JP5360530B2 - Liquid film optics - Google Patents

Liquid film optics Download PDF

Info

Publication number
JP5360530B2
JP5360530B2 JP2008172553A JP2008172553A JP5360530B2 JP 5360530 B2 JP5360530 B2 JP 5360530B2 JP 2008172553 A JP2008172553 A JP 2008172553A JP 2008172553 A JP2008172553 A JP 2008172553A JP 5360530 B2 JP5360530 B2 JP 5360530B2
Authority
JP
Japan
Prior art keywords
liquid film
temperature
optical
liquid
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008172553A
Other languages
Japanese (ja)
Other versions
JP2010014808A (en
Inventor
順二 間中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008172553A priority Critical patent/JP5360530B2/en
Publication of JP2010014808A publication Critical patent/JP2010014808A/en
Application granted granted Critical
Publication of JP5360530B2 publication Critical patent/JP5360530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid film optical apparatus capable of rapidly and precisely controlling shape or the like of a liquid film having a boundary with gas by finely controlling a temperature variable means for varying the temperature of a liquid film forming area where the liquid film is formed or a temperature variable pattern layer by integrating the temperature variable means or the temperature variable pattern layer at a predetermined minute spot by using an MEMs (Mirco Electro Mechanical System) that controls the temperature of a minute area, and a liquid film optical device, a liquid film imaging device and a liquid film light source device. <P>SOLUTION: The liquid film optical apparatus 1 includes the temperature variable means for varying the temperature of the liquid film forming area 102 where the liquid film having the boundary with gas is formed in order to flocculate liquid film material in atmosphere or sealed space, and a temperature control means for controlling the temperature of the temperature variable means. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は液膜光学装置に関し、詳細には雰囲気内又は密閉空間内の光学材料を凝集させて液膜を形成する領域の温度を制御することで領域に形成された液膜の光学特性を可変可能な液膜光学装置に関する。 The present invention relates to a liquid film optical equipment, in particular formed in the region by controlling the temperature of the realm that form a liquid film by condensing coagulation optical material or enclosed space atmosphere liquid film The present invention relates to a liquid film optical device capable of changing the optical characteristics of the liquid film.

従来、絞り、シャッター、フィルタ、透過、反射、屈折、回折や干渉作用をさせる液体の可変光学機構がある。人の眼球機能や3次元映像の実現などを目指す可変焦点液膜レンズなどの液体光学デバイスでは、ピエゾアクチェータ・ポンプによる液体輸送やElectro Wettingなどで液滴形状を制御する手段を用いている。現在の可変焦点液滴レンズでは、高解像度の撮像センサとの組み合わせで、デジタルカメラの画像品質に匹敵する画像を得ることが可能である。また、可変焦点液滴レンズは、電気により2種類の液体間の境界面を変化させてレンズの焦点を合わせる仕組みを採用しているため、オートフォーカス機能付きでメカ部分が不要となり、レンズサイズやコスト、耐久性など様々な面で従来のレンズより優れている。この液体レンズは、機械的な動作なしで形状を変えられるレンズであり、屈折率の異なる2種類の液体間の境界面の形状を変化させて、レンズの役割を果たしている。また、合焦の動作のみに電力を使用するものである。このような液体レンズは、携帯電話以外にも、パソコンや医療現場、保安用、デジタルカメラ向けなど様々な用途が想定されている。形状を可変させる光学デバイスや、微小集積光学システムに応用できる。例えば、可変焦点レンズ、複合レンズ、プリズム、マイクロレンズ、マイクロレンズアレー、反射光学デバイス、干渉光学デバイス、回折光学デバイス、共焦点光学デバイス、走査光学デバイス、光学スイッチ、光学シャッター、液晶光学デバイス、撮像デバイス、光源デバイス、3次元結像光学デバイス、赤外線センサの集光光学デバイス、駆動回路を基板に一体化した集積光学デバイスなどに応用できる。   Conventionally, there are variable optical mechanisms for liquids that cause diaphragms, shutters, filters, transmission, reflection, refraction, diffraction, and interference. In a liquid optical device such as a variable focus liquid film lens aiming at realization of a human eyeball function or a three-dimensional image, means for controlling a droplet shape by liquid transportation by a piezo actuator pump or electro wetting is used. With current variable focus droplet lenses, it is possible to obtain an image comparable to the image quality of a digital camera in combination with a high resolution imaging sensor. In addition, the variable focus droplet lens employs a mechanism that changes the interface between two types of liquids by electricity to adjust the focus of the lens. It is superior to conventional lenses in various aspects such as cost and durability. This liquid lens is a lens whose shape can be changed without mechanical operation, and plays the role of a lens by changing the shape of the boundary surface between two types of liquids having different refractive indexes. Moreover, electric power is used only for the focusing operation. In addition to mobile phones, such liquid lenses are expected to be used for various purposes such as personal computers, medical sites, security, and digital cameras. It can be applied to an optical device whose shape is variable and a micro integrated optical system. For example, variable focus lens, compound lens, prism, micro lens, micro lens array, reflective optical device, interference optical device, diffractive optical device, confocal optical device, scanning optical device, optical switch, optical shutter, liquid crystal optical device, imaging It can be applied to a device, a light source device, a three-dimensional imaging optical device, a condensing optical device for an infrared sensor, an integrated optical device in which a driving circuit is integrated on a substrate, and the like.

しかし、これらの液滴形成技術は形状に関する範囲であり、液滴材料の全ての光学特性を制御するわけではない。特に、液滴材料は表面張力や粘性(流動性)だけでなく、ひいては屈折率までもが温度依存性を有するので、結像に対する温度補償又は液膜に対する温度制御が必要になっている。液滴光学デバイスとして、光学材料の液滴を所定箇所へ所定量、所定形状に正確に形成すると共に、所定箇所に保持させて量を調節し、形状を変化させ、そして保持箇所を移動させ、液滴材料の種類をできるだけ多く、更に液滴の温度制御をさせること及びこれらの機能を効率良く制御することができ、更には液滴を迅速かつ精密に制御することができ、また微小なマイクロサイズであるだけではなく巨大な開口面積の光学系もできれば、より多くの可変光学デバイスに用いることができるようになる。   However, these droplet formation techniques are in terms of shape and do not control all the optical properties of the droplet material. In particular, since the droplet material has not only the surface tension and viscosity (fluidity), but also the refractive index, it has a temperature dependency, so that temperature compensation for image formation or temperature control for the liquid film is required. As a droplet optical device, a droplet of an optical material is precisely formed in a predetermined amount and a predetermined shape to a predetermined location, and is held at a predetermined location to adjust the amount, change the shape, and move the holding location, It is possible to control the temperature of the droplet and control these functions efficiently as many types of droplet materials as possible. Furthermore, the droplets can be controlled quickly and precisely, and the microscopic If an optical system having not only a size but also a large aperture area can be formed, it can be used for more variable optical devices.

そこで、従来よりいくつかの提案がなされている。その一つとして、特許文献1によれば、親水性と疎水性の交互の領域を微小規模で表面に容易に製作でき、適当な条件下でそのような表面を水蒸気のある所で冷却すると水滴が疎水性表面の領域に選択的に凝結する。そのような水滴は、収束マイクロレンズまたは発散マイクロレンズとして作用することができる。また、SAM表面間の距離を変えることによって、液体レンズの形状、従って光学的特性を変えることができる。これ以外に液体レンズの形状及び光学的特性を変えるための幾つかの他の方法もある。例えば、レンズと表面の間の電気ポテンシャルを変えて、レンズの形状を変えさせることができる。また、レンズの屈折率を異なる液体材料を使うことによって変えることができる。液体レンズの凝集性及び付着性を、この液体材料の化学的性質を変えることによって、あるいは表面の化学的性質を変えることによって調節することができる。表面の3次元特性を変えることができる。
特表平11−513129号公報 特開2006−145807号公報
Therefore, some proposals have been made conventionally. For example, according to Patent Document 1, alternating regions of hydrophilicity and hydrophobicity can be easily produced on a surface on a micro scale, and when such a surface is cooled in a place with water vapor under appropriate conditions, Selectively condense into regions of the hydrophobic surface. Such water droplets can act as converging or diverging microlenses. Also, by changing the distance between the SAM surfaces, the shape of the liquid lens and thus the optical properties can be changed. There are several other ways to change the shape and optical properties of the liquid lens. For example, the shape of the lens can be changed by changing the electrical potential between the lens and the surface. Also, the refractive index of the lens can be changed by using different liquid materials. The cohesion and adhesion of the liquid lens can be adjusted by changing the chemistry of the liquid material or by changing the surface chemistry. The three-dimensional characteristics of the surface can be changed.
Japanese National Patent Publication No. 11-513129 JP 2006-145807 A

しかしながら、特許文献1によれば、例えばSAM表面間の距離を制御するので光軸が移動し制御が必要になり、入出光側から見ると液滴が光軸対象の球面形状にはならない。以下に図を用いて詳細に説明すると、図26に示すように、対向する基板301の表面には疎水性領域部302と親水性領域部303が交互に設けられ、それぞれの対向する基板501の間に液滴504を凝集させて、そして図26の(b)に示す基板の間隔Aや図27の(b)に示す基板の間隔Bを可変して液体レンズを可変させている。   However, according to Patent Document 1, for example, since the distance between the SAM surfaces is controlled, the optical axis moves and needs to be controlled, and when viewed from the incident / exited light side, the droplet does not have the spherical shape of the optical axis target. This will be described in detail below with reference to the drawings. As shown in FIG. 26, hydrophobic regions 302 and hydrophilic regions 303 are alternately provided on the surface of the opposing substrate 301, and each of the opposing substrates 501. The liquid lens is varied by aggregating the droplets 504 between them and varying the substrate interval A shown in FIG. 26B and the substrate interval B shown in FIG.

このように、距離調整誤差や部材の熱膨張率や距離調整機構の温度依存性などが加わり、光学部材とはかかわりのない制御箇所の新たな調整が必要となる。基板全体を冷却、加熱することによるので熱容量が大きく、温度を迅速に変えられないので所定の水滴のサイズを得るには、緩慢である。また、不要な箇所まで温度制御するため、エネルギーが無駄になる。更に、基板全体を同一の温度にすることになるので、個々の水滴を異なる水滴量に制御することが難しくなる。このことから、所定の箇所に所定の形状の液滴を形成するためには、極特定の箇所のみ冷却、加熱することが必要になってくる。また、温度を迅速に変えるためにはできるだけ、冷却、加熱する箇所を最小限にする必要がある。更には、液滴を極質量の小さい液膜にして、形状などを迅速かつ精密に制御する上では、上記特許文献1は液膜を形成させる機構ではない。   As described above, the distance adjustment error, the coefficient of thermal expansion of the member, the temperature dependency of the distance adjustment mechanism, and the like are added, and a new adjustment of the control portion not related to the optical member is required. Since the entire substrate is cooled and heated, the heat capacity is large, and the temperature cannot be changed quickly. Therefore, it is slow to obtain a predetermined water droplet size. In addition, energy is wasted because temperature control is performed to unnecessary portions. Furthermore, since the entire substrate is brought to the same temperature, it is difficult to control the individual water droplets to different water droplet amounts. For this reason, in order to form a droplet having a predetermined shape at a predetermined location, it is necessary to cool and heat only a very specific location. In order to change the temperature quickly, it is necessary to minimize the number of places to be cooled and heated. Furthermore, the above-mentioned Patent Document 1 is not a mechanism for forming a liquid film in order to form liquid droplets with a very small mass and control the shape and the like quickly and precisely.

本発明はこれらの問題点を解決するためのものであり、微小な領域を温度制御するMEMs(Micro Electro Mechanical System)を用いて気体との界面を有する液膜を形成する温度可変手段又は温度可変パターン層を所定の微小な箇所に集積化することにより、温度可変手段又は温度可変パターン層を微小に制御して液膜の形状などを迅速かつ精密に制御することができる液膜光学装置、液膜光学デバイス、液膜撮像デバイス及び液膜光源デバイスを提供することを目的とする。   The present invention is for solving these problems, and temperature variable means or temperature variable for forming a liquid film having an interface with a gas using MEMs (Micro Electro Mechanical System) for controlling the temperature of a minute region. Liquid film optical device, liquid that can quickly and precisely control the shape of the liquid film by finely controlling the temperature variable means or the temperature variable pattern layer by integrating the pattern layer at a predetermined minute position An object is to provide a film optical device, a liquid film imaging device, and a liquid film light source device.

前記問題点を解決するために、本発明の液膜光学装置は、雰囲気中又は密閉空間中の光学材料を凝集させて、気体との界面を有し、かつ膜厚分布が略均一になっている光学部材としての液膜が形成される空洞部を有する液膜形成エリアの温度を変化させる温度変化手段と、該温度変化手段の温度を制御する温度制御手段と、光学材料を液膜形成エリアの空洞部に供給し、又は液膜形成エリアの空洞部から光学材料を排出する液膜材料供給排出路とを備え、該温度制御手段によって温度変化手段の温度を制御して、液膜形成エリアの空洞部に光学材料を凝集させて液膜を形成するとともに、当該液膜の形状を変化させて光学部材としての液膜の光学特性を変えることに特徴がある。よって、液膜の形状を迅速にかつ精密に制御することができる。 In order to solve the above problems, the liquid film optical device of the present invention, the optical material during or enclosed space atmosphere is agglutination, has an interface with the gas, and film thickness distribution becomes substantially uniform temperature changing means for changing the temperature of the liquid film forming area with air sinus portion liquid film Ru is formed as an optical member is a temperature control means for controlling the temperature of the temperature changing means, the optical material liquid film A liquid film material supply / discharge passage that supplies the liquid material to the cavity of the formation area or discharges the optical material from the cavity of the liquid film formation area, and controls the temperature of the temperature changing means by the temperature control means. It is characterized in that the optical material is aggregated in the cavity of the formation area to form a liquid film, and the shape of the liquid film is changed to change the optical characteristics of the liquid film as an optical member. Therefore, the shape of the liquid film can be controlled quickly and precisely.

また、本発明の液膜光学装置は、雰囲気中又は密閉空間中の光学材料を凝集させて、気体との界面を有し、かつ膜厚分布が略均一になっている光学部材としての液膜が形成される空洞部を有する液膜形成エリアの温度を変化させる温度変化手段と、該温度変化手段の温度を制御する温度制御手段とを多段に備え、光学材料を液膜形成エリアの空洞部に供給し、又は液膜形成エリアの空洞部から光学材料を排出する液膜材料供給排出路を有し、各段の温度制御手段によって各段の温度変化手段の温度をそれぞれ制御して、液膜形成エリアの空洞部に光学材料を凝集させて液膜を形成するともに、当該液膜の位置を変化させて光学部材としての液膜の光学特性を変えることに特徴がある。よって、液膜の位置を迅速にかつ精密に制御することができる。 The liquid film optical device of the present invention, the optical material during or enclosed space atmosphere by agglutination, has an interface with a gas and a liquid as an optical member which film thickness distribution is made substantially uniform comprising a temperature varying means for varying the temperature of the liquid film forming area with air sinus portion film Ru is formed, and a temperature control means for controlling the temperature of the temperature changing means in multiple stages, the optical material of the liquid film forming area It has a liquid film material supply / discharge path for supplying to the cavity or discharging the optical material from the cavity in the liquid film formation area, and controlling the temperature of the temperature change means at each stage by the temperature control means at each stage. The liquid film is formed by aggregating the optical material in the cavity of the liquid film formation area, and the optical characteristics of the liquid film as an optical member are changed by changing the position of the liquid film. Therefore, the position of the liquid film can be controlled quickly and precisely.

更に、光学材料がイオン液体材料であることにより、微細な液膜を高精度に形成させることができる。温度制御手段によって温度変化手段の温度を制御して液膜形成エリアの空洞部に形成された液膜を保持することにより、雰囲気の温度変換の影響を受けることなく、所定の液膜を保持できる。 Further, since the optical material is an ionic liquid material, a fine liquid film can be formed with high accuracy. By controlling the temperature of the temperature changing means by the temperature control means and holding the liquid film formed in the cavity of the liquid film forming area , it is possible to hold a predetermined liquid film without being affected by the temperature conversion of the atmosphere. .

更に、温度変化手段は熱電変換器又はヒートパイプであることが好ましい。 Furthermore, the temperature changing means is preferably a thermoelectric converter or a heat pipe.

また、温度変化手段を液膜形成エリアに集合配置することにより、迅速に温度制御ができ、液膜の形状を素早く所定の形状にできると共に、精細な形状制御も可能となる。 Further, by arranging the temperature changing means in the liquid film forming area, the temperature can be quickly controlled, the shape of the liquid film can be quickly changed to a predetermined shape, and the fine shape control can be performed.

更に、液膜を形成する箇所に温度変化手段を個別に配置することにより、形成される液膜を個々に制御可能となり、自由度が高い。 Furthermore, by arranging the temperature changing means individually at the position where the liquid film is formed, the liquid film to be formed can be individually controlled, and the degree of freedom is high.

また、温度変化手段を平坦状に配置することにより、メニスカスを平坦にでき、かつ液膜面に広い平面を形成できる。 Further, by arranging the temperature changing means in a flat shape, the meniscus can be made flat and a wide plane can be formed on the liquid film surface.

更に、温度変化手段を、角柱面、角錐面、円柱面、円錐面、ボビン型面、中絞り型面又は自由曲面の面上に集合配置することにより、液膜の形状やサイズなど目的に応じて液膜が形成できると共に、光学系の場合光学光路に対し開口率を上げることができる。 Furthermore, by arranging temperature changing means on a prismatic surface, a pyramid surface, a cylindrical surface, a conical surface, a bobbin-type surface, a medium-drawing surface, or a free-form surface, depending on the purpose such as the shape and size of the liquid film. Thus, a liquid film can be formed, and in the case of an optical system, the aperture ratio can be increased with respect to the optical optical path.

更に、雰囲気中又は密閉空間中の気体の温度及び密度を測定する測定器を設け、該測定器によって測定した雰囲気中又は密閉空間中の気体の温度及び密度に基づいて、温度制御手段は温度変化手段の温度を制御することが好ましく、液膜の形状などを微小に、かつより一層精度良く制御可能となり、より多くの液膜光学装置に用いることができる。 Furthermore, a measuring device for measuring the temperature and density of the gas in the atmosphere or in the enclosed space is provided, and the temperature control means changes the temperature based on the temperature and density of the gas in the atmosphere or in the enclosed space measured by the measuring device. It is preferable to control the temperature of the means, and the shape of the liquid film can be controlled minutely and with higher accuracy, and can be used for more liquid film optical devices.

また、イオン液体材料の温度及び密度を測定する測定器を設け、該測定器によって測定したイオン液体材料の気体の温度及び密度に基づいて、温度制御手段は温度変化手段の温度を制御することにより、液膜の形状などを微小に、かつより一層精度良く制御可能となり、より多くの液膜光学装置に用いることができる。 Further, a measuring device for measuring the temperature and density of the ionic liquid material is provided, and the temperature control means controls the temperature of the temperature changing means based on the temperature and density of the gas of the ionic liquid material measured by the measuring device. The shape of the liquid film can be finely controlled with higher accuracy, and can be used for more liquid film optical devices.

雰囲気気体を液膜に凝集する場合、液膜のメニスカス外周、および曲面や平面をなす液面外形などの光学デバイスとして必要な形状として、所定のサイズに制御しなければならない。この場合、省エネルギーで効率良く液膜を形成することが必要である。このことは、上記特許文献2に示されている。しかし、液膜は光学特性に関する温度依存性があるため、液膜の温度制御も必要になる。また、液膜支持基材を含めた液膜の温度制御により、液膜光学系の制御ができ、液膜の温度依存性とは異なる、液膜支持基材の収縮、膨張による影響もあわせて温度制御し、効率が高く正確な形状制御が求められる。そこで、液膜形成技術及び液膜温度制御を兼ね備えた、気体から液体に相転移する機構を温度制御によって行う液膜形成技術を、液膜材料の温度依存性に対する温度制御も含めて、直接液体光学デバイスに適用する。光学材料液膜を形成し、保持しつつ、かつ液膜の温度制御も行えるようにするため、液膜箇所の局所に冷却器を集合し、集合配置した内側に、液膜を形成及び、または液膜を保持する構造とする。このように、微小な領域を温度制御するMEMsを用いて液膜を形成する温度可変手段又は温度可変パターン層を所定の微小な箇所に集積化することにより、温度可変手段又は温度可変パターン層を微小に制御して液膜の形状などを制御することができる液膜光学装置、液膜光学デバイス、液膜撮像デバイス及び液膜光源デバイスを提供可能となる。   When the atmospheric gas is aggregated into a liquid film, it must be controlled to a predetermined size as a shape necessary for an optical device such as the outer periphery of the meniscus of the liquid film and the liquid surface outer shape forming a curved surface or a flat surface. In this case, it is necessary to efficiently form a liquid film with energy saving. This is shown in Patent Document 2 above. However, since the liquid film has temperature dependency on optical characteristics, it is necessary to control the temperature of the liquid film. In addition, by controlling the temperature of the liquid film including the liquid film supporting substrate, the liquid film optical system can be controlled, and the influence of shrinkage and expansion of the liquid film supporting substrate, which is different from the temperature dependence of the liquid film, is also included. Highly efficient and accurate shape control is required with temperature control. Therefore, liquid film formation technology that combines liquid film formation technology and liquid film temperature control and performs a phase transition from gas to liquid by temperature control, including temperature control for temperature dependence of liquid film material, Applies to optical devices. In order to be able to control the temperature of the liquid film while forming and holding the optical material liquid film, the cooler is gathered locally at the liquid film location, and the liquid film is formed on the inner side of the gathered arrangement, and / or The liquid film is held. As described above, the temperature variable means or the temperature variable pattern layer is formed by integrating the temperature variable means or the temperature variable pattern layer for forming the liquid film using the MEMs for controlling the temperature of the minute area at a predetermined minute position. It is possible to provide a liquid film optical device, a liquid film optical device, a liquid film imaging device, and a liquid film light source device that can be controlled minutely to control the shape of the liquid film.

図1は本発明の第1の実施の形態に係る液膜光学装置の構成を示す図である。図1の(a)は同図の(b)のB−B’線断面図、同図の(b)は同図の(a)のA−A’線断面図である。同図に示す本実施の形態の液膜光学装置1によれば、ガラス基板101上に、液膜形成エリア102を取り囲むように液膜形成管103が設けられ、更にはP型半導体104とN型半導体105を円周方向に沿って交互に配置されている。また、各P型半導体104の一端と各N型半導体105の一端の間には、放熱器106がそれぞれ設けられると共に、各P型半導体104の他端と各N型半導体105の他端の間には、冷却器107がそれぞれ設けられている。これらのP型半導体104、N型半導体105、放熱器106及び冷却器107を含んで熱電交換器108を構成している。また、始端となるP型半導体104と末端となるN型半導体105の間には、電圧を印加するための電力供給線109が設けられている。このように、液膜形成管103の周囲には、温度可変手段として、熱電変換器108の冷却器107を集合させ、外側に放熱器106を分散配置している。なお、P型半導体104及びN型半導体105はBi-Te等の熱電変換材料、放熱器106及び冷却器107は、Al、Au、Cu、Ni等の電極材料からなる。   FIG. 1 is a diagram showing a configuration of a liquid film optical apparatus according to the first embodiment of the present invention. 1A is a cross-sectional view taken along line B-B ′ of FIG. 1B, and FIG. 1B is a cross-sectional view taken along line A-A ′ of FIG. According to the liquid film optical device 1 of the present embodiment shown in the figure, a liquid film forming tube 103 is provided on a glass substrate 101 so as to surround a liquid film forming area 102, and further, a P-type semiconductor 104 and N The type semiconductors 105 are alternately arranged along the circumferential direction. Further, a radiator 106 is provided between one end of each P-type semiconductor 104 and one end of each N-type semiconductor 105, and between the other end of each P-type semiconductor 104 and the other end of each N-type semiconductor 105. Each is provided with a cooler 107. The P-type semiconductor 104, the N-type semiconductor 105, the radiator 106, and the cooler 107 are included in the thermoelectric exchanger 108. Further, a power supply line 109 for applying a voltage is provided between the P-type semiconductor 104 serving as the start end and the N-type semiconductor 105 serving as the end. As described above, around the liquid film forming tube 103, the coolers 107 of the thermoelectric converter 108 are gathered as temperature variable means, and the radiators 106 are dispersedly arranged outside. The P-type semiconductor 104 and the N-type semiconductor 105 are made of a thermoelectric conversion material such as Bi-Te, and the radiator 106 and the cooler 107 are made of an electrode material such as Al, Au, Cu, and Ni.

次に、図1に示すような構成を有する本実施の形態の液膜光学装置において、液膜を形成する様子を示す図2に従って以下に説明する。ここで、液膜とは気体との界面を有すると共に、膜厚分布がほぼ均一となっている液体であると定義する。先ず、凝集させる周辺の気体の種類、温度、密度を測定して予め露点及び液膜の液量や成長時間に応じた冷却器107の運転時間を算出し、同図の(a),(b)に示すように、算出した運転時間だけ冷却器107を運転することによって液膜形成管103の管壁を算出した露点以下に冷却する。すると、付近の気体が液膜形成管103の管壁に凝集し始め、そして液膜120になり始める。同図の(c)に示すように、更に液膜120は液膜形成管103内の液膜形成エリア102全体に成長し、液膜光学デバイスが形成される。必要に応じて冷却器107を運転して液膜温度を制御することで液膜を制御する。このように、液膜光学デバイスとして、光学材料の液膜を所定箇所へ所定量、所定形状に正確に形成することができる。また、所定箇所に保持させ、量を調節し、形状を変化させ、保持箇所を移動させ、液膜材料の種類をできるだけ多く、さらに液膜の温度制御をさせること、及びこれらの機能を効率良く制御することによって、より多様な可変光学デバイスに用いることができる。   Next, in the liquid film optical device of the present embodiment having the configuration as shown in FIG. 1, a description will be given below with reference to FIG. Here, the liquid film is defined as a liquid having an interface with a gas and having a substantially uniform film thickness distribution. First, the type, temperature, and density of the surrounding gas to be aggregated are measured, and the operation time of the cooler 107 is calculated in advance according to the dew point, the liquid amount of the liquid film, and the growth time. ), The cooler 107 is operated for the calculated operation time to cool the tube wall of the liquid film forming tube 103 to the calculated dew point or less. Then, the nearby gas begins to aggregate on the tube wall of the liquid film forming tube 103 and then starts to become the liquid film 120. As shown in FIG. 5C, the liquid film 120 further grows over the entire liquid film forming area 102 in the liquid film forming tube 103, and a liquid film optical device is formed. The liquid film is controlled by operating the cooler 107 as needed to control the liquid film temperature. Thus, as a liquid film optical device, a liquid film of an optical material can be accurately formed in a predetermined amount and a predetermined shape at a predetermined location. Also, hold it in place, adjust the amount, change the shape, move the holding part, make as many kinds of liquid film materials as possible, and further control the temperature of the liquid film, and these functions efficiently By controlling, it can be used for a wider variety of variable optical devices.

また、所定の光学的な透過特性や反射特性を持つ液膜材料および液膜支持基材を適用する。更に、熱電変換器としてP型半導体及びN型半導体からなるペルチェ素子を示しているが、ヒートパイプにより温度制御することでもできる。また、冷却手段は最終段階で分離した状態を示しているが、液膜の形状を形成後さらに調節する場合は接続した状態で形状制御に用いる。液膜支持基材は、熱伝導率が大きいと迅速に面内温度分布が均一化するので、温度分布が均一にならないように、熱伝導率が小さいことが必要であり、例えば電気絶縁性が高い材料や気体(空間)を多く含む多孔質構造材料が適している。このようにして、液膜を形成させる箇所のみに気体を凝集させるために、液膜を形成させる箇所を選択的に温度制御する。また、液膜支持基材表面に液膜との親和性や親水性を付与することによって、表面の所定の箇所に液膜を形成する場合には、マイクロスタンピングによるSAMs技術のように表面の所定の箇所に限定させるためのパターニング工程の必要がなく、基材表面全面に、界面活性剤の塗布やプラズマ改質などにより、親水性付与しても表面の所定の箇所に液膜を形成させることができるし、液膜の形成効率を上げることができる。   In addition, a liquid film material and a liquid film supporting substrate having predetermined optical transmission characteristics and reflection characteristics are applied. Furthermore, although the Peltier device which consists of a P-type semiconductor and an N-type semiconductor is shown as a thermoelectric converter, it can also be temperature-controlled by a heat pipe. Moreover, although the cooling means has shown the state isolate | separated in the final stage, when adjusting the shape of a liquid film after forming, it uses for the shape control in the connected state. Since the in-plane temperature distribution quickly becomes uniform when the thermal conductivity is large, the liquid film support substrate needs to have a low thermal conductivity so that the temperature distribution is not uniform. High-quality materials and porous structural materials containing a large amount of gas (space) are suitable. Thus, in order to agglomerate gas only in the location where the liquid film is formed, the temperature of the location where the liquid film is formed is selectively controlled. In addition, when a liquid film is formed at a predetermined position on the surface by imparting affinity or hydrophilicity to the liquid film on the surface of the liquid film support substrate, the surface is predetermined as in the SAMs technique by micro stamping. There is no need for a patterning process for limiting the area to the above, and a liquid film is formed on the entire surface of the base material at a predetermined position on the surface even if hydrophilicity is imparted by applying a surfactant or plasma modification. In addition, the formation efficiency of the liquid film can be increased.

ここで、熱電変換材料、例えばペルチェ効果を利用するものであればBiTeを主成分(Bi、Sb、In、Ga、Se、Te等を置換・添加)とするものが代表的である。N型SiおよびP型Siを使うこともでき、高性能の材料を見出すには、熱伝導率が小さいこと、また導電性が良いことなどの必要性能指数の高い材料が好ましいが、プロセス適合性や安定性能との適正により選択される。   Here, a thermoelectric conversion material, for example, one using BiTe as a main component (substitution / addition of Bi, Sb, In, Ga, Se, Te, etc.) is typical if the Peltier effect is used. N-type Si and P-type Si can also be used, and in order to find a high-performance material, a material having a high required performance index such as low thermal conductivity and good conductivity is preferable. And is selected according to the appropriateness of stability.

図3は本発明の第2の実施の形態に係る液膜光学装置の構成を示す概略断面図である。同図において、図1と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学装置2において、第1の実施の形態の液膜光学装置1と異なる構成として、液膜形成管103と、P型半導体104、N型半導体105、放熱器106及び冷却器107を有する熱電交換器108とをテーパー形状とし、かつ開口部を広くすることで、液膜形成エリア102を円錐形状に形成している。同図に示すように、開口率を上げ、かつ液膜形成管103の管壁同士の一部の間隔が狭くなることで、より早く液膜120を形成することができる。なお、冷却器107が接する液膜形成管103の表面を、光路を含む角柱面、角錐面、円柱面、円錐面、ボビン(バレル)型面、中絞り(逆バレル)型面、または自由曲面にすることでもよい。   FIG. 3 is a schematic cross-sectional view showing the configuration of the liquid film optical device according to the second embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components. In the liquid film optical device 2 of the present embodiment shown in the figure, the liquid film forming tube 103, the P-type semiconductor 104, the N-type semiconductor 105, and the like are different from the liquid film optical device 1 of the first embodiment. The liquid film forming area 102 is formed in a conical shape by making the thermoelectric exchanger 108 having the radiator 106 and the cooler 107 into a tapered shape and widening the opening. As shown in the figure, the liquid film 120 can be formed more quickly by increasing the aperture ratio and narrowing the interval between the tube walls of the liquid film forming tube 103. Note that the surface of the liquid film forming tube 103 in contact with the cooler 107 is a prismatic surface, a pyramidal surface, a cylindrical surface, a conical surface, a bobbin (barrel) type surface, a medium aperture (reverse barrel) type surface, or a free-form surface including an optical path. It may be to.

図4は本発明の第3の実施の形態に係る液膜光学装置の構成を示す図である。同図の(a)は同図の(b)のD−D’線断面図、同図の(b)は同図の(a)のC−C’線断面図である。同図において、図1と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学装置3によれば、液膜形成エリア102の底面に電気絶縁層110を介して冷却器107が設けられ、かつその冷却器107の外周側に放熱膜206が設けられている。よって、それぞれの冷却器107の間隔が狭くなって冷却密度が高くなり、かつそれぞれの放熱器106が外部に拡がるように分散して放熱効率が高くなるため、液膜の形成効率が向上する。   FIG. 4 is a diagram showing a configuration of a liquid film optical device according to the third embodiment of the present invention. 4A is a cross-sectional view taken along the line D-D ′ in FIG. 4B, and FIG. 4B is a cross-sectional view taken along the line C-C ′ in FIG. In the figure, the same reference numerals as those in FIG. 1 denote the same components. According to the liquid film optical device 3 of the present embodiment shown in the figure, the cooler 107 is provided on the bottom surface of the liquid film forming area 102 via the electric insulating layer 110, and heat is radiated to the outer peripheral side of the cooler 107. A membrane 206 is provided. Accordingly, the intervals between the coolers 107 are narrowed to increase the cooling density, and the heat dissipators 106 are dispersed so as to spread to the outside to increase the heat dissipation efficiency, thereby improving the formation efficiency of the liquid film.

図5は本発明の第4の実施の形態に係る液膜光学装置の構成を示す断面図である。同図において、図1と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学装置4は、例えば上述の第1の実施の形態の液膜光学装置を多段(本実施の形態では3段)に設けたものである。同図の(a)において、2段目の液膜光学装置111−2の冷却器によって冷却を開始すると液膜120が形成し始め、同図の(b)に示すように所望のサイズや形状の液膜120が形成される。そして、同図の(c)に示すように、2段目の液膜光学装置111−2の冷却器よりも3段目の液膜光学装置111−3の冷却器の温度を降下させて、形成された液膜120が液膜光学装置111−3の位置まで移動する。このように、多段構造の各液膜光学装置の冷却器を温度制御することにより、液膜の形状制御や位置の移動を行うことができる。   FIG. 5 is a cross-sectional view showing a configuration of a liquid film optical apparatus according to the fourth embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components. The liquid film optical device 4 according to the present embodiment shown in the figure is provided with, for example, the liquid film optical device according to the first embodiment described above in multiple stages (three stages in the present embodiment). In FIG. 6A, when cooling is started by the cooler of the second-stage liquid film optical device 111-2, the liquid film 120 starts to be formed, and as shown in FIG. The liquid film 120 is formed. And as shown in (c) of the figure, the temperature of the cooler of the third-stage liquid film optical device 111-3 is lowered from the cooler of the second-stage liquid film optical device 111-2, The formed liquid film 120 moves to the position of the liquid film optical device 111-3. Thus, by controlling the temperature of the cooler of each liquid film optical device having a multistage structure, it is possible to control the shape of the liquid film and move the position.

図6は本発明の第5の実施の形態に係る液膜光学装置の構成を示す断面図である。同図において、図1と同じ参照符号は同じ構成要素を示す。同図の(a)に示す本実施の形態の液膜光学装置5は、例えば上述の第1の実施の形態の液膜光学装置における電力供給線109を熱電交換器108のP型半導体104とN型半導体105にそれぞれ設けている。そして、同図の(b)は液膜形成エリアのボビン(バレル)型面に沿って多段(ここでは6段)に第6の実施の形態の液膜光学装置112−1〜112−6を設けた例であり、同図の(c)は液膜形成エリアの円錐面に沿って多段(ここでは3段)に第1の実施の形態の液膜光学装置112−1〜112−3を設けた例である。同図の(b)、(c)に示すいずれの例の場合でも、熱電交換器の冷却器を個々に温度制御することによって、形成された液膜120の光軸を傾けることができる。   FIG. 6 is a cross-sectional view showing a configuration of a liquid film optical device according to the fifth embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components. In the liquid film optical device 5 of the present embodiment shown in FIG. 6A, for example, the power supply line 109 in the liquid film optical device of the first embodiment described above is connected to the P-type semiconductor 104 of the thermoelectric exchanger 108. Each of the N-type semiconductors 105 is provided. And (b) of the figure shows the liquid film optical devices 112-1 to 112-6 of the sixth embodiment in multiple stages (here, 6 stages) along the bobbin (barrel) type surface of the liquid film formation area. (C) of the figure is an example of providing the liquid film optical devices 112-1 to 112-3 of the first embodiment in multiple stages (here, three stages) along the conical surface of the liquid film formation area. This is an example. In any of the examples shown in (b) and (c) of the same figure, the optical axis of the formed liquid film 120 can be tilted by individually controlling the temperature of the cooler of the thermoelectric exchanger.

図7は本発明の第6の実施の形態に係る液膜光学装置の構成を示す図である。同図の(a),(c)は同図の(b)のF−F’線断面図、同図の(b)は同図の(a)のE−E’線断面図である。同図において、図4と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学装置6において、液膜形成エリア102が透明基材114によって閉塞されており、更に液膜形成エリア102に連通する液膜部材供給排出路113が設けられている。この液膜部材供給排出路113は、液膜形成エリア102に外部から液膜を形成するための液体や気体を導入したり排出したりする供給排出路である。このような構成を有する第6の実施の形態の液膜光学装置6によれば、液膜部材供給排出路113を介して液膜を形成するため液体又は気体が液膜形成エリア102に供給され、液膜を形成するため液体又は気体が熱電交換器108の冷却器107によって凝集され、所望の液膜120が形成できる。他の液膜を形成するため液体又は気体を交換するときは、液膜部材供給排出路113を介して液膜形成エリア102内から液膜を外部に排出し、他の液体又は気体を供給する。また、形成されている液膜120の形状又はサイズを変えるときは、液膜部材供給排出路113を介して液膜形成エリア102へ気体又は液体を更に供給したり排出したりする。このように、一旦形成した液膜を再利用して任意の液膜を形成することができ、利用効率を向上することができる。また、同図の(a)に示すように、気密状態の液膜形成エリア102内に、液膜部材供給排出路113を介して気体Aを供給して気体Aの液膜120を形成する。そして、この気体Aの液膜120を隔てて気体Bを液膜部材供給排出路113を介して供給する。更に、同図の(c)に示すように、気密状態の液膜形成エリア102内に、液膜部材供給排出路113を介して気体Aを供給して気体Aの液膜120−Aを形成する。その後、液膜部材供給排出路113を介して気体Bを供給して気体Bの液膜120−Bを形成する。そして、気体Cを供給する。つまり、この気体Aの液膜120−Aを隔てて気体Bを、気体Bの液膜120−Bを隔てて気体Cを、液膜部材供給排出路113を介してそれぞれ供給する。よって、液膜の形状によって、かつそれぞれの気体の屈折率が異なることによって、入出射光の経路を屈折させることができる。また、図8に示すように、曲面をなす液膜120の表面に光を照射して反射させ、かつ液膜120の形状や液膜120の液面位置を制御することによって反射光路を変えることができる。なお、液膜120の液面位置を変える方法として、気体の供給圧力を変化させて液膜を隔てた気体の差圧による方法がある。また、液膜は質量が小さいので液滴より表面張力に支持される巨大開口面積の膜が形成できる。しかし、液膜により隔てられたそれぞれの気体の体積が大きくなって、均一な温度分布になりづらいことにより気体に密度ムラが生じ屈折率の分布や気体の対流圧力による液膜の変形を生じる。このように、迅速に均一な温度分布にし、密度分布が均一になるように制御する必要がある場合には、水素やヘリウムを少なくともどちらか一方の側の気体に混合する。水素やヘリウムは分子サイズが小さく液膜を透過し易く、かつ熱伝導率が他の気体よりはるかに大きいので、少なくともどちらかの一方の側の気体に水素やヘリウムを混合しておくことにより、液膜によって隔てられた各気体を迅速に均一な温度分布にすることができる。   FIG. 7 is a diagram showing a configuration of a liquid film optical apparatus according to the sixth embodiment of the present invention. (A), (c) of the same figure is the F-F 'sectional view taken on the line of (b) of the same figure, (b) of the figure is the E-E' sectional view taken on the line (a) of the same figure. In the figure, the same reference numerals as those in FIG. 4 denote the same components. In the liquid film optical device 6 of the present embodiment shown in the same figure, the liquid film formation area 102 is closed by the transparent base material 114, and a liquid film member supply / discharge passage 113 communicating with the liquid film formation area 102 is further provided. It has been. The liquid film member supply / discharge path 113 is a supply / discharge path through which liquid or gas for forming a liquid film is introduced into or discharged from the liquid film forming area 102 from the outside. According to the liquid film optical device 6 of the sixth embodiment having such a configuration, liquid or gas is supplied to the liquid film formation area 102 in order to form a liquid film via the liquid film member supply / discharge path 113. In order to form a liquid film, the liquid or gas is aggregated by the cooler 107 of the thermoelectric exchanger 108, and a desired liquid film 120 can be formed. When the liquid or gas is exchanged to form another liquid film, the liquid film is discharged from the liquid film forming area 102 via the liquid film member supply / discharge passage 113 to supply another liquid or gas. . Further, when the shape or size of the formed liquid film 120 is changed, gas or liquid is further supplied to or discharged from the liquid film forming area 102 via the liquid film member supply / discharge path 113. Thus, the liquid film once formed can be reused to form an arbitrary liquid film, and the utilization efficiency can be improved. Further, as shown in FIG. 5A, the gas A is supplied through the liquid film member supply / discharge passage 113 to form the liquid film 120 of the gas A in the liquid film formation area 102 in an airtight state. Then, the gas B is supplied through the liquid film member supply / discharge passage 113 with the liquid film 120 of the gas A interposed therebetween. Further, as shown in FIG. 5C, the gas A is supplied through the liquid film member supply / discharge passage 113 to form the liquid film 120-A of the gas A in the liquid film formation area 102 in an airtight state. To do. Thereafter, the gas B is supplied through the liquid film member supply / discharge passage 113 to form the liquid film 120-B of the gas B. And gas C is supplied. That is, the gas B is supplied via the liquid film member supply / discharge path 113, and the gas B is supplied via the liquid film 120 -A. Therefore, the path of the incoming and outgoing light can be refracted by the shape of the liquid film and the refractive index of each gas being different. Further, as shown in FIG. 8, the reflected light path is changed by irradiating and reflecting light on the surface of the liquid film 120 having a curved surface, and controlling the shape of the liquid film 120 and the liquid surface position of the liquid film 120. Can do. In addition, as a method of changing the liquid level position of the liquid film 120, there is a method using a differential pressure of the gas across the liquid film by changing the gas supply pressure. Further, since the liquid film has a small mass, a film having a large opening area supported by the surface tension than the droplet can be formed. However, the volume of each gas separated by the liquid film becomes large, and it is difficult to obtain a uniform temperature distribution, so that density unevenness occurs in the gas, and the liquid film is deformed due to the refractive index distribution and gas convection pressure. As described above, when it is necessary to quickly obtain a uniform temperature distribution and control the density distribution to be uniform, hydrogen or helium is mixed into the gas on at least one side. Hydrogen and helium are small in molecular size and easy to permeate the liquid film, and have a much higher thermal conductivity than other gases, so by mixing hydrogen or helium with the gas on at least one side, Each gas separated by the liquid film can be rapidly made into a uniform temperature distribution.

また、気相に接する液膜材料であるため、蒸発しない性質の液膜材料が有用であり、イオン液体が利用できるが、一方気体を凝集できないことになるので、その場合でも液膜形成エリアに液体が供給でき、かつ温度制御できる。イオン液体としては、陽イオンの、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系と、陰イオンの、BF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系陰イオンとの組合せ他様々な構造からなっている常温溶融塩である。 In addition, since it is a liquid film material in contact with the gas phase, a liquid film material that does not evaporate is useful, and ionic liquid can be used, but on the other hand, gas cannot be aggregated, so even in that case, in the liquid film formation area Liquid can be supplied and temperature can be controlled. Examples of the ionic liquid include cationic imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based, anion-based inorganic ion-based BF 4 , PF 6 −, and the like. It is a room temperature molten salt composed of various structures such as combinations with fluorine-based anions such as CF 3 SO 2 , (CF 3 SO 2 ) 2 N and CF 3 CO 2 .

図9は本発明の第7の実施の形態に係る液膜光学装置の構成を示す断面図である。同図において、図6と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学装置7によれば、逆角錐(逆台形)の斜面に配置した冷却器107の内側の液膜形成エリア102に、気体を凝集、液膜120を形成させる。また、液体と冷却器面における全反射もしくは冷却面に設けられた反射膜115での反射によりプリズム像を生成させる。そして、入射光が平面の液膜120に入射するように、平面形状のメニスカスは、表面張力が小さい液体の、平面領域を用いる。よって、液膜プリズム形状制御と液膜温度制御ができる。   FIG. 9 is a cross-sectional view showing the configuration of the liquid film optical apparatus according to the seventh embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same components. According to the liquid film optical device 7 of the present embodiment shown in the figure, the gas is aggregated in the liquid film formation area 102 inside the cooler 107 arranged on the inclined surface of the inverted pyramid (reverse trapezoid), and the liquid film 120 is formed. Let it form. Also, a prism image is generated by total reflection on the liquid and the cooler surface or reflection on the reflective film 115 provided on the cooling surface. The planar meniscus uses a planar region of a liquid having a low surface tension so that incident light enters the planar liquid film 120. Therefore, liquid film prism shape control and liquid film temperature control can be performed.

図10は本発明の第8の実施の形態に係る液膜光学装置の構成を示す断面図である。同図に示す本実施の形態の液膜光学装置8は、液体容器116内の気体をポンプ117によって供給路118を介してノズル119の先端に供給する。そして、ノズル119に設けられた冷却器121によって供給された気体は露点温度以下に冷却され、ノズル119の先端に液膜120が凝集・形成されて支持される。更に、気体が所定量供給されて図中実線で示す所望のサイズの液膜120に変化する。このように、気体の供給量を増減させたり、ノズル先端の冷却温度を変えたりして、気体の膨張収縮、そして凝集量を変化させ、液膜の形状を制御することができる。更には、図11に示すように、液膜形成エリア102内に設けられた静電電極122に電圧を印加して液膜120に静電気を付与して、その静電気を変化させることによって液膜120の形状を制御することができる。詳細には、図11中の破線は傾斜形であり、点線は扁平形である。液膜120を扁平形に制御するためには、静電電極122−1,122−2に同一電圧を印加して液膜120を下方向に引き付ける。また、液膜120を傾斜形に制御するためには、静電電極122−4に電圧を印加して液膜120を静電電極122−4の方向に引き付ける。このように液膜120の形状を制御することによって液膜120を通る光の光路を制御することができる。なお、液膜120は膜として極限の小さな質量であって重力の影響は極限まで小さくなっているため、液膜を形成し高速で形状を制御したり移動させることができる。   FIG. 10 is a cross-sectional view showing the configuration of the liquid film optical apparatus according to the eighth embodiment of the present invention. In the liquid film optical device 8 according to the present embodiment shown in the figure, the gas in the liquid container 116 is supplied to the tip of the nozzle 119 via the supply path 118 by the pump 117. Then, the gas supplied by the cooler 121 provided in the nozzle 119 is cooled below the dew point temperature, and the liquid film 120 is aggregated and formed at the tip of the nozzle 119 and supported. Furthermore, a predetermined amount of gas is supplied and the liquid film 120 changes to a desired size as indicated by a solid line in the figure. In this manner, the shape of the liquid film can be controlled by increasing or decreasing the gas supply amount or changing the cooling temperature at the tip of the nozzle to change the expansion and contraction of the gas and the amount of aggregation. Furthermore, as shown in FIG. 11, a voltage is applied to the electrostatic electrode 122 provided in the liquid film formation area 102 to apply static electricity to the liquid film 120, and the liquid film 120 is changed by changing the static electricity. Can be controlled. Specifically, the broken line in FIG. 11 is an inclined shape, and the dotted line is a flat shape. In order to control the liquid film 120 to be flat, the same voltage is applied to the electrostatic electrodes 122-1 and 122-2 to attract the liquid film 120 downward. In addition, in order to control the liquid film 120 to be inclined, a voltage is applied to the electrostatic electrode 122-4 to attract the liquid film 120 toward the electrostatic electrode 122-4. By controlling the shape of the liquid film 120 in this way, the optical path of light passing through the liquid film 120 can be controlled. Since the liquid film 120 has an extremely small mass as a film and the influence of gravity is small to the limit, the liquid film can be formed and the shape can be controlled and moved at high speed.

図12は別の発明の第1の実施の形態に係る液膜光学デバイスの構成を示す図である。同図の(a)は本実施の形態の液膜光学デバイスの平面図、同図の(b)は液膜形成後の本実施の形態の液膜光学デバイスの平面図、同図の(c)は同図の(b)のG−G’線断面図である。同図に示す本実施の形態の液膜光学デバイス100は、比熱の大きい基板201の空洞部202上に液膜支持層203を設け、液膜支持層203上に、P型半導体膜204、N型半導体膜205、放熱膜206及び冷却膜207を含んで集積化して構成される熱電交換器208を円環状に配置し、薄膜構造を成している。また、始端となるP型半導体膜204と末端となるN型半導体膜205の間に電圧を印加するための電力供給線209を設けている。このように、円環状の内円に沿って熱電変換器208の冷却膜207が集合配置しているので冷却密度が高くなっている。更に、熱電交換器208の冷却膜207と放熱膜106をつなぐPN部材の間隔を空洞部202によって削除し、冷却膜207周辺の熱容量を低減でき、かつ放熱膜206からの熱伝導を低減できる。一方、放熱膜206は円環状の外円に沿って分散配置し、更には比熱の大きい基板201に接しているので、放熱膜206の放熱効果がより一層高くなっている。このような構成を有する本実施の形態の液膜光学デバイス100によれば、冷却膜207で囲まれた液膜形成管壁210を冷却膜207によって冷却し、付近の気体が液膜形成管壁に凝集し所定の液膜が形成できる。また、迅速に温度制御ができるため、液膜120を早く所定の形状に形成することができ、かつ精細な形状制御も可能となる。また、空洞部202のパターンから液膜支持層203に到る箇所まで基板201をエッチングして空洞部202を形成する。   FIG. 12 is a diagram showing a configuration of a liquid film optical device according to the first embodiment of another invention. (A) of the same figure is a top view of the liquid film optical device of this Embodiment, (b) of the same figure is a top view of the liquid film optical device of this Embodiment after liquid film formation, (c) of the figure ) Is a cross-sectional view taken along the line GG ′ of FIG. In the liquid film optical device 100 of the present embodiment shown in the same figure, a liquid film support layer 203 is provided on a cavity 202 of a substrate 201 having a large specific heat, and a P-type semiconductor film 204, N on the liquid film support layer 203 is provided. A thermoelectric exchanger 208 configured to be integrated including a type semiconductor film 205, a heat dissipation film 206, and a cooling film 207 is arranged in an annular shape to form a thin film structure. Further, a power supply line 209 for applying a voltage is provided between the P-type semiconductor film 204 serving as the start end and the N-type semiconductor film 205 serving as the end. As described above, the cooling films 207 of the thermoelectric converter 208 are collectively arranged along the annular inner circle, so that the cooling density is high. Furthermore, the space between the PN members connecting the cooling film 207 and the heat dissipation film 106 of the thermoelectric exchanger 208 can be eliminated by the cavity 202, the heat capacity around the cooling film 207 can be reduced, and the heat conduction from the heat dissipation film 206 can be reduced. On the other hand, since the heat radiation film 206 is distributed along the annular outer circle and is in contact with the substrate 201 having a large specific heat, the heat radiation effect of the heat radiation film 206 is further enhanced. According to the liquid film optical device 100 of the present embodiment having such a configuration, the liquid film forming tube wall 210 surrounded by the cooling film 207 is cooled by the cooling film 207, and the nearby gas is liquid film forming tube wall. And a predetermined liquid film can be formed. In addition, since the temperature can be controlled quickly, the liquid film 120 can be quickly formed into a predetermined shape, and fine shape control is also possible. In addition, the substrate 201 is etched from the pattern of the cavity 202 to the position reaching the liquid film support layer 203 to form the cavity 202.

図13は別の発明の第2の実施の形態に係る液膜光学デバイスの構成を示す図である。同図の(a)は本実施の形態の液膜光学デバイスの平面図、同図の(b)は同図の(b)のH−H’線断面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学デバイス200は、図12に示す第1の実施の形態の液膜光学デバイス100の構成に、更に液特性を検出するため、あるいは液を制御するための検出用電極211及び検出用電極211からの検出信号を取り出す検出信号線212を追加配置し集積したものである。液膜120を冷却膜207により形状制御するだけでなく、検出用電極211によって液膜120の熱容量、温度、熱伝導率や粘性などを検出すると共に、例えばElectro Wetting材料からなる液膜を用い、この液膜120に電荷を与えて液膜を制御することができる。なお、検出用電極211に赤外線を検知する機能を付与し、赤外線集光用液膜レンズを集積した赤外線センサや、液晶材料からなる液膜120を用い、検出用電極211によって制御される液晶光学素子にもできる。また、電極パターンにLEDやフォトダイオードを形成すれば発光素子や受光素子に応用できる。よって、本実施の形態によれば、電極層または電極を併設することにより、温度制御と同時に、より高精度の液膜制御ができる。なお、図14に示すように、周囲雰囲気の気体の種類、温度、密度及び蒸気圧をモニタする検出器213及び検出器213からの検出信号を取り出す検出信号線214を集積することにより、液膜付近の気体の種類、温度、密度及び蒸気圧を測定し、気体を凝集させる冷却器の温度(露点以下)を設定でき、液膜付近の気体の状態変化に応じた液膜120を増量させるための冷却温度の維持や、液膜120からの蒸発程度を観測し液膜の保持に必要な冷却温度が設定できる。   FIG. 13 is a diagram showing a configuration of a liquid film optical device according to the second embodiment of another invention. (A) of the same figure is a top view of the liquid film optical device of this Embodiment, (b) of the same figure is the H-H 'sectional view taken on the line (b) of the same figure. In the figure, the same reference numerals as those in FIG. 12 denote the same components. The liquid film optical device 200 according to the present embodiment shown in the figure is further configured to detect liquid characteristics or control the liquid in the configuration of the liquid film optical device 100 according to the first embodiment shown in FIG. The detection electrode 211 and the detection signal line 212 for extracting the detection signal from the detection electrode 211 are additionally arranged and integrated. In addition to controlling the shape of the liquid film 120 by the cooling film 207, the detection electrode 211 detects the heat capacity, temperature, thermal conductivity, viscosity, and the like of the liquid film 120, and uses, for example, a liquid film made of an electro wetting material. The liquid film can be controlled by applying an electric charge to the liquid film 120. In addition, the function to detect infrared rays is given to the electrode 211 for a detection, and the liquid crystal optics controlled by the electrode 211 for a detection using the infrared sensor which integrated the liquid-film lens for infrared condensing, and the liquid film 120 which consists of liquid crystal materials. Can also be an element. Further, if an LED or a photodiode is formed in the electrode pattern, it can be applied to a light emitting element or a light receiving element. Therefore, according to the present embodiment, by providing an electrode layer or an electrode, more accurate liquid film control can be performed simultaneously with temperature control. As shown in FIG. 14, by integrating the detection signal line 214 for extracting the detection signal from the detector 213 and the detector 213 for monitoring the type, temperature, density and vapor pressure of the gas in the ambient atmosphere, the liquid film To measure the type, temperature, density, and vapor pressure of the nearby gas, set the temperature of the cooler that condenses the gas (below the dew point), and increase the amount of the liquid film 120 according to the state change of the gas near the liquid film The cooling temperature necessary for maintaining the liquid film can be set by observing the degree of evaporation of the liquid film 120 and the degree of evaporation from the liquid film 120.

図15は別の発明の第3の実施の形態に係る液膜光学デバイスの構成を示す平面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学デバイス300は、冷却膜207を平行に対向させて配置し、対向間隙の液膜形成エリアに液膜120を形成するものである。このようなパターン配置により、液膜の形状を効率良く、迅速に、正確に形成できる。   FIG. 15 is a plan view showing a configuration of a liquid film optical device according to a third embodiment of another invention. In the figure, the same reference numerals as those in FIG. 12 denote the same components. In the liquid film optical device 300 of the present embodiment shown in the figure, the cooling film 207 is disposed so as to face each other in parallel, and the liquid film 120 is formed in the liquid film formation area in the facing gap. With such a pattern arrangement, the shape of the liquid film can be formed efficiently, quickly and accurately.

図16は別の発明の第4の実施の形態に係る液膜光学デバイスの構成を示す図である。同図の(a)は本実施の形態の液膜光学デバイスの平面図、同図の(b)は同図の(b)のJ−J’線断面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学デバイス400は、冷却膜207で囲まれた液膜形成管壁210に連通する液膜部材供給排出路215が設けられている。この液膜部材供給排出路215は、液膜形成管壁210に外部から液膜を形成するための液体や気体を導入したり排出したりする供給排出路である。このような構成を有する第4の実施の形態の液膜光学デバイスによれば、液膜部材供給排出路215を介して液膜120を形成するため液体又は気体が液膜形成管壁210に供給され、液膜120を形成するため液体又は気体が熱電交換器208の冷却膜207によって凝集され、所望の液膜120が形成できる。   FIG. 16 is a diagram showing a configuration of a liquid film optical device according to a fourth embodiment of another invention. (A) of the same figure is a top view of the liquid film optical device of this Embodiment, (b) of the figure is a J-J 'sectional view taken on the line (b) of the same figure. In the figure, the same reference numerals as those in FIG. 12 denote the same components. The liquid film optical device 400 of the present embodiment shown in the figure is provided with a liquid film member supply / discharge path 215 communicating with the liquid film forming tube wall 210 surrounded by the cooling film 207. The liquid film member supply / discharge path 215 is a supply / discharge path for introducing or discharging liquid or gas for forming a liquid film from the outside to the liquid film forming tube wall 210. According to the liquid film optical device of the fourth embodiment having such a configuration, liquid or gas is supplied to the liquid film forming tube wall 210 in order to form the liquid film 120 via the liquid film member supply / discharge path 215. In order to form the liquid film 120, the liquid or gas is aggregated by the cooling film 207 of the thermoelectric exchanger 208, and the desired liquid film 120 can be formed.

また、気相に接する液膜材料であるため、蒸発しない性質の液膜材料が有用であり、イオン液体が利用できるが、一方気体を凝集できないことになるので、その場合でも液膜形成エリアに液体が供給でき、かつ温度制御できる。イオン液体としては、陽イオンの、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系と、陰イオンの、BF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系陰イオンとの組合せ他様々な構造からなっている常温溶融塩である。 In addition, since it is a liquid film material in contact with the gas phase, a liquid film material that does not evaporate is useful, and ionic liquid can be used, but on the other hand, gas cannot be aggregated, so even in that case, in the liquid film formation area Liquid can be supplied and temperature can be controlled. Examples of the ionic liquid include cationic imidazolium-based, pyridium-based, alicyclic amine-based, aliphatic amine-based, aliphatic phosphonium-based, anion-based inorganic ion-based BF 4 , PF 6 −, and the like. It is a room temperature molten salt composed of various structures such as combinations with fluorine-based anions such as CF 3 SO 2 , (CF 3 SO 2 ) 2 N and CF 3 CO 2 .

図17は別の発明の第5の実施の形態に係る液膜光学デバイスの構成を示す断面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学デバイス500は、基板201と液膜支持層203の間に、液膜支持層203を上下させるための熱膨張伸縮部材又は圧電振動部材を用いた伸縮層216を設けている。この伸縮層216を均一に上下することにより、液膜光学デバイス500によって形成された液膜120のレンズの焦点位置を変えることができる。また、この伸縮層216の伸縮幅を不均等に変化して傾けることにより、液膜光学デバイス500によって形成された液膜120のレンズの光軸を傾けることができる。   FIG. 17 is a cross-sectional view showing a configuration of a liquid film optical device according to a fifth embodiment of another invention. In the figure, the same reference numerals as those in FIG. 12 denote the same components. The liquid film optical device 500 of the present embodiment shown in the same figure is extended and contracted using a thermal expansion / contraction member or a piezoelectric vibration member for moving the liquid film support layer 203 up and down between the substrate 201 and the liquid film support layer 203. A layer 216 is provided. The focal position of the lens of the liquid film 120 formed by the liquid film optical device 500 can be changed by moving the stretchable layer 216 up and down uniformly. In addition, the optical axis of the lens of the liquid film 120 formed by the liquid film optical device 500 can be tilted by tilting the stretchable width of the stretchable layer 216 in an uneven manner.

図18は別の発明の第6の実施の形態に係る液膜光学デバイスの構成を示す断面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学デバイス600は、基板201及び液膜支持層203を挟むように、静電電極膜217を設けている。この各静電電極膜217の間に印加する電圧の電圧値を可変することにより、静電電極膜217の間に働くクーロン力により液膜支持層203が湾曲することによって、形成された液膜120の曲率が湾曲して、液膜120のレンズの焦点位置を変えることができる。なお、液膜支持層203を湾曲させる他の機構として、図19に示すような液膜光学デバイス700のように、透明基材219で気密とした空洞部202と連通する通気流路220を通し、当該通気流路220を形成する基材に設けられた圧電膜ポンプ221によって通気流路220の気圧を上下させることによって、空洞部202内の圧力を変化させることで、形成された液膜120の曲率を湾曲させて液膜120のレンズの焦点位置を変えることができる。   FIG. 18 is a cross-sectional view showing a configuration of a liquid film optical device according to a sixth embodiment of another invention. In the figure, the same reference numerals as those in FIG. 12 denote the same components. In the liquid film optical device 600 of the present embodiment shown in the same figure, an electrostatic electrode film 217 is provided so as to sandwich the substrate 201 and the liquid film support layer 203. By changing the voltage value of the voltage applied between the electrostatic electrode films 217, the liquid film support layer 203 is curved by the Coulomb force acting between the electrostatic electrode films 217, thereby forming the liquid film The curvature of 120 is curved, and the focal position of the lens of the liquid film 120 can be changed. As another mechanism for bending the liquid film support layer 203, a liquid passage optical device 700 such as that shown in FIG. The liquid film 120 formed by changing the pressure in the cavity 202 by raising and lowering the pressure of the ventilation channel 220 by the piezoelectric film pump 221 provided on the base material forming the ventilation channel 220. The focal position of the lens of the liquid film 120 can be changed by curving the curvature.

図20は別の発明の第7の実施の形態に係る液膜光学デバイスの構成を示す図である。同図の(a)は本実施の形態の液膜光学デバイスの適用例の平面図、同図の(b)は同図の(b)のK−K’線断面図である。同図において、図14と同じ参照符号は同じ構成要素を示す。同図に示す本実施の形態の液膜光学デバイス800は、第2の実施の形態の液膜光学デバイス200を同一基板に複数個(ここでは3個)集積しアレー状に配列している。よって、本実施の形態の液膜光学デバイスを、複数個を配置すれば、マイクロレンズアレー及び3次元映像装置を実現できる。ただ、複数個を異なる形状制御する上では個々の液体レンズに対してそれぞれ異なる温度制御も必要になる。そこで、複数個を配置するにあたり、個々の液膜を温度制御する機構を配置し、集積した液膜光学デバイスとしている。なお、複数個集積するに当たり、MEMS構造が適している。また、液膜形成、保持や温度制御させるための条件設定するにあたり、周囲気体などの状態検出機構も集積することができる。   FIG. 20 is a diagram showing a configuration of a liquid film optical device according to a seventh embodiment of another invention. (A) of the same figure is a top view of the example of application of the liquid film optical device of this Embodiment, (b) of the same figure is a K-K 'sectional view taken on the line (b) of the same figure. In the figure, the same reference numerals as those in FIG. 14 denote the same components. In the liquid film optical device 800 of the present embodiment shown in the figure, a plurality (three in this case) of the liquid film optical devices 200 of the second embodiment are integrated and arranged in an array. Therefore, if a plurality of the liquid film optical devices according to the present embodiment are arranged, a microlens array and a three-dimensional image device can be realized. However, in order to control a plurality of different shapes, it is also necessary to control different temperatures for each liquid lens. Therefore, when arranging a plurality, a mechanism for controlling the temperature of each liquid film is arranged to form an integrated liquid film optical device. Note that a MEMS structure is suitable for stacking a plurality. In addition, when setting conditions for liquid film formation, holding, and temperature control, a state detection mechanism such as ambient gas can be integrated.

図21は別の発明の第8の実施の形態に係る液膜光学デバイスの構成を示す断面図である。同図において、図16と同じ参照符号は同じ構成要素を示す。同図に示すように、同図に示す本実施の形態の液膜光学デバイス900では、異なる種類(本実施の形態では2種類)の第1の液膜120−1,第2の液膜120−2を積層させ、複合レンズのような光学系を形成させている。詳細には、個々の種類の気体の性質に対応させ、気体を凝集させる工程を冷却膜207の温度制御によって行う。つまり、異なる種類の液膜を凝集温度の高い材料から順に、冷却膜207の温度を降下させて積層凝集させる。このように、本実施の形態の液膜光学デバイスは多成分複層液膜を示すもので、第1の液膜の気体を凝集し第1の液膜を形成した後、第2の液膜の気体を凝集し第1の液膜の上に第2の液膜を形成する。同図のようなMEMSによる構造以外の構造でも可能である。よって、多種類の液膜を積層させることができる液膜光学デバイスにより、光学デバイスとして応用範囲が広くなる。   FIG. 21 is a cross-sectional view showing a configuration of a liquid film optical device according to an eighth embodiment of another invention. In the figure, the same reference numerals as those in FIG. 16 denote the same components. As shown in the figure, in the liquid film optical device 900 of the present embodiment shown in the figure, different types (two types in the present embodiment) of the first liquid film 120-1 and the second liquid film 120 are used. -2 are laminated to form an optical system such as a compound lens. Specifically, the process of aggregating the gas is performed by controlling the temperature of the cooling film 207 in accordance with the properties of each type of gas. That is, different types of liquid films are laminated and aggregated by decreasing the temperature of the cooling film 207 in order from the material with the highest aggregation temperature. As described above, the liquid film optical device of the present embodiment shows a multi-component multilayer liquid film, and after the gas of the first liquid film is aggregated to form the first liquid film, the second liquid film is formed. Are condensed to form a second liquid film on the first liquid film. A structure other than the structure by MEMS as shown in FIG. Therefore, a liquid film optical device capable of laminating many types of liquid films broadens the application range as an optical device.

図22は別の発明の第9の実施の形態に係る液膜光学デバイスの構成を示す断面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示すように、同図に示す本実施の形態の液膜光学デバイス1000は、2枚の合わせレンズであって、1枚ごとに異なる基板に集積し、基板を接合したものである。同図の(a)に示す例はスタック、同図の(b)は裏面どうしを接合したものであり、同図の(c)は対面を接合したもので、空洞内の気体成分を外部と異なるように設定することができる。特に、同図の(c)に示す対面接合タイプのものは、基板の厚みに関係なく、2枚のレンズを短い間隔から長距離まで製作できる自由度がある。このように、複数個を基板に集積することによって、多種多様な液膜光学系が高精度に実現できる。   FIG. 22 is a cross-sectional view showing the configuration of the liquid film optical device according to the ninth embodiment of another invention. In the figure, the same reference numerals as those in FIG. 12 denote the same components. As shown in the figure, the liquid film optical device 1000 of the present embodiment shown in the figure is composed of two laminated lenses, each of which is integrated on a different substrate and bonded to each other. The example shown in (a) of the figure is a stack, (b) of the figure is a case where the back surfaces are joined together, and (c) of the figure is a case where the facing surfaces are joined, and the gas component in the cavity is defined as the outside. Can be set differently. In particular, the face-to-face junction type shown in FIG. 5C has a degree of freedom to manufacture two lenses from a short distance to a long distance regardless of the thickness of the substrate. In this way, by accumulating a plurality on the substrate, a wide variety of liquid film optical systems can be realized with high accuracy.

図23は別の発明の第10の実施の形態に係る液膜光学デバイスの構成を示す図である。同図の(a)は斜視図、同図の(b)は平面図、同図の(c)は同図の(b)のL−L’線断面図である。同図に示す本実施の形態の液膜光学デバイス1100は、支持基材や支持層の表面を起立させる姿勢で冷却膜211を形成している。このように、上述したような支持基材や支持層に液膜形成箇所を組み合わせるのではなく、基板を製造する過程の中で表面に起立する姿勢を形成することにより、光学系に必要な高精度の形状、寸法を得ることができる。また、本実施の形態では、レーザダイオード222などの放射光源を搭載しており、集光系や拡散系を含む作像装置や光走査装置を構成することができる。なお、イメージセンサを搭載すれば結像系を含む撮像装置となる。   FIG. 23 is a diagram showing a configuration of a liquid film optical device according to the tenth embodiment of another invention. (A) of the figure is a perspective view, (b) of the figure is a plan view, and (c) of the figure is a sectional view taken along line L-L 'of (b) of the figure. In the liquid film optical device 1100 of the present embodiment shown in the figure, the cooling film 211 is formed in a posture in which the surfaces of the support base and the support layer are raised. As described above, the liquid film forming portion is not combined with the support base material or the support layer as described above, but by forming a posture standing on the surface in the process of manufacturing the substrate, a high height necessary for the optical system is formed. Accurate shape and size can be obtained. In the present embodiment, a radiation light source such as a laser diode 222 is mounted, and an image forming device or an optical scanning device including a condensing system or a diffusion system can be configured. If an image sensor is mounted, an imaging device including an imaging system is obtained.

図24は別の発明の液膜撮像デバイスの構成を示す断面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示す本発明の液膜撮像デバイス1200は、第1の実施の形態の液膜光学デバイス100と、撮像デバイス230とを一体化して構成する。詳細には、同図に示すように、イメージセンサ223の受光経路に液膜光学デバイス100の液膜120が形成できるように、基板どうしのパターンを配置し、基板を接合する。なお、図示していないが制御回路も同一基板上に集積できる。このように、高精度に一体化することにより、イメージセンサからの熱影響のばらつきが小さくできるので、液膜の温度制御がばらつき少なく正確にできる。また、一体化すると全体のシステムが簡略化されるだけでなく、制御回路も集積できるので、なお簡便であり信頼性が向上する。   FIG. 24 is a cross-sectional view showing a configuration of a liquid film imaging device of another invention. In the figure, the same reference numerals as those in FIG. 12 denote the same components. The liquid film imaging device 1200 of the present invention shown in the figure is configured by integrating the liquid film optical device 100 of the first embodiment and the imaging device 230. Specifically, as shown in the figure, the patterns of the substrates are arranged and the substrates are bonded so that the liquid film 120 of the liquid film optical device 100 can be formed in the light receiving path of the image sensor 223. Although not shown, the control circuit can also be integrated on the same substrate. As described above, by integrating with high accuracy, the variation in the thermal influence from the image sensor can be reduced, so that the temperature control of the liquid film can be accurately performed with little variation. Further, when integrated, not only the whole system is simplified, but also the control circuit can be integrated, so that it is simple and the reliability is improved.

図25は別の発明の液膜光源デバイスの構成を示す断面図である。同図において、図12と同じ参照符号は同じ構成要素を示す。同図に示す本発明の液膜光源デバイス1300は、第1の実施の形態の液膜光学デバイス100と、放射光源デバイス240とを一体化して構成する。詳細には、同図に示すように、発光ダイオード224の発光経路に液膜光学デバイス100の液膜120が形成できるように、基板どうしのパターンを配置し、基板を接合する。なお、図示していないが制御回路も同一基板上に集積できる。このように、高精度に一体化することにより、放射光源からの熱影響のばらつきが小さくできるので、液膜の温度制御がばらつき少なく正確にできる。また、一体化すると全体のシステムが簡略化されるだけでなく、制御回路も集積できるので、なお簡便であり信頼性が向上する。   FIG. 25 is a cross-sectional view showing a configuration of a liquid film light source device of another invention. In the figure, the same reference numerals as those in FIG. 12 denote the same components. The liquid film light source device 1300 of the present invention shown in the figure is configured by integrating the liquid film optical device 100 of the first embodiment and the radiation light source device 240. Specifically, as shown in the figure, the patterns of the substrates are arranged and the substrates are bonded so that the liquid film 120 of the liquid film optical device 100 can be formed in the light emission path of the light emitting diode 224. Although not shown, the control circuit can also be integrated on the same substrate. As described above, by integrating with high accuracy, the variation in the thermal influence from the radiation source can be reduced, so that the temperature control of the liquid film can be accurately performed with little variation. Further, when integrated, not only the whole system is simplified, but also the control circuit can be integrated, so that it is simple and the reliability is improved.

なお、本発明は上記実施の形態に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   In addition, this invention is not limited to the said embodiment, It cannot be overemphasized that various deformation | transformation and substitution are possible if it is description in a claim.

本発明の第1の実施の形態に係る液膜光学装置の構成を示す図である。It is a figure which shows the structure of the liquid film optical apparatus which concerns on the 1st Embodiment of this invention. 第1の実施の形態に係る液膜光学装置における液膜を形成する様子を示す断面図である。It is sectional drawing which shows a mode that the liquid film in the liquid film optical apparatus which concerns on 1st Embodiment is formed. 本発明の第2の実施の形態に係る液膜光学装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the liquid film optical apparatus based on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る液膜光学装置の構成を示す図である。It is a figure which shows the structure of the liquid film optical apparatus based on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る液膜光学装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical apparatus based on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る液膜光学装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施の形態に係る液膜光学装置の構成を示す図である。It is a figure which shows the structure of the liquid film optical apparatus based on the 6th Embodiment of this invention. 第6の実施の形態に係る液膜光学装置における液膜の液面位置を変える様子を示す断面図である。It is sectional drawing which shows a mode that the liquid level position of the liquid film in the liquid film optical apparatus which concerns on 6th Embodiment is changed. 本発明の第7の実施の形態に係る液膜光学装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical apparatus based on the 7th Embodiment of this invention. 本発明の第8の実施の形態に係る液膜光学装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical apparatus which concerns on the 8th Embodiment of this invention. 第8の実施の形態に係る液膜光学装置における液膜形状の変化例を示す断面図である。It is sectional drawing which shows the example of a change of the liquid film shape in the liquid film optical apparatus based on 8th Embodiment. 別の発明の第1の実施の形態に係る液膜光学デバイスの構成を示す図である。It is a figure which shows the structure of the liquid film optical device which concerns on 1st Embodiment of another invention. 別の発明の第2の実施の形態に係る液膜光学デバイスの構成を示す図である。It is a figure which shows the structure of the liquid film optical device which concerns on 2nd Embodiment of another invention. 第2の実施の形態に係る液膜光学デバイスの別の構成を示す図である。It is a figure which shows another structure of the liquid film optical device which concerns on 2nd Embodiment. 別の発明の第3の実施の形態に係る液膜光学デバイスの構成を示す平面図である。It is a top view which shows the structure of the liquid film optical device which concerns on 3rd Embodiment of another invention. 別の発明の第4の実施の形態に係る液膜光学デバイスの構成を示す図である。It is a figure which shows the structure of the liquid film optical device which concerns on 4th Embodiment of another invention. 別の発明の第5の実施の形態に係る液膜光学デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical device which concerns on 5th Embodiment of another invention. 別の発明の第6の実施の形態に係る液膜光学デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical device which concerns on 6th Embodiment of another invention. 第6の実施の形態に係る液膜光学デバイスの別の構成を示す断面図である。It is sectional drawing which shows another structure of the liquid film optical device which concerns on 6th Embodiment. 別の発明の第7の実施の形態に係る液膜光学デバイスの構成を示す図である。It is a figure which shows the structure of the liquid film optical device which concerns on 7th Embodiment of another invention. 別の発明の第8の実施の形態に係る液膜光学デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical device which concerns on 8th Embodiment of another invention. 別の発明の第9の実施の形態に係る液膜光学デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film optical device which concerns on 9th Embodiment of another invention. 別の発明の第10の実施の形態に係る液膜光学デバイスの構成を示す図である。It is a figure which shows the structure of the liquid film optical device which concerns on 10th Embodiment of another invention. 別の発明の液膜撮像デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film imaging device of another invention. 別の発明の液膜光源デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the liquid film light source device of another invention. 従来の液滴光学装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional droplet optical apparatus. 従来の液滴光学装置の別の構成を示す断面図である。It is sectional drawing which shows another structure of the conventional droplet optical apparatus.

符号の説明Explanation of symbols

1〜8;液膜光学装置、
100,200,300,400,500,600,700,800,900,1000,1100;液膜光学デバイス、
101;ガラス基板、102,202;液膜形成エリア、
103;液膜形成管、104;P型半導体、105;N型半導体、
106;放熱器、107;冷却器、108,208;熱電交換器、
109,209;電力供給線、120;液膜、201;基板、
202;空洞部、203;液膜支持層、204;P型半導体膜、
205;N型半導体膜、206;放熱膜、207;冷却膜、
210;液膜形成管壁、211;検出用電極、
212,214;検出信号線、213;検出器、
215;液膜部材供給排出路、216;伸縮層、217;静電電極膜、
219;透明基材、220;通気流路、221;圧電膜ポンプ、
222;レーザダイオード、223;イメージセンサ、
224;発光ダイオード、1200;液膜撮像デバイス、
1300;液膜光源デバイス。
1-8; liquid film optical device,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100; liquid film optical device,
101; glass substrate, 102, 202; liquid film formation area,
103; liquid film forming tube; 104; P-type semiconductor; 105; N-type semiconductor;
106; radiator, 107; cooler, 108, 208; thermoelectric exchanger,
109, 209; power supply line, 120; liquid film, 201; substrate,
202; cavity, 203; liquid film support layer, 204; P-type semiconductor film,
205; N-type semiconductor film; 206; Heat dissipation film; 207; Cooling film;
210; liquid film forming tube wall; 211; detection electrode;
212, 214; detection signal line, 213; detector,
215; liquid film member supply / discharge path, 216; elastic layer, 217; electrostatic electrode film,
219; transparent substrate; 220; vent flow path; 221; piezoelectric membrane pump;
222; laser diode, 223; image sensor,
224; light emitting diode, 1200; liquid film imaging device,
1300: Liquid film light source device.

Claims (11)

雰囲気中又は密閉空間中の光学材料を凝集させて、気体との界面を有し、かつ膜厚分布が略均一になっている光学部材としての液膜が形成される空洞部を有する液膜形成エリアの温度を変化させる温度変化手段と、
該温度変化手段の温度を制御する温度制御手段と、
光学材料を前記液膜形成エリアの空洞部に供給し、又は前記液膜形成エリアの空洞部から光学材料を排出する液膜材料供給排出路と
を備え、
該温度制御手段によって前記温度変化手段の温度を制御して、前記液膜形成エリアの空洞部に前記光学材料を凝集させて液膜を形成するとともに、当該液膜の形状を変化させて光学部材としての液膜の光学特性を変えることを特徴とする液膜光学装置。
The optical material during or enclosed space atmosphere by agglutination, has an interface with a gas and a liquid having an air sinus portion liquid film Ru is formed as an optical member having the film thickness distribution becomes substantially uniform Temperature changing means for changing the temperature of the film forming area;
Temperature control means for controlling the temperature of the temperature change means;
An optical material is supplied to the cavity of the liquid film formation area, or a liquid film material supply / discharge path for discharging the optical material from the cavity of the liquid film formation area, and
The temperature of the temperature changing means is controlled by the temperature control means to form the liquid film by aggregating the optical material in the cavity of the liquid film forming area, and the shape of the liquid film is changed to change the optical member. A liquid film optical device characterized in that the optical characteristics of the liquid film are changed.
雰囲気中又は密閉空間中の光学材料を凝集させて、気体との界面を有し、かつ膜厚分布が略均一になっている光学部材としての液膜が形成される空洞部を有する液膜形成エリアの温度を変化させる温度変化手段と、該温度変化手段の温度を制御する温度制御手段とを多段に備え、
光学材料を前記液膜形成エリアの空洞部に供給し、又は前記液膜形成エリアの空洞部から光学材料を排出する液膜材料供給排出路を有し、
各段の前記温度制御手段によって各段の前記温度変化手段の温度をそれぞれ制御して、前記液膜形成エリアの空洞部に光学材料を凝集させて液膜を形成するともに、当該液膜の位置を変化させて光学部材としての液膜の光学特性を変えることを特徴とする液膜光学装置。
The optical material during or enclosed space atmosphere by agglutination, has an interface with a gas and a liquid having an air sinus portion liquid film Ru is formed as an optical member having the film thickness distribution becomes substantially uniform A temperature changing means for changing the temperature of the film forming area and a temperature control means for controlling the temperature of the temperature changing means are provided in multiple stages,
Supplying the optical material to the cavity of the liquid film formation area, or having a liquid film material supply discharge path for discharging the optical material from the cavity of the liquid film formation area,
The temperature control means at each stage controls the temperature of the temperature changing means at each stage to form a liquid film by agglomerating optical materials in the cavity of the liquid film formation area, and the position of the liquid film A liquid film optical device characterized by changing the optical characteristics of the liquid film as an optical member by changing the above.
前記光学材料がイオン液体材料であることを特徴とする請求項1又は2に記載の液膜光学装置。   The liquid film optical device according to claim 1, wherein the optical material is an ionic liquid material. 前記温度制御手段によって前記温度変化手段の温度を制御して前記液膜形成エリアの空洞部に形成された液膜を保持することを特徴とする請求項1又は2に記載の液膜光学装置。   3. The liquid film optical apparatus according to claim 1, wherein the temperature control means controls the temperature of the temperature change means to hold the liquid film formed in the cavity of the liquid film formation area. 前記温度変化手段は熱電変換器又はヒートパイプであることを特徴とする請求項1〜4のいずれか1項に記載の液膜光学装置。   The liquid film optical device according to claim 1, wherein the temperature changing unit is a thermoelectric converter or a heat pipe. 前記温度変化手段を前記液膜形成エリアに集合配置することを特徴とする請求項1〜5のいずれか1項に記載の液膜光学装置。   The liquid film optical apparatus according to claim 1, wherein the temperature changing means are collectively arranged in the liquid film forming area. 液膜を形成する箇所に前記温度変化手段を個別に配置することを特徴とする請求項1〜6のいずれか1項に記載の液膜光学装置。   The liquid film optical device according to claim 1, wherein the temperature change means is individually arranged at a position where the liquid film is formed. 前記温度変化手段を平坦状に配置することを特徴とする請求項1〜7のいずれか1項に記載の液膜光学装置。   The liquid film optical device according to claim 1, wherein the temperature changing unit is arranged in a flat shape. 前記温度変化手段を、角柱面、角錐面、円柱面、円錐面、ボビン型面、中絞り型面又は自由曲面の面上に集合配置することを特徴とする請求項1〜8のいずれか1項に記載の液膜光学装置。   The temperature changing means is arranged in a collective manner on a prismatic surface, a pyramid surface, a cylindrical surface, a conical surface, a bobbin-type surface, a medium-drawing surface, or a free-form surface. The liquid film optical device according to Item. 雰囲気中又は密閉空間中の気体の温度及び密度を測定する測定器を設け、該測定器によって測定した雰囲気中又は密閉空間中の気体の温度及び密度に基づいて、前記温度制御手段は前記温度変化手段の温度を制御することを特徴とする請求項1、2、4〜9のいずれか1項に記載の液膜光学装置。   A measuring device for measuring the temperature and density of the gas in the atmosphere or the enclosed space is provided, and the temperature control means is configured to change the temperature based on the temperature and density of the gas in the atmosphere or the enclosed space measured by the measuring device. 10. The liquid film optical device according to claim 1, wherein the temperature of the means is controlled. 前記イオン液体材料の温度及び密度を測定する測定器を設け、該測定器によって測定した前記イオン液体材料の気体の温度及び密度に基づいて、前記温度制御手段は前記温度変化手段の温度を制御することを特徴とする請求項3記載の液膜光学装置 A measuring device for measuring the temperature and density of the ionic liquid material is provided, and the temperature control means controls the temperature of the temperature changing means based on the temperature and density of the gas of the ionic liquid material measured by the measuring device. The liquid film optical device according to claim 3 .
JP2008172553A 2008-07-01 2008-07-01 Liquid film optics Expired - Fee Related JP5360530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172553A JP5360530B2 (en) 2008-07-01 2008-07-01 Liquid film optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172553A JP5360530B2 (en) 2008-07-01 2008-07-01 Liquid film optics

Publications (2)

Publication Number Publication Date
JP2010014808A JP2010014808A (en) 2010-01-21
JP5360530B2 true JP5360530B2 (en) 2013-12-04

Family

ID=41701002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172553A Expired - Fee Related JP5360530B2 (en) 2008-07-01 2008-07-01 Liquid film optics

Country Status (1)

Country Link
JP (1) JP5360530B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011128995A1 (en) * 2010-04-14 2011-10-20 トヨタ自動車株式会社 Optical element, optical element array, and method for manufacturing optical element
CN102687055B (en) 2010-04-28 2016-04-06 奥林巴斯株式会社 Microscope immersion liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351971A (en) * 2004-06-08 2005-12-22 Casio Comput Co Ltd Lens device
JP4403254B2 (en) * 2004-06-14 2010-01-27 本多電子株式会社 Liquid recovery apparatus and liquid fractionation apparatus
US7782440B2 (en) * 2004-11-18 2010-08-24 Carl Zeiss Smt Ag Projection lens system of a microlithographic projection exposure installation
JP2008089752A (en) * 2006-09-29 2008-04-17 Sony Corp Electro wetting device and variable focus lens using the same, optical pickup device, optical recording and reproducing device, droplet operating device, optical element, zoom lens, imaging apparatus, optical modulator and display device
JP5305128B2 (en) * 2008-05-14 2013-10-02 株式会社リコー Droplet optical device

Also Published As

Publication number Publication date
JP2010014808A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
US11009673B2 (en) Optical structure with ridges arranged at the same and method for producing the same
CN111965742B (en) Automatic zooming thin-film liquid lens based on temperature control and preparation method thereof
TWI451202B (en) Controllable optical element and method for operating an optical element with thermal actuators and projection exposure apparatus for semiconductor lithography
TWI595672B (en) Array of optical components, imaging system of the same, and method of controlling curvature of an array of optical components
JP5541156B2 (en) Actuator array sheet
US7561340B2 (en) Tunable micro-aspherical lens and manufacturing method thereof
JP5883600B2 (en) Membrane devices that can deform membranes with fast response times
US11209607B2 (en) Optical structure with ridges arranged at the same and method for producing the same
CN106324728B (en) Method and apparatus for reducing the fuel factor in compact adjustable optical lens
US9134568B2 (en) Varifocal lens
US20040147056A1 (en) Micro-fabricated device and method of making
US10571646B2 (en) Optical structure with ridges arranged at the same and method for producing the same
US20100261120A1 (en) Mirror for guiding a radiation bundle
JP5305128B2 (en) Droplet optical device
Zhu et al. Focus-tunable microlens arrays fabricated on spherical surfaces
JP5360530B2 (en) Liquid film optics
JP5201458B2 (en) Droplet optical device, droplet imaging device, and droplet light source device
Wang et al. Capillary number encouraged the construction of smart biomimetic eyes
US10359596B2 (en) Optical structure with ridges arranged at the same and method for producing the same
US9939559B2 (en) Optical device with deformable membrane
CN109143425B (en) Micro-lens array structure for collecting light field image
Werber et al. A thermo-pneumatically actuated tip-tilt-piston mirror
Jain et al. Half-millimeter-range vertically scanning microlenses for microscopic focusing applications
Pätz et al. Imaging systems with aspherically tunable micro-optical elements
EP3648179A1 (en) Fresnel condenser device and condenser-type solar energy system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R151 Written notification of patent or utility model registration

Ref document number: 5360530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees