1 (en) White lighting device
TWI648371B (en) Phosphor, manufacturing method thereof, and illuminating device using the same
JP4825923B2 (en) Red phosphor and light emitting device using the same
TW201249962A (en) White light-emitting device
JP2008028042A (en) Light emitting device
US20090189514A1 (en) Luminescent material
JP2005146172A (en) Light emitter and phosphor for light emitter
JP5066204B2 (en) Phosphor and light emitting device
JP5259770B2 (en) Method for producing red phosphor
JP5606246B2 (en) Method for manufacturing phosphor
JP2013157615A (en) Light emitting device module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R151 Written notification of patent or utility model registration

Ref document number: 5361199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees