JP2003165028A - Electric discharge machining device - Google Patents

Electric discharge machining device

Info

Publication number
JP2003165028A
JP2003165028A JP2001361868A JP2001361868A JP2003165028A JP 2003165028 A JP2003165028 A JP 2003165028A JP 2001361868 A JP2001361868 A JP 2001361868A JP 2001361868 A JP2001361868 A JP 2001361868A JP 2003165028 A JP2003165028 A JP 2003165028A
Authority
JP
Japan
Prior art keywords
electrode
discharge
electric discharge
machining
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001361868A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishimoto
吉範 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001361868A priority Critical patent/JP2003165028A/en
Publication of JP2003165028A publication Critical patent/JP2003165028A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric discharge machining device provided with both high machining accuracy and speed particularly suitable for fine machining. <P>SOLUTION: In the electric discharge machining device, a work piece is machined by applying voltage from a power source for machining to an interval formed by an electrode and the work piece, generating electric discharge and relatively moving the electrode and the work piece. It is characterized by that it is provided with a current detecting means of detecting a current fed from the power source for machining and converting it into an analog voltage, a comparator means of comparing a voltage proportional to the detected current with a reference voltage and outputting a logic signal, a pulse width stretching means of storing a logic value for a certain time by using either one of rising or falling of the logic signal as a trigger, an OR means of determining a logical sum of an input and output of the pulse width stretching means, and a discharge state detecting means comprising a smoothing means of smoothing a logic signal output of the OR means and converting it into an analog voltage. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放電加工によって
被加工物を加工する放電加工装置に関し、特にワイヤ放
電研削加工によって50マイクロメートル以下の微細軸
を高い加工精度で短時間で加工する放電加工装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining apparatus for machining a work piece by electric discharge machining, and in particular, electric discharge machining for machining a fine axis of 50 micrometers or less by wire machining with high machining accuracy in a short time. Regarding the device.

【0002】[0002]

【従来の技術】放電加工は、放電現象を媒体として高精
度・微細形状の加工が容易であることなど多くの特色を
持つと共に、非接触加工である。このために、電極と被
加工物との間隔を常に放電発生に適した間隔に保持する
ことが必要になる。形彫り放電加工では、加工の進行に
従って電極と被加工物とが除去される量だけ常に極間隔
を追い込まなければならないが、、極間の加工くずやガ
スの発生、放電面形状の変化などに対応して放電極間隔
を維持することが必要になる。
2. Description of the Related Art Electric discharge machining has many features such as high precision and easy machining of fine shapes using an electric discharge phenomenon as a medium, and is a non-contact machining. For this reason, it is necessary to always maintain the distance between the electrode and the workpiece at a distance suitable for generating an electric discharge. In die-sinking EDM, it is necessary to constantly push the gap between electrodes by the amount by which the electrode and the work piece are removed as the machining progresses.However, machining scraps between the electrodes, gas generation, changes in the shape of the discharge surface, etc. Correspondingly, it is necessary to maintain the discharge electrode spacing.

【0003】また、特開平1−103234号で示され
るようなワイヤ放電研削加工は、通常の研削の砥石に相
当する部分にワイヤガイド上をゆっくり走行するワイヤ
の外部エッジを用い、回転する被加工物を円筒研削のよ
うにして加工する方法であるが、切れ込みをとる場合
に、加工の進行に従って電極と被加工物が除去される量
だけ常に極間隔を追い込まなければならず、形彫り放電
加工と同様に放電極間隔を維持することが必要になる。
ワイヤ放電加工では、被加工物の板厚が変化する場合に
は放電面積も変化するために放電加工量も変化し、一定
の電気的条件、一定速度で送った場合には溝幅が大きく
変化し、加工精度が大幅に低下する。つまり、加工面積
の変化に伴い、放電極間隔が変化するため、板厚の変化
に対応して放電極間隔を維持することが必要になる。
Further, in wire electric discharge grinding as disclosed in Japanese Patent Laid-Open No. 1-103234, an outer edge of a wire slowly traveling on a wire guide is used for a portion corresponding to a grindstone for ordinary grinding, and a rotating workpiece is machined. It is a method of machining an object like cylindrical grinding, but when making a notch, it is necessary to always push in the polar interval by the amount that the electrode and the workpiece are removed as the machining progresses Similarly to the above, it is necessary to maintain the discharge electrode interval.
In wire electric discharge machining, the discharge area also changes when the plate thickness of the work piece changes, so the amount of electric discharge also changes, and the groove width changes significantly when feeding at constant electrical conditions and constant speed. However, the processing accuracy is significantly reduced. That is, since the discharge electrode interval changes with the change in the processing area, it is necessary to maintain the discharge electrode interval corresponding to the change in the plate thickness.

【0004】このような課題を解決するために、一般的
には放電間隔の極間平均電圧をある基準電圧と比較し
て、極間平均電圧が一定になるように送り速度を変化さ
せる方法がとられている。さらに、送り速度だけでな
く、最適な電気的条件を計算機を用いて出力する方式も
ある(精密工学会 新版精密工作便覧 コロナ社 P46
5,P494 <1992>)。極間平均電圧検出によって、電極と
被加工物との短絡も検知可能である。特開昭59−75
23号では、極間平均電圧を一定になるように送り速度
を制御する方法に加えて、さらに、平均加工電流を検出
し、被加工物とワイヤ電極との相対速度、所望の加工溝
幅から板厚検出を行い、電気的加工条件を切り替えるワ
イヤカット放電加工機を提供している。
In order to solve such a problem, generally, there is a method of comparing the inter-electrode average voltage of the discharge interval with a certain reference voltage and changing the feed rate so that the inter-electrode average voltage becomes constant. It is taken. Furthermore, there is also a method that outputs not only the feed rate but also the optimum electrical conditions using a computer (Precision Engineering Society New Edition Precision Machinery Handbook, Corona P46).
5, P494 <1992>). A short circuit between the electrode and the workpiece can be detected by detecting the average voltage between the electrodes. Japanese Patent Laid-Open No. 59-75
In No. 23, in addition to the method of controlling the feed rate so that the average voltage between electrodes is constant, the average machining current is further detected, and the relative speed between the workpiece and the wire electrode and the desired machining groove width are determined. We provide wire-cut electric discharge machines that detect plate thickness and switch electrical processing conditions.

【0005】特開平10−235521号では、前記ワ
イヤ放電研削加工において、単位時間当たりの放電回数
を計数し、この計数値を所定値と比較して、送り速度や
電極と被加工物間距離の放電加工条件を制御する放電加
工装置を提供している。これは、放電極間隔が狭くなる
にしたがって、放電回数が増加する性質を利用したもの
である。例えば、被加工物にうねりがある場合、山部で
は除去すべき放電加工量が多くなるため、放電回数が増
すので、送り速度を遅くすれば所望の放電加工量を供給
することが可能となり、短絡を防止し、放電間隔も一定
にできる。また、逆に谷部では除去すべき放電加工量が
少なくなるため、放電回数が減り、送り速度を速くする
ことによって、加工速度を速くすることができる。
In Japanese Patent Laid-Open No. 10-235521, the number of electric discharges per unit time is counted in the wire electric discharge grinding, and the counted value is compared with a predetermined value to determine the feed rate and the distance between the electrode and the workpiece. Provided is an electric discharge machining apparatus that controls electric discharge machining conditions. This utilizes the property that the number of discharges increases as the spacing between the discharge electrodes becomes narrower. For example, if the workpiece has undulations, the amount of electrical discharge machining to be removed increases at the ridges, so the number of electrical discharges increases, so it is possible to supply the desired amount of electrical discharge machining by slowing the feed rate. A short circuit can be prevented and the discharge interval can be made constant. On the contrary, since the electric discharge machining amount to be removed is small in the valley portion, the number of electric discharges is reduced, and the machining speed can be increased by increasing the feeding speed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の放電加工機において、極間平均電圧や平均加
工電流を検出することによって、放電加工条件を制御す
る方法は、一定周期、一定幅のパルス電圧を極間に供給
するようなスイッチング素子を使用した回路に非常に有
効であるが、極間への電圧供給が不定期で、かつ放電エ
ネルギの供給期間が無供給期間に比較して無視できるほ
ど急峻なパルスを供給するコンデンサと抵抗の充放電を
利用した回路においては、極間平均電圧や平均加工電流
は無放電時とほとんど違いはみられないため、制御が難
しいという課題があった。
However, in such a conventional electric discharge machine, a method of controlling the electric discharge machining conditions by detecting the average voltage between the electrodes and the average machining current is a constant cycle and a constant width. It is very effective for a circuit that uses a switching element that supplies a pulse voltage between the electrodes, but the voltage supply between the electrodes is irregular, and the discharge energy supply period is ignored compared to the non-supply period. In a circuit that uses the charging and discharging of a capacitor and a resistor that supply a pulse that is as steep as possible, there is almost no difference between the average voltage between contacts and the average machining current when there is no discharge, so there is the problem that control is difficult. .

【0007】また、極間平均電圧や極間平均電流は、放
電エネルギと放電頻度が組み合わされて出力された結果
であるので、粗加工と仕上げ加工とで放電エネルギを変
える場合などはピーク値やパルス幅などのパラメータを
考慮しなければならないため、基準点を比例式などの単
純計算では決められないという課題があった。この点、
特開平10−235521号では、放電回数値を制御に
用いているため、抵抗とコンデンサの充放電を利用した
回路においても有効である。
Further, since the inter-electrode average voltage and inter-electrode average current are the result of the combination of the discharge energy and the discharge frequency and are output, when the discharge energy is changed between rough machining and finishing machining, the peak value or Since the parameters such as pulse width have to be taken into consideration, there is a problem that the reference point cannot be determined by a simple calculation such as a proportional formula. In this respect,
In Japanese Unexamined Patent Publication No. 10-235521, the value of the number of discharges is used for control, so that it is also effective in a circuit using charging and discharging of a resistor and a capacitor.

【0008】しかしながら、少なくとも一定時間の計数
時間が必要であり、応答性の面で不利となるし、また別
途短絡検出手段が必要になるなど部品点数も多くなりコ
スト面の課題もあった。さらに、50マイクロメートル
以下の微細軸を加工するといった微細加工が必要な場合
には、放電間隔が短くなるとともに放電を抑制する働き
のある絶縁液が進入しにくくなるため、放電パルスの減
衰特性が悪化し、1回の放電で数回の放電パルスの計数
が行われることもあり、実際の放電回数の倍以上の放電
回数を誤計数する可能性がある。
However, at least a certain time is required for counting, which is disadvantageous in terms of responsiveness, and a short circuit detecting means is additionally required, so that the number of parts is increased and there is a problem in cost. Furthermore, when fine processing such as processing a fine shaft of 50 micrometers or less is required, the discharge interval becomes short and the insulating liquid that has the function of suppressing discharge does not easily enter, so that the discharge pulse attenuation characteristics are reduced. Since the number of discharge pulses is deteriorated and the discharge pulse is counted several times in one discharge, there is a possibility that the number of discharge times more than twice the actual number of discharge is erroneously counted.

【0009】本発明は、上記課題を解決するものであ
り、高い加工精度と高速性を兼ね備え、特に微細加工に
適した放電加工装置を提供することを目的とする。
The present invention is intended to solve the above problems, and an object of the present invention is to provide an electric discharge machining apparatus having both high machining accuracy and high speed, which is particularly suitable for fine machining.

【0010】[0010]

【課題を解決するための手段および作用・効果】上記目
的を達成するために請求項第1項記載の発明は、電極と
被加工物によって形成される間隔に加工用電源から電圧
を印加して放電を発生させると共に、前記電極と前記被
加工物を相対移動させて前記被加工物の加工を行う放電
加工装置において、前記加工用電源から供給する電流を
検出すると共にアナログ電圧に変換する電流検出手段
と、検出した電流に比例した電圧と基準電圧を比較して
論理信号を出力するコンパレータ手段と、前記論理信号
の立ち上がり、または立ち下がりのいずれか一方をトリ
ガとして一定時間論理値を保持するパルス幅伸長手段
と、前記パルス幅伸長手段の入力と出力とで論理和をと
る論理和手段と、前記論理和手段の論理信号出力を平滑
してアナログ電圧に変換する平滑手段からなる放電状態
検出手段を備えたことを特徴とする。本発明によれば、
放電極間隔に応じて変化する放電頻度を、誤計数するこ
となく、しかも速い応答でアナログ電圧に変換すること
ができるとともに、短絡検知も兼ね備えることができ
る。また、抵抗とコンデンサの充放電を利用した加工用
電源を使用する場合においても放電頻度の差を認識しや
すい。さらに、放電頻度のみを検出することになるの
で、制御する上での基準点を求めやすく、よって、高精
度な加工を実現する上での極間隔の検知が可能になる。
In order to achieve the above object, the invention according to claim 1 applies a voltage from a machining power source to a gap formed by an electrode and a workpiece. In an electric discharge machining apparatus that generates electric discharge and moves the electrode and the workpiece relative to each other to machine the workpiece, current detection that detects a current supplied from the machining power source and converts the current into an analog voltage. Means, comparator means for comparing a voltage proportional to the detected current with a reference voltage and outputting a logic signal, and a pulse for holding a logic value for a certain period of time triggered by either one of rising or falling of the logic signal. The width extending means, the logical sum means for obtaining the logical sum of the input and output of the pulse width expanding means, and the logical signal output of the logical sum means are smoothed and converted into an analog voltage. Characterized by comprising a discharge state detection means comprising a smoothing means for. According to the invention,
The discharge frequency, which changes according to the discharge electrode interval, can be converted into an analog voltage with a fast response without miscounting, and short-circuit detection can also be provided. Further, it is easy to recognize the difference in discharge frequency even when using a processing power source that uses charging and discharging of a resistor and a capacitor. Furthermore, since only the discharge frequency is detected, it is easy to obtain a reference point for control, and thus it is possible to detect the pole interval for realizing highly accurate machining.

【0011】請求項第2項記載の発明は、前記放電状態
検出手段から出力されるアナログ電圧データと、記憶手
段に記録されている加工用電源の設定値データとから、
前記電極と前記被加工物との推定放電極間隔を演算する
放電極間隔演算手段と、前記放電極間隔演算手段の演算
結果から、前記記憶手段に記録された前記電極と前記被
加工物の相対移動条件を修正する軸移動制御手段と、前
記修正条件によって前記電極と前記被加工物との相対移
動条件の修正を実現する軸移動駆動手段とを備えたこと
を特徴とする。本発明によれば、前記放電状態検出手段
の出力から放電極間隔を推定し、放電極間隔を一定に保
つような機械的制御が可能になり、高精度の加工が短時
間で可能となる。
According to a second aspect of the present invention, the analog voltage data output from the discharge state detection means and the set value data of the machining power source recorded in the storage means are used.
A discharge electrode interval calculation means for calculating an estimated discharge electrode distance between the electrode and the work piece, and a relative result of the electrode and the work piece recorded in the storage means from a calculation result of the discharge electrode distance calculation means. It is characterized by further comprising an axial movement control means for correcting the movement condition and an axial movement driving means for realizing the correction of the relative movement condition of the electrode and the workpiece according to the correction condition. According to the present invention, the discharge electrode interval can be estimated from the output of the discharge state detecting means, and mechanical control can be performed to keep the discharge electrode interval constant, and high-precision machining can be performed in a short time.

【0012】請求項第3項記載の発明は、前記放電極間
隔演算手段の演算結果から前記記憶手段に記録された加
工用電源の電気的条件を修正する加工用電源制御手段を
備えたことを特徴とする。本発明によれば、前記放電状
態検出手段の出力から放電極間隔を推定し、放電極間隔
を一定に保つような電気的制御が可能になり、高精度の
加工が可能となる。
According to a third aspect of the present invention, there is provided a machining power supply control means for correcting the electrical condition of the machining power supply recorded in the storage means from the calculation result of the discharge electrode interval calculation means. Characterize. According to the present invention, it is possible to estimate the discharge electrode interval from the output of the discharge state detection means and perform electrical control so as to keep the discharge electrode interval constant, thereby enabling highly accurate machining.

【0013】請求項第4項記載の発明は、前記加工用電
源制御手段は、加工用電源への印加電圧に応じて、PW
M制御信号またはアナログ信号のいずれかの信号を出力
し、前記コンパレータ手段の基準電圧を変更することを
特徴とする。本発明によれば、加工用電源で設定されて
いる電気的加工条件の設定変更により検出した電流パル
スのピーク値が大きく変化しても、比較器の閾値を変化
することにより放電の誤検出を防止することができる。
According to a fourth aspect of the present invention, the machining power source control means is configured to control the PW according to the voltage applied to the machining power source.
One of the M control signal and the analog signal is output to change the reference voltage of the comparator means. According to the present invention, even when the peak value of the current pulse detected by changing the setting of the electrical processing condition set by the processing power source changes significantly, the threshold value of the comparator is changed to prevent false detection of discharge. Can be prevented.

【0014】請求項第5項記載の発明は、前記電極がワ
イヤ電極であり、前記被加工物が回転手段によって回転
する微細軸である前記放電加工装置において、前記ワイ
ヤ電極と前記微細軸の軸方向とが直交して走行するため
のワイヤガイドを備えたことを特徴とする。本発明によ
れば、50マイクロメートル以下の微細軸を高精度で加
工することが出来る。
According to a fifth aspect of the present invention, in the electric discharge machining device wherein the electrode is a wire electrode and the workpiece is a fine shaft rotated by a rotating means, the wire electrode and the shaft of the fine shaft are provided. It is characterized by having a wire guide for traveling in a direction orthogonal to the direction. According to the present invention, it is possible to process a fine axis of 50 micrometers or less with high accuracy.

【0015】請求項第6項記載の発明は、前記電極を所
望の3次元形状にあらかじめ加工した工具電極とすると
ともに、該工具電極の3次元形状を前記被加工物に転写
することを特徴とする。本発明によれば、形彫り放電加
工装置においても高精度の加工が可能となる。
According to a sixth aspect of the present invention, the electrode is a tool electrode pre-machined into a desired three-dimensional shape, and the three-dimensional shape of the tool electrode is transferred to the workpiece. To do. According to the present invention, high-precision machining is possible even in a die-sinking electric discharge machine.

【0016】請求項第7項記載の発明は、前記電極がワ
イヤ電極であり、前記被加工物が板状導電体である放電
加工装置において、前記ワイヤ電極と前記板状導電体の
面方向とを直交させるとともに、前記ワイヤ電極と前記
板状導電体の相対位置を変化させるための少なくとも2
軸以上の軸移動手段を備えたことを特徴とする。本発明
によれば、ワイヤカット放電加工装置においても高精度
の加工が可能となる。
According to a seventh aspect of the present invention, in an electric discharge machining device in which the electrode is a wire electrode and the workpiece is a plate-shaped conductor, the wire electrode and the plane direction of the plate-shaped conductor are different from each other. At least 2 for changing the relative positions of the wire electrode and the plate-shaped conductor while making them orthogonal to each other.
It is characterized in that it is provided with an axis moving means which is larger than the axis. According to the present invention, it is possible to perform highly accurate machining even in a wire cut electric discharge machine.

【0017】[0017]

【発明の実施の形態】以下、本発明の形態により添付図
面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】図1は本発明の実施に係る放電加工装置の
第1の構成例を示す。加工用電源1は、直流電源2、抵
抗3、およびコンデンサ4から構成される。直流電源2
のプラス極は被加工物5に接続され、直流電源2のマイ
ナス極は電極6に接続される。被加工物5と電極6との
間隔は、水や放電油などで満たされる。また、被加工物
5は上下左右に動作する軸移動駆動部7に接続されてい
る。
FIG. 1 shows a first configuration example of an electric discharge machine according to the present invention. The processing power supply 1 includes a DC power supply 2, a resistor 3, and a capacitor 4. DC power supply 2
Of the DC power source 2 is connected to the electrode 6. The space between the workpiece 5 and the electrode 6 is filled with water, discharge oil or the like. Further, the workpiece 5 is connected to an axial movement drive unit 7 that moves vertically and horizontally.

【0019】直流電源2が直流電圧を印加すると、コン
デンサ4に電荷が充電され、コンデンサ4の端子間電圧
が徐々に上昇する。コンデンサ4の端子間電圧が、被加
工物5と電極6との間の間隔の放電開始電圧を超えたと
き、被加工物6と電極6との間で放電が発生する。この
プロセスの電流の変化を電流検出手段8で検出する。電
流検出手段8については、シャント抵抗の両端電圧を測
定する方法や、電線の周りに生じる磁気を利用して測定
する方法などがある。また、電流検出手段8の位置は、
コンデンサ4と被加工物5との経路上、コンデンサ4と
電極6との経路上、および直流電源2と抵抗3との経路
上が挙げられる。
When the DC power supply 2 applies a DC voltage, the capacitor 4 is charged with electric charge, and the voltage across the terminals of the capacitor 4 gradually rises. When the voltage between the terminals of the capacitor 4 exceeds the discharge start voltage in the interval between the work piece 5 and the electrode 6, a discharge is generated between the work piece 6 and the electrode 6. The change in current in this process is detected by the current detecting means 8. Regarding the current detection means 8, there are a method of measuring the voltage across the shunt resistance, a method of measuring using the magnetism generated around the electric wire, and the like. The position of the current detection means 8 is
Examples include a path between the capacitor 4 and the workpiece 5, a path between the capacitor 4 and the electrode 6, and a path between the DC power supply 2 and the resistor 3.

【0020】電流検出手段8の検出値を、コンパレータ
手段10、パルス幅伸長手段11、論理和手段12、平
滑手段13から構成される放電状態検出手段9に入力
し、放電極間隔演算装置14に放電頻度に比例するアナ
ログ信号を出力する。放電極間隔演算装置14で、放電
極間隔を推定し、その推定値に基づいて、軸移動制御手
段15に対して、速度変更指令や送り動作の一時的逆方
向動作指令などを行い、軸移動駆動手段を放電極間隔が
一定になるように動作させる。
The detected value of the current detecting means 8 is inputted to the discharge state detecting means 9 composed of the comparator means 10, the pulse width extending means 11, the logical sum means 12 and the smoothing means 13, and is inputted to the discharge electrode interval calculating device 14. It outputs an analog signal proportional to the discharge frequency. The discharge electrode interval calculation device 14 estimates the discharge electrode interval, and based on the estimated value, issues a speed change command or a temporary reverse operation command of the feed operation to the axis movement control means 15 to move the axis. The drive means is operated so that the discharge electrode interval is constant.

【0021】図2は本発明の実施に係る放電検出回路の
各部の波形を示す。電流検出手段8からの出力18の波
形は23のとおりであり、被加工物5と電極6との極間
隔で放電が発生すると、回路にパルス電流が流れ、減衰
する。電流の減衰は被加工物5と電極6との間隔への水
や放電油の進入によって放電が抑制され、早期に終了す
る。検出した電流値は、コンパレータ手段10によって
デジタル信号波形である放電時コンパレータ部出力波形
24に変換される。つまり、電流値が基準値以上であれ
ばHIGHとなり、基準値未満であればLOWとなる。
なお、仕上げ加工などで、被加工物5と電極6との放電
極間隔が狭く、水や放電油が進入しにくい場合には、電
流の減衰も遅いこともあるため、1回の放電で数回のパ
ルスが放電時コンパレータ部出力波形24に発生する可
能性がある。放電時コンパレータ部出力19は、2つに
分岐され、一方はパルス幅伸長手段11に、他方は論理
和手段12に入力される。
FIG. 2 shows the waveform of each part of the discharge detection circuit according to the present invention. The waveform 18 of the output 18 from the current detecting means 8 is as shown in FIG. 23. When discharge is generated at the polar interval between the workpiece 5 and the electrode 6, a pulse current flows through the circuit and is attenuated. The attenuation of the electric current is terminated early because the electric discharge is suppressed by the entry of water or discharge oil into the space between the workpiece 5 and the electrode 6. The detected current value is converted by the comparator means 10 into a discharge-time comparator section output waveform 24 which is a digital signal waveform. That is, if the current value is greater than or equal to the reference value, it becomes HIGH, and if it is less than the reference value, it becomes LOW.
In addition, when the discharge electrode gap between the work piece 5 and the electrode 6 is narrow and water or discharge oil is difficult to enter due to finish processing, the current may be slowed down at a slow rate. It is possible that a single pulse will be generated in the comparator output waveform 24 during discharge. The discharging comparator section output 19 is branched into two, one of which is input to the pulse width extending means 11 and the other of which is input to the logical sum means 12.

【0022】なお、後者のパルス幅伸長手段11を経由
しない経路には、タイミングを調整するための遅延回路
を挿入するのが望ましい。パルス幅伸長手段11は、例
えば単安定マルチバイブレータが使用され、入力パルス
をトリガとして、任意に設定した時間幅のパルスを出力
し、その時間幅内に入力されたパルスの立ち上がりにつ
いては無視さる。これにより、放電時コンパレータ部出
力波形24に、1回の放電で複数のパルスが発生してい
ても、1つのパルス、しかも一定の時間幅のパルスを出
力するような放電時パルス幅伸長手段出力波形25にな
る。
Incidentally, it is desirable to insert a delay circuit for adjusting the timing in the latter path which does not pass through the pulse width expansion means 11. The pulse width expansion means 11 uses, for example, a monostable multivibrator, outputs a pulse having an arbitrarily set time width by using an input pulse as a trigger, and ignores the rising edge of the pulse input within the time width. As a result, even if a plurality of pulses are generated in one discharge in the discharge comparator output waveform 24, one pulse and a pulse width expansion means output at discharge that outputs a pulse with a constant time width It becomes a waveform 25.

【0023】また、放電周期はランダムであり、しかも
電流検出部8から出力される電流パルス幅は放電周期に
対して非常に短いので、電流検出部8の出力を直接平滑
しても放電頻度の変化による平滑信号の変化幅は小さい
が、パルス幅伸長手段11によって、1回の放電による
パルス幅を長くすることによって、放電頻度による平滑
信号の変化幅を大きくすることが可能となる。つまり、
放電によるパルス幅は一定であるが、放電周期がランダ
ムなために、放電頻度によって平滑信号が大きく変化す
るのである。放電時パルス幅伸長手段出力20は、論理
和手段12に入力され、コンパレータ手段出力19で分
岐された片方の信号と論理和がとられる。放電時には、
パルス幅伸長手段出力波形25の波形がそのまま論理和
手段出力波形26となり、平滑手段13に入力され、放
電頻度に応じて変化するアナログ信号波形27となる。
Further, since the discharge cycle is random and the current pulse width output from the current detection section 8 is very short with respect to the discharge cycle, even if the output of the current detection section 8 is directly smoothed, the discharge frequency will vary. Although the change width of the smooth signal due to the change is small, the change width of the smooth signal depending on the discharge frequency can be increased by increasing the pulse width of one discharge by the pulse width expansion means 11. That is,
Although the pulse width due to the discharge is constant, the smoothing signal changes greatly depending on the discharge frequency because the discharge cycle is random. The discharge pulse width expansion means output 20 is input to the logical sum means 12 and logically summed with one of the signals branched by the comparator means output 19. When discharged,
The waveform of the pulse width extending means output waveform 25 becomes the logical sum means output waveform 26 as it is, is input to the smoothing means 13, and becomes the analog signal waveform 27 that changes according to the discharge frequency.

【0024】以上は、被加工物5と電極6との間で正常
に放電が発生している場合であるが、短絡事故発生時に
は平滑手段出力22が最大電圧で一定となり、短絡が検
知できる。
The above is the case where the electric discharge is normally generated between the workpiece 5 and the electrode 6, but when the short circuit accident occurs, the smoothing means output 22 becomes constant at the maximum voltage and the short circuit can be detected.

【0025】図3は本発明の実施に係る短絡を検知した
場合の放電検出回路の各部の波形を示す。短絡が発生す
ると、直流電源2の印加電圧を抵抗3の抵抗値で除算し
た値の電流が電流検出手段8で検出される。コンパレー
タ手段10の基準で短絡時の電流値で出力がHIGHに
なるように設定しておくことにより、短絡によりコンパ
レータ手段10の出力19は、波形29のように短絡発
生時よりHIGHの状態を継続することになる。このと
き、パルス幅伸長手段11は、短絡発生時に一定幅のパ
ルスを出力した後、その後、短絡が解消されるまでLO
Wのままとなる。
FIG. 3 shows the waveform of each part of the discharge detection circuit when a short circuit according to the present invention is detected. When a short circuit occurs, a current having a value obtained by dividing the applied voltage of the DC power supply 2 by the resistance value of the resistor 3 is detected by the current detection means 8. By setting the output to be HIGH according to the current value at the time of short circuit based on the reference of the comparator unit 10, the output 19 of the comparator unit 10 due to the short circuit continues to be in the HIGH state from the time of occurrence of the short circuit as shown by the waveform 29. Will be done. At this time, the pulse width extending means 11 outputs a pulse having a constant width when a short circuit occurs, and then outputs LO until the short circuit is resolved.
It remains W.

【0026】一方、コンパレータ手段10の出力19は
短絡後はHIGH状態を継続するため、論理和手段12
の出力21は波形31のように短絡後はHIGH状態を
継続する。従って、平滑手段22の出力22は波形32
のように最大電圧で一定となり、これを監視することに
より短絡を検出することができる。また、図3のとお
り、放電頻度が多くなるほど放電時の平滑手段出力波形
27は高い値のアナログデータとなり、放電頻度が多く
なり過ぎた結果として短絡が生じ、最大電圧になるとい
うことで制御上の論理も整合性があり、制御しやすくな
っている。
On the other hand, since the output 19 of the comparator means 10 continues to be in the HIGH state after the short circuit, the logical sum means 12
The output 21 of the signal continues to be in the HIGH state after the short circuit as shown by the waveform 31. Therefore, the output 22 of the smoothing means 22 is the waveform 32.
As described above, the maximum voltage becomes constant, and a short circuit can be detected by monitoring this. Further, as shown in FIG. 3, the smoothing means output waveform 27 at the time of discharge becomes analog data of a higher value as the discharge frequency increases, and as a result of the discharge frequency becoming too high, a short circuit occurs and the maximum voltage is reached. The logic of is also consistent and easy to control.

【0027】図4は本発明の実施に係る放電加工装置の
第2の構成例を示す。放電極間演算手段14で、推定さ
れる放電極間隔に基づいて、記憶手段16に記録された
加工用電源1の設定値と比較して、加工用電源制御手段
17は加工用電源に対して、印加電圧変更指令などを行
い、放電極間隔が一定になるように動作させる。
FIG. 4 shows a second configuration example of the electric discharge machine according to the present invention. On the basis of the estimated discharge electrode interval, the inter-discharge electrode calculation means 14 compares the set value of the processing power supply 1 recorded in the storage means 16, and the processing power supply control means 17 controls the processing power supply. , The applied voltage change command, etc., are operated so that the discharge electrode interval becomes constant.

【0028】図5は本発明の実施に係る可変基準電圧を
備えたコンパレータ手段の説明図である。任意のCPU
33から周期一定、パルス幅可変で制御するPWM制御
信号波形37を送信し、PWMパルス平滑手段34によ
ってアナログ信号波形38に変換し、コンパレータ手段
10の基準電圧を変更することができる。これによっ
て、記憶手段16に記録された加工用電源1の電気的加
工条件の変更に伴い、コンパレータ手段10の基準電圧
を修正することが可能となる。なお、CPU33からの
信号をD/A変換されたアナログ信号として、PWMパ
ルス平滑手段34を介さずに、直接コンパレータ手段1
0の基準電圧入力端子に入力してもよい。
FIG. 5 is an explanatory diagram of the comparator means having the variable reference voltage according to the embodiment of the present invention. Any CPU
It is possible to transmit a PWM control signal waveform 37 which is controlled by a constant cycle and variable pulse width from 33, converts it into an analog signal waveform 38 by the PWM pulse smoothing means 34, and changes the reference voltage of the comparator means 10. As a result, it becomes possible to correct the reference voltage of the comparator means 10 according to the change in the electrical processing conditions of the processing power source 1 recorded in the storage means 16. It should be noted that the signal from the CPU 33 is directly converted into a D / A converted analog signal without passing through the PWM pulse smoothing means 34, and the comparator means 1 is directly operated.
You may input into the reference voltage input terminal of 0.

【0029】以上の実施例では、主にワイヤ放電研削加
工を例として説明したが、形彫り放電加工やワイヤカッ
ト放電加工に適用してもよい。
In the above embodiment, the wire electric discharge grinding is mainly described as an example, but the present invention may be applied to die-sinking electric discharge machining or wire cut electric discharge machining.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に係る放電加工装置の第1の構成
例を示す図である。
FIG. 1 is a diagram showing a first configuration example of an electric discharge machine according to an embodiment of the present invention.

【図2】本発明の実施に係る放電検出回路の各部の波形
を示す図である。
FIG. 2 is a diagram showing a waveform of each part of the discharge detection circuit according to the embodiment of the present invention.

【図3】本発明の実施に係る短絡を検知した場合の放電
検出回路の各部の波形を示す図である。
FIG. 3 is a diagram showing a waveform of each part of the discharge detection circuit when a short circuit according to an embodiment of the present invention is detected.

【図4】本発明の実施に係る放電加工装置の第2の構成
例を示す図である。
FIG. 4 is a diagram showing a second configuration example of an electric discharge machine according to the present invention.

【図5】本発明の実施に係る可変基準電圧を備えたコン
パレータ手段の説明図である。
FIG. 5 is an explanatory diagram of comparator means having a variable reference voltage according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…加工用電源、2…直流電源、3…抵抗、4…コンデ
ンサ、5…被加工物、6…電極、7…軸移動駆動手段、
8…電流検出手段、9…放電状態検出手段、10…コン
パレータ手段、11…パルス幅伸長手段、12…論理和
手段、13…平滑手段、14…放電極間演算部、15…
軸移動制御部、16…記憶部、17…加工用電源制御
部、18…電流検出手段出力、19…コンパレータ部出
力、20…パルス幅伸長手段出力、21…論理和手段出
力、22…平滑手段出力、23…放電時電流検出手段出
力波形、24…放電時コンパレータ部出力波形、25…
放電時パルス幅伸長手段出力波形、26…放電時論理和
手段出力波形、27…放電時平滑手段出力波形28…短
絡時電流検出手段出力波形、29…短絡時コンパレータ
部出力波形、30…短絡時パルス幅伸長手段出力波形、
31…短絡時論理和手段出力波形、32…短絡時平滑手
段出力波形、33…CPU、34…PWMパルス平滑手
段、35…電流値入力端子、36…基準電圧入力端子、
37…PWMパルス信号波形、38…コンパレータ手段
出力波形
1 ... Machining power supply, 2 ... DC power supply, 3 ... Resistance, 4 ... Capacitor, 5 ... Workpiece, 6 ... Electrode, 7 ... Shaft movement drive means,
8 ... Current detecting means, 9 ... Discharge state detecting means, 10 ... Comparator means, 11 ... Pulse width expanding means, 12 ... Logical sum means, 13 ... Smoothing means, 14 ... Discharge electrode calculation section, 15 ...
Axis movement control unit, 16 ... Storage unit, 17 ... Machining power supply control unit, 18 ... Output of current detection unit, 19 ... Output of comparator unit, 20 ... Output of pulse width expansion unit, 21 ... Output of OR unit, 22 ... Smoothing unit Output, 23 ... Output waveform of current detection means during discharge, 24 ... Output waveform of comparator section during discharge, 25 ...
Discharge pulse width expansion means output waveform, 26 ... Discharge logical sum means output waveform, 27 ... Discharge smoothing means output waveform 28 ... Short circuit current detection means output waveform, 29 ... Short circuit comparator output waveform, 30 ... Short circuit Pulse width expansion means output waveform,
31 ... OR-means output waveform at short circuit, 32 ... Smoothing means output waveform at short circuit, 33 ... CPU, 34 ... PWM pulse smoothing means, 35 ... Current value input terminal, 36 ... Reference voltage input terminal,
37 ... PWM pulse signal waveform, 38 ... Comparator means output waveform

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電極と被加工物によって形成される間隔
に加工用電源から電圧を印加して放電を発生させると共
に、前記電極と前記被加工物を相対移動させて前記被加
工物の加工を行う放電加工装置において、前記加工用電
源から供給する電流を検出すると共にアナログ電圧に変
換する電流検出手段と、検出した電流に比例した電圧と
基準電圧を比較して論理信号を出力するコンパレータ手
段と、前記論理信号の立ち上がりまたは立ち下がりのい
ずれか一方をトリガとして一定時間論理値を保持するパ
ルス幅伸長手段と、前記パルス幅伸長手段の入力と出力
とで論理和をとる論理和手段と、前記論理和手段の論理
信号出力を平滑してアナログ電圧に変換する平滑手段か
らなる放電状態検出手段を設けたことを特徴とする放電
加工装置。
1. A voltage is applied from a machining power source to generate a discharge in a space formed by an electrode and a work piece, and the electrode and the work piece are relatively moved to process the work piece. In an electric discharge machining device for performing, a current detection means for detecting a current supplied from the machining power source and converting it into an analog voltage, and a comparator means for comparing a voltage proportional to the detected current with a reference voltage and outputting a logic signal. A pulse width extending means for holding a logical value for a certain period of time by using either one of the rising edge and the falling edge of the logic signal as a trigger, and a logical sum means for taking a logical sum of an input and an output of the pulse width extending means, An electric discharge machine comprising: a discharge state detecting means comprising a smoothing means for smoothing a logical signal output of the logical sum means and converting it into an analog voltage.
【請求項2】 前記放電状態検出手段から出力されるア
ナログ電圧データと、記憶手段に記録されている加工用
電源の設定値データとから、前記電極と前記被加工物と
の推定放電極間隔を演算する放電極間隔演算手段と、前
記放電極間隔演算手段の演算結果から、前記記憶手段に
記録された前記電極と前記被加工物の相対移動条件を修
正する軸移動制御手段と、前記修正条件によって前記電
極と前記被加工物との相対移動条件の修正を実現する軸
移動駆動手段とを備えたことを特徴とする請求項1記載
の放電加工装置。
2. An estimated discharge electrode distance between the electrode and the workpiece is calculated from analog voltage data output from the discharge state detection means and setting value data of the processing power source recorded in the storage means. A discharge electrode interval calculation means for calculating, an axial movement control means for correcting the relative movement condition of the electrode and the workpiece recorded in the storage means from the calculation result of the discharge electrode distance calculation means, and the correction condition. The electric discharge machining apparatus according to claim 1, further comprising: an axial movement driving unit that corrects a relative movement condition between the electrode and the workpiece.
【請求項3】 前記放電極間隔演算手段の演算結果から
前記記憶手段に記録された加工用電源の電気的条件を修
正する加工用電源制御手段を備えたことを特徴とする請
求項1及至2記載の放電加工装置。
3. A machining power supply control means for correcting the electrical condition of the machining power supply recorded in the storage means from the calculation result of the discharge electrode interval calculation means. The electric discharge machine described.
【請求項4】 前記加工用電源制御手段は、加工用電源
への印加電圧に応じて、PWM制御信号またはアナログ
信号のいずれかの信号を出力し、前記コンパレータ手段
の基準電圧を変更することを特徴とする請求項1及至3
記載の放電加工装置。
4. The processing power supply control means outputs either a PWM control signal or an analog signal in accordance with a voltage applied to the processing power supply to change the reference voltage of the comparator means. Claims 1 to 3 characterized
The electric discharge machine described.
【請求項5】 前記電極がワイヤ電極であり、前記被加
工物が回転手段によって回転する微細軸である前記放電
加工装置において、前記ワイヤ電極と前記微細軸の軸方
向とが直交して走行するためのワイヤガイドを備えたこ
とを特徴とする請求項第1項及至第4項の放電加工装
置。
5. In the electric discharge machining apparatus, wherein the electrode is a wire electrode and the workpiece is a fine shaft rotated by a rotating means, the wire electrode and the fine shaft run in a direction orthogonal to each other. An electric discharge machine according to any one of claims 1 to 4, further comprising:
【請求項6】 前記電極を所望の3次元形状にあらかじ
め加工した工具電極とするとともに、該工具電極の3次
元形状を前記被加工物に転写することを特徴とする請求
項第1項及至第4項記載の放電加工装置。
6. The method according to claim 1, wherein the electrode is a tool electrode pre-machined into a desired three-dimensional shape, and the three-dimensional shape of the tool electrode is transferred to the workpiece. The electric discharge machine according to item 4.
【請求項7】 前記電極がワイヤ電極であり、前記被加
工物が板状導電体である放電加工装置において、前記ワ
イヤ電極と前記板状導電体の面方向とを直交させるとと
もに、前記ワイヤ電極と前記板状導電体の相対位置を変
化させるための少なくとも2軸以上の軸移動手段を備え
たことを特徴とする、請求項第1項及至第4項記載の放
電加工装置。
7. In an electric discharge machine in which the electrode is a wire electrode and the workpiece is a plate-shaped conductor, the wire electrode and the plate-shaped conductor are orthogonal to each other, and the wire electrode is 5. The electric discharge machine according to claim 1, further comprising at least two or more axis moving means for changing the relative position of the plate-shaped conductor.
JP2001361868A 2001-11-28 2001-11-28 Electric discharge machining device Pending JP2003165028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361868A JP2003165028A (en) 2001-11-28 2001-11-28 Electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361868A JP2003165028A (en) 2001-11-28 2001-11-28 Electric discharge machining device

Publications (1)

Publication Number Publication Date
JP2003165028A true JP2003165028A (en) 2003-06-10

Family

ID=19172462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361868A Pending JP2003165028A (en) 2001-11-28 2001-11-28 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JP2003165028A (en)

Similar Documents

Publication Publication Date Title
JP5739563B2 (en) Wire electric discharge machine equipped with means for calculating average discharge delay time
CN105121316B (en) The pulse of spark erosion equipment and clearance control
US8735762B2 (en) Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap
TWI422450B (en) Wire-cut electric discharge machine with function to suppress local production of streaks during finish machining
EP1219373A2 (en) Controller for wire electric discharge machine
Yan An adaptive control system with self-organizing fuzzy sliding mode control strategy for micro wire-EDM machines
EP3085482B1 (en) Wire electric discharge machine
CN103909313B (en) Electric discharge machining source apparatus
US10493547B2 (en) Wire electrical discharge machining device
US4672161A (en) EDM method and apparatus with trapezoidized short-duration pulses
JP2003165028A (en) Electric discharge machining device
JP5357298B2 (en) Wire electrical discharge machine to detect machining status
JP5478532B2 (en) EDM machine
JP2003181725A (en) Electric discharge machining apparatus
JP2002154015A (en) Contact detecting device for electric discharge machine
JP2004050310A (en) Control method for pinhole electric discharge machine
JP2801280B2 (en) Wire cut EDM power supply
JP3557913B2 (en) Electric discharge machine
JPH02298428A (en) Electric discharge machine
JP3781815B2 (en) Electric discharge machining method and apparatus
JPH0413083B2 (en)
JPH0675807B2 (en) Electric discharge machine
JPH0659570B2 (en) Electric discharge machine
JPH0665444B2 (en) Electric discharge machine
JPS63185522A (en) Electric discharge machining device