JP5357298B2 - Wire electrical discharge machine to detect machining status - Google Patents

Wire electrical discharge machine to detect machining status Download PDF

Info

Publication number
JP5357298B2
JP5357298B2 JP2012104460A JP2012104460A JP5357298B2 JP 5357298 B2 JP5357298 B2 JP 5357298B2 JP 2012104460 A JP2012104460 A JP 2012104460A JP 2012104460 A JP2012104460 A JP 2012104460A JP 5357298 B2 JP5357298 B2 JP 5357298B2
Authority
JP
Japan
Prior art keywords
voltage
per unit
unit time
application
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012104460A
Other languages
Japanese (ja)
Other versions
JP2012161914A (en
Inventor
章義 川原
正生 村井
友之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2012104460A priority Critical patent/JP5357298B2/en
Publication of JP2012161914A publication Critical patent/JP2012161914A/en
Application granted granted Critical
Publication of JP5357298B2 publication Critical patent/JP5357298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire electric discharge machine little effected by variations in a detection circuit of inter-electrode voltage. <P>SOLUTION: An electric discharge ratio and an opening ratio per unit time are mostly determined in accordance with the opening ratio per unit time from an experiment of measuring the inter-electrode voltage and determining the discharge state, furthermore, the relationship changes very little among the machines. Consequently, only with detection of a clearly distinguishable opening state, electric discharge frequency and short circuit frequency per unit time are estimated. A trapezoidal wave voltage is applied between the electrodes during one application cycle, an intermission time is provided after voltage application, and the opening state is determined during the intermission time when the wire electric discharge machine is little effected by the variations in the detection circuit. An inter-electrode average voltage is determined based on the opening ratio for the application cycle frequency of the detected opening state and on a power supply voltage and the average voltage of one application cycle. By applying the conventional feed control using the frequency of the discharge thus found and the average voltage found from the opening ratio as indexes, highly precise machining can be actualized even in a high frequency machining. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、ワイヤ放電加工機の加工状態を検出することが可能なワイヤ放電加工機に関する。   The present invention relates to a wire electric discharge machine capable of detecting a machining state of a wire electric discharge machine.

ワイヤ放電加工機では、ワイヤ電極と被加工物との極間に電圧を印加して放電を起すと同時に、ワイヤ電極と被加工物の相対位置を変化させ、被加工物を所望の形状に加工する。放電によって生成される放電痕が集まって加工面が形成されることから、個々の放電痕の大きさで面粗さが決定される。このため、極間に高周波電圧を印加し、短い時間幅の放電を高い頻度で繰り返せば、良好な加工面を得られることが知られている。例えば、特許文献1には、1MHz〜5MHzの交流高周波電圧を極間に印加してワークを加工することにより、表面粗さが1μmRmax以下の加工面が得られることが開示されている。   In a wire electrical discharge machine, a voltage is applied between the wire electrode and the workpiece to cause discharge, and at the same time, the relative position between the wire electrode and the workpiece is changed to process the workpiece into a desired shape. To do. Since the machined surface is formed by collecting the discharge traces generated by the discharge, the surface roughness is determined by the size of the individual discharge traces. For this reason, it is known that a good machined surface can be obtained by applying a high-frequency voltage between the electrodes and repeating a short duration discharge at a high frequency. For example, Patent Document 1 discloses that a processed surface having a surface roughness of 1 μmRmax or less can be obtained by processing a workpiece by applying an AC high frequency voltage of 1 MHz to 5 MHz between the electrodes.

仕上げ加工には、荒加工で加工した形状を、より高精度に修正することが要求される。荒加工後に目標寸法より大きくなった箇所は、仕上げ加工時に加工量が増えるように制御し、逆に荒加工後に目標寸法より小さくなった箇所は、仕上げ加工時に加工量が減るように制御する必要がある。つまり、仕上げ加工時には、加工状態から目標寸法より大きいか小さいかを検出し、それに応じてワイヤ電極とワークの相対位置を制御したり、加工条件の変更制御を行う必要がある。   In finishing processing, it is required to correct the shape processed by roughing with higher accuracy. It is necessary to control so that the processing amount increases at the time of finish machining for the part that becomes larger than the target dimension after rough machining, and conversely, the part that becomes smaller than the target dimension after the rough machining needs to be controlled so that the processing amount decreases at the finishing process. There is. That is, at the time of finishing, it is necessary to detect whether it is larger or smaller than the target dimension from the machining state, and to control the relative position between the wire electrode and the workpiece or to change the machining condition accordingly.

図7に、一般的な高周波電圧波形を示す。各印加の間に、電源回路に備わったブリッジ回路がショートしないための必要最低限のデッドタイムを設けている。極間の波形は、図のように正弦波状になる。
加工状態を表す指標として最も一般的なものは、極間電圧の絶対値の平均値である。極間の平均電圧は概ね極間の間隙距離を表すので、極間の平均電圧が一定になるように軸の送り制御を行えば、高精度な加工形状を得ることができる。
しかし、良い面粗さを得るため、図7のような高周波電圧を極間に印加して仕上げ加工する場合、高周波領域では極間電圧の検出回路の応答性が悪化し、正確な平均電圧情報を得ることは難しい。また、高周波領域では検出回路の部品特性のばらつきが大きくなるため、機械ごとに検出値のばらつきが生じる。このような情報に基づいて軸の送り制御を行うと、機械ごとの加工結果に差が生じる。
FIG. 7 shows a general high-frequency voltage waveform. Between each application, a necessary minimum dead time for preventing a short circuit of the bridge circuit provided in the power supply circuit is provided. The waveform between the poles is sinusoidal as shown in the figure.
The most common index indicating the machining state is an average value of absolute values of the interelectrode voltage. Since the average voltage between the poles generally represents the gap distance between the poles, a highly accurate machining shape can be obtained by controlling the shaft feed so that the average voltage between the poles is constant.
However, in order to obtain good surface roughness, when finishing is performed by applying a high frequency voltage as shown in FIG. 7 between the electrodes, the response of the detection circuit for the voltage between electrodes deteriorates in the high frequency region, and accurate average voltage information is obtained. Hard to get. In addition, since the variation in the component characteristics of the detection circuit increases in the high frequency region, the detection value varies from machine to machine. When the shaft feed control is performed based on such information, a difference occurs in the machining result for each machine.

この対策として、特許文献2には、交流高周波電圧に直流電圧を重畳して印加し、ローパスフィルタによって極間電圧の低周波電圧成分のみ抽出して、この電圧の変化に従ってワイヤ電極の送りを制御するという技術が開示されている。この技術では、平均電圧がゼロにならないので、ワークや加工機本体に電蝕を発生させる恐れがある。また、ローパスフィルタを使用するので、放電状態が急変するような場合には応答が悪く、追従できない恐れがある。   As a countermeasure, Patent Document 2 applies a DC voltage superimposed on an AC high-frequency voltage, extracts only the low-frequency voltage component of the interelectrode voltage by a low-pass filter, and controls the feeding of the wire electrode according to the change in this voltage. The technique of doing is disclosed. In this technique, since the average voltage does not become zero, there is a risk of causing electric corrosion on the workpiece or the processing machine body. Further, since a low-pass filter is used, when the discharge state changes suddenly, the response is poor and there is a possibility that it cannot follow.

平均電圧以外の指標として、単位時間あたりの放電回数がある。特許文献3には、放電回数に応じて軸の送り速度や休止時間を制御する技術が開示されている。これを実現するには、極間状態を開放、放電、短絡の3つの状態に分別する必要がある。ここで、開放とは電圧印加後一度も放電しない場合であり、短絡とはワイヤ電極とワークが接触して放電が発生しない状態であり、どちらも加工には寄与しない。
しかし、図7のような正弦波状の高周波電圧を印加した場合、1印加サイクル中の印加時間が非常に長いため、放電しても極間の絶縁状態が回復すると、すぐに電圧が印加されて極間電圧が上昇してしまうため、実際に極間電圧が低下している時間が短く、このように非常に早い周波数に対しては、検出回路が応答できず、放電と開放が区別できない。
As an index other than the average voltage, there is the number of discharges per unit time. Patent Document 3 discloses a technique for controlling a shaft feed rate and a pause time in accordance with the number of discharges. In order to realize this, it is necessary to classify the interelectrode state into three states of open, discharge, and short circuit. Here, the term “open” refers to a case where no discharge occurs even after voltage application, and the term “short circuit” refers to a state where the wire electrode and workpiece are in contact with each other and no discharge occurs, and neither contributes to machining.
However, when a sinusoidal high-frequency voltage as shown in FIG. 7 is applied, the application time during one application cycle is very long. Since the voltage between the electrodes is increased, the time during which the voltage between the electrodes is actually decreased is short, and the detection circuit cannot respond to such a very fast frequency, so that discharge and open cannot be distinguished.

特開昭61−260915号公報Japanese Patent Laid-Open No. 61-260915 国際公開第2004/022275号公報International Publication No. 2004/022275 特開2002−254250号公報JP 2002-254250 A

以上のように、従来の技術では、高周波の加工状態の指標としては極間電圧を検出するしか方法がなかった。しかしながら、高周波領域では検出回路の応答性や部品のばらつきの影響により、ワイヤ放電加工機の機械ごとに極間電圧の検出電圧値に差が生じてしまい、それに因って加工結果に差が現れるという問題があった。
そこで本発明の目的は、上記従来技術の問題点に鑑み、機械ごとの極間電圧の検出回路のばらつきの影響を受けにくいワイヤ放電加工機を提供することである。
As described above, in the prior art, there is only a method for detecting the inter-electrode voltage as an index of the high-frequency machining state. However, in the high-frequency region, due to the influence of the response of the detection circuit and the variation of parts, there is a difference in the detection voltage value of the inter-electrode voltage for each machine of the wire electric discharge machine, and the difference appears in the machining result. There was a problem.
Accordingly, an object of the present invention is to provide a wire electric discharge machine that is less susceptible to the influence of variations in the inter-electrode voltage detection circuit for each machine in view of the problems of the prior art.

本願の請求項1に係る発明は、ワイヤ電極と該ワイヤ電極に所定間隔を置いて配置されたワークとの間である極間に高周波電圧を印加して放電を発生させワークを加工するワイヤ放電加工機において、前記ワイヤ電極と前記ワークとの極間に、正極性と負極性の両極性の電圧を1マイクロ秒以下の周期で、個々の電圧印加の間に、少なくとも印加時間以上の休止時間を設けて電圧を印加する電圧印加手段と、前記極間に発生する極間電圧を検出する極間電圧検出手段と、前記電圧印加手段によって印加される電圧の印加回数を単位時間ごとに計数する印加回数計数手段と、前記極間電圧検出手段により検出された極間電圧に基づき、電圧が印加された後に放電が発生しない開放状態を判別する開放判別手段と、前記開放判別手段が判別した開放状態を単位時間ごとに計数する開放回数計数手段と、を備え、前記印加回数計数手段が計数した単位時間あたりの印加回数と前記開放計数手段が計数した単位時間あたりの開放回数とにより求まる開放割合と、予め求められた単位時間あたりの開放割合に対する放電割合及び短絡割合の関係から放電割合を求め、該印加回数と該放電割合とを用いて、単位時間あたりの放電回数と、単位距離あたりの放電回数と、単位時間あたりの短絡回数と、単位距離あたりの短絡回数のうち、の少なくとも一つを求めることを特徴とするワイヤ放電加工機である。   The invention according to claim 1 of the present application is a wire discharge for machining a workpiece by generating a discharge by applying a high-frequency voltage between the wire electrode and a workpiece disposed at a predetermined interval between the wire electrode. In the processing machine, between the wire electrode and the workpiece, a positive voltage and a negative voltage with a period of 1 microsecond or less and a pause time of at least an application time between individual voltage applications A voltage applying unit for applying a voltage, an inter-electrode voltage detecting unit for detecting an inter-electrode voltage generated between the electrodes, and counting the number of times the voltage applied by the voltage applying unit is applied per unit time. Based on the inter-electrode voltage detected by the inter-electrode voltage detection means, the open-counting means for determining an open state in which no discharge occurs after the voltage is applied, and the open-discriminating means determined by the open determination means. An open rate counting means for counting the state per unit time, and an open ratio determined by the number of applications per unit time counted by the application count counting means and the number of open times per unit time counted by the open count means And determining the discharge ratio from the relationship between the discharge ratio and the short circuit ratio with respect to the open ratio per unit time determined in advance, and using the number of times of application and the discharge ratio, the number of discharges per unit time and the unit distance per unit distance It is a wire electric discharge machine characterized by obtaining at least one of the number of discharges, the number of short circuits per unit time, and the number of short circuits per unit distance.

請求項2に係る発明は、前記放電割合と前記短絡割合と印加回数から単位時間あたりの放電回数と短絡回数を求め、単位時間あたりの加工量と単位距離あたりの加工量の少なくとも一方を求めることを特徴とする請求項1に記載のワイヤ放電加工機である。   In the invention according to claim 2, the number of discharges and the number of short circuits per unit time are obtained from the discharge ratio, the short circuit ratio, and the number of times of application, and at least one of a machining amount per unit time and a machining amount per unit distance is obtained. The wire electric discharge machine according to claim 1.

請求項3に係る発明は、前記開放状態判別手段は、前記休止時間内にて、全波整流された極間電圧波形と基準電圧を比較し、基準電圧より高い場合は開放状態と判断し、基準電圧より低い場合は非開放状態と判断することを特徴とする、請求項1または2のいずれか1つに記載のワイヤ放電加工機である。   In the invention according to claim 3, the open state determining means compares the inter-wave voltage waveform subjected to full-wave rectification with the reference voltage within the pause time, and determines that it is in the open state when higher than the reference voltage. 3. The wire electric discharge machine according to claim 1, wherein when the voltage is lower than the reference voltage, it is determined as a non-open state. 4.

本発明により、機械ごとの極間電圧の検出回路のばらつきの影響を受けにくいワイヤ放電加工機を提供できる。   According to the present invention, it is possible to provide a wire electric discharge machine that is not easily affected by variations in the detection circuit of the interelectrode voltage for each machine.

ワイヤ放電加工機の概略構成図である。It is a schematic block diagram of a wire electric discharge machine. 休止時間を設けた高周波電圧の一例を説明する図である。It is a figure explaining an example of the high frequency voltage which provided the idle time. 加工中の極間電圧波形の例を説明する図である。It is a figure explaining the example of the voltage waveform between electrodes in process. 開放判別方法を説明する図である。It is a figure explaining the open | release discrimination | determination method. 判定回路の一例を説明する図である。It is a figure explaining an example of a determination circuit. 開放割合と放電割合の関係を説明する図である。It is a figure explaining the relationship between an open ratio and a discharge ratio. 一般的な高周波電圧の一例を説明する図である。It is a figure explaining an example of a general high frequency voltage.

以下、本発明の実施形態を図面と共に説明する。
図1は、ワイヤ放電加工機の概略構成図である。ワイヤ放電加工機内の放電加工部には、ワイヤ電極1の走行路に加工槽(図示せず)が配置されている。加工槽は加工液で満たされている。ワイヤ電極1と被加工物2とは、加工電圧供給ケーブルである給電線5を介してワイヤ放電加工用の高周波電源装置である加工電源4に接続されている。
加工電源4は、直流電圧源41、ブリッジ回路を構成する高速スイッチング素子42、電流制限抵抗43を備えている。加工電源4は、加工電源制御装置8からの指令によって、ワイヤ電極1と被加工物2との間の極間に加工電源出力(図2参照)を、給電線5,給電部6を介してワイヤ電極1に印加する。被加工物2は加工電源4に給電線5を介して接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a wire electric discharge machine. A machining tank (not shown) is disposed in the traveling path of the wire electrode 1 in the electric discharge machining section in the wire electric discharge machine. The processing tank is filled with the processing liquid. The wire electrode 1 and the workpiece 2 are connected to a machining power supply 4 that is a high-frequency power supply device for wire electric discharge machining via a feeder line 5 that is a machining voltage supply cable.
The machining power supply 4 includes a DC voltage source 41, a high-speed switching element 42 constituting a bridge circuit, and a current limiting resistor 43. The machining power supply 4 sends a machining power output (see FIG. 2) between the wire electrode 1 and the workpiece 2 via the feeder line 5 and the feeder 6 in accordance with a command from the machining power supply control device 8. Applied to the wire electrode 1. The workpiece 2 is connected to a machining power source 4 via a feeder line 5.

加工電源制御装置8は、数値制御装置9から印加時間、休止時間、および検出時間に関する指令を受ける。加工電源制御装置8は、数値制御装置9からの指令に基づいて加工電源4を制御する。加工電源制御装置8は、検出時間に対応してパルスを1印加サイクル毎に発生する。なお、印加時間、休止時間、および検出時間については、図2,図4,図5を用いて後述する。
加工状態検出装置7は、ワイヤ電極1と被加工物2との間の極間に発生する電圧を検出する。検出された極間に発生した電圧から、図5を用いて説明する判定回路によって、単位時間あたりの印加サイクル回数と開放回数が求められる。これら単位時間あたりの印加サイクル回数と開放回数のデータは数値制御装置9に送られる。
数値制御装置9は、加工状態検出装置7から送られる単位時間あたりの印加サイクル回数と開放回数に基づいて、サーボ駆動装置10を制御する。サーボ駆動装置10によって図示しないサーボモータを駆動し、ワイヤ電極1と被加工物2とを相対的に移動させることによって、被加工物2に放電加工を行う。
The machining power supply control device 8 receives a command related to the application time, the pause time, and the detection time from the numerical control device 9. The machining power supply control device 8 controls the machining power supply 4 based on a command from the numerical control device 9. The machining power supply control device 8 generates a pulse every application cycle corresponding to the detection time. The application time, rest time, and detection time will be described later with reference to FIGS.
The machining state detection device 7 detects a voltage generated between the electrodes between the wire electrode 1 and the workpiece 2. From the detected voltage generated between the electrodes, the number of application cycles and the number of releases per unit time are determined by a determination circuit described with reference to FIG. Data on the number of application cycles and the number of releases per unit time are sent to the numerical controller 9.
The numerical control device 9 controls the servo drive device 10 based on the number of application cycles and the number of releases per unit time sent from the machining state detection device 7. A servo motor (not shown) is driven by the servo drive device 10 to move the wire electrode 1 and the workpiece 2 relative to each other, thereby performing electric discharge machining on the workpiece 2.

図2は、ワイヤ電極1と被加工物2との間の極間に、正極性と負極性の両極性の電圧を1マイクロ秒以下の周期で、個々の電圧印加の間に、少なくとも印加時間以上の休止時間を設けて電圧を印加する例を説明する図である。
図2(1)は図1に示される高速スイッチング素子42のオン指令を表している。図2(2)は加工電源4から出力される加工電源出力の波形である。図2(3)は(2)の加工電源出力によって生じる極間に印加される極間電圧の波形である。図2では正極性と逆極性が交互に印加されているが、正極性が2回以上連続してもよいし、逆極性が2回以上連続してもよい。この方式では、極間および給電線に浮遊容量が存在するために、放電が発生しない場合には電圧の低下が無視できる程度であるため、休止時間中は電圧波形が平坦となり、極間電圧波形は台形状となる。
FIG. 2 shows that between the electrodes between the wire electrode 1 and the workpiece 2, a voltage of both positive and negative polarity with a period of 1 microsecond or less and at least an application time between each voltage application. It is a figure explaining the example which provides the above idle time and applies a voltage.
FIG. 2A shows an ON command for the high-speed switching element 42 shown in FIG. FIG. 2B shows a waveform of the machining power output output from the machining power supply 4. FIG. 2 (3) shows the waveform of the interelectrode voltage applied between the electrodes generated by the machining power output of (2). In FIG. 2, the positive polarity and the reverse polarity are alternately applied, but the positive polarity may be continued twice or more, or the reverse polarity may be continued twice or more. In this method, since there is a stray capacitance between the poles and the power supply line, if the discharge does not occur, the voltage drop is negligible. Is trapezoidal.

しかし、この極間電圧の台形状の波形においても、短絡と放電を区別するのは困難である。これは、短絡時と、印加後アーク電圧に達した後間もなく放電した時の電圧波形が似ているためである。すなわち、加工状態検出装置7に極間電圧を電送する1対のケーブルは、一方が図1の給電部6、他方が被加工物2を固定する図示しないテーブル間に取り付けられるが、給電部6内の図示しない給電子とワイヤ電極1の間の接触インピーダンスと、ワイヤ電極1自体のインピーダンスと、ワイヤ電極1と被加工物2の間の接触インピーダンスと、被加工物2とテーブルの間の接触インピーダンスが、極間のインピーダンスの主な要因となり、これらは高周波になるほど増大する。このため、特に高周波では短絡時でも極間に電圧が発生し、放電時との区別がつきにくいのが原因である。このような波形の一例を、図3(1)に示す。短絡か放電かを判別する方法の例として、ある放電判定レベルを設けて、その放電判定レベルを一度も超えなかったら短絡、一度でも超えたら放電と判別する(開放は後述するように明確に判別できる)。   However, even in the trapezoidal waveform of the voltage between the electrodes, it is difficult to distinguish between a short circuit and a discharge. This is because the voltage waveforms at the time of short-circuiting and when discharging immediately after reaching the arc voltage after application are similar. That is, one pair of cables for transmitting the interelectrode voltage to the machining state detection device 7 is attached between a power supply unit 6 in FIG. 1 and the other between a table (not shown) that fixes the workpiece 2. The contact impedance between the supply electrode (not shown) and the wire electrode 1, the impedance of the wire electrode 1 itself, the contact impedance between the wire electrode 1 and the workpiece 2, and the contact between the workpiece 2 and the table Impedance is a major factor in the impedance between the poles, and these increase with higher frequencies. For this reason, particularly at high frequencies, a voltage is generated between the electrodes even at the time of a short circuit, which is difficult to distinguish from the time of discharge. An example of such a waveform is shown in FIG. As an example of a method for discriminating between short circuit and discharge, a certain discharge judgment level is provided, and if the discharge judgment level is never exceeded, it is judged that it is short-circuited, and if it exceeds even once, it is judged that it is discharged. it can).

極間の平均電圧同様、高周波では、検出回路の応答性や部品特性のばらつきの影響が大きいため、図3(1)の放電判定レベルのように、放電判定レベルを短絡時の波形のばらつきの影響が無いレベルまで高くする必要があるが、図3(1)の(b)や(c)のような放電波形の場合、やはり検出回路の応答性や部品特性のばらつきの影響のため、機械により短絡と判定されたり放電と判定されたりして、結局、平均電圧ほどではないが、機械ごとの加工結果に差が生じることになる。   Like the average voltage between the electrodes, at high frequencies, the influence of variations in detection circuit responsiveness and component characteristics is large. Therefore, as in the discharge determination level in FIG. However, in the case of the discharge waveform as shown in (b) and (c) of FIG. 3 (1), the machine is still affected by the response of the detection circuit and variations in component characteristics. As a result, it is determined as a short circuit or a discharge, and eventually, although not as much as the average voltage, a difference occurs in the processing result for each machine.

そこで、本発明では、休止時間を設けた高周波電圧を印加する印加方法(図2参照)を用い、極間の電圧から開放状態(図3(2)の(e))のみを検出し、これを元にワイヤ放電加工機の軸送り制御を行うことにする。本発明のこの方式では、上記のような検出回路のばらつきの影響を受けないため、加工結果に差異が生じない。
次に、図2の極間電圧の印加方法を用いた加工における開放状態の判別方法を、図4を用いて説明する。ここで、正極性または逆極性の電圧を印加開始し、印加停止して次に正極性または逆極性の電圧を印加開始するまでの期間を1印加サイクルとし、V1は開放判定レベル、T1は印加開始を時間の起点とし各印加サイクルにおいて開放判定を行うまでの時間を表す。開放判定レベルV1は電源電圧の50〜60%程度に選ぶのが最適である。開放状態においてはT1時点で極間電圧の絶対値が判定レベルV1を上回るのに対し、放電または短絡状態ではT1時点で極間電圧の絶対値が判定レベルV1を下回る。よって、高周波の電圧印加にて開放状態を検出するには、図2のように休止時間を設けた電圧印加方法が、非常に有効である。
なお、図4(2)ではT1は1印加サイクルの終了時刻としているが、図4(3)に示されるように、1印加サイクル内の印加時間後であって休止時間内のいずれかの時点である極間への電圧印加のある一定時間後としても差し支えない。
Therefore, in the present invention, an application method (see FIG. 2) for applying a high-frequency voltage with a pause time is used to detect only the open state ((e) in FIG. 3 (2)) from the voltage between the electrodes. Based on the above, the shaft feed control of the wire electric discharge machine is performed. In this system of the present invention, there is no difference in processing results because it is not affected by the variation of the detection circuit as described above.
Next, a method for determining an open state in machining using the method for applying an interelectrode voltage in FIG. 2 will be described with reference to FIG. Here, the period from the start of application of a positive polarity or reverse polarity voltage, the stoppage of application until the start of application of the positive polarity or reverse polarity voltage is defined as one application cycle, V1 is an open determination level, and T1 is applied. The time from the start to the start of time until the open determination is made in each application cycle is shown. The open determination level V1 is optimally selected to be about 50 to 60% of the power supply voltage. In the open state, the absolute value of the interelectrode voltage exceeds the determination level V1 at time T1, whereas in the discharge or short circuit state, the absolute value of the interelectrode voltage falls below the determination level V1 at time T1. Therefore, in order to detect an open state by applying a high-frequency voltage, a voltage application method with a pause time as shown in FIG. 2 is very effective.
In FIG. 4 (2), T1 is the end time of one application cycle. However, as shown in FIG. 4 (3), after any application time within one application cycle, any time within the rest period There is no problem even after a certain time after the voltage is applied between the electrodes.

図5は極間の開放状態を判定する判定回路の一例を図示したものである。加工状態検出装置7は判定回路を備えている。極間電圧はオペアンプ71,72により構成される差動増幅回路に入力され所定レベルに増幅または減衰される。ここで、オペアンプ72には、オペアンプ71に対して反対極性の電圧が入力される。
オペアンプ71,72より構成される差動増幅回路で増幅または減衰された極間電圧と開放判定レベルV1を比較器73,74に入力し、T1時点での比較器の出力信号レベルを読み取る。比較器73,74の少なくとも一方の出力がハイレベルならば開放、ローレベルならば放電または短絡である。開放判定レベルV1は図中では基準電圧VRで与えられている。比較器73,74のそれぞれの出力はORゲート75に入力し、それらの論理和がORゲート75からANDゲート76に出力される。ANDゲート76には、各1印加サイクルの中であって印加時間後の休止時間内のいずれかのタイミングで発生するパルスも入力する。ANDゲート76からの出力は、比較器73または比較器74で開放状態を判定された場合にハイの信号を出力する。カウンタ78は、ANDゲート76のハイの回数である開放回数を計数するカウンタである。カウンタ77は各1印加サイクル中に発生するパルスの数を計数することによって、印加サイクル数を得る。
FIG. 5 illustrates an example of a determination circuit that determines an open state between the electrodes. The machining state detection device 7 includes a determination circuit. The inter-electrode voltage is input to a differential amplifier circuit composed of operational amplifiers 71 and 72 and amplified or attenuated to a predetermined level. Here, a voltage having a polarity opposite to that of the operational amplifier 71 is input to the operational amplifier 72.
The interpolar voltage amplified or attenuated by the differential amplifier circuit composed of the operational amplifiers 71 and 72 and the open determination level V1 are input to the comparators 73 and 74, and the output signal level of the comparator at time T1 is read. If the output of at least one of the comparators 73 and 74 is high level, it is open, and if it is low level, it is discharge or short circuit. The open determination level V1 is given by the reference voltage VR in the drawing. The outputs of the comparators 73 and 74 are input to the OR gate 75, and their logical sum is output from the OR gate 75 to the AND gate 76. The AND gate 76 also receives a pulse generated at any timing within each application cycle and within a rest period after the application time. The output from the AND gate 76 outputs a high signal when the comparator 73 or the comparator 74 determines an open state. The counter 78 is a counter that counts the number of times the AND gate 76 is opened. The counter 77 obtains the number of application cycles by counting the number of pulses generated during each application cycle.

カウンタ78で単位時間ごとに開放回数を計数し、数値制御装置9(図1参照)に転送することによって、数値制御装置9は単位時間あたりの開放回数を取得できる。同時にカウンタ77で単位時間ごとに印加サイクル回数を計数し、数値制御装置9に転送することで、数値制御装置9は開放割合(=印加サイクル回数に対する開放回数)を算出できる。
また、この単位時間あたりの開放回数を使って、数1式、数2式から近似的に極間の平均電圧を求めることが可能である。
By counting the number of times of opening per unit time by the counter 78 and transferring it to the numerical control device 9 (see FIG. 1), the numerical control device 9 can acquire the number of times of opening per unit time. At the same time, the counter 77 counts the number of application cycles per unit time and transfers it to the numerical control device 9 so that the numerical control device 9 can calculate the release ratio (= the number of releases relative to the number of application cycles).
In addition, by using the number of times of opening per unit time, it is possible to approximately obtain the average voltage between the poles from Formula 1 and Formula 2.

Figure 0005357298
Figure 0005357298

Figure 0005357298
Figure 0005357298

ここで、1印加サイクルの平均電圧は加工条件に応じた値を事前に実験的に求めておく必要がある。数1式あるいは数2式で算出される平均電圧には、従来技術で問題となる機械ごとの検出回路のばらつきの影響が非常に小さい。このため、平均電圧が一定になるように軸送りをすることで、機械ごとにばらつきの無い均一な加工精度を得ることができる。   Here, the average voltage of one application cycle needs to be experimentally obtained in advance as a value corresponding to the processing conditions. The average voltage calculated by Equation (1) or Equation (2) is very little affected by variations in the detection circuit for each machine, which is a problem in the prior art. For this reason, by carrying out axial feed so that the average voltage becomes constant, it is possible to obtain uniform machining accuracy with no variation for each machine.

次に、開放割合から放電回数と短絡回数を求める方法を説明する。実験から、単位時間あたりの放電割合と短絡割合は、単位時間あたりの開放割合に応じてほぼ決定されるという事実が得られた(図6参照)。しかも、その関係性は機械によってほとんど変らない。
なお、実験では、極間電圧を高精度に測定可能な電圧波形測定器を用いて極間電圧を測定し、放電状態の判別を行った。この事実から、明確に判別可能な開放状態のみを検出することで、単位時間あたりの放電回数と短絡回数が推定できる。
Next, a method for obtaining the number of discharges and the number of short circuits from the open ratio will be described. From the experiment, it was found that the discharge rate per unit time and the short circuit rate are almost determined according to the open rate per unit time (see FIG. 6). Moreover, the relationship hardly changes depending on the machine.
In the experiment, the interelectrode voltage was measured using a voltage waveform measuring instrument capable of measuring the interelectrode voltage with high accuracy, and the discharge state was determined. From this fact, the number of discharges and the number of short circuits per unit time can be estimated by detecting only the open state that can be clearly distinguished.

Figure 0005357298
Figure 0005357298

Figure 0005357298
Figure 0005357298

Figure 0005357298
Figure 0005357298

なお、(放電割合)+(短絡割合)=1−(開放割合)であり、放電割合と短絡割合は、図6と測定された開放割合により求まる。   Note that (discharge ratio) + (short-circuit ratio) = 1− (open ratio), and the discharge ratio and the short-circuit ratio are obtained from FIG. 6 and the measured open ratio.

図3(1)の極間電圧波形に示されるとおり、放電にも様々なエネルギーのものが混在しており、放電一発による加工量が一定しているわけではない。このような事情を踏まえ、加工状態を表す指標として、数6式,数7式の量を用いることも考えられる。これは近似的に単位時間あたりの加工量を表す。   As shown in the inter-electrode voltage waveform in FIG. 3 (1), various energy sources are mixed in the discharge, and the amount of machining by one discharge is not constant. In view of such circumstances, it is also conceivable to use the quantities of Equation 6 and Equation 7 as indices representing the machining state. This approximately represents the machining amount per unit time.

Figure 0005357298
Figure 0005357298

Figure 0005357298
Figure 0005357298

ここで、α,βは、それぞれ、放電1回、短絡1回が加工に寄与する度合いを表しており、実験的に求める定数である。一般にβの値は0(零)となる。これらの加工量は、従来技術で問題となる機械ごとの検出回路のばらつきの影響が非常に小さいので、例えば、単位距離あたりの加工量が一定になるように軸送りをすることで、機械ごとにばらつきの無い均一な加工精度を得ることができる。   Here, α and β represent the degree to which one discharge and one short circuit contribute to processing, respectively, and are constants obtained experimentally. In general, the value of β is 0 (zero). These machining amounts are very little affected by variations in the detection circuit for each machine, which is a problem in the prior art.For example, by performing axial feed so that the machining amount per unit distance is constant, It is possible to obtain uniform processing accuracy without any variation.

このようにして求めた単位時間当たりの放電回数、平均電圧ともに、高周波以外においては、従来から高精度に加工するための軸送り制御に利用されているため、過去に蓄積されたワイヤ放電加工機の制御アルゴリズム(ソフトウェア)をそのまま転用できる可能性がある。   Since the number of discharges per unit time and the average voltage obtained in this way are used for axial feed control for machining with high accuracy except for high frequencies, wire electric discharge machines accumulated in the past. The control algorithm (software) may be diverted as it is.

1 ワイヤ電極
2 被加工物
3a,3b サーボモータ
4 加工電源
41 直流電圧源
42 高速スイッチング素子
43 電流制限抵抗
5 給電線
6 給電部
7 加工状態検出装置
8 加工電源制御装置
81,82 オペアンプ
83 比較器(正極性側)
84 比較器(逆極性側)
85 ORゲート
86 ANDゲート
87,88 カウンタ
9 数値制御装置
10 サーボ駆動装置
DESCRIPTION OF SYMBOLS 1 Wire electrode 2 Workpiece 3a, 3b Servo motor 4 Processing power supply 41 DC voltage source 42 High-speed switching element 43 Current limiting resistor 5 Feeding line 6 Feeding part 7 Processing state detection device 8 Processing power supply control device 81, 82 Operational amplifier 83 Comparator (Positive side)
84 Comparator (reverse polarity side)
85 OR gate 86 AND gate 87,88 Counter 9 Numerical control device 10 Servo drive device

Claims (3)

ワイヤ電極と該ワイヤ電極に所定間隔を置いて配置されたワークとの間である極間に高周波電圧を印加して放電を発生させワークを加工するワイヤ放電加工機において、
前記ワイヤ電極と前記ワークとの極間に、正極性と負極性の両極性の電圧を1マイクロ秒以下の周期で、個々の電圧印加の間に、少なくとも印加時間以上の休止時間を設けて電圧を印加する電圧印加手段と、
前記極間に発生する極間電圧を検出する極間電圧検出手段と、
前記電圧印加手段によって印加される電圧の印加回数を単位時間ごとに計数する印加回数計数手段と、
前記極間電圧検出手段により検出された極間電圧に基づき、電圧が印加された後に放電が発生しない開放状態を判別する開放判別手段と、
前記開放判別手段が判別した開放状態を単位時間ごとに計数する開放回数計数手段と、
を備え、
前記印加回数計数手段が計数した単位時間あたりの印加回数と前記開放計数手段が計数した単位時間あたりの開放回数とにより求まる開放割合と、予め求められた単位時間あたりの開放割合に対する放電割合及び短絡割合の関係から放電割合を求め、該印加回数と該放電割合とを用いて、単位時間あたりの放電回数と、単位距離あたりの放電回数と、単位時間あたりの短絡回数と、単位距離あたりの短絡回数のうち、の少なくとも一つを求めることを特徴とするワイヤ放電加工機。
In a wire electric discharge machine that processes a work by generating a discharge by applying a high-frequency voltage between poles between a wire electrode and a work arranged at a predetermined interval in the wire electrode,
Between the wire electrode and the workpiece, a voltage having a positive polarity and a negative polarity with a period of 1 microsecond or less and a pause time of at least an application time is provided between each voltage application. Voltage applying means for applying
An inter-electrode voltage detecting means for detecting an inter-electrode voltage generated between the electrodes;
Application number counting means for counting the number of times of application of the voltage applied by the voltage application means per unit time; and
An open discriminating means for discriminating an open state in which no discharge occurs after the voltage is applied, based on the inter-electrode voltage detected by the inter-electrode voltage detection device;
An opening number counting means for counting the opening state determined by the opening determining means per unit time;
With
The open ratio determined by the number of applications per unit time counted by the application count counting means and the number of releases per unit time counted by the open count means, and the discharge ratio and short circuit with respect to the pre-determined open ratio per unit time Determine the discharge ratio from the relationship of the ratio, using the number of times of application and the discharge ratio, the number of discharges per unit time, the number of discharges per unit distance, the number of short circuits per unit time, and the short circuit per unit distance A wire electric discharge machine characterized by obtaining at least one of the number of times.
前記放電割合と前記短絡割合と印加回数から単位時間あたりの放電回数と短絡回数を求め、単位時間あたりの加工量と単位距離あたりの加工量の少なくとも一方を求めることを特徴とする請求項1に記載のワイヤ放電加工機。   The number of discharges per unit time and the number of short circuits are obtained from the discharge rate, the short-circuit rate, and the number of applications, and at least one of a machining amount per unit time and a machining amount per unit distance is obtained. The wire electric discharge machine described. 前記開放状態判別手段は、前記休止時間内にて、全波整流された極間電圧波形と基準電圧を比較し、基準電圧より高い場合は開放状態と判断し、基準電圧より低い場合は非開放状態と判断することを特徴とする、請求項1または2のいずれか1つに記載のワイヤ放電加工機。   The open state discriminating means compares the full-wave rectified inter-electrode voltage waveform with the reference voltage within the pause time, determines that the voltage is higher than the reference voltage, and determines that the voltage is lower than the reference voltage. The wire electric discharge machine according to claim 1, wherein the wire electric discharge machine is determined as a state.
JP2012104460A 2012-05-01 2012-05-01 Wire electrical discharge machine to detect machining status Active JP5357298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104460A JP5357298B2 (en) 2012-05-01 2012-05-01 Wire electrical discharge machine to detect machining status

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104460A JP5357298B2 (en) 2012-05-01 2012-05-01 Wire electrical discharge machine to detect machining status

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010189521A Division JP5073797B2 (en) 2010-08-26 2010-08-26 Wire electrical discharge machine to detect machining status

Publications (2)

Publication Number Publication Date
JP2012161914A JP2012161914A (en) 2012-08-30
JP5357298B2 true JP5357298B2 (en) 2013-12-04

Family

ID=46841838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104460A Active JP5357298B2 (en) 2012-05-01 2012-05-01 Wire electrical discharge machine to detect machining status

Country Status (1)

Country Link
JP (1) JP5357298B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642810B2 (en) 2013-01-08 2014-12-17 ファナック株式会社 Power supply for electric discharge machining
JP6230481B2 (en) * 2014-05-15 2017-11-15 三菱電機株式会社 Multi-wire electric discharge machine
JP6770041B2 (en) * 2018-10-23 2020-10-14 ファナック株式会社 Wire electric discharge machine and electric discharge machining method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59330B2 (en) * 1974-07-30 1984-01-06 三菱電機株式会社 Houden Kakoseigiyohouhou Oyobi Sonosouchi
JPS5344993A (en) * 1976-10-04 1978-04-22 Inoue Japax Res Inc Servo equipment for electric machining
JP2588199B2 (en) * 1987-06-30 1997-03-05 株式会社東芝 Electric discharge machine
JP5236368B2 (en) * 2008-07-03 2013-07-17 ファナック株式会社 Wire electrical discharge machine with single power supply

Also Published As

Publication number Publication date
JP2012161914A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5073797B2 (en) Wire electrical discharge machine to detect machining status
JP4648468B2 (en) Wire-cut electrical discharge machine with machining status judgment function
US8735762B2 (en) Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap
JP5739563B2 (en) Wire electric discharge machine equipped with means for calculating average discharge delay time
JP4833197B2 (en) Power control device for electrical discharge machine
JP4833198B2 (en) Power control device for electrical discharge machine
TWI442985B (en) Wire electric discharge machine
EP3251778B1 (en) Wire electric discharge machine
JP5357298B2 (en) Wire electrical discharge machine to detect machining status
CN103909313B (en) Electric discharge machining source apparatus
EP1752246A1 (en) Electric discharge machining apparatus
JP5409963B1 (en) EDM machine
JP5478532B2 (en) EDM machine
JP2003165028A (en) Electric discharge machining device
JPH0665444B2 (en) Electric discharge machine
JP2010194714A (en) Electric discharge machining device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5357298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150