JP5358049B2 - Heat exchange system - Google Patents

Heat exchange system Download PDF

Info

Publication number
JP5358049B2
JP5358049B2 JP2012105539A JP2012105539A JP5358049B2 JP 5358049 B2 JP5358049 B2 JP 5358049B2 JP 2012105539 A JP2012105539 A JP 2012105539A JP 2012105539 A JP2012105539 A JP 2012105539A JP 5358049 B2 JP5358049 B2 JP 5358049B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
pipe
heat exchange
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012105539A
Other languages
Japanese (ja)
Other versions
JP2013234766A (en
Inventor
幸夫 清水
貴幸 清水
Original Assignee
有限会社清水冷機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社清水冷機 filed Critical 有限会社清水冷機
Priority to JP2012105539A priority Critical patent/JP5358049B2/en
Publication of JP2013234766A publication Critical patent/JP2013234766A/en
Application granted granted Critical
Publication of JP5358049B2 publication Critical patent/JP5358049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、流体を廃棄流体の余熱で一次加温し、さらに廃棄流体の余熱を蒸発器で回収するヒートポンプシステムの凝縮器の発する熱で二次加温する熱交換システムと、熱交換システムに用いて好適な熱交換器の分野に属する。   The present invention relates to a heat exchange system that primarily heats a fluid with residual heat of a waste fluid and further heats the waste heat of a waste fluid with a heat pump system that recovers the residual heat of the waste fluid with an evaporator, and a heat exchange system. It belongs to the field of heat exchangers suitable for use.

例えば、特許文献1に記載される発明は、「基本的にはボイラ6により鉱泉水と水道水をそれぞれ加熱するものであって、オーバーフロー水の廃熱を使って第1の熱交換器22で鉱泉水を予熱しさらに、第2の熱交換器23で水道水を予熱するもの」であって、廃熱の2段階での利用によってエネルギー節約効果が期待でき、「オーバーフロー水を再循環させる」ことで、水量節約効果も期待できるものである。しかし、予熱を2段階で行うためには、鉱泉水の予熱は1段階であるから、必ず別途水道水の予熱を行う必要がある。つまり、鉱泉水と水道水とを別個に加熱するシステムにおけるエネルギー回収技術であると言うべきである。   For example, the invention described in Patent Document 1 is “basically heating the mineral spring water and tap water by the boiler 6, and using the waste heat of the overflow water in the first heat exchanger 22. Preheating mineral spring water and further preheating tap water with the second heat exchanger 23 ”, and an energy saving effect can be expected by using the waste heat in two stages.“ Recirculate overflow water ” Therefore, water saving effect can be expected. However, in order to perform preheating in two stages, the preheating of the spa water is in one stage, so it is necessary to preheat tap water separately. In other words, it should be said that this is an energy recovery technique in a system in which the mineral water and tap water are heated separately.

また、特許文献2に記載される発明は、「温水を得るためのヒートポンプシステムに関するものであって、確かに温水は凝縮器3の潜熱により加熱された後、顕熱回収器8で冷媒の顕熱により加熱されている」から、「2段階で加熱している」ということができるかもしれない。しかし、これはヒートポンプシステムの効率的運転に関する技術であって、顕熱回収器8では顕熱のみが回収され、凝縮器3では潜熱のみが回収される、と言いきれるものでもないから、単に凝縮器の熱交換部を長くしたものとの差異が明確でない。そして、排水から熱エネルギーを回収するというエコロジーについて教えていない。   Further, the invention described in Patent Document 2 relates to “a heat pump system for obtaining hot water, and the hot water is certainly heated by the latent heat of the condenser 3, and then the sensible heat recovery unit 8 sensible refrigerant. Since it is heated by heat, it may be said that "it is heated in two stages". However, this is a technique related to the efficient operation of the heat pump system, and it is not necessarily said that only the sensible heat is recovered by the sensible heat recovery unit 8 and only the latent heat is recovered by the condenser 3. The difference from the longer heat exchanger is not clear. And he does not teach the ecology of recovering thermal energy from wastewater.

また、特許文献3に記載される発明は、「大管径のSUS製フレキシブルチューブ内に小管径のSUS製フレキシブルチューブを内蔵して、所望形状に巻いた熱交換器」が示されている。しかしフレキシブルチューブの材質はステンレスであり、形状は巻回形状である。   In addition, the invention described in Patent Document 3 shows “a heat exchanger in which a small-diameter SUS flexible tube is built in a large-diameter SUS flexible tube and wound in a desired shape”. . However, the material of the flexible tube is stainless steel, and the shape is a wound shape.

また、特許文献4に記載される発明は、「内管または外管いずれか一方の断面が、楕円形や長円形等の非円形に形成されている熱交換器に使用する多重管」であって、U字型に連続配列することを教えるに留まっている。   In addition, the invention described in Patent Document 4 is “a multiple tube used for a heat exchanger in which either the inner tube or the outer tube has a non-circular shape such as an oval or an oval cross section”. So, it only teaches to arrange U-shaped continuously.

特開2001−137140号公報JP 2001-137140 A 特開平5−332639号公報JP-A-5-332639 実全昭59−18174号マイクロフィルムNo. 59-18174 microfilm 特開2005−164210号公報JP 2005-164210 A

先行例を見ると、本発明と同一の発明を見いだすことはできない。また、部分手段において類似するものはあっても、熱交換システム全体に目を向けた視点から類似するものを見いだすことができない。本発明が解決しようとする課題は、「ヒートポンプシステムを用いて流体を加温するものを提供する」に当たり、「流体の加温を2段階に分けて無理なく行う」と共に、「加温した流体をただ廃棄することなく、廃棄流体が有する余熱を充分に回収する」ことにより、「システム自体の効率を高めると共にエコロジーに寄与する」ことを第1の課題とする。そして、「熱交換システムにおいてその性能を左右する熱交換器についても、熱の授受が円滑に行われる構成や、伝熱性や加工性に配慮した材料の選択をおこない、熱効率に優れた熱交換器の提供」を第2の課題とする。   Looking at the preceding examples, it is impossible to find the same invention as the present invention. Moreover, even if there is something similar in the partial means, it is not possible to find something similar from the viewpoint of looking at the entire heat exchange system. The problem to be solved by the present invention is to “provide a device for heating a fluid using a heat pump system”, and “to perform fluid heating in two stages without difficulty” and “warmed fluid The first problem is to “increase the efficiency of the system itself and contribute to ecology” by sufficiently recovering the residual heat of the waste fluid without simply discarding the waste. “For heat exchangers that affect the performance of heat exchange systems, the heat exchanger has excellent thermal efficiency by selecting a structure that smoothly transfers heat and selecting materials that take heat transfer and workability into account. "Providing" is the second issue.

本発明に関する熱交換システムは、管路を流れる流体が第1熱交換器により一次加温され、さらに下流に設置された第2熱交換器により二次加温されて貯溜槽に貯溜されるものであって、一次加温は、貯溜槽に貯溜された流体が利用された後の廃棄流体が有する余熱を向流式の第1熱交換器で回収することにより行い、二次加温は、圧縮機と凝縮器と蒸発器とそれらをつなぐ管路とを備えるヒートポンプシステム中で凝縮器の役割を果たす向流式の第2熱交換器が行うように構成され、第1熱交換器で余熱を回収された廃棄流体は、さらに圧縮機と凝縮器と蒸発器とそれらをつなぐ管路とを備えるヒートポンプシステム中で蒸発器の役割を果たす熱交換用コイル管に余熱を供給するため、熱交換用コイル管が収容されている熱源槽に送られて用いられるように構成されてなることを特徴とする。 In the heat exchange system according to the present invention, the fluid flowing through the pipe is primarily heated by the first heat exchanger, and is further heated secondarily by the second heat exchanger installed downstream and stored in the storage tank. The primary heating is performed by recovering the residual heat of the waste fluid after the fluid stored in the storage tank is used by the countercurrent first heat exchanger, and the secondary heating is A counter-current type second heat exchanger that serves as a condenser in a heat pump system including a compressor, a condenser, an evaporator, and a pipe connecting them is configured to perform the residual heat in the first heat exchanger. waste fluid which is recovered in order to further supply excess heat to the coil pipe serves heat exchanger of the evaporator in a heat pump system comprising a compressor, a condenser and an evaporator and a conduit connecting them, heat exchanger It is fed to the heat source bath use coiled tube is accommodated Characterized by comprising configured as needed.

また、本発明に係る熱交換システムは、熱交換用コイル管が並列に配置されており、上流に設けた電磁弁により交互にあるいは同時に開とされることを特徴とする。   Further, the heat exchange system according to the present invention is characterized in that the coil tubes for heat exchange are arranged in parallel and are opened alternately or simultaneously by an electromagnetic valve provided upstream.

また、本発明に係る熱交換システムは、ヒートポンプシステムの管路には電気絶縁手段が施されており、圧縮機と凝縮器と蒸発器とは互いに電気的に絶縁されていることを特徴とする。   Further, the heat exchange system according to the present invention is characterized in that an electrical insulation means is provided in a pipe line of the heat pump system, and the compressor, the condenser, and the evaporator are electrically insulated from each other. .

本発明に関する熱交換システムは、該第1熱交換器と第2熱交換器が、銅管からなる外管の内部に、ステンレス管からなる蛇腹状で可撓性の内管を、外管と内管との間にほぼ均等な流路を構成するように配設してなることを特徴とする。 In the heat exchange system according to the present invention , the first heat exchanger and the second heat exchanger have an accordion-like flexible inner tube made of a stainless steel tube and an outer tube made of a stainless steel tube inside the outer tube made of a copper tube. It is characterized by being arranged so as to form a substantially uniform flow path between the inner pipe and the inner pipe.

本発明に関する熱交換システムは、該第1熱交換器と第2熱交換器に用いられる該ステンレス管からなる蛇腹状で可撓性の内管が、長手方向に螺旋形状の外形を呈していることを特徴とする。 In the heat exchange system according to the present invention, the bellows-like flexible inner tube made of the stainless steel tube used in the first heat exchanger and the second heat exchanger has a helical outer shape in the longitudinal direction. It is characterized by that.

本発明に関する熱交換システムは、該第1熱交換器と第2熱交換器に用いられる該外管が直管部と曲管部とが交互に連続する形状であって、外管は内管一端部を基準として時計回りあるいは反時計回りのいずれかの方向に略直角に折り曲げ加工されて多数の曲管部が形成されるものであり、隣接する直管部同士の間隔がほぼ等しくされてなることを特徴とする。 In the heat exchange system according to the present invention, the outer pipe used in the first heat exchanger and the second heat exchanger has a shape in which straight pipe portions and curved pipe portions are alternately continuous, and the outer pipe is an inner pipe. A large number of bent pipe parts are formed by bending at a right angle in either the clockwise or counterclockwise direction with respect to one end, and the intervals between adjacent straight pipe parts are made substantially equal. It is characterized by becoming.

本発明の熱交換システムは、廃棄流体が有する余熱で流体を一次加温すると共に、さらに廃棄流体の有する余熱を熱源槽で回収するヒートポンプシステムを用いて流体の二次加温を行うものであるから、廃棄流体の廃熱利用が完璧であってヒートポンプシステムの小容量化を図ることができるから、エコロジーに寄与するところが大きい。
本発明の熱交換システムは、蒸発器の役目を果たす熱交換用コイル管が並列に配置されて電磁弁により交互に切り換えることができるので、所望により熱交換用コイル管の解氷を行うことが容易である。
本発明の熱交換システムは、そこで用いられるヒートポンプシステム中の圧縮機と凝縮器と蒸発器とが互いに、管路に設けた電気絶縁手段により電気的に絶縁されているので、感電を防止できるほか、熱交換に用いられる銅管等の電触防止に寄与することが期待される。
本発明の熱交換システムは、熱交換器が銅管の内部に蛇腹状で可撓性のステンレス管を配設したものであるから、折り曲げ加工が容易で、加工に特殊な折り曲げ機械を必要としない。
本発明の熱交換システムは、熱交換器が蛇腹状で可撓性のステンレス管が長手方向に螺旋形状の外形を呈しているので、たとえ外管に折り曲げ加工を施したとしても、外管と内管との間に形成される媒体流路が閉塞する惧れは全くない。
本発明の熱交換システムは、熱交換器が外管の直管部と曲管部とが交互に連続する構成を有すると共に、同一方向に略直角に折り曲げ加工されてなるものであって、直管部同士の間隔がほぼ等しくされてなるものであるから、本来所定の長さを必要とする直線状の熱交換器でも所定の面積内でコンパクト化することが可能であり、管路の密集構成により放熱ロスを少なくすることができる。折り曲げ加工により自動的に曲管部が形成されるものであるから、特殊な折り曲げ機械を必要とせず、容易に熱交換器を製作することができるのである。
The heat exchange system of the present invention performs secondary heating of the fluid by using a heat pump system that primarily heats the fluid with the residual heat of the waste fluid and collects the residual heat of the waste fluid in a heat source tank. Therefore, the waste heat utilization of the waste fluid is perfect, and the capacity of the heat pump system can be reduced, which greatly contributes to ecology.
In the heat exchange system of the present invention, since the coil tubes for heat exchange serving as an evaporator are arranged in parallel and can be switched alternately by a solenoid valve, the coil tubes for heat exchange can be deiced as desired. Easy.
In the heat exchange system of the present invention, the compressor, the condenser, and the evaporator in the heat pump system used therein are electrically insulated from each other by the electrical insulation means provided in the pipe line. It is expected to contribute to the prevention of contact of copper pipes used for heat exchange.
Heat exchange system of the present invention, since it is intended to heat exchanger were provided with a flexible stainless steel tube in the bellows-like inside the copper tube, easy bending, require special folding machine processing do not do.
In the heat exchange system of the present invention, the heat exchanger has a bellows-like shape and the flexible stainless steel tube has a helical outer shape in the longitudinal direction. Therefore, even if the outer tube is bent, There is no possibility that the medium flow path formed between the inner pipe and the inner pipe is blocked.
Heat exchange system of the present invention, together with the heat exchanger has a structure in which a straight pipe portion and the curved pipe portion of the outer tube continuously alternately, be those formed by a substantially right angle bending in the same direction, straight Since the intervals between the pipe parts are made substantially equal, even a linear heat exchanger that originally requires a predetermined length can be made compact within a predetermined area, and the pipes are densely packed. The heat dissipation loss can be reduced by the configuration. Since the bent pipe portion is automatically formed by bending, a heat exchanger can be easily manufactured without requiring a special bending machine.

図1は本発明の熱交換システムの一例を表す回路図である。FIG. 1 is a circuit diagram showing an example of the heat exchange system of the present invention. 図2は本発明の熱交換システム用熱交換器の一例を表す部分断面図である。FIG. 2 is a partial cross-sectional view showing an example of the heat exchanger for the heat exchange system of the present invention. 図3は本発明の熱交換システム用熱交換器の一例を表す外観図である。FIG. 3 is an external view showing an example of the heat exchanger for the heat exchange system of the present invention.

本発明を実施するための形態としては、管路を流れる流体が第1熱交換器により一次加温され、さらに下流に設置された第2熱交換器により二次加温されて貯溜槽に貯溜されるものであって、一次加温は、貯溜槽に貯溜された流体が利用された後の廃棄流体が有する余熱を向流式の第1熱交換器で回収することにより行い、二次加温は、圧縮機と凝縮器と蒸発器とそれらをつなぐ管路とを備えるヒートポンプシステム中で凝縮器の役割を果たす向流式の第2熱交換器が行うように構成され、第1熱交換器で余熱を回収された廃棄流体は、さらに圧縮機と凝縮器と蒸発器とそれらをつなぐ管路とを備えるヒートポンプシステム中で蒸発器の役割を果たす熱交換用コイル管に余熱を供給するため、熱交換用コイル管が収容されている熱源槽に送られて用いられるように構成されてなることを特徴とする熱交換システム、とすることができる。 As a form for implementing this invention, the fluid which flows through a pipe line is heated primarily by the 1st heat exchanger, and is further heated by the 2nd heat exchanger installed downstream, and is stored in a storage tank. The primary heating is performed by recovering the residual heat of the waste fluid after the fluid stored in the storage tank is used by the countercurrent first heat exchanger, and performing secondary heating. The temperature is configured to be performed by a countercurrent second heat exchanger that acts as a condenser in a heat pump system including a compressor, a condenser, an evaporator, and a pipe connecting the first heat exchange. In order to supply the remaining heat to the coil tube for heat exchange that serves as an evaporator in a heat pump system that further includes a compressor, a condenser, an evaporator, and a pipe connecting them. , fed to the heat source tank for heat exchange coil tubes are accommodated It is configured to be used Te may be a heat exchange system, characterized by.

本発明を実施するための形態としては、該熱交換用コイル管が並列に配置されており、上流に設けた電磁弁により交互にあるいは同時に開とされることを特徴とする、請求項1に記載される熱交換システム、とすることが出来る。     As a form for carrying out the present invention, the coil tubes for heat exchange are arranged in parallel, and are alternately or simultaneously opened by an electromagnetic valve provided upstream. The heat exchange system described.

本発明を実施するための形態としては、該ヒートポンプシステムの管路には電気絶縁手段が施されており、圧縮機と凝縮器と蒸発器とは互いに電気的に絶縁されていることを特徴とする、請求項1又は2に記載される熱交換システム、とすることが出来る。     As a mode for carrying out the present invention, the heat pump system is provided with electrical insulation means in the pipeline, and the compressor, the condenser and the evaporator are electrically insulated from each other. The heat exchange system according to claim 1 or 2 can be provided.

本発明を実施するための形態としては、該第1熱交換器と第2熱交換器が、銅管からなる外管の内部に、ステンレス管からなる蛇腹状で可撓性の内管を、外管と内管との間にほぼ均等な流路を構成するように配設してなることを特徴とする請求項1〜3のいずれか1項に記載される熱交換システム、とすることができる。 As a form for carrying out the present invention, the first heat exchanger and the second heat exchanger are provided with a bellows-like flexible inner tube made of a stainless steel tube inside an outer tube made of a copper tube, The heat exchange system according to any one of claims 1 to 3, wherein the heat exchange system is arranged so as to form a substantially uniform flow path between the outer tube and the inner tube. Can do.

本発明を実施するための形態としては、該第1熱交換器と第2熱交換器に用いられる該ステンレス管からなる蛇腹状で可撓性の内管が、長手方向に螺旋形状の外形を呈していることを特徴とする、請求項1〜4のいずれか1項に記載される熱交換システム、とすることができる。 As a mode for carrying out the present invention, a bellows-like flexible inner tube made of the stainless steel tube used for the first heat exchanger and the second heat exchanger has a helical shape in the longitudinal direction. It can be set as the heat exchange system as described in any one of Claims 1-4 characterized by the above-mentioned .

本発明を実施するための形態としては、該第1熱交換器と第2熱交換器に用いられる該外管が直管部と曲管部とが交互に連続する形状であって、外管は内管一端部を基準として時計回りあるいは反時計回りのいずれかの方向に略直角に折り曲げ加工されて多数の曲管部が形成されるものであり、隣接する直管部同士の間隔がほぼ等しくされてなることを特徴とする、請求項1〜5のいずれか1項に記載される熱交換システム、とすることができる。
As an embodiment for carrying out the present invention, the outer pipe used in the first heat exchanger and the second heat exchanger has a shape in which straight pipe portions and curved pipe portions are alternately continuous, Is bent at a substantially right angle in either the clockwise or counterclockwise direction with respect to one end of the inner tube to form a large number of bent tube portions, and the interval between adjacent straight tube portions is approximately It can be set as the heat exchange system as described in any one of Claims 1-5 characterized by being made equal.

図1は、本発明の熱交換システムの一例を表す回路図である。例えば比較的低温の水や鉱泉水のような流体は第1管路1を経て第1熱交換器20で一次加温され、第2管路2を経て第2熱交換器21でさらに二次加温され、第3管路3を経て第1貯溜槽22に貯溜される。第1貯溜槽22は例えばタンクや浴槽であって、利用された後に廃棄されたりオーバーフローした廃棄流体は余熱を保持した状態で第2貯溜槽23に貯溜される。なお、第2管路2は管継手32で接続されてなり、第4管路4は管継手33で接続されてなっているので、管継手32,33部分で配管を外せば点検や清掃の際に好都合である。   FIG. 1 is a circuit diagram showing an example of the heat exchange system of the present invention. For example, fluid such as relatively low-temperature water or mineral water is primarily heated by the first heat exchanger 20 via the first pipe 1, and further secondary by the second heat exchanger 21 via the second pipe 2. It is heated and stored in the first storage tank 22 via the third pipe 3. The first storage tank 22 is, for example, a tank or a bathtub, and waste fluid that has been discarded or overflowed after being used is stored in the second storage tank 23 in a state in which residual heat is retained. In addition, since the 2nd pipe line 2 is connected by the pipe joint 32, and the 4th pipe line 4 is connected by the pipe joint 33, if piping is removed in the pipe joints 32 and 33 part, inspection and cleaning will be carried out. In some cases.

ポンプ24を稼働すると、余熱を保持した状態の廃棄流体は、第2貯溜槽23の上層部から第5管路を介してポンプ24に吸い込まれた後、第6管路6を介して入口管継手34から第1熱交換器20に流入して、第1管路1から流入する流体との間で向流式に熱交換を行い、温度が低下した状態で出口管継手35から排出される。一次加温により余熱が回収された廃棄流体は第7管路7を経て切換弁26に至るが、通常は第9管路9を経て熱源槽30に供給されるようになっている。なお、切換弁26を切り換えて第8管路8を第9管路9につなげば、別途、熱源槽30に補給用熱源水を供給することもできる。熱源槽30内で余熱を回収された廃棄流体は、適宜第17管路17を経て排出される。   When the pump 24 is operated, the waste fluid in the state where the residual heat is retained is sucked into the pump 24 from the upper layer portion of the second storage tank 23 through the fifth pipe, and is then introduced into the inlet pipe through the sixth pipe 6. It flows into the 1st heat exchanger 20 from the joint 34, heat-exchanges with the fluid which flows in from the 1st pipe line 1 in a countercurrent type, and is discharged | emitted from the exit pipe joint 35 in the state which the temperature fell. . The waste fluid from which the residual heat has been recovered by the primary heating reaches the switching valve 26 through the seventh pipe 7, but is normally supplied to the heat source tank 30 through the ninth pipe 9. In addition, if the switching valve 26 is switched and the eighth pipe 8 is connected to the ninth pipe 9, the supplementary heat source water can be separately supplied to the heat source tank 30. The waste fluid whose residual heat has been recovered in the heat source tank 30 is appropriately discharged through the seventeenth pipe line 17.

引き続きヒートポンプ系統の説明を行う。圧縮機25を稼働させると、媒体は高温・高圧に圧縮されて第10管路10を介して入口管継手36から第2熱交換器21に送られる。第2熱交換器21はヒートポンプ系統において凝縮器の役割を果たすものであって、流入した媒体はその顕熱と媒体が液化するときに放出する潜熱(気化熱)とにより第2管路2から流入する流体との間で向流式に熱交換を行ない、流体を二次加温する。第2熱交換器21で熱交換を終えた媒体は出口管継手37から流出して第11管路11を経て第12管路と第13管路13とに分岐する。第12管路12の下流には電磁弁27と膨張弁28が順に配置され好ましくは銅管製の熱交換用コイル管29から第14管路14に至るよう構成されている。一方、分岐した第13管路13の下流には同じく電磁弁27と膨張弁28が順に配置され好ましくは銅管製の熱交換用コイル管29から第15管路15に至るよう構成されている。双方の電磁弁27は、通常、交互に開とされる様構成されているので、膨張弁28に流入した媒体は急速に減圧されて熱交換用コイル管29に至り、熱源槽30内の廃棄流体の余熱を得ることにより気化される。第14管路14または第15管路15から流出した気化した媒体は第16管路16を経て再び圧縮機25で圧縮されるサイクルを繰り返すのである。熱交換用コイル管29に氷が付いたような場合、一方の電磁弁27を閉とし他方の電磁弁27を開とする管路切換操作を行い、第12管路12と第13管路13を切換えてヒートポンプシステムの運転を続ければ熱交換用コイル管29に着氷した氷の解氷が熱源槽30内の廃棄流体の余熱により行う事ができるのである。所望により、双方の電磁弁27を共に開として第12管路12と第13管路13との同時運転を行うことを妨げるものでは決してない。圧縮機25の上流には適宜アキュムレータを設置することができる。   Next, the heat pump system will be explained. When the compressor 25 is operated, the medium is compressed to a high temperature and a high pressure, and is sent to the second heat exchanger 21 from the inlet pipe joint 36 via the tenth pipe line 10. The second heat exchanger 21 serves as a condenser in the heat pump system, and the inflowing medium is discharged from the second pipe 2 by the sensible heat and latent heat (heat of vaporization) released when the medium is liquefied. Heat exchange is performed countercurrently with the inflowing fluid, and the fluid is secondarily heated. The medium that has finished heat exchange in the second heat exchanger 21 flows out of the outlet pipe joint 37, branches through the eleventh pipe line 11 to the twelfth pipe line 13 and the thirteenth pipe line 13. An electromagnetic valve 27 and an expansion valve 28 are sequentially arranged downstream of the twelfth pipe line 12 and are preferably configured to extend from a heat exchange coil pipe 29 made of copper pipe to the fourteenth pipe line 14. On the other hand, an electromagnetic valve 27 and an expansion valve 28 are similarly arranged in this order downstream of the branched thirteenth pipe line 13 and preferably configured to reach the fifteenth line 15 from a heat exchange coil pipe 29 made of copper pipe. . Since both the solenoid valves 27 are normally configured to be opened alternately, the medium flowing into the expansion valve 28 is rapidly decompressed and reaches the coil tube 29 for heat exchange, and is discarded in the heat source tank 30. It is vaporized by obtaining the residual heat of the fluid. The vaporized medium flowing out from the fourteenth pipe line 14 or the fifteenth pipe line 15 repeats the cycle of being compressed again by the compressor 25 through the sixteenth pipe line 16. When ice is attached to the coil tube 29 for heat exchange, a line switching operation is performed in which one electromagnetic valve 27 is closed and the other electromagnetic valve 27 is opened. If the operation of the heat pump system is continued by switching the above, defrosting of the ice icing on the heat exchange coil tube 29 can be performed by the residual heat of the waste fluid in the heat source tank 30. If desired, both solenoid valves 27 may be opened to prevent simultaneous operation of the twelfth pipe line 12 and the thirteenth pipe line 13. An accumulator can be appropriately installed upstream of the compressor 25.

上記ヒートポンプ系統の配管に関して、圧縮機25と凝縮器たる第2熱交換器21との間の第10管路10には第1電気絶縁手段40が設けてある。また、凝縮器たる第2熱交換器21と蒸発器たる熱交換用コイル管29との間の第11管路11には第2電気絶縁手段41が設けてある。そして、蒸発器たる熱交換用コイル管29と圧縮機25との間の第16管路16には第3電気絶縁手段42が設けてある。各電気絶縁手段40,41,42は管路10,11,16を伝って電流が管路系を流れることを防止するもので、感電防止の役割や熱交換用銅管の電触の発生を防止する効果が期待できる。   Regarding the piping of the heat pump system, the first electrical insulation means 40 is provided in the tenth pipe line 10 between the compressor 25 and the second heat exchanger 21 as a condenser. A second electrical insulating means 41 is provided in the eleventh pipe line 11 between the second heat exchanger 21 as a condenser and the heat exchange coil pipe 29 as an evaporator. A third electrical insulating means 42 is provided in the sixteenth pipe line 16 between the heat exchange coil pipe 29 as an evaporator and the compressor 25. Each of the electric insulation means 40, 41, and 42 prevents the current from flowing through the pipeline system through the pipelines 10, 11, and 16, and serves to prevent an electric shock and to generate an electric contact of the copper tube for heat exchange. The effect to prevent can be expected.

図1の熱交換システムを、鉱泉水を加温して源泉掛け流し方式で用いるものに適用した場合の例につき、温度の説明をする。第1管路1には10℃〜15℃の鉱泉水を取り込み、第1熱交換器20で38℃に一次加温して第2熱交換器21に送る。第2熱交換器21で50℃に二次加温して浴槽22に送り源泉掛け流し方式の温泉として使用するものとする。オーバーフローしたお湯は排湯槽23に貯溜されるが、温度は42℃とする。第1熱交換器20の入口管継手34には42℃のお湯が供給され、第1の熱交換器20で熱交換がなされ出口管継手35から15℃で排出され熱源槽30に送られる。熱源槽30で余熱を失った水は、2℃〜3℃まで冷却された後、第17管路17より適宜排出される。鉱泉水は第1の熱交換器20で38℃まで加温されているので、さらに50℃まで加温するに当たり、第2の熱交換器21を含むヒートポンプ系統の容量を大きくする必要がない。   The temperature will be described with respect to an example in which the heat exchanging system of FIG. 1 is applied to a system in which the mineral water is heated and used in the source flow method. Mineral spring water of 10 ° C. to 15 ° C. is taken into the first pipe line 1, and is first heated to 38 ° C. by the first heat exchanger 20 and sent to the second heat exchanger 21. It is assumed that the second heat exchanger 21 is secondarily heated to 50 ° C., and is used as a hot spring with a source spring flowing into the bathtub 22. The overflowing hot water is stored in the hot water bath 23, and the temperature is 42 ° C. Hot water of 42 ° C. is supplied to the inlet pipe joint 34 of the first heat exchanger 20, heat exchange is performed in the first heat exchanger 20, the exhaust pipe 35 is discharged at 15 ° C., and is sent to the heat source tank 30. The water that has lost the residual heat in the heat source tank 30 is cooled to 2 ° C. to 3 ° C. and then appropriately discharged from the 17th pipe line 17. Since the mineral water is heated to 38 ° C. by the first heat exchanger 20, it is not necessary to increase the capacity of the heat pump system including the second heat exchanger 21 for further heating to 50 ° C.

図2は、本発明の熱交換システム用熱交換器の一例を表す部分断面図である。図示される熱交換器は熱交換用二重管50から構成されている。銅製の外管51の内部には、ステンレス製で蛇腹状の内管52が同心状に配置されている。内管52は蛇腹状を呈しているため山部と谷部が交互に続くものが一般的である。ステンレス材としては、SUS316、厚さ0.3mmのものが好適である。図2では蛇腹状の内管52が長手方向に螺旋状を描くものも包含することを表しているので、山部と谷部はそれぞれ長手方向に連続している。外管51と内管52との間には適宜位置決めスペーサー55が配設されている。位置決めスペーサー55は蛇腹の山部に適宜設けられるが、外管51と内管52との間に形成される媒体通路53を決して塞ぐものであってはならない。元々内管52が蛇腹状とされているので、伝熱面積が大きくなって伝熱効果が高まるものであるが、媒体流路53に媒体を流し、流体流路に流体を矢印で示すように向流的に流せば、媒体も流体も共に蛇腹の谷部で渦が生じて乱流を発生するので熱交換が一層促進される。また、蛇腹状の内管52を同心状に内部に収容した外管51を折り曲げ加工する場合、内管52は蛇腹状を呈しているため可撓性であるから、曲げ加工が容易な銅管からなる外管51の曲げ加工に容易に追随して変形するので、総じて曲げ加工を容易に行うことができるのである。   FIG. 2 is a partial cross-sectional view showing an example of a heat exchanger for a heat exchange system according to the present invention. The illustrated heat exchanger is composed of a double tube 50 for heat exchange. Inside the copper outer tube 51, a stainless steel bellows-like inner tube 52 is concentrically arranged. Since the inner tube 52 has a bellows shape, it is general that the peaks and valleys continue alternately. As the stainless steel material, SUS316 having a thickness of 0.3 mm is suitable. FIG. 2 shows that the bellows-like inner tube 52 includes a spiral shape in the longitudinal direction, so that the peak portion and the valley portion are continuous in the longitudinal direction. A positioning spacer 55 is appropriately disposed between the outer tube 51 and the inner tube 52. The positioning spacer 55 is appropriately provided at the peak portion of the bellows, but it should never block the medium passage 53 formed between the outer tube 51 and the inner tube 52. Since the inner pipe 52 is originally formed in a bellows shape, the heat transfer area is increased and the heat transfer effect is enhanced. However, as shown in FIG. When flowing countercurrently, vortices are generated in the bellows valleys of both the medium and the fluid to generate turbulent flow, thereby further promoting heat exchange. Further, when the outer tube 51 in which the bellows-like inner tube 52 is concentrically housed is bent, the inner tube 52 is flexible because it has a bellows shape, and thus a copper tube that can be easily bent. Since the outer tube 51 made of the material is easily followed by bending, it can be easily bent as a whole.

図3は、本発明の熱交換システム用熱交換器の一例を表す外観図である。第2図に示される熱交換用二重管50を用いて作成されたものであり、熱交換器60は内管一端部64を基準として外側に渦巻き状に似たような拡がりを見せる形状を呈している。しかし、この熱交換器60は曲管のみで形成される渦巻き型とは異なり、直管部61と曲管部62を多数有していることが特徴である。つまり、直管部61と曲管部62とが交互に連続しているのである。製作に就き述べると、内管一端部64の近傍で外管を反時計方向に略90度折り曲げ加工する。次いで、直管部の適当な位置で、同様に外管を反時計方向に略90度折り曲げ加工する。以下同様な折り曲げ加工を繰り返すことにより、外側に渦巻き状に似たような拡がりを見せる形状を形成させるが、多数の隣接する直管部61同士の間隔はほぼ等しく形成する。このとき、隣接する曲管部62同志の間隔もほぼ等しく形成される。このような構成により熱交換器60は同一平面状に配置されて、略矩形状を呈する構成とされる。熱交換器60の一端部では内管一端部64が突出し、他端部では内管他端部65が突出形成され、一端部には外管連通一端部66が形成され、他端部には外管連通他端部67が形成されている。折り曲げ加工は反時計方向ではなく、時計方向に行っても良いことは自明であるが、折り曲げ方向を一定にすることが前提である。このように熱交換器60を構成すれば、長さを必要とする熱交換器60であってもコンパクトに製作することが可能であって、配管同志が密集することにより放熱ロスを少なくすることができる。したがって、例えば内管一端部64から鉱泉水等の流体を送り内管他端部65から取り出し、外管連通他端部67からお湯や冷媒等の媒体を送って外管連通一端部66から取り出せば、狭い面積内で有効に熱交換を行うことができる。折り曲げ加工自体も、直管部61を有効利用することにより折り曲げ加工を施した部分が曲管部62を自動的に形成するものであるから、特殊な折り曲げ機械を採用しなくても、容易に熱交換器60を製作することができる。   FIG. 3 is an external view showing an example of the heat exchanger for the heat exchange system of the present invention. The heat exchanger 60 is formed using the double tube 50 for heat exchange shown in FIG. 2, and the heat exchanger 60 has a shape that looks like a spiral on the outside with one end 64 of the inner tube as a reference. Presents. However, this heat exchanger 60 is characterized by having a large number of straight pipe sections 61 and curved pipe sections 62, unlike a spiral type formed only of bent pipes. That is, the straight pipe part 61 and the curved pipe part 62 are alternately continued. In production, the outer tube is bent approximately 90 degrees counterclockwise in the vicinity of the inner tube one end 64. Next, the outer tube is similarly bent approximately 90 degrees counterclockwise at an appropriate position of the straight tube portion. Thereafter, by repeating the same bending process, a shape similar to a spiral shape is formed on the outside, but the intervals between a large number of adjacent straight pipe portions 61 are formed to be substantially equal. At this time, the intervals between the adjacent curved pipe portions 62 are also formed to be substantially equal. With such a configuration, the heat exchangers 60 are arranged on the same plane and have a substantially rectangular shape. One end portion of the heat exchanger 60 protrudes from one end portion of the inner tube 64, and the other end portion protrudes from the other end portion 65 of the inner tube, and one end portion forms an outer tube communication end portion 66, and the other end portion An outer pipe communication other end portion 67 is formed. Although it is obvious that the bending process may be performed in the clockwise direction instead of the counterclockwise direction, it is assumed that the bending direction is constant. If the heat exchanger 60 is configured in this way, even the heat exchanger 60 that requires a length can be manufactured in a compact manner, and the heat dissipation loss can be reduced by dense piping. Can do. Therefore, for example, a fluid such as mineral water is fed from the inner pipe one end portion 64 and taken out from the inner pipe other end portion 65, and a medium such as hot water or a refrigerant is sent from the outer pipe communicating other end portion 67 and taken out from the outer pipe communicating one end portion 66. Thus, heat exchange can be performed effectively within a small area. Since the bent portion itself is formed by automatically using the straight pipe portion 61 so that the bent portion 62 is automatically formed, the bending portion itself can be easily formed without using a special bending machine. The heat exchanger 60 can be manufactured.

廃棄流体が持つ余熱で流体の一次加温をすると共に、さらに廃棄流体の有する余熱を熱源槽で回収するヒートポンプシステムを用いて流体の二次加温を行うものであるから、余熱利用が完璧であってヒートポンプシステムの小容量化を図ることができる。また、採用する材料も熱交換の効率や良好な機械加工性に寄与するものを選んでいるので、エコロジーやコスト低減に多大な貢献をすることが大いに期待される。そして、この発明を源泉掛け流しタイプの温泉や浴場に適用すれば、常に清潔なお湯を湯船に供給することができる上、燃料費を削減して濾過器やメンテも不要な低ランニングコストを実現できるのである。また、加温がボイラ加熱に比較して緩やかであるから、温泉水の泉質が変成しにくい特性のあることが明らかであることから広く普及が期待できる。   In addition to the primary heating of the fluid by the residual heat of the waste fluid, and the secondary heating of the fluid using a heat pump system that recovers the residual heat of the waste fluid in the heat source tank, the use of the residual heat is perfect. Thus, the capacity of the heat pump system can be reduced. In addition, since the materials to be used are selected to contribute to the efficiency of heat exchange and good machinability, it is highly expected that they will contribute greatly to ecology and cost reduction. And if this invention is applied to a hot spring or bathhouse that flows directly from the source, clean hot water can always be supplied to the bathtub, while fuel costs are reduced and low running costs that do not require a filter or maintenance are realized. It can be done. Moreover, since warming is moderate compared with boiler heating, it is clear that the quality of the hot spring water is difficult to transform, so that it can be widely spread.

1 第1管路
2 第2管路
3 第3管路
4 第4管路
5 第5管路
6 第6管路
7 第7管路
8 第8管路
9 第9管路
20 第1熱交換器
21 第2熱交換器(凝縮器)
22 第1貯溜槽(例.タンク、浴槽)
23 第2貯溜槽(例.タンク、排湯槽)
24 ポンプ
25 圧縮機
26 切換弁
27 電磁弁
28 膨張弁
29 熱交換用コイル管(蒸発器)
30 熱源槽
50 熱交換用二重管
51 外管
52 内管
53 媒体流路
54 流体流路
55 位置決めスペーサー
60 熱交換器
61 直管部
62 曲管部
64 内管一端部
65 内管他端部
66 外管連通一端部
67 外管連通他端部
DESCRIPTION OF SYMBOLS 1 1st pipeline 2 2nd pipeline 3 3rd pipeline 4 4th pipeline 5 5th pipeline 6 6th pipeline 7 7th pipeline 8 8th pipeline 9 9th pipeline 20 1st heat exchange 21 Second heat exchanger (condenser)
22 First storage tank (eg tank, bathtub)
23 Second storage tank (eg tank, hot water tank)
24 Pump 25 Compressor 26 Switching valve 27 Solenoid valve 28 Expansion valve 29 Heat exchange coil tube (evaporator)
30 heat source tank 50 heat exchange double pipe 51 outer pipe 52 inner pipe 53 medium flow path 54 fluid flow path 55 positioning spacer 60 heat exchanger 61 straight pipe part 62 curved pipe part 64 inner pipe one end part 65 inner pipe other end part 66 One end of outer tube communication 67 The other end of outer tube communication

Claims (6)

管路を流れる流体が第1熱交換器により一次加温され、さらに下流に設置された第2熱交換器により二次加温されて貯溜槽に貯溜されるものであって、一次加温は、貯溜槽に貯溜された流体が利用された後の廃棄流体が有する余熱を向流式の第1熱交換器で回収することにより行い、二次加温は、圧縮機と凝縮器と蒸発器とそれらをつなぐ管路とを備えるヒートポンプシステム中で凝縮器の役割を果たす向流式の第2熱交換器が行うように構成され、第1熱交換器で余熱を回収された廃棄流体は、さらに圧縮機と凝縮器と蒸発器とそれらをつなぐ管路とを備えるヒートポンプシステム中で蒸発器の役割を果たす熱交換用コイル管に余熱を供給するため、熱交換用コイル管が収容されている熱源槽に送られて用いられるように構成されてなることを特徴とする熱交換システム。 The fluid flowing through the pipe is primarily heated by the first heat exchanger, is further heated by the second heat exchanger installed downstream, and is stored in the storage tank. The residual heat of the waste fluid after the fluid stored in the storage tank is used is recovered by the countercurrent first heat exchanger, and the secondary heating is performed by the compressor, the condenser, and the evaporator. And a counter-flow type second heat exchanger that acts as a condenser in a heat pump system including a pipe connecting them, and the waste fluid from which the residual heat is recovered by the first heat exchanger is In addition, a heat exchange coil tube is accommodated to supply surplus heat to the heat exchange coil tube serving as an evaporator in a heat pump system including a compressor, a condenser, an evaporator, and a pipe connecting them . this made is configured to be used is sent to the heat source tank Heat exchange system according to claim. 該熱交換用コイル管が並列に配置されており、上流に設けた電磁弁により交互にあるいは同時に開とされることを特徴とする、請求項1に記載される熱交換システム。   The heat exchange system according to claim 1, wherein the coil tubes for heat exchange are arranged in parallel and are alternately or simultaneously opened by a solenoid valve provided upstream. 該ヒートポンプシステムの管路には電気絶縁手段が施されており、圧縮機と凝縮器と蒸発器とは互いに電気的に絶縁されていることを特徴とする、請求項1又は2に記載される熱交換システム。   The pipe line of the heat pump system is provided with an electrical insulation means, and the compressor, the condenser and the evaporator are electrically insulated from each other. Heat exchange system. 該第1熱交換器と第2熱交換器が、銅管からなる外管の内部に、ステンレス管からなる蛇腹状で可撓性の内管を、外管と内管との間にほぼ均等な流路を構成するように配設してなることを特徴とする請求項1〜3のいずれか1項に記載される熱交換システム。 The first heat exchanger and the second heat exchanger have a bellows-like flexible inner tube made of a stainless steel tube inside an outer tube made of a copper tube, and are substantially evenly arranged between the outer tube and the inner tube. It arrange | positions so that a simple flow path may be comprised, The heat exchange system described in any one of Claims 1-3 characterized by the above-mentioned. 該第1熱交換器と第2熱交換器に用いられる該ステンレス管からなる蛇腹状で可撓性の内管が、長手方向に螺旋形状の外形を呈していることを特徴とする、請求項1〜4のいずれか1項に記載される熱交換システム。 Inner tube flexible bellows made of the stainless steel tube used in the first heat exchanger and the second heat exchanger, characterized in that it exhibits an outer shape of the helical shape in the longitudinal direction, claim The heat exchange system described in any one of 1-4. 該第1熱交換器と第2熱交換器に用いられる該外管が直管部と曲管部とが交互に連続する形状であって、外管は内管一端部を基準として時計回りあるいは反時計回りのいずれかの方向に略直角に折り曲げ加工されて多数の曲管部が形成されるものであり、隣接する直管部同士の間隔がほぼ等しくされてなることを特徴とする、請求項1〜5のいずれか1項に記載される熱交換システム。 The outer pipe used in the first heat exchanger and the second heat exchanger has a shape in which straight pipe portions and curved pipe portions are alternately continuous, and the outer pipe is rotated clockwise with respect to one end of the inner pipe or anti is intended any of a number of curved pipe section is substantially perpendicular bending in a clockwise direction is formed, characterized in that the spacing between the adjacent straight pipe section is formed by substantially equal, wherein Item 6. The heat exchange system according to any one of items 1 to 5.
JP2012105539A 2012-05-03 2012-05-03 Heat exchange system Active JP5358049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012105539A JP5358049B2 (en) 2012-05-03 2012-05-03 Heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012105539A JP5358049B2 (en) 2012-05-03 2012-05-03 Heat exchange system

Publications (2)

Publication Number Publication Date
JP2013234766A JP2013234766A (en) 2013-11-21
JP5358049B2 true JP5358049B2 (en) 2013-12-04

Family

ID=49761030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012105539A Active JP5358049B2 (en) 2012-05-03 2012-05-03 Heat exchange system

Country Status (1)

Country Link
JP (1) JP5358049B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098276A1 (en) * 2013-12-27 2015-07-02 ホシザキ電機株式会社 Washer
EP3087897B1 (en) * 2013-12-27 2020-07-29 Hoshizaki Corporation Dishwasher
JP6656794B2 (en) * 2013-12-27 2020-03-04 ホシザキ株式会社 Wastewater heat recovery equipment
JP6236316B2 (en) * 2013-12-27 2017-11-22 ホシザキ株式会社 washing machine
CN106595056B (en) * 2017-01-27 2023-01-24 黄婉平 Heat exchanger applied to gas heating water heater or gas water heater
JP6583489B1 (en) * 2018-06-15 2019-10-02 ダイキン工業株式会社 Heat exchange unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116634A (en) * 1976-03-26 1977-09-30 Mitsubishi Electric Corp Heat recovering device
JPS59163814U (en) * 1983-04-20 1984-11-02 久世 三郎 Water supply and drainage equipment for bathtubs
JPH11182767A (en) * 1997-12-24 1999-07-06 Calsonic Corp Connecting structure of flexible tube
JPH11344254A (en) * 1998-06-02 1999-12-14 Tetsuo Eda Hot-water-supply/discharge device
JP4118222B2 (en) * 2003-10-24 2008-07-16 株式会社ガスター Waste heat recovery system
JP3856024B2 (en) * 2004-09-24 2006-12-13 松下電器産業株式会社 Heat pump bath water supply system
JP2009236424A (en) * 2008-03-27 2009-10-15 Toshiba Carrier Corp Heat pump hot water supply system
JP2010007962A (en) * 2008-06-26 2010-01-14 Orion Mach Co Ltd Temperature controller
JP5786449B2 (en) * 2010-07-27 2015-09-30 富士電機株式会社 Heat pump steam generator

Also Published As

Publication number Publication date
JP2013234766A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5358049B2 (en) Heat exchange system
CN101900498A (en) Heat exchanger
CN102135346A (en) Water circulation system associated with refrigerant cycle
WO2015079747A1 (en) Heat exchanger
JP5969270B2 (en) Heat pump equipment
CN103245226A (en) Small liquefied natural gas vaporizer
JP2010223537A (en) Heat pump hot water supply system
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
CN104197760A (en) Pipeline type pulse heat pipe heat exchanger
CN101629767A (en) Dual-temperature industrial water cooling machine set
CN211146950U (en) Multistage countercurrent flow heat exchange system
KR101770524B1 (en) Heat Recovery System for Boiler
JP2007218461A (en) Double tube type heat exchanger
KR20160131787A (en) Cooling Device For Water Purifier By Using Direct Contact Method
CN108644947A (en) A kind of cold and hot complementary change function high-efficiency evaporation and condensation device
JP5171280B2 (en) Heat exchanger and heat pump type water heater using the same
CN108317011A (en) A kind of pressure energy of natural gas recovery system of integrated gas turbine
CN100535553C (en) Air source cold-hot energy machine set
JP2005003209A (en) Heat exchanger and heat pump water heater using the heat exchanger
JP5752455B2 (en) Thermal wastewater energy recovery system
KR101998235B1 (en) System for recovering heat of wasted water
JP2004218945A (en) Heat exchanger and method of manufacturing the same
TWI582369B (en) Heat exchanging device and water heater using the same
JP5894958B2 (en) Water heat exchanger
JP2016044893A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130901

R150 Certificate of patent or registration of utility model

Ref document number: 5358049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250