JP5359406B2 - Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal - Google Patents

Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal Download PDF

Info

Publication number
JP5359406B2
JP5359406B2 JP2009059183A JP2009059183A JP5359406B2 JP 5359406 B2 JP5359406 B2 JP 5359406B2 JP 2009059183 A JP2009059183 A JP 2009059183A JP 2009059183 A JP2009059183 A JP 2009059183A JP 5359406 B2 JP5359406 B2 JP 5359406B2
Authority
JP
Japan
Prior art keywords
mass
parts
group
room temperature
curable organopolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009059183A
Other languages
Japanese (ja)
Other versions
JP2010209269A (en
Inventor
隆文 坂本
守 勅使河原
恒雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009059183A priority Critical patent/JP5359406B2/en
Publication of JP2010209269A publication Critical patent/JP2010209269A/en
Application granted granted Critical
Publication of JP5359406B2 publication Critical patent/JP5359406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a room temperature curable organopolysiloxane composition which shows less change with time and provides a cured product excellent in oil resistance, a method for producing the same, and an automobile oil seal. <P>SOLUTION: The method for producing the room temperature curable organopolysiloxane composition, which includes (A) 100 pts.mass of a diorganopolysiloxane which has a molecular chain whose both ends are blocked with hydroxy groups and/or hydrolyzable groups and a viscosity at 25&deg;C of 25-1,000,000 mPa s, (B) 0.5-30 pts.mass of an organosilane containing three or more hydrolyzable groups in one molecule (except a silane coupling agent) and/or a partial hydrolysate thereof, (C) 0.1-20 pts.mass of a silane coupling agent and/or a partial hydrolysate thereof, and (D) 1-500 pts.mass of a basic filler, includes adding the components (B) and (C), which are previously aged, to the components (A) and (D). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、耐油性に優れる新規な室温硬化性オルガノポリシロキサン組成物に関し、特に自動車用FIPG(Formed In Place Gaskets)材料として有用な該組成物及びその製造方法、並びに自動車オイルシールに関する。   The present invention relates to a novel room temperature curable organopolysiloxane composition excellent in oil resistance, and more particularly to the composition useful as a FIPG (Formed In Place Gaskets) material for automobiles, a method for producing the composition, and an automobile oil seal.

従来、自動車エンジン部のエンジンオイル、ギアオイル、オートマチックトランスミッションフルイド等をシールするための材料には、コルク、有機ゴム、アスベスト等でできた耐油性のガスケット又はパッキング材が使用されている。しかし、これらのシール材は、在庫管理の煩雑さ及び作業工程の複雑さという不利があり、シール性能の信頼性にも欠けるという問題があった。そこで、密着性及び耐熱性に優れる室温硬化性オルガノポリシロキサン組成物を用いたFIPG方式が採用されるようになり、現在に至っている。   Conventionally, oil-resistant gaskets or packing materials made of cork, organic rubber, asbestos and the like have been used as materials for sealing engine oil, gear oil, automatic transmission fluid, and the like of automobile engine parts. However, these sealing materials have the disadvantages of complicated inventory management and complicated work processes, and lack of reliability in sealing performance. Therefore, the FIPG method using a room temperature curable organopolysiloxane composition having excellent adhesion and heat resistance has been adopted, and has reached the present.

自動車エンジン回りに用いられる室温硬化性シリコーンゴム組成物は、自動車用オイルに対する耐性が必須である。耐油劣化による硬化物のゴム物性や接着性の低下は、シール部位からのオイル滲み、オイル漏れに繋がる。一般にエンジンオイルには極圧添加剤としてリン酸金属塩、亜リン酸金属塩等の酸性添加物が用いられており、その影響を受けて硬化物のゴム物性が劣化したり、密着性が低下したりすることが判明している。そのため、該組成物には、酸性添加物の中和を目的として、通常、カルシウム、亜鉛、マグネシウム等の酸化物、水酸化物又は炭酸塩が添加されている。また、硬化物のポリマー鎖が酸性添加物により切断されても、硬化物のゴム物性が低下しないように、予め、硬化物の架橋密度を上げておく手法も知られている。   A room temperature curable silicone rubber composition used around an automobile engine must have resistance to automobile oil. Decreased rubber properties and adhesiveness of the cured product due to oil resistance deterioration lead to oil bleeding from the seal site and oil leakage. In general, engine oils contain acidic additives such as metal phosphates and metal phosphites as extreme pressure additives, and as a result, the rubber properties of the cured products deteriorate or the adhesion decreases. It has been found to be. Therefore, oxides, hydroxides or carbonates such as calcium, zinc, and magnesium are usually added to the composition for the purpose of neutralizing acidic additives. In addition, there is also known a technique for increasing the crosslinking density of a cured product in advance so that the rubber physical properties of the cured product do not deteriorate even when the polymer chain of the cured product is cleaved by an acidic additive.

しかし、自動車用オイルは、近年ますます高性能化し、上記リン系の酸性添加物が増量され、また、前記の酸化物、水酸化物又は炭酸塩では中和のできないイオウ又はモリブデン系化合物が添加されるようになってきた。前記酸化物、水酸化物又は炭酸塩の添加又は架橋密度の向上だけでは、耐油性が満足されないレベルになりつつある。   However, in recent years, automobile oil has become more and more sophisticated, the amount of the above-mentioned phosphorus-based acidic additives increased, and sulfur or molybdenum-based compounds that cannot be neutralized with the above oxides, hydroxides or carbonates have been added. It has come to be. The addition of the oxides, hydroxides or carbonates or the improvement of the crosslinking density is reaching a level where the oil resistance is not satisfied.

更に、近年の自動車用オイルは省燃費化を目的として低粘度の基油を用いる方向にある。これは、低粘度の自動車用潤滑油は低抵抗で可動部の動きを妨げにくく、結果としてエンジンの燃費を上げる方向となるためである。しかしながら、低粘度の基油を用いた自動車用オイルでは先述の酸性成分によるシリコーンゴムの劣化に加えて、ゴムの膨潤による影響が無視できなくなっている。自動車用オイルによるゴムの膨潤は機械的強度の低下に加えて、上記酸性成分のゴム中への浸入を促進する効果が認められる。   Furthermore, recent automobile oils tend to use low-viscosity base oils for the purpose of reducing fuel consumption. This is because the low-viscosity automotive lubricating oil has low resistance and does not hinder the movement of the movable part, resulting in a direction of increasing the fuel consumption of the engine. However, in an automotive oil using a low-viscosity base oil, in addition to the deterioration of the silicone rubber due to the acidic component described above, the influence of the rubber swelling cannot be ignored. The swelling of rubber by automobile oil has an effect of promoting the penetration of the acidic component into the rubber in addition to the decrease in mechanical strength.

これを解決する一つの手法として異方性充填剤の使用が挙げられる。異方性充填剤はシリコーンゴム硬化物の変形への抵抗を大きくし、潤滑油、溶剤等による膨潤を抑える効果がある。特開平10−17773号公報(特許文献1)では、耐油性向上を目的として平均粒子径が50μm以下の薄片状無機粉末、好ましくは平均粒子径が50μm以下のタルク、マイカ、カオリン及びアルミナ、更に好ましくは平均粒子径が50μm以下のタルク及びアルミナを用いることが提案されている。   One technique for solving this is the use of anisotropic fillers. The anisotropic filler has an effect of increasing resistance to deformation of the cured silicone rubber and suppressing swelling due to a lubricating oil, a solvent and the like. In JP-A-10-17773 (Patent Document 1), for the purpose of improving oil resistance, flaky inorganic powder having an average particle size of 50 μm or less, preferably talc, mica, kaolin and alumina having an average particle size of 50 μm or less, It has been proposed to use talc and alumina preferably having an average particle size of 50 μm or less.

しかしながら、タルク、マイカ、カオリン等はその表面活性が高いため組成物に配合すると極端に粘度が増加し、作業性が大きく低下することが判明した。また、層間化合物であるためナトリウム、カリウム等のイオン性物質がゴム中に拡散し組成物の増粘、ゲル化等の問題を起こす場合があることが判ってきた。   However, it has been found that talc, mica, kaolin, and the like have a high surface activity, so that when they are added to the composition, the viscosity is extremely increased and workability is greatly reduced. Further, since it is an intercalation compound, it has been found that ionic substances such as sodium and potassium may diffuse into the rubber and cause problems such as thickening and gelling of the composition.

このように、耐油性を向上させるためには様々な充填剤、添加剤を大量に添加する手法により達成されるが、同時に組成物の経時変化が大きくなってしまい、大きな問題となっていた。   Thus, in order to improve oil resistance, it is achieved by a method of adding a large amount of various fillers and additives, but at the same time, the change of the composition with time is increased, which is a big problem.

特開平10−17773号公報Japanese Patent Laid-Open No. 10-17773

本発明は、上記事情に鑑みなされたもので、経時変化が少なく、且つ耐油性に優れる硬化物が得られる、特に自動車用FIPG材料として好適な室温硬化性オルガノポリシロキサン組成物及びその製造方法、並びに自動車オイルシールを提供することを目的とする。   The present invention has been made in view of the above circumstances, and can provide a cured product having little change over time and excellent in oil resistance, and particularly suitable as an automotive FIPG material, and a method for producing the same. An object is to provide an automobile oil seal.

本発明者らは、上記目的を達成するために架橋剤、接着助剤に使用している加水分解性基を有するオルガノシラン化合物に関して鋭意検討を行った結果、硬化剤と接着助剤及び必要に応じて硬化触媒を予め熟成(熟成とは、一定の温度、時間で予め混合することを言う)することで、経時変化が殆どなく、且つ耐油性に優れる硬化物が得られることを見出した。
即ち、本発明者らは、組成物の経時変化に関して、その原因を調査した結果、組成物中の架橋剤、接着助剤に使用しているオルガノシラン化合物の加水分解性基が異なる場合、これらはゆっくりと時間を掛けて交換反応を起こすことを確認した。これが、硬化性、接着性等に変化を起こす原因であり、その対策に関して鋭意検討を行った結果、架橋剤と接着助剤及び必要に応じて硬化触媒を予め熟成することで、経時でオルガノシラン化合物の構造変化を抑制し、殆ど経時変化しないことを見出し、本発明をなすに至った。
As a result of intensive studies on the organosilane compound having a hydrolyzable group used in the crosslinking agent and the adhesion assistant in order to achieve the above object, the present inventors have found that the curing agent, the adhesion assistant and the necessity. Accordingly, it has been found that by curing the curing catalyst in advance (aging refers to mixing in advance at a constant temperature and time), a cured product having almost no change with time and excellent in oil resistance can be obtained.
That is, the present inventors investigated the cause of the change over time of the composition, and as a result, when the hydrolyzable groups of the organosilane compound used for the crosslinking agent and adhesion aid in the composition are different, these Confirmed that the reaction took place slowly over time. This is the cause of changes in curability, adhesiveness, etc., and as a result of diligent investigations on countermeasures, organosilanes are obtained over time by aging a crosslinking agent, an adhesion assistant, and a curing catalyst as necessary. It was found that the structural change of the compound was suppressed and hardly changed with time, and the present invention was made.

従って、本発明は、下記に示す室温硬化性オルガノポリシロキサン組成物及びその製造方法、並びに自動車オイルシールを提供する。
〔請求項1〕
(A)分子鎖両末端が水酸基及び/又は加水分解性基で封鎖され、25℃での粘度が25〜1,000,000mPa・sであるジオルガノポリシロキサン: 100質量部、
(B)ケトオキシムシラン類、アルコキシシラン類、アセトキシシラン類、イソプロペノキシシラン類から選ばれる一分子中に3個以上の加水分解性基を含有するオルガノシラン(但し、シランカップリング剤は除く)及び/又はその部分加水分解物:
0.5〜30質量部、
(C)シランカップリング剤及び/又はその部分加水分解物: 0.1〜20質量部、
(D)塩基性充填剤: 1〜500質量部
(E)硬化触媒 0.01〜10質量部
を含有する室温硬化性オルガノポリシロキサン組成物の製造方法であって、(B)、(C)、及び()成分を予め20〜100℃、30分以上2週間以内の条件で加熱養生することにより、熟成させたものを(A)成分、(D)成分に添加することを特徴とする室温硬化性オルガノポリシロキサン組成物の製造方法。
〔請求項
前記塩基性充填剤が、酸化亜鉛、炭酸カルシウム、酸化マグネシウム、炭酸亜鉛からなる群から選ばれる塩基性充填剤である請求項に記載の製造方法。
〔請求項
請求項1又は2に記載の方法により製造された室温硬化性オルガノポリシロキサン組成物。
〔請求項
請求項に記載の組成物を硬化させることにより得られる自動車オイルシール。
Accordingly, the present invention provides a room temperature curable organopolysiloxane composition and a method for producing the same as shown below, and an automobile oil seal.
[Claim 1]
(A) Diorganopolysiloxane in which both ends of the molecular chain are blocked with a hydroxyl group and / or a hydrolyzable group and the viscosity at 25 ° C. is 25 to 1,000,000 mPa · s: 100 parts by mass
(B) Organosilane containing 3 or more hydrolyzable groups in one molecule selected from ketoxime silanes, alkoxysilanes, acetoxysilanes, and isopropenoxysilanes (excluding silane coupling agents) ) And / or partial hydrolysates thereof:
0.5-30 parts by mass,
(C) Silane coupling agent and / or partial hydrolyzate thereof: 0.1 to 20 parts by mass,
(D) Basic filler: 1 to 500 parts by mass ,
(E) A method for producing a room temperature curable organopolysiloxane composition containing 0.01 to 10 parts by mass of a curing catalyst , wherein the components (B) , (C), and ( E ) are previously added to 20 A room temperature-curable organopolysiloxane composition characterized by adding aged product to components (A) and (D) by heating and curing under conditions of -100 ° C. for 30 minutes to 2 weeks Production method.
[Claim 2 ]
The manufacturing method according to claim 1 , wherein the basic filler is a basic filler selected from the group consisting of zinc oxide, calcium carbonate, magnesium oxide, and zinc carbonate.
[Claim 3 ]
A room temperature-curable organopolysiloxane composition produced by the method according to claim 1 or 2 .
[Claim 4 ]
An automobile oil seal obtained by curing the composition according to claim 3 .

本発明の製造方法によれば、経時変化が少なく且つ耐油性に優れる硬化物を与え、特に自動車用FIPG材料として好適な室温硬化性オルガノポリシロキサン組成物が得られる。該組成物の硬化物は、耐油性が良好であるため自動車オイルシールとして有効である。   According to the production method of the present invention, a cured product having little change with time and excellent oil resistance is obtained, and a room temperature-curable organopolysiloxane composition particularly suitable as a FIPG material for automobiles is obtained. The cured product of the composition is effective as an automobile oil seal because of its good oil resistance.

(A)成分
本発明の(A)成分は、分子鎖両末端が水酸基及び/又は加水分解性基で封鎖され、25℃での粘度が25〜1,000,000mPa・sのジオルガノポリシロキサンである。
(A) Component The (A) component of the present invention is a diorganopolysiloxane having both molecular chain ends blocked with hydroxyl groups and / or hydrolyzable groups, and a viscosity at 25 ° C. of 25 to 1,000,000 mPa · s. It is.

上記ジオルガノポリシロキサンの25℃における粘度は、25〜1,000,000mPa・sであり、好ましくは1,000〜100,000mPa・sである。粘度が25mPa・sより低いと物理的・機械的強度に優れたゴム弾性体を得ることができなくなり、1,000,000mPa・sより高いと組成物の粘度が高くなりすぎて作業性が低下する。なお、本発明において、粘度は回転粘度計により測定できる。   The viscosity at 25 ° C. of the diorganopolysiloxane is 25 to 1,000,000 mPa · s, preferably 1,000 to 100,000 mPa · s. If the viscosity is lower than 25 mPa · s, a rubber elastic body excellent in physical and mechanical strength cannot be obtained, and if it is higher than 1,000,000 mPa · s, the viscosity of the composition becomes too high and the workability is lowered. To do. In the present invention, the viscosity can be measured with a rotational viscometer.

該ジオルガノポリシロキサンとしては、例えば下記一般式(1)
HO−[R2SiO]L−H (1)
〔式中、Rは同一又は異種の、置換又は非置換の一価炭化水素基であり、Lは上記の粘度範囲を満たす数、通常、10以上の整数である。〕
で示される化合物、及び下記一般式(2)
(R1O)n3-nSi−R2−(R2SiO)L−SiR2−R2−SiR3-n(OR1n
(2)
〔式中、R、Lは前記と同様であり、R1は同一又は異種の、置換又は非置換の一価炭化水素基であり、R2は酸素原子又は置換もしくは非置換の二価炭化水素基であり、nは2又は3である。〕
で示される化合物が挙げられる。
Examples of the diorganopolysiloxane include the following general formula (1)
HO— [R 2 SiO] L —H (1)
[Wherein, R is the same or different, substituted or unsubstituted monovalent hydrocarbon group, and L is a number satisfying the above viscosity range, usually an integer of 10 or more. ]
And a compound represented by the following general formula (2)
(R 1 O) n R 3 -n Si-R 2 - (R 2 SiO) L -SiR 2 -R 2 -SiR 3-n (OR 1) n
(2)
[Wherein, R and L are as defined above, R 1 is the same or different substituted or unsubstituted monovalent hydrocarbon group, and R 2 is an oxygen atom or substituted or unsubstituted divalent hydrocarbon. And n is 2 or 3. ]
The compound shown by these is mentioned.

一般式(1)、(2)中のRは、炭素原子数が、通常、1〜10、好ましくは1〜8の置換又は非置換の一価炭化水素基であり、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;並びにこれらの基の炭素原子に結合する水素原子の一部又は全部をハロゲン原子、シアノ基等で置換した基(例えばクロロメチル基、トリフロロプロピル基及びシアノエチル基)が挙げられる。これらの中では、メチル基、ビニル基、フェニル基及びトリフロロプロピル基が好ましく、特に好ましくはメチル基及びフェニル基である。   R in the general formulas (1) and (2) is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, such as a methyl group or an ethyl group. Alkyl groups such as propyl group and butyl group; cycloalkyl groups such as cyclohexyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; aralkyl groups such as benzyl group and phenylethyl group; In addition, a group in which part or all of the hydrogen atoms bonded to the carbon atoms of these groups are substituted with a halogen atom, a cyano group or the like (for example, a chloromethyl group, a trifluoropropyl group, or a cyanoethyl group) can be mentioned. Among these, a methyl group, a vinyl group, a phenyl group, and a trifluoropropyl group are preferable, and a methyl group and a phenyl group are particularly preferable.

一般式(2)中のR1は、炭素原子数が、通常、1〜6、好ましくは1〜3の一価炭化水素基であり、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基が挙げられる。これらの中では、メチル基、エチル基、プロピル基が好ましく、特に好ましくはメチル基及びエチル基である。R2は、酸素原子又は置換もしくは非置換の二価炭化水素基であり、二価炭化水素基として具体的には、炭素原子数が、通常、1〜6、好ましくは1〜3の、例えばメチレン基、エチレン基、プロピレン基、ブチレン基などのアルキレン基が挙げられる。R2としては、酸素原子、メチレン基、エチレン基、プロピレン基が好ましく、特に好ましくは酸素原子、エチレン基である。 R 1 in the general formula (2) is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, such as a methyl group, an ethyl group, a propyl group, or a butyl group. An alkyl group; a cycloalkyl group such as a cyclohexyl group; and an alkenyl group such as a vinyl group and an allyl group. Among these, a methyl group, an ethyl group, and a propyl group are preferable, and a methyl group and an ethyl group are particularly preferable. R 2 is an oxygen atom or a substituted or unsubstituted divalent hydrocarbon group. Specifically, as the divalent hydrocarbon group, the number of carbon atoms is usually 1 to 6, preferably 1 to 3, for example, An alkylene group such as a methylene group, an ethylene group, a propylene group, or a butylene group can be mentioned. R 2 is preferably an oxygen atom, a methylene group, an ethylene group or a propylene group, particularly preferably an oxygen atom or an ethylene group.

(B)成分
本発明の(B)成分は、一分子中に3個以上の加水分解性基を含有するオルガノシラン及び/又はその部分加水分解物であり、本発明の組成物において架橋剤として作用するものである。なお、本発明において(B)成分は、後述する(C)成分のシランカップリング剤を含まない。上記オルガノシラン及びその部分加水分解物が有する加水分解性基としては、例えばケトオキシム基、アルコキシ基、アセトキシ基、イソプロペノキシ基等が挙げられる。また、ケイ素原子に結合する加水分解性基以外の置換基としては、炭素原子数1〜10、好ましくは1〜8の一価炭化水素基で、アルキル基、アルケニル基、アリール基、アラルキル基が挙げられ、好ましくは、メチル基、エチル基、ビニル基、フェニル基であり、アミノ基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、イソシアネート基、メルカプト基等の官能基を含まない。
(B) component (B) component of this invention is organosilane and / or its partial hydrolyzate which contain 3 or more hydrolysable groups in 1 molecule, As a crosslinking agent in the composition of this invention It works. In addition, in this invention, (B) component does not contain the silane coupling agent of (C) component mentioned later. Examples of the hydrolyzable group possessed by the organosilane and its partial hydrolyzate include a ketoxime group, an alkoxy group, an acetoxy group, and an isopropenoxy group. The substituent other than the hydrolyzable group bonded to the silicon atom is a monovalent hydrocarbon group having 1 to 10, preferably 1 to 8 carbon atoms, and includes an alkyl group, an alkenyl group, an aryl group, and an aralkyl group. Preferably, it is a methyl group, an ethyl group, a vinyl group, or a phenyl group, and does not contain a functional group such as an amino group, an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, an isocyanate group, or a mercapto group.

このような(B)成分の具体例としては、テトラキス(メチルエチルケトオキシム)シラン、メチルトリス(ジメチルケトオキシム)シラン、メチルトリス(メチルエチルケトオキシム)シラン、エチルトリス(メチルエチルケトオキシム)シラン、メチルトリス(メチルイソブチルケトオキシム)シラン、ビニルトリス(メチルエチルケトオキシム)シランなどのケトオキシムシラン類、メチルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリエトキシシランなどのアルコキシシラン類、メチルトリアセトキシシラン、ビニルトリアセトキシシランなどのアセトキシシラン類、メチルトリイソプロペノキシシラン、ビニルトリイソプロペノキシシラン、フェニルトリイソプロペノキシシランなどのイソプロペノキシシラン類、並びにこれらのシランの部分加水分解物が挙げられる。これらは単独で用いても複数種を併用してもよい。   Specific examples of such component (B) include tetrakis (methyl ethyl ketoxime) silane, methyl tris (dimethyl ketoxime) silane, methyl tris (methyl ethyl ketoxime) silane, ethyl tris (methyl ethyl ketoxime) silane, methyl tris (methyl isobutyl ketoxime) silane. , Ketoxime silanes such as vinyltris (methylethylketoxime) silane, alkoxysilanes such as methyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, methyltriacetoxysilane, vinyltriacetoxysilane, etc. Acetoxysilanes, methyltriisopropenoxysilane, vinyltriisopropenoxysilane, phenyltriisopropenoxysilane, etc. Isopropenoxysilane silanes and partial hydrolyzates of these silanes. These may be used alone or in combination.

(B)成分の配合量は、(A)成分100質量部に対して0.5〜30質量部の範囲、好ましくは1〜15質量部の範囲である。0.5質量部未満では十分な架橋が得られず、目的とするゴム弾性を有する組成物が得難く、30質量部を超えると価格的に不利となる。   (B) The compounding quantity of a component is the range of 0.5-30 mass parts with respect to 100 mass parts of (A) component, Preferably it is the range of 1-15 mass parts. If the amount is less than 0.5 parts by mass, sufficient cross-linking cannot be obtained, and it is difficult to obtain a composition having the desired rubber elasticity.

(C)成分
本発明の(C)成分は、シランカップリング剤及び/又はその部分加水分解物であり、本発明の組成物において接着助剤として作用するものである。シランカップリング剤及びその部分加水分解物が有する加水分解性基としては、上記(B)成分と同様な基が挙げられるが、アルコキシ基が特に好ましい。また、シランカップリング剤及びその部分加水分解物が有する有機基としては、アミノ基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、イソシアネート基、メルカプト基、ウレイド基等の官能基が挙げられ、特にアミノ基が好ましい。また、異なるシランカップリング剤同士の反応生成物であってもよい。具体例としては、3−メタクリロキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−(N−アミノメチルベンジルアミノ)プロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、3−アミノプロピルトリス(メチルエチルケトオキシム)シラン、3−グリシドキシプロピルトリイソプロペノキシシラン、3−グリシドキシプロピルメチルジイソプロペノキシシラン、3−ウレイドプロピルトリエトキシシラン等が例示される。また、異なるシランカップリング剤同士の反応生成物であってもよい。なお、有機基がビニル基であるものは、通常シランカップリング剤であるが、本発明では(C)成分でなく、(B)成分の架橋剤とする。
(C) Component (C) component of this invention is a silane coupling agent and / or its partial hydrolyzate, and acts as an adhesion promoter in the composition of this invention. Examples of the hydrolyzable group possessed by the silane coupling agent and the partial hydrolyzate thereof include the same groups as those in the component (B), but an alkoxy group is particularly preferred. Examples of the organic group that the silane coupling agent and its partial hydrolyzate have include amino groups, epoxy groups, styryl groups, methacryloxy groups, acryloxy groups, isocyanate groups, mercapto groups, ureido groups, and the like. An amino group is particularly preferable. Moreover, the reaction product of different silane coupling agents may be sufficient. Specific examples include 3-methacryloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-aminomethylbenzylamino) propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanate Propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, styryltrimethoxysilane, styryltriethoxysilane, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, 3-aminopropyltris (me Le ethyl ketoxime) silane, 3-glycidoxypropyltrimethoxysilane isopropenoxysilane silane, 3-glycidoxypropyl methyl di isopropenoxysilane silane, 3-ureidopropyltriethoxysilane and the like. Moreover, the reaction product of different silane coupling agents may be sufficient. In addition, although the thing whose organic group is a vinyl group is a silane coupling agent normally, it is set as the crosslinking agent of (B) component instead of (C) component in this invention.

アミノ基を官能基として有するシランカップリング剤又はその部分加水分解物としては、下記式(3)で表される化合物が好ましい。
2N−R3−SiR4 a(OR53-a (3)
(式中、R3は酸素原子、窒素原子、硫黄原子を含んでもよい置換又は非置換の二価炭化水素基であり、R4、R5は置換もしくは非置換の一価炭化水素基であり、aは0又は1を表す。)
As the silane coupling agent having an amino group as a functional group or a partial hydrolyzate thereof, a compound represented by the following formula (3) is preferable.
H 2 N—R 3 —SiR 4 a (OR 5 ) 3-a (3)
(Wherein R 3 is a substituted or unsubstituted divalent hydrocarbon group which may contain an oxygen atom, a nitrogen atom or a sulfur atom, and R 4 and R 5 are substituted or unsubstituted monovalent hydrocarbon groups. A represents 0 or 1.)

上記式中、R3は酸素原子、窒素原子、硫黄原子を含んでもよい置換又は非置換の二価炭化水素基であり、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキセン基等の炭素原子数1〜8のアルキレン基;−C36−NH−C24−、−C36−NH−C(=O)−が挙げられる。 In the above formula, R 3 is a substituted or unsubstituted divalent hydrocarbon group which may contain an oxygen atom, a nitrogen atom, or a sulfur atom, and specifically includes, for example, a methylene group, an ethylene group, a propylene group, a butylene group. And an alkylene group having 1 to 8 carbon atoms such as a hexene group; —C 3 H 6 —NH—C 2 H 4 —, —C 3 H 6 —NH—C (═O) —.

4は置換もしくは非置換の一価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α−,β−ナフチル基等のアリール基;ベンジル基、2−フェニルエチル基、3−フェニルプロピル基等のアラルキル基;また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、2−シアノエチル基等を例示することができる。これらの中でも、メチル基、エチル基が好ましい。 R 4 is a substituted or unsubstituted monovalent hydrocarbon group, specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group Alkyl groups such as octadecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group; phenyl group, tolyl group, xylyl group, α-, aryl groups such as β-naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group, 3-phenylpropyl group; and some or all of hydrogen atoms of these groups are F, Cl, Br, etc. Examples of groups substituted by halogen atoms or cyano groups, such as 3-chloropropyl group, 3,3,3-trifluoropropyl group, 2-cyanoethyl group, etc. It can be. Among these, a methyl group and an ethyl group are preferable.

また、R5は置換もしくは非置換の一価炭化水素基であり、前記R4と同様のものを例示することができるが、特に炭素原子数1〜6のアルキル基が好ましい。 R 5 is a substituted or unsubstituted monovalent hydrocarbon group, and examples thereof are the same as those described above for R 4 , but an alkyl group having 1 to 6 carbon atoms is particularly preferable.

上記アミノシラン化合物としては、当業界で公知のアミン系シランカップリング剤が好適に使用される。具体例としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、エチレンジアミノプロピルトリメトキシシラン、エチレンジアミノプロピルトリエトキシシラン、エチレンジアミノプロピルメチルジメトキシシラン、エチレンジアミノプロピルメチルジエトキシシラン、α−アミノプロピルトリメトキシシラン等が例示される。   As the aminosilane compound, an amine-based silane coupling agent known in the art is preferably used. Specific examples include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, ethylenediaminopropyltrimethoxysilane, ethylenediaminopropyltriethoxysilane. Examples include silane, ethylenediaminopropylmethyldimethoxysilane, ethylenediaminopropylmethyldiethoxysilane, α-aminopropyltrimethoxysilane, and the like.

この(C)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1〜20質量部であり、0.2〜15質量部が好ましい。0.1質量部未満の場合、十分な接着性が得られず、20質量部を超える場合は、経済的に不利となってしまう。   The amount of component (C) is 0.1 to 20 parts by weight, preferably 0.2 to 15 parts by weight, per 100 parts by weight of organopolysiloxane of component (A). When the amount is less than 0.1 parts by mass, sufficient adhesion cannot be obtained, and when it exceeds 20 parts by mass, it is economically disadvantageous.

本発明においては、上記(B)成分と(C)成分、必要に応じて更に後述する(E)成分を予め熟成させたものを、(A)成分、(D)成分に添加する。
(B)成分と(C)成分、必要に応じて(E)成分の熟成方法としては、各成分が加水分解性を有するため、所定量を密閉容器に計量し、加熱養生することが好ましい。加熱温度としては、室温(20℃)〜100℃、好ましくは40〜80℃であり、加熱時間としては、30分以上、好ましくは1時間以上である。時間の上限は特にはないが、作業効率を考えると2週間以内、特には1週間以内が好ましい。室温未満であると十分な熟成に長時間要するため効率が悪くなるおそれがあり、また、100℃を超える温度では、熟成中に加圧状態等になり危険を伴う場合がある。また30分未満であると、十分な熟成ができないおそれがある。特に、加熱して熟成する場合は30分以上でよいが、室温で熟成する場合は1時間以上熟成することが好ましい。
In the present invention, the above components (B) and (C) and, if necessary, further aged (E) component described later in advance are added to the (A) component and the (D) component.
(B) Component, (C) component, and, if necessary, (E) component aging method Since each component is hydrolyzable, it is preferable to measure a predetermined amount in a closed container and heat cure. The heating temperature is room temperature (20 ° C.) to 100 ° C., preferably 40 to 80 ° C., and the heating time is 30 minutes or more, preferably 1 hour or more. The upper limit of the time is not particularly limited, but in consideration of work efficiency, it is preferably within 2 weeks, particularly within 1 week. If the temperature is lower than room temperature, sufficient ripening takes a long time and the efficiency may be deteriorated. If the temperature is higher than 100 ° C., a pressurized state may occur during the ripening, which may be dangerous. Moreover, there exists a possibility that sufficient aging cannot be performed as it is less than 30 minutes. In particular, when it is aged by heating, it may be 30 minutes or longer, but when it is aged at room temperature, it is preferably aged for 1 hour or longer.

(D)成分
(D)成分の塩基性充填剤としては、炭酸亜鉛、酸化亜鉛、酸化マグネシウム、炭酸カルシウム等が挙げられる。上記の塩基性充填剤を併用することにより、耐油性の向上を一層図ることができる。
塩基性充填剤の配合量は、(A)成分100質量部当たり、1〜500質量部、好ましくは10〜300質量部、特に好ましくは50〜200質量部である。この配合量が少なすぎると酸性成分の中和効果が薄れて耐油性が低下し、500質量部を超えると組成物の粘度が高くなりすぎる結果、組成物の硬化性が低下し、作業性も低下する。
(D) Component As a basic filler of (D) component, zinc carbonate, zinc oxide, magnesium oxide, calcium carbonate, etc. are mentioned. The oil resistance can be further improved by using the above basic filler in combination.
The compounding quantity of a basic filler is 1-500 mass parts per 100 mass parts of (A) component, Preferably it is 10-300 mass parts, Most preferably, it is 50-200 mass parts. If the blending amount is too small, the neutralizing effect of the acidic component is diminished and the oil resistance is lowered, and if it exceeds 500 parts by mass, the viscosity of the composition becomes too high. descend.

(E)成分
本発明においては、更に(E)硬化触媒を配合することが好ましい。(E)成分の硬化触媒は、本発明の組成物において(A)成分と(B)及び(C)成分の反応、及び組成物の加水分解による硬化反応の触媒として作用するものである。硬化触媒として、具体的には、ジオクテート錫等の錫エステル化合物、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート、ジオクチルスズジオクトエート、ジオクチルスズジラウレート、ジオクチルスズジバーサテート等のアルキル錫エステル化合物、テトライソプロポキシチタン、テトラn−ブトキシチタン、テトラキス(2−エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナ)チタン、イソプロポキシチタンビス(エチルアセトアセテート)、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、テトラメチルグアニジン、ジアザビシクロノナンのような強塩基性化合物、テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン又はシロキサン等が例示されるが、特にはアルキル錫エステル化合物、チタンキレート化合物、グアニジル基を含有するシランが好適に使用される。これらはその1種に限定されず、2種もしくはそれ以上の混合物として使用してもよい。
(E) component In this invention, it is preferable to mix | blend (E) curing catalyst further. The (E) component curing catalyst acts as a catalyst for the reaction of the component (A) with the components (B) and (C) and the curing reaction by hydrolysis of the composition in the composition of the present invention. Specific examples of the curing catalyst include tin ester compounds such as dioctate tin, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate, dioctyltin dioctoate, dioctyltin dilaurate, and dioctyltin diversate. Compounds, tetraisopropoxy titanium, tetra n-butoxy titanium, tetrakis (2-ethylhexoxy) titanium, dipropoxy bis (acetylacetona) titanium, isopropoxy titanium bis (ethyl acetoacetate), titanium isopropoxy octylene glycol, etc. Ester or titanium chelate compounds, strong basic compounds such as tetramethylguanidine, diazabicyclononane, tetramethylguanidylpropyltrimethoxysilane, tetramethyl Illustrative examples include silanes or siloxanes containing guanidyl groups such as anidylpropylmethyldimethoxysilane, tetramethylguanidylpropyltris (trimethylsiloxy) silane, etc., but alkyl tin ester compounds, titanium chelate compounds, guanidyl groups are particularly preferred. The contained silane is preferably used. These are not limited to one kind, and may be used as a mixture of two or more kinds.

硬化触媒の配合量は、(A)成分100質量部に対して0.01〜10質量部が好ましく、特には0.05〜5質量部が好ましい。硬化触媒の配合量が少なすぎると十分な触媒効果が得られない場合があり、多すぎると組成物の保存安定性が低下する場合がある。
なお、上述したように、(E)成分を用いる場合は、上記(B)、(C)成分と共に予め熟成させて、これを(A)、(D)成分に添加することが好ましい。
0.01-10 mass parts is preferable with respect to 100 mass parts of (A) component, and, as for the compounding quantity of a curing catalyst, 0.05-5 mass parts is especially preferable. When the amount of the curing catalyst is too small, a sufficient catalytic effect may not be obtained, and when it is too large, the storage stability of the composition may be lowered.
In addition, as mentioned above, when using (E) component, it is preferable to age | cure together with said (B) and (C) component, and to add this to (A) and (D) component.

その他の成分
本発明の組成物には、上記(A)〜(E)成分のほかに、本発明の目的を阻害しない限り、種々の添加剤を添加することもできる。例えば、煙霧質シリカ、沈降性シリカ、石英粉末、炭素粉末等の補強剤;ガラス繊維、炭素繊維等の繊維質充填剤;酸化セリウム等の耐熱性向上剤;防錆剤;トリメトキシシリル基で封鎖されたジメチルポリシロキサン等の可塑剤、トリオルガノシロキシ単位及びSiO2単位からなる網状ポリシロキサン等の液状補強剤、顔料、染料等が挙げられる。これらの使用量は、本発明の目的を阻害しない限り任意である。
Other components In addition to the above components (A) to (E), various additives may be added to the composition of the present invention as long as the object of the present invention is not impaired. For example, reinforcing agents such as fumed silica, precipitated silica, quartz powder and carbon powder; fiber fillers such as glass fiber and carbon fiber; heat resistance improver such as cerium oxide; rust preventive agent; trimethoxysilyl group Examples thereof include plasticizers such as blocked dimethylpolysiloxane, liquid reinforcing agents such as reticulated polysiloxane composed of triorganosiloxy units and SiO 2 units, pigments, dyes and the like. These use amounts are arbitrary as long as the object of the present invention is not impaired.

本発明の組成物は、一液型室温硬化性組成物として、上述した(B)成分と(C)成分、必要に応じて(E)成分を予め熟成させたものと、上記(A)成分、(D)成分及び必要に応じてその他の成分とを、品川ミキサー、プラネタリーミキサー、ニーダー等の混合機を用いて乾燥、もしくは減圧雰囲気中で均一に混合することにより得られる。得られる組成物は、空気中に暴露されると、水分により架橋硬化され、ゴム状弾性体となる。
得られた組成物は、経時変化が少なく、耐油性に優れる硬化物となり得るため、自動車オイルシール用として好適であり、該組成物の硬化物により得られた自動車オイルシールは、耐油性に優れるものである。
The composition of the present invention is a one-component room temperature curable composition, the above-described (B) component and (C) component, and an aging component (E) if necessary, and the above (A) component. , (D) component and other components as required can be obtained by drying using a mixer such as a Shinagawa mixer, a planetary mixer, a kneader, or by uniformly mixing in a reduced-pressure atmosphere. When the resulting composition is exposed to air, it is cross-linked and cured by moisture and becomes a rubbery elastic body.
The obtained composition has little change over time and can be a cured product having excellent oil resistance, and is therefore suitable for automobile oil seals. The automotive oil seal obtained by curing the composition has excellent oil resistance. Is.

次に、実施例及び比較例を挙げて、本発明を具体的に説明する。なお、下記例中の粘度は回転粘度計による25℃での測定値である。   Next, an Example and a comparative example are given and this invention is demonstrated concretely. In addition, the viscosity in the following example is a measured value at 25 ° C. by a rotational viscometer.

[実施例1]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(白石工業製、白艶華CCR)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料1)を作製した。
[Example 1]
Both ends of the molecular chain are blocked with hydroxyl groups, and 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa · s, 100 parts by mass of colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Hakujyo Hana CCR), fumed silica (produced by DEGUSSA, Erosyl R972) ) 5 parts by mass were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 parts by mass of dioctyltin dilaurate and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 1) was prepared.

[比較例1]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(白石工業製、白艶華CCR)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料2)を作製した。
[Comparative Example 1]
Both ends of the molecular chain are blocked with hydroxyl groups, and 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa · s, 100 parts by mass of colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Hakujyo Hana CCR), fumed silica (produced by DEGUSSA, Erosyl R972) ) 5 parts by mass were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 part by mass of dioctyltin dilaurate, and 2 parts by mass of 3-aminopropyltriethoxysilane were mixed under reduced pressure to obtain a room temperature curable organopolysiloxane composition (Sample 2). ) Was produced.

[比較例2]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(白石工業製、白艶華CCR)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を20℃×15分間混合させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料3)を作製した。
[Comparative Example 2]
Both ends of the molecular chain are blocked with hydroxyl groups, and 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa · s, 100 parts by mass of colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Hakujyo Hana CCR), fumed silica (produced by DEGUSSA, Erosyl R972) ) 5 parts by mass were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 parts by mass of dioctyltin dilaurate and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 20 ° C. for 15 minutes, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 3) was prepared.

次に、実施例及び比較例で調製された調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に7日間放置して得た硬化物の物性(初期物性)を、JIS K6249に準拠して測定した。なお、硬さは、JIS K6249のデュロメーターA硬度計を用いて測定した。
また、幅25mm、長さ100mmの被着体(アルミニウム板)を用いて接着面積2.5mm2、接着厚さ1mmの剪断接着試験体を作製した。23℃,50%RHで7日間養生し、JIS K6850に準じて測定を行い、剪断接着力と凝集破壊率を確認した。
また、保管試験として、実施例及び比較例で調製された調製直後の各組成物を密閉容器に入れて、70℃の温度で7日間放置したもの、及び23℃で6ヶ月間放置したものから作った厚さ2mmのシートについても同様の測定を行った。
これらの結果を表1に示す。
Next, each composition immediately after the preparation prepared in Examples and Comparative Examples was extruded into a sheet having a thickness of 2 mm, exposed to air at 23 ° C. and 50% RH, and then the sheet was subjected to the same atmosphere for 7 days. The physical properties (initial physical properties) of the cured product obtained by allowing to stand were measured according to JIS K6249. The hardness was measured using a durometer A hardness meter of JIS K6249.
A shear adhesion test specimen having an adhesion area of 2.5 mm 2 and an adhesion thickness of 1 mm was prepared using an adherend (aluminum plate) having a width of 25 mm and a length of 100 mm. It was cured at 23 ° C. and 50% RH for 7 days, and measured according to JIS K6850 to confirm the shear adhesive strength and the cohesive failure rate.
In addition, as a storage test, each composition immediately after preparation prepared in Examples and Comparative Examples was put in a sealed container and left for 7 days at a temperature of 70 ° C., and left for 6 months at 23 ° C. The same measurement was performed on the sheet having a thickness of 2 mm.
These results are shown in Table 1.

Figure 0005359406
Figure 0005359406

[実施例2]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(丸尾カルシウム製、カーレックス300)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料4)を作製した。
[Example 2]
100 parts by mass of dimethylpolysiloxane having a molecular chain both ends blocked with hydroxyl groups and a viscosity of 20,000 mPa · s, colloidal calcium carbonate (manufactured by Maruo Calcium, Carlex 300), fumed silica (manufactured by DEGUSSA, Erosil) R972) 5 parts by mass were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 parts by mass of dioctyltin dilaurate and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 4) was prepared.

[実施例3]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、酸化亜鉛(ハクスイテック製、酸化亜鉛2種)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料5)を作製した。
[Example 3]
100 parts by mass of dimethylpolysiloxane having both ends of the molecular chain blocked with hydroxyl groups and a viscosity of 20,000 mPa · s, 100 parts by mass of zinc oxide (manufactured by HAXITEC, 2 types of zinc oxide), fumed silica (manufactured by DEGUSSA, Erosil R972) ) 5 parts by mass were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 parts by mass of dioctyltin dilaurate and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 5) was prepared.

[比較例3]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)10質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料6)を作製した。
[Comparative Example 3]
Both ends of the molecular chain were blocked with hydroxyl groups, and 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa · s and 10 parts by mass of fumed silica (DEGUSSA, Erosyl R972) were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 parts by mass of dioctyltin dilaurate and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 6) was prepared.

[比較例4]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(丸尾カルシウム製、カーレックス300)600質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料7)を作製した。
[Comparative Example 4]
100 parts by mass of dimethylpolysiloxane having both ends blocked with hydroxyl groups and a viscosity of 20,000 mPa · s, 600 parts by mass of colloidal calcium carbonate (manufactured by Maruo Calcium, Carlex 300), fumed silica (manufactured by DEGUSSA, Erosil) R972) 5 parts by mass were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 parts by mass of dioctyltin dilaurate and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 7) was prepared.

実施例及び比較例で調製された調製直後の各組成物を用いて上記と同じ条件で硬化物の物性(初期物性)を測定した。また、耐油性の評価として、上記と同じ条件で硬化させた硬化物からダンベルを打ち抜き、更にエンジンオイル[商品名:トヨタキャッスルモーターオイルSL 5W20]に120℃の温度で240時間浸漬した。その後、JIS K6249に従って劣化後の物性を確認した。結果を表2に示す。   The physical properties (initial physical properties) of the cured products were measured under the same conditions as described above using the respective compositions prepared in Examples and Comparative Examples immediately after the preparation. For evaluation of oil resistance, a dumbbell was punched out from a cured product cured under the same conditions as described above, and was further immersed in engine oil [trade name: Toyota Castle Motor Oil SL 5W20] at a temperature of 120 ° C. for 240 hours. Thereafter, the physical properties after deterioration were confirmed according to JIS K6249. The results are shown in Table 2.

Figure 0005359406
Figure 0005359406

[実施例4]
分子鎖両末端が水酸基で封鎖され、粘度が5,000mPa・sのジメチルポリシロキサン100質量部、表面がパラフィン処理された重質炭酸カルシウム(丸尾カルシウム製、MCコートP−20)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(イソプロペノキシ)シラン6質量部、γ−テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料8)を作製した。
[Example 4]
100 parts by mass of dimethylpolysiloxane whose molecular chain both ends are blocked with hydroxyl groups and whose viscosity is 5,000 mPa · s, paraffin-treated heavy calcium carbonate (manufactured by Maruo Calcium, MC Coat P-20) 100 parts by mass, 5 parts by mass of fumed silica (Erogil R972, manufactured by DEGUSSA) was mixed until uniform. Next, 6 parts by mass of vinyltri (isopropenoxy) silane, 0.5 parts by mass of γ-tetramethylguanidylpropyltrimethoxysilane, and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours. And mixing under reduced pressure to prepare a room temperature curable organopolysiloxane composition (Sample 8).

[実施例5]
分子鎖両末端がエチレン基を介したトリメトキシシリル基で封鎖され、粘度が30,000mPa・sのジメチルポリシロキサン100質量部、表面がパラフィン処理された重質炭酸カルシウム(丸尾カルシウム製、MCコートP−20)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR974)5質量部を均一になるまで混合した。次いで、メチルトリメトキシシラン5質量部、イソプロポキシチタンビス(エチルアセトアセテート)2質量部、3−アミノプロピルトリエトキシシラン0.5質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料9)を作製した。
[Example 5]
Heavy calcium carbonate with both ends of molecular chain blocked with trimethoxysilyl group via ethylene group, viscosity of 30,000 mPa · s dimethylpolysiloxane, and paraffin-treated surface (manufactured by Maruo Calcium, MC Coat P-20) 100 parts by mass and 5 parts by mass of fumed silica (DEGUSSA, Elosil R974) were mixed until uniform. Subsequently, 5 parts by mass of methyltrimethoxysilane, 2 parts by mass of isopropoxytitanium bis (ethylacetoacetate), 0.5 part by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and the mixture was subjected to reduced pressure. To prepare a room temperature curable organopolysiloxane composition (Sample 9).

[比較例5]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、表面がパラフィン処理された重質炭酸カルシウム(丸尾カルシウム製、MCコートP−20)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(イソプロペノキシ)シラン6質量部、γ−テトラメチルグアニジルプロピルトリメトキシシラン0.5質量部、3−アミノプロピルトリエトキシシラン2質量部を減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料10)を作製した。
[Comparative Example 5]
100 parts by mass of dimethylpolysiloxane having both ends of the molecular chain blocked with hydroxyl groups and a viscosity of 20,000 mPa · s, paraffin-treated surface of heavy calcium carbonate (manufactured by Maruo Calcium, MC Coat P-20), 100 parts by mass, 5 parts by mass of fumed silica (Erogil R972, manufactured by DEGUSSA) was mixed until uniform. Next, 6 parts by mass of vinyltri (isopropenoxy) silane, 0.5 parts by mass of γ-tetramethylguanidylpropyltrimethoxysilane, and 2 parts by mass of 3-aminopropyltriethoxysilane were mixed under reduced pressure, and room temperature curable organo A polysiloxane composition (Sample 10) was prepared.

[実施例6]
分子鎖両末端が水酸基で封鎖され、粘度が5,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(白石工業製、白艶華CCR)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン15質量部、ジオクチルスズジラウレート0.3質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料11)を作製した。
[Example 6]
Both ends of the molecular chain are blocked with hydroxyl groups, and 100 parts by mass of dimethylpolysiloxane having a viscosity of 5,000 mPa · s, 100 parts by mass of colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Shiruka Hana CCR), fumed silica (manufactured by DEGUSSA, Erosil R972) ) 5 parts by mass were mixed until uniform. Next, 15 parts by weight of vinyltri (methylethylketoxime) silane, 0.3 parts by weight of dioctyltin dilaurate and 2 parts by weight of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 11) was produced.

[実施例7]
分子鎖両末端が水酸基で封鎖され、粘度が5,000mPa・sのジメチルポリシロキサン100質量部、塩基性炭酸亜鉛(堺化学製、NANOFINE−MH)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン15質量部、ジオクチルスズジラウレート0.3質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料12)を作製した。
[Example 7]
Both ends of the molecular chain are blocked with a hydroxyl group, 100 parts by mass of dimethylpolysiloxane having a viscosity of 5,000 mPa · s, 100 parts by mass of basic zinc carbonate (NANOFINE-MH), fumed silica (manufactured by DEGUSSA) Erosyl R972) 5 parts by mass were mixed until uniform. Next, 15 parts by weight of vinyltri (methylethylketoxime) silane, 0.3 parts by weight of dioctyltin dilaurate and 2 parts by weight of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 12) was prepared.

[実施例8]
分子鎖両末端が水酸基で封鎖され、粘度が5,000mPa・sのジメチルポリシロキサン100質量部、表面処理酸化マグネシウム(協和化学製、マグサラット30)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン15質量部、ジオクチルスズジラウレート0.3質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料13)を作製した。
[Example 8]
100 parts by mass of dimethylpolysiloxane having both ends blocked with hydroxyl groups and a viscosity of 5,000 mPa · s, 100 parts by mass of surface-treated magnesium oxide (manufactured by Kyowa Chemical Co., Ltd., Magsarat 30), fumed silica (manufactured by DEGUSSA, Erosil) R972) 5 parts by mass were mixed until uniform. Next, 15 parts by weight of vinyltri (methylethylketoxime) silane, 0.3 parts by weight of dioctyltin dilaurate and 2 parts by weight of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and mixed under reduced pressure. Thus, a room temperature curable organopolysiloxane composition (Sample 13) was prepared.

実施例及び比較例で調製された調製直後の各組成物を用いて、上記と同じ条件で硬化物の物性(初期物性)、剪断接着力、凝集破壊率を測定し、更に保管試験による測定を行った。また、耐油性の評価として、上記と同じ条件で硬化させた硬化物からダンベルを打ち抜き、更にオートマチックトランスミッションオイル[商品名:トヨタキャッスルATF D−II]に120℃の温度で240時間浸漬した。その後、JIS K6249に従って劣化後の物性を確認した。実施例1、比較例3についても同様の評価を行った。結果を表3に示す。   Using each composition immediately after preparation prepared in Examples and Comparative Examples, the physical properties (initial physical properties), shear adhesive strength and cohesive failure rate of the cured product are measured under the same conditions as described above, and further measured by a storage test. went. For evaluation of oil resistance, dumbbells were punched from a cured product cured under the same conditions as described above, and further immersed in an automatic transmission oil [trade name: Toyota Castle ATF D-II] at a temperature of 120 ° C. for 240 hours. Thereafter, the physical properties after deterioration were confirmed according to JIS K6249. The same evaluation was performed for Example 1 and Comparative Example 3. The results are shown in Table 3.

Figure 0005359406
Figure 0005359406

[実施例9]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(白石工業製、白艶華CCR)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を70℃×24時間熟成させたものを添加し、更に、オクチルアミン5質量部を減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料14)を作製した。
分子鎖両末端が水酸基で封鎖され、粘度が5,000mPa・sのジメチルポリシロキサン100質量部、表面がパラフィン処理された重質炭酸カルシウム(丸尾カルシウム製、MCコートP−20)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、シクロヘキサノン3質量部を添加し、減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料15)を作製した。
12段スタティックミキサー付き二連カートリッジに試料10と試料11を充填し、専用ガンで混合吐出し、上記と同じ条件で硬化物の物性(初期物性)、剪断接着力、凝集破壊率を測定し、更に保管試験と耐油性の評価を行った。
[Example 9]
Both ends of the molecular chain are blocked with hydroxyl groups, and 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa · s, 100 parts by mass of colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Hakujyo Hana CCR), fumed silica (produced by DEGUSSA, Erosyl R972) ) 5 parts by mass were mixed until uniform. Subsequently, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 part by mass of dioctyltin dilaurate, and 2 parts by mass of 3-aminopropyltriethoxysilane were added at 70 ° C. for 24 hours, and octylamine 5 was further added. Mass parts were mixed under reduced pressure to prepare a room temperature curable organopolysiloxane composition (Sample 14).
100 parts by mass of dimethylpolysiloxane whose molecular chain both ends are blocked with hydroxyl groups and whose viscosity is 5,000 mPa · s, paraffin-treated heavy calcium carbonate (manufactured by Maruo Calcium, MC Coat P-20) 100 parts by mass, 5 parts by mass of fumed silica (Erogil R972, manufactured by DEGUSSA) was mixed until uniform. Next, 3 parts by mass of cyclohexanone was added and mixed under reduced pressure to prepare a room temperature curable organopolysiloxane composition (Sample 15).
Sample 10 and sample 11 are packed into a 12-stage static mixer-equipped double cartridge, mixed and discharged with a dedicated gun, and the physical properties (initial physical properties), shear adhesive strength, and cohesive failure rate of the cured product are measured under the same conditions as above. Furthermore, the storage test and the oil resistance were evaluated.

[比較例6]
分子鎖両末端が水酸基で封鎖され、粘度が20,000mPa・sのジメチルポリシロキサン100質量部、コロイダル炭酸カルシウム(白石工業製、白艶華CCR)100質量部、煙霧質シリカ(DEGUSSA社製、エロジルR972)5質量部を均一になるまで混合した。次いで、ビニルトリ(メチルエチルケトオキシム)シラン8質量部、ジオクチルスズジラウレート0.05質量部、3−アミノプロピルトリエトキシシラン2質量部を添加し、更に、オクチルアミン5質量部を減圧下で混合して、室温硬化性オルガノポリシロキサン組成物(試料16)を作製した。
12段スタティックミキサー付き二連カートリッジに試料12と上記実施例6と同様にして作製した試料11を充填し、専用ガンで混合吐出し、上記と同じ条件で硬化物の物性(初期物性)、剪断接着力、凝集破壊率を測定し、更に保管試験と耐油性の評価を行った。
[Comparative Example 6]
Both ends of the molecular chain are blocked with hydroxyl groups, and 100 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa · s, 100 parts by mass of colloidal calcium carbonate (manufactured by Shiraishi Kogyo Co., Ltd., Hakujyo Hana CCR), fumed silica (produced by DEGUSSA, Erosyl R972) ) 5 parts by mass were mixed until uniform. Next, 8 parts by mass of vinyltri (methylethylketoxime) silane, 0.05 parts by mass of dioctyltin dilaurate, 2 parts by mass of 3-aminopropyltriethoxysilane were added, and 5 parts by mass of octylamine were mixed under reduced pressure. A room temperature curable organopolysiloxane composition (Sample 16) was prepared.
A double cartridge with a 12-stage static mixer is filled with Sample 12 and Sample 11 prepared in the same manner as in Example 6 above, mixed and discharged with a dedicated gun, and the physical properties (initial physical properties) and shear of the cured product under the same conditions as above. Adhesive strength and cohesive failure rate were measured, and further storage tests and evaluation of oil resistance were performed.

なお、耐油性は、エンジンオイル[商品名:トヨタキャッスルモーターオイルSL 5W20]に120℃の温度で240時間浸漬した。これらの結果を表4に示す。   The oil resistance was immersed in engine oil [trade name: Toyota Castle Motor Oil SL 5W20] at a temperature of 120 ° C. for 240 hours. These results are shown in Table 4.

Figure 0005359406
Figure 0005359406

Claims (4)

(A)分子鎖両末端が水酸基及び/又は加水分解性基で封鎖され、25℃での粘度が25〜1,000,000mPa・sであるジオルガノポリシロキサン: 100質量部、
(B)ケトオキシムシラン類、アルコキシシラン類、アセトキシシラン類、イソプロペノキシシラン類から選ばれる一分子中に3個以上の加水分解性基を含有するオルガノシラン(但し、シランカップリング剤は除く)及び/又はその部分加水分解物:
0.5〜30質量部、
(C)シランカップリング剤及び/又はその部分加水分解物: 0.1〜20質量部、
(D)塩基性充填剤: 1〜500質量部
(E)硬化触媒 0.01〜10質量部
を含有する室温硬化性オルガノポリシロキサン組成物の製造方法であって、(B)、(C)、及び()成分を予め20〜100℃、30分以上2週間以内の条件で加熱養生することにより、熟成させたものを(A)成分、(D)成分に添加することを特徴とする室温硬化性オルガノポリシロキサン組成物の製造方法。
(A) Diorganopolysiloxane in which both ends of the molecular chain are blocked with a hydroxyl group and / or a hydrolyzable group and the viscosity at 25 ° C. is 25 to 1,000,000 mPa · s: 100 parts by mass
(B) Organosilane containing 3 or more hydrolyzable groups in one molecule selected from ketoxime silanes, alkoxysilanes, acetoxysilanes, and isopropenoxysilanes (excluding silane coupling agents) ) And / or partial hydrolysates thereof:
0.5-30 parts by mass,
(C) Silane coupling agent and / or partial hydrolyzate thereof: 0.1 to 20 parts by mass,
(D) Basic filler: 1 to 500 parts by mass ,
(E) A method for producing a room temperature curable organopolysiloxane composition containing 0.01 to 10 parts by mass of a curing catalyst , wherein the components (B) , (C), and ( E ) are previously added to 20 A room temperature-curable organopolysiloxane composition characterized by adding aged product to components (A) and (D) by heating and curing under conditions of -100 ° C. for 30 minutes to 2 weeks Production method.
前記塩基性充填剤が、酸化亜鉛、炭酸カルシウム、酸化マグネシウム、炭酸亜鉛からなる群から選ばれる塩基性充填剤である請求項に記載の製造方法。 The manufacturing method according to claim 1 , wherein the basic filler is a basic filler selected from the group consisting of zinc oxide, calcium carbonate, magnesium oxide, and zinc carbonate. 請求項1又は2に記載の方法により製造された室温硬化性オルガノポリシロキサン組成物。 A room temperature-curable organopolysiloxane composition produced by the method according to claim 1 or 2 . 請求項に記載の組成物を硬化させることにより得られる自動車オイルシール。 An automobile oil seal obtained by curing the composition according to claim 3 .
JP2009059183A 2009-03-12 2009-03-12 Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal Active JP5359406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059183A JP5359406B2 (en) 2009-03-12 2009-03-12 Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059183A JP5359406B2 (en) 2009-03-12 2009-03-12 Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal

Publications (2)

Publication Number Publication Date
JP2010209269A JP2010209269A (en) 2010-09-24
JP5359406B2 true JP5359406B2 (en) 2013-12-04

Family

ID=42969774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059183A Active JP5359406B2 (en) 2009-03-12 2009-03-12 Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal

Country Status (1)

Country Link
JP (1) JP5359406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057281A1 (en) * 2010-10-27 2012-05-03 セメダイン株式会社 Curable composition
US9732261B2 (en) 2011-09-16 2017-08-15 Bluestar Silicones France Sas Method and composition for sealing and assembling components of a power train
WO2019218330A1 (en) * 2018-05-18 2019-11-21 Wacker Chemie Ag Polysiloxane composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113083B2 (en) * 1987-08-28 1995-12-06 東レ・ダウコーニング・シリコーン株式会社 Room temperature curable organopolysiloxane composition
JPH07113086B2 (en) * 1988-06-02 1995-12-06 東レ・ダウコーニング・シリコーン株式会社 Room temperature curable organopolysiloxane composition
JP2522711B2 (en) * 1990-01-12 1996-08-07 信越化学工業株式会社 Room temperature curable organopolysiloxane composition
JP2914838B2 (en) * 1991-10-21 1999-07-05 信越化学工業株式会社 Room temperature curable silicone composition
JP3448433B2 (en) * 1996-07-01 2003-09-22 信越化学工業株式会社 Room temperature curable organopolysiloxane composition
JP2008144073A (en) * 2006-12-12 2008-06-26 Momentive Performance Materials Japan Kk Room temperature-curable organopolysiloxane composition

Also Published As

Publication number Publication date
JP2010209269A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
EP1580236B1 (en) Room temperature-curable organopolysiloxane compositions and automotive parts
EP1816167B1 (en) Magnesium alloy-bonding organopolysiloxane composition having improved chemical resistance
JP2007106944A (en) Room temperature-curable organopolysiloxane composition
US20200385527A1 (en) Moisture curable silicone polymer and uses thereof
JP2006342327A (en) Room temperature curing organopolysiloxane composition
JP5571780B2 (en) Method for sealing and combining drivetrain components
JP6128065B2 (en) Process for producing organopolysiloxane composition for resin adhesive oil seal and automobile oil seal
JP4912754B2 (en) Room temperature curable organopolysiloxane composition
JP2010180382A (en) Ambient temperature-curing organopolysiloxane composition
EP2151480B1 (en) Oily surface adhesive room temperature curing type organopolysiloxane composition and seal
JP7173302B2 (en) Room-temperature-curing organopolysiloxane composition for oil seals and automotive parts
JP3448433B2 (en) Room temperature curable organopolysiloxane composition
JP6131918B2 (en) Method for producing low-foaming room temperature curable organopolysiloxane composition and method for producing automobile oil seal
EP0926205A1 (en) Method of forming a seal in a confined configuration using an alkoxy-functional rtv composition
JP4716043B2 (en) Room temperature curable organopolysiloxane composition
JP5359406B2 (en) Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal
JP2007177032A (en) Room temperature-curable polyorganosiloxane composition
JP2011252079A (en) Room temperature-curable organopolysiloxane composition and automobile oil seal
JP5266788B2 (en) Oil surface adhesive room temperature curable organopolysiloxane composition and cured product thereof
JP6252466B2 (en) Method for producing room temperature curable organopolysiloxane composition
JP2007177033A (en) Room temperature-curable polyorganosiloxane composition
JP2010202794A (en) Room temperature-curable organopolysiloxane composition
JP6031008B2 (en) Method for producing room temperature curable organopolysiloxane composition, and automobile oil seal, architectural sealant and method for producing electrical and electronic parts using cured product of said composition
JP5274034B2 (en) Room temperature curable organopolysiloxane composition
JP5547037B2 (en) Room temperature curable polyorganosiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150