JP5354488B2 - Method for defining excess water value of exothermic composition - Google Patents

Method for defining excess water value of exothermic composition Download PDF

Info

Publication number
JP5354488B2
JP5354488B2 JP2008138476A JP2008138476A JP5354488B2 JP 5354488 B2 JP5354488 B2 JP 5354488B2 JP 2008138476 A JP2008138476 A JP 2008138476A JP 2008138476 A JP2008138476 A JP 2008138476A JP 5354488 B2 JP5354488 B2 JP 5354488B2
Authority
JP
Japan
Prior art keywords
heating element
exothermic composition
water
value
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008138476A
Other languages
Japanese (ja)
Other versions
JP2009034481A (en
JP2009034481A5 (en
Inventor
百々寿浩
Original Assignee
百々 寿浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百々 寿浩 filed Critical 百々 寿浩
Priority to JP2008138476A priority Critical patent/JP5354488B2/en
Publication of JP2009034481A publication Critical patent/JP2009034481A/en
Publication of JP2009034481A5 publication Critical patent/JP2009034481A5/ja
Application granted granted Critical
Publication of JP5354488B2 publication Critical patent/JP5354488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stipulating an excess water value indicating the amount of excess water in an optional exothermic composition in an optional time period, a die-formable exothermic composition and heating elements in various sizes and various shapes. <P>SOLUTION: In the method of stipulating the excess water value of the exothermic composition, the exothermic composition containing the excess water, and the heating elements, the method is for measuring the excess water of the exothermic composition as the index value of the amount of excess water at present by an excess water value measuring apparatus with a through-hole and an infiltration material and stipulating the excess water value of the exothermic composition at present. The infiltration material is a filter medium whose water filtration time is &le;120 seconds/100 ml, filling inside the through-hole of the measuring plate of the excess water value measuring apparatus bottomed by the filter medium is performed, the infiltration distance to the filter medium of the water or aqueous solution of the exothermic composition after five minutes is measured, and a value obtained by dividing the infiltration distance by the height of the through-hole and multiplying it by 100 further is defined as the excess water value of the exothermic composition at present. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、発熱組成物及び発熱体中の発熱組成物の現在の余剰水量を迅速に測定し、余剰水量の指標である余剰水値を規定する発熱組成物の余剰水値規定方法、含余剰水発熱組成物、発熱体及び発熱体の製造方法に関するものである。   The present invention quickly measures the current excess water amount of the exothermic composition and the exothermic composition in the exothermic body, and defines a surplus water value of the exothermic composition that defines the surplus water value that is an index of the surplus water amount. The present invention relates to a water heating composition, a heating element, and a method for manufacturing the heating element.

従来から鉄粉、活性炭、反応促進剤(無機電解質等)、水を主成分とし、空気中の酸素と接触して発熱する発熱組成物を通気性の収納体に収納した発熱体がカイロ等として広く利用されている。これらの発熱体の一般的な構造としては、空気中の酸素と接触して発熱する、金属粉、活性炭、反応促進剤(無機電解質等)、水等を混合した粉体発熱組成物が通気性の偏平状袋に収納されて発熱体とされている。また多種の形状、多種のサイズの発熱体が製造できる発熱組成物や発熱体が提案されている。発熱体は、寒冷等に対して暖を採る目的の採暖具として使用されるほか、肩こり、神経痛、筋肉痛等の温熱治療具として用いられ、患部に貼布するだけで、血行が促進されて筋肉痛等が緩和されるという効果を有するため、簡易な血行促進治療具として広く用いられている。   Conventionally, heating elements such as iron powder, activated carbon, reaction accelerators (inorganic electrolytes, etc.), water, and heat generating compositions that generate heat when in contact with oxygen in the air are stored in a breathable storage body. Widely used. As a general structure of these heating elements, a powder exothermic composition mixed with metal powder, activated carbon, a reaction accelerator (inorganic electrolyte, etc.), water, etc., which generates heat upon contact with oxygen in the air, is breathable. The heating element is housed in a flat bag. In addition, exothermic compositions and heating elements that can produce heating elements of various shapes and sizes have been proposed. In addition to being used as a warming tool for the purpose of warming up against cold, etc., the heating element is used as a thermal treatment tool for stiff shoulders, neuralgia, muscle pain, etc., and by simply applying it to the affected area, blood circulation is promoted. Since it has an effect of relieving muscle pain and the like, it is widely used as a simple blood circulation promoting treatment tool.

特許文献1には、円形や三角形等の、多種の形状の発熱体が製造できる、易動水値で定義された易動水を有するシャーベット状発熱組成物が開示されている。
特許文献2には、増粘剤を含有させた、粘稠なクリーム状の発熱組成物をスクリーン印刷等の印刷の手法で、多種形状、多種サイズの発熱体が製造できる増粘剤を含有させた、粘稠なクリーム状又はペースト状の発熱組成物が開示されている。
Patent Document 1 discloses a sherbet-like exothermic composition having easy-moving water defined by easy-moving water values, which can produce various shapes of heating elements such as circles and triangles.
In Patent Document 2, a thick cream-like exothermic composition containing a thickener is added by a printing method such as screen printing, and a thickener that can produce various shapes and sizes of heating elements is included. A viscous creamy or pasty exothermic composition is also disclosed.

特開2002−155273号公報JP 2002-155273 A 特開平9−75388号公報JP-A-9-75388

1.従来の成形性のない粉体発熱組成物を使用した場合はその形状、サイズに制約が多かった。
2.特許文献1の易動水値とその測定方法には次のような問題点があった。
1)易動水値は、発熱組成物の水分値と発熱組成物の配合水分量に相当する真の水分量から成り立っており、発熱組成物に加えられた全水分量(真の水分値)に対する発熱組成物中の余剰水量(水分値)を数値化した値であり、基本的には製造時の発熱組成物中の余剰水量を示す値であり、その測定方法は、発熱組成物の配合水分量に相当する全水分量の濾紙への浸透距離である真の水分値と発熱組成物中の余剰水量の濾紙への浸透距離である水分値の比を数値化した易動水量を示す値であり、測定に手間と時間がかかっていた。
2)易動水値は、水分値と真の水分値を同時期に測定し、発熱組成物の余剰水量を規定した規定値であり、発熱組成物が発熱体中に組み込まれた後、製造時から時間が経過した発熱組成物の易動水値を規定することは、実質的に、不可能であった。即ち、配合時以外の発熱組成物の全水量を赤外線水分測定機等にて測定しても正確な水分量は得られず、易動水値は、製造時の発熱組成物の余剰水量は規定できるが、製造後の経時的な発熱組成物の余剰水量は規定できない欠点があった。
3)易動水値は、定義上、発熱組成物の配合時のみに適用する規定値である。
3.特許文献2の粘稠なクリーム状又はペースト状の発熱組成物は、増粘剤の影響が大きく、成形性はよいが発熱特性が落ち、発熱が短時間の発熱体しかできなかった。
4.従来の貼るタイプの発熱体は、柔軟性、密着性が不足し、 使用中着衣や身体から剥がれたり、身体へ効率よく熱伝達されないという不都合があった。
1. When a conventional powder exothermic composition without formability was used, there were many restrictions on the shape and size.
2. The easy water value and the measurement method of Patent Document 1 have the following problems.
1) The mobile water value is composed of the moisture value of the exothermic composition and the true moisture amount corresponding to the blended moisture amount of the exothermic composition, and the total moisture amount (true moisture value) added to the exothermic composition. The amount of surplus water (moisture value) in the exothermic composition relative to the value is quantified, and is basically a value indicating the amount of surplus water in the exothermic composition at the time of production. A value indicating the amount of mobile water, expressed as a numerical value of the ratio of the true moisture value, which is the permeation distance of the total water amount corresponding to the water content, to the filter paper and the water value, which is the permeation distance of the excess water amount in the exothermic composition to the filter paper Therefore, it took time and effort to measure.
2) The mobile water value is a specified value that regulates the amount of excess water in the exothermic composition by measuring the moisture value and the true moisture value at the same time, and is manufactured after the exothermic composition is incorporated into the heating element. It was virtually impossible to define the mobile water value of the exothermic composition over time. That is, even if the total water content of the exothermic composition other than at the time of blending is measured with an infrared moisture meter or the like, an accurate water amount cannot be obtained, and the mobile water value is defined as the excess water amount of the exothermic composition at the time of manufacture. However, there is a drawback that the amount of excess water in the exothermic composition over time after production cannot be specified.
3) The mobile water value is, by definition, a specified value that is applied only when the exothermic composition is blended.
3. The viscous cream-like or paste-like exothermic composition of Patent Document 2 has a large influence of the thickener, has good moldability but has poor exothermic properties, and only a heating element with a short exotherm can be produced.
4). Conventional heating elements of the pasting type have inconveniences that they lack flexibility and adhesion, and are not peeled off from clothing or the body during use or cannot be efficiently transferred to the body.

以上のことから、本発明の課題は、成形には有用であるが、発熱には有害である余剰水において、操作が容易で、簡単、迅速に発熱組成物中の余剰水量を規定でき、且つ、製造時の発熱組成物の余剰水量はもとより、製造後の経時的な発熱組成物の余剰水量も規定できる、発熱組成物中の余剰水値規定方法及び新しい発熱組成物中の余剰水量の、新しい表示値である余剰水値を提供することを目的とするものであり、装着が容易であるとともに、発熱体の発熱前、発熱中、発熱終了後にわたり、発熱体の柔軟性が悪化せず、優れた温熱効果を有しながら、安全性が高く、発熱体の熱を効率よく身体に伝えることができ、安定した発熱特性を保持することができ、被加温体への沿い性が良好で、無反発性で、装着感や肌触りが良好な、実用的な柔軟性を有し、多種の用途、所望にこたえられる多種形状、多種サイズの発熱体(含温熱貼付剤)及びその使用方法を提供することを目的とする。   From the above, the problem of the present invention is that it is useful for molding, but in excess water that is harmful to heat generation, it is easy to operate, can easily and quickly define the amount of excess water in the exothermic composition, and In addition to the amount of excess water in the exothermic composition at the time of manufacture, the amount of excess water in the exothermic composition over time after production can also be specified, the method of defining the excess water value in the exothermic composition and the amount of excess water in the new exothermic composition, The purpose is to provide a surplus water value that is a new display value, and it is easy to install, and the flexibility of the heating element does not deteriorate before, during, and after heating. While having excellent thermal effect, it is highly safe, can efficiently transmit the heat of the heating element to the body, can maintain stable heat generation characteristics, and has good conformity to the heated body It is practical with good resilience, good fit and feel Has a soft, and to provide various applications, various shapes can answer desired, the heating element of a wide size (含温 heat patch) and methods of use thereof.

本発明者は、これらの課題を解決すべく鋭意研究を重ねた結果、本発明に到達した。
即ち、本発明の発熱組成物の余剰水値の規定方法は、請求項1に記載の通り、
貫通孔を有する余剰水値測定装置と浸透材により、製造後の発熱組成物の経時的に減少する水分量において、発熱組成物の測定時の全水分量を明らかにすることなく、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、該発熱組成物の余剰水量を測定時の全水分量に対する指標として示す現在の発熱組成物の余剰水値を規定する方法であって、
前記浸透材が、濾水時間120秒/100m1以下の濾材であり、前記濾材に底打ちされた、前記余剰水値測定装置の測定板の貫通孔内に前記発熱組成物を充填し、その5分後の前記測定板の貫通孔内の前記発熱組成物の水又は水溶液の前記濾材への浸透距離を測定し、
余剰水値=[浸透距離(mm)/貫通孔(発熱組成物)の高さ(mm)]×100
により、
その浸透距離を前記貫通孔内に充填した発熱組成物の測定時の全水分量に比例する貫通孔の高さで除し、更に100をかけて得られる値を発熱組成物中の測定時の全水分量に対する余剰水量を示す現在の発熱組成物の余剰水値とすることを特徴とする。
また、請求項2に記載の発熱組成物の余剰水値の規定方法は、請求項1に記載の発熱組成物の余剰水値の規定方法において、
円柱状貫通孔を有する余剰水値測定装置と浸透材により、製造後の発熱組成物の経時的に減少する水分量において、発熱組成物の測定時の全水分量を明らかにすることなく、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、該発熱組成物の余剰水量を測定時の全水分量に対する指標として示す現在の発熱組成物の余剰水値を規定する方法であって、
前記余剰水値測定装置を非吸水性の素材からなる支持板、測定板、充填板、プラスチックフィルム、押さえ板から構成し、前記浸透材が濾水時間120秒/100m1以下の濾紙であり、前記発熱組成物を用いて、中心点から放射状に45゜間隔で8本の基準線が書かれた、濾水時間120 秒/100m1以下の濾紙を、支持板上に置き、前記濾紙の中心に、円柱状貫通孔を持つ長さ150 mm×幅100 mmの表面が平滑な測定板を置き、その円柱状貫通孔付近に前記発熱組成物を置き、充填板を測定板上に沿って動かし、前記発熱組成物を充填し、さらに、測定中に前記発熱組成物が発熱反応を起こさないように、円柱状貫通孔を覆うように非吸水性のプラスチックフィルムを置き、更に、その上に、押さえ板を置き、5分間保後、該濾紙を取り出し、放射状に書かれた基準線に沿って、水又は水溶液の浸透距離を測定板の円柱状貫通孔の径円から浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を前記円柱状貫通孔内に充填した前記発熱組成物の測定時の全水分量に比例する円柱状貫通孔の高さ(mm)でわり、更に100をかけた値を発熱組成物中の測定時の全水分量に対する余剰水量を示す現在の発熱組成物の余剰水値とすることを特徴とする・
また、請求項3に記載の発熱組成物の余剰水値の規定方法は、請求項1に記載の発熱組成物の余剰水値の規定方法において、
円柱状貫通孔を有する余剰水値測定装置と浸透材により、製造後の発熱組成物の経時的に減少する水分量において、発熱組成物の測定時の全水分量を明らかにすることなく、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、該発熱組成物の余剰水量を測定時の全水分量に対する指標として示す現在の発熱組成物の余剰水値を規定する方法であって、
前記余剰水値測定装置を非吸水性の素材からなる支持板、測定板、充填板、プラスチックフィルム、押さえ板から構成し、前記浸透材がJIS P3801「2種」濾紙であり、 前記発熱組成物を用いて、中心点から放射状に45゜間隔で8本の基準線が書かれた、前記JIS P3801「2種」濾紙を、支持板上に置き、前記濾紙の中心に、直径29mm×高さ20mmの円柱状貫通孔をつ長さ150mm×幅100mmの表面が平滑な測定板を置き、その円柱状貫通孔付近に前記発熱組成物を置き、充填板を測定板上に沿って動かし、前記発熱組成物を充填し、さらに、測定中に前記発熱組成物が発熱反応を起こさないように、円柱状貫通孔を覆うように非吸水性のプラスチックフィルムを置き、更に、その上に、押さえ板を置き、5分間保持後、該濾紙を取り出し、放射状に書かれた基準線に沿って、水又は水溶液の浸透距離を測定板の円柱状貫通孔の径円から浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を前記円柱状貫通孔内に充填した前記発熱組成物の測定時の全水分量に比例する円柱状貫通孔の高さ(mm)でわり、更に100をかけた値を発熱組成物中の測定時の全水分量に対する余剰水量を示す現在の発熱組成物の余剰水値とすることを特徴とする。












As a result of intensive studies to solve these problems, the present inventor has reached the present invention.
That is, the method for defining the surplus water value of the exothermic composition of the present invention is as described in claim 1.
Excess water value measuring device having a through-hole and a penetrating material allow the exothermic composition to be measured without revealing the total amount of water when measuring the exothermic composition in the amount of moisture that decreases with time in the exothermic composition after production. Measuring the surplus water as an index value of the current surplus water amount, and defining the surplus water value of the current exothermic composition indicating the surplus water amount of the exothermic composition as an index for the total water content at the time of measurement ,
The permeation material is a filtration material having a filtration time of 120 seconds / 100 ml or less, and the exothermic composition is filled in the through hole of the measurement plate of the surplus water value measuring device bottomed on the filtration material. Measure the penetration distance to the filter medium of water or an aqueous solution of the exothermic composition in the through hole of the measurement plate after minutes,
Excess water value = [penetration distance (mm) / height of through-hole (exothermic composition) (mm)] × 100
By
Divide the permeation distance by the height of the through hole proportional to the total water content at the time of measurement of the exothermic composition filled in the through hole, and multiply by 100 to obtain the value obtained at the time of measurement in the exothermic composition. The surplus water value of the present exothermic composition indicating the surplus water amount relative to the total water amount is used.
Moreover, the prescription method of the surplus water value of the exothermic composition of Claim 2 WHEREIN: In the prescription method of the surplus water value of the exothermic composition of Claim 1,
Excess water value measuring device with a cylindrical through-hole and penetrating material can generate heat without revealing the total water content when measuring the exothermic composition in the exothermic composition after production. It is a method of measuring the surplus water value of the present exothermic composition by measuring the surplus water of the composition as an index value of the current surplus water amount and indicating the surplus water amount of the exothermic composition as an index with respect to the total water content at the time of measurement. And
A support plate made of the excess water level measuring device from the non-water-absorbing material, the measurement plate, the filling plate, plastic film, composed of a pressing plate, wherein the osmotic material is drainage time of 120 seconds / 100M1 following filter paper, said Using the exothermic composition, a filter paper with eight reference lines radially written at 45 ° intervals from the center point and having a drainage time of 120 seconds / 100 ml or less is placed on a support plate, and the filter paper is placed at the center of the filter paper. surface length 0.99 mm × width 100 mm with a cylindrical through hole Place the smooth measurement plate, place the cylindrical through-holes near to the heat-generating composition, moving along a filling plate on measuring plate, wherein the exothermic composition is filled, further wherein as the exothermic composition does not cause an exothermic reaction during the measurement, place the non-water-absorbing plastic film so as to cover a cylindrical through-hole, further thereon, the pressing plate It was placed, after the hold 5 minutes, Take out the filter paper, along the radial reference line, read the penetration distance of water or aqueous solution from the diameter circle of the cylindrical through hole of the measuring plate to the penetration tip in mm units, and read each of the 8 A value (mm) obtained by arithmetically averaging the permeation distance (m1, m2, m3, m4, m5, m6, m7, m8) is proportional to the total water content at the time of measurement of the exothermic composition filled in the cylindrical through hole. The value obtained by dividing the height of the cylindrical through hole (mm) and multiplying by 100 is the surplus water value of the current exothermic composition indicating the surplus water amount with respect to the total water amount at the time of measurement in the exothermic composition. Features
Moreover, the prescription method of the surplus water value of the exothermic composition of Claim 3 WHEREIN: In the prescription method of the surplus water value of the exothermic composition of Claim 1,
Excess water value measuring device with a cylindrical through-hole and penetrating material can generate heat without revealing the total water content when measuring the exothermic composition in the exothermic composition after production. It is a method of measuring the surplus water value of the present exothermic composition by measuring the surplus water of the composition as an index value of the current surplus water amount and indicating the surplus water amount of the exothermic composition as an index with respect to the total water content at the time of measurement. And
The surplus water value measuring device is composed of a support plate, a measurement plate, a filling plate, a plastic film, and a pressing plate made of a non-water-absorbing material, and the permeation material is JIS P3801 “Type 2” filter paper, The JIS P3801 “Type 2” filter paper on which eight reference lines are written at 45 ° intervals radially from the center point is placed on a support plate, and the diameter of 29 mm × height at the center of the filter paper a cylindrical through hole of 20mm Place the smooth measurement plate surface of the lifting one length 150 mm × width 100 mm, place the cylindrical through-holes near to the heat-generating composition, moving along a filling plate on measuring plate, filling the heat-generating composition, further, the so exothermic composition does not cause an exothermic reaction during the measurement, place the non-water-absorbing plastic film so as to cover a cylindrical through-hole, further thereon, pressing Place the board, 5 minutes After holding the filter paper, remove the filter paper, read the penetration distance of water or aqueous solution along the reference line written radially, and read the distance from the diameter circle of the cylindrical through hole of the measurement plate to the penetration tip in mm units. When measuring the exothermic composition in which the columnar through-holes were filled with values (mm) obtained by arithmetically averaging the eight permeation distances (m1, m2, m3, m4, m5, m6, m7, m8) . The surplus water of the present exothermic composition, which indicates the surplus water amount relative to the total water amount at the time of measurement in the exothermic composition, divided by the height of the cylindrical through hole (mm) proportional to the total moisture amount and further multiplied by 100 It is characterized by a value.












1.本発明の発熱組成物の余剰水値の規定方法は、操作が容易で、簡単、迅速に発熱組成物中の現在の余剰水量を規定でき、且つ、製造時の発熱組成物の余剰水量はもとより、製造後の経時的な発熱組成物の余剰水量も規定できる、発熱組成物中の余剰水値規定方法及び新しい発熱組成物中の余剰水量の表示値である余剰水値を提供できる。
2.本発明の余剰水値は濾水時間を120秒/100ml以下の濾材を用い、発熱組成物の水又は水溶液の濾材への浸透距離を測定し、その浸透距離を発熱組成物が充填された測定板の円柱状貫通孔の高さで除して得られる値を余剰水値として規定するので、製造時の発熱組成物の全水分量はもとより、現在の発熱組成物の全水分量に関係なく、測定時の、現在の発熱組成物の余剰水量が指標として表せ、現在の発熱組成物の余剰水量が簡単迅速に規定でき、発熱組成物の型成形性の判定、発熱特性や品質管理に使用でき、実用性が非常に高い。
3.本発明の含余剰水発熱組成物は、発熱性があり、型成形性があるので、その成形体であり、発熱性のある、多種サイズ、多種形状の発熱組成物成形体を提供できる。
4.本発明の余剰水値が0.5〜80の含余剰水発熱組成物は型成形性があるため、多種サイズ、多種形状の発熱組成物成形体が成形でき、その結果、単一発熱部発熱体、矩形発熱体、温灸発熱体、足温発熱体、区分発熱部発熱体、剛軟発熱体、ストライプ発熱体、切り離し自在発熱体、伸縮発熱体、バンド発熱体、トンネル通気発熱体、薬剤発熱体、切り離し自在トンネル通気発熱体、切り離し自在薬剤発熱体、目温発熱体、顔温発熱体、外袋付き外仮着折り畳み発熱体等の多種サイズ、多種形状の発熱体が製造、提供できる。
5.本発明のループスティフネスで規定された区分発熱部発熱体は、該区分発熱部発熱体を身体等の被加温体に沿わせたときに、該発熱体の発熱組成物の重量に関係なく、容易に被加温体に沿わすことができ、沿わせた後も反発力で元に戻ることがない無反発性を備えた発熱体を提供できる。
6.本発明の剛軟発熱体、特にストライプ発熱体は,最小剛軟度を有する方向以外は容易に曲がらず、曲がり安さに方向付けがあり、最小剛軟度とほぼ直角をなす方向の剛軟度が最大の剛軟度を有し、他方向に比べ一方向のみが極端に曲がりやすい構造を有するので、取り扱いやすく、発熱前、発熱中、発熱終了後にわたり、最小剛軟度の変化が悪化せず、柔軟性を常時維持できるため、身体にフィットしたままで、十分な温熱効果を得られる。また、使いはじめはもとより使い終わっても充分な可撓性が常時維持でき、区分け部の凹部と区分発熱部の凸部がストライプ状に設けられているため、発熱体の両面が凹凸状のストライプになり、身体の部位に沿わせて使用でき、十分な温熱効果を発揮するとともに、蓄熱を抑える結果、長時間繰り返し使用しても発赤、疼痛、ムレ、かぶれ等が極めて起こりにくい安全性の高い温熱器具として優れた効果を得ることができる。
7.本発明のトンネル通気発熱体は、発熱最高温度を42℃未満に抑えることが出来るので、低温やけどを回避でき、所望の温度で、所望の持続時間を得ることができ医療用具としても優れた効果を得ることができる。
8.本発明の薬剤発熱体は、発熱組成物と粘着剤層との相互作用が防止でき、
安定した薬剤の効果を保存期間中も維持でき、生理痛、神経痛、筋肉痛等の緩解、疲労回復等を目的とした医療用具としても優れた効果を得ることができる。
1. The method for defining the surplus water value of the exothermic composition of the present invention is easy to operate, can easily and quickly define the current surplus water amount in the exothermic composition, and not only the surplus water amount of the exothermic composition at the time of manufacture. Further, it is possible to provide a surplus water value that is a display value of the surplus water value in the exothermic composition and a surplus water value prescribing method in the exothermic composition that can also regulate the surplus water amount of the exothermic composition over time after production.
2. The surplus water value of the present invention is measured by measuring the permeation distance of water or aqueous solution of the exothermic composition into the filter medium using a filter medium having a drainage time of 120 seconds / 100 ml or less, and measuring the permeation distance filled with the exothermic composition. Since the value obtained by dividing by the height of the cylindrical through-hole of the plate is defined as the surplus water value, not only the total moisture content of the exothermic composition at the time of manufacture, but also the current total moisture content of the exothermic composition The amount of surplus water in the current exothermic composition at the time of measurement can be expressed as an index, and the amount of surplus water in the current exothermic composition can be defined easily and quickly, and used for judgment of moldability, exothermic characteristics and quality control of the exothermic composition. And practicality is very high.
3. Since the surplus water exothermic composition of the present invention has exothermic properties and moldability, it is a molded product, and it is possible to provide exothermic exothermic composition molded products of various sizes and shapes.
4). Since the surplus water exothermic composition having an excess water value of 0.5 to 80 according to the present invention has moldability, a variety of sizes and shapes of exothermic composition molded bodies can be molded. Body, rectangular heating element, hot spring heating element, foot heating element, segment heating element heating element, rigid soft heating element, stripe heating element, detachable heating element, telescopic heating element, band heating element, tunnel ventilation heating element, drug heating Various sizes and shapes of heating elements such as body, detachable tunnel ventilation heating element, detachable drug heating element, eye temperature heating element, face temperature heating element, outer temporary folding heating element with outer bag can be manufactured and provided.
5. The segment heating part heating element defined by the loop stiffness of the present invention, when the segment heating part heating element is placed along a body to be heated, regardless of the weight of the heating composition of the heating element, It is possible to provide a heating element that can easily follow the body to be heated and has no resilience that does not return to its original state due to the repulsive force even after the heating.
6). The bending heating element of the present invention, in particular the stripe heating element, does not bend easily except in the direction having the minimum bending resistance, and has a direction for ease of bending, and the bending resistance in a direction substantially perpendicular to the minimum bending resistance. Has the maximum bending resistance and has a structure that is extremely easy to bend in only one direction compared to the other direction, so it is easy to handle and the change in minimum bending resistance deteriorates before, during, and after heat generation. In addition, since flexibility can be maintained at all times, a sufficient thermal effect can be obtained while keeping fit to the body. Also, sufficient flexibility can be maintained at all times from the beginning of use as well as the end of use, and the concave portion of the partitioning portion and the convex portion of the sectional heating portion are provided in a stripe shape, so that both surfaces of the heating element are uneven stripes. As a result of being able to be used along the body part and exhibiting sufficient thermal effect and suppressing heat storage, redness, pain, swelling, rash, etc. are extremely unlikely to occur even after repeated use for a long time. An excellent effect as a heating device can be obtained.
7). The tunnel-ventilated heating element of the present invention can suppress the maximum heat generation temperature to less than 42 ° C., thus avoiding low-temperature burns, obtaining a desired duration at a desired temperature, and being excellent as a medical device. Can be obtained.
8). The drug heating element of the present invention can prevent the interaction between the exothermic composition and the pressure-sensitive adhesive layer,
A stable effect of the drug can be maintained even during the storage period, and an excellent effect can be obtained as a medical device for the purpose of relieving menstrual pain, neuralgia, muscle pain, etc., and recovering from fatigue.

本発明は、発熱組成物の余剰水値の規定方法、含余剰水発熱組成物、発熱体及び発熱体の製造方法であり、
中でも、区分発熱部と区分け部から構成され、ループスティフネスで規定された収納体を構成要員に組み込んだ区分発熱部発熱体は、手触り感覚のよい柔軟性を有する発熱体である。即ち、本発明の区分発熱部発熱体は、該区分発熱部発熱体を身体等の被加温体に沿わせたときに、該発熱体の発熱組成物の重量に関係なく、容易に被加温体に沿わすことができ、沿わせた後も反発力で元に戻ることがない無反発性を備えた発熱体である。
従来、使用されてきた最小剛軟度は、撓み性を規定できても、屈曲に伴う反発性は規定できず、柔軟性の指標としては不十分であった。
本発明では、発熱体の重要構成要員である収納体として、ループスティフネスで規定した収納体を使用し、撓み性及び反発性の双方を加味した柔軟性を有する発熱体を具現化した。
即ち、
本発明の発熱組成物の余剰水値の規定方法は、発熱組成物中の現在の余剰水量を余剰水の浸透材又は濾紙への浸透距離と発熱組成物の高さとにより、余剰水量を余剰水値として規定するものである。即ち、貫通孔を有する余剰水値測定装置と浸透材又は濾紙により、発熱組成物の余剰水を浸透材に浸透させ、その浸透距離と余剰水値測定装置の測定板の貫通孔の高さとにより、浸透距離を貫通孔の高さで除し、100をかけた値を算出し、発熱組成物の余剰水値として規定する。
本発明の余剰水値の規定方法により、簡単、迅速に発熱組成物中の余剰水量が数値として規定でき、、随時、現在の余剰水量が求められる。これにより、発熱組成物の健康診断が可能になり、余剰水を含有しない発熱体の製造が可能になった。
本発明の水又は水溶液の浸透材又は濾紙への浸透距離は、前記測定板の貫通孔の内壁面から浸透材に浸透した発熱組成物の水又は水溶液の浸透先端までの距離である。好ましくは、基準線に沿って浸透材に浸透した発熱組成物の水又は水溶液の浸透先端までの距離である。
前記貫通孔は、制限はないが、円柱状貫通孔や四角柱状貫通孔が一例として挙げられる。特に、円柱状貫通孔が好ましい。円柱状貫通孔の場合、該浸透距離は、前記測定板の貫通孔の周辺端部(周径等)である円柱状貫通孔の径円から浸透材又は濾紙に浸透した発熱組成物の水又は水溶液の浸透先端までの距離である。 好ましくは、基準線に沿って浸透材又は濾紙に浸透した発熱組成物の水又は水溶液の浸透先端までの距離である。
前記浸透材又は濾紙は、前記浸透距離が測定可能な任意の領域に、中心点を決め、その中心点を通り、等角度で8本の基線を描いた浸透材又は濾紙が好ましい。
前記浸透材又は濾紙が測定板の貫通孔の周辺端部の平面形状と同じ形状が記載されている浸透材又は濾紙であることが好ましく、これにより、測定板の貫通孔の浸透材上の位置決めが簡単になり、更に貫通孔の周辺端部の平面形状と同じ形状の中心点から延びた8本の基準線とにより浸透距離の測定が容易になる。
本発明の発熱組成物の余剰水値の規定方法は、発熱組成物中の全水分量に関係なく、操作が容易で、迅速に発熱組成物中の余剰水量を規定でき、且つ、製造時の発熱組成物の余剰水量や製造後の経時的な発熱組成物の余剰水量はもとより、発熱組成物が発熱体中に組み込まれた後の発熱組成物の余剰水値も経時的に、現在の余剰水量を余剰水値として規定できる。実用性に富んだ値である。
The present invention is a method for defining the excess water value of the exothermic composition, the excess water-containing exothermic composition, the heating element and the method for producing the heating element,
Among them, a segmented heating unit heating element that is composed of a segmented heating unit and a partitioning part and that incorporates a storage body defined by loop stiffness into a constituent member is a heating element having flexibility with a good touch feeling. That is, the segmented heating element heating element of the present invention can be easily applied when the segmented heating element heating element is placed along a body or other heated body, regardless of the weight of the heating composition of the heating element. It is a heating element that has a non-repulsive property that can be along a warm body and does not return to its original state by a repulsive force even after being along.
Conventionally, the minimum bending resistance, which has been used, is not sufficient as an index of flexibility because it is not possible to define repulsion due to bending even if it can define flexibility.
In the present invention, the storage body defined by the loop stiffness is used as the storage body that is an important component of the heat generation body, and the heat generation body having flexibility in consideration of both flexibility and resilience is realized.
That is,
The method of defining the surplus water value of the exothermic composition of the present invention is based on the present surplus water amount in the exothermic composition based on the permeation distance to the permeation material or filter paper of surplus water and the height of the exothermic composition. It is specified as a value. That is, the surplus water value measuring device having a through hole and a permeating material or filter paper are used to permeate surplus water of the exothermic composition into the permeating material, and depending on the permeation distance and the height of the through hole of the measuring plate of the surplus water value measuring device The permeation distance is divided by the height of the through hole, and a value multiplied by 100 is calculated and defined as the surplus water value of the exothermic composition.
According to the method for defining the surplus water value of the present invention, the surplus water amount in the exothermic composition can be easily and quickly defined as a numerical value, and the current surplus water amount is obtained as needed. Thereby, a health check of the exothermic composition became possible, and it became possible to manufacture a heating element that does not contain surplus water.
The penetration distance of the water or aqueous solution of the present invention into the penetrating material or filter paper is the distance from the inner wall surface of the through hole of the measurement plate to the penetrating tip of the water or aqueous solution of the exothermic composition that has penetrated the penetrating material. Preferably, it is the distance to the penetration tip of the water or aqueous solution of the exothermic composition that has penetrated the penetration material along the reference line.
Although there is no restriction | limiting in the said through-hole, A columnar through-hole and a square columnar through-hole are mentioned as an example. In particular, a cylindrical through hole is preferable. In the case of a cylindrical through-hole, the permeation distance is the water of the exothermic composition that has permeated the penetrant or the filter paper from the diameter circle of the cylindrical through-hole that is the peripheral end portion (circumferential diameter, etc.) of the through-hole of the measurement plate or This is the distance to the penetration tip of the aqueous solution. Preferably, it is the distance to the permeation tip of water or an aqueous solution of the exothermic composition that has permeated the permeation material or filter paper along the reference line.
The penetrant or filter paper is preferably a penetrant or filter paper in which a central point is determined in an arbitrary region where the permeation distance can be measured, and eight base lines are drawn at equal angles through the central point.
Preferably, the penetrant or filter paper is a penetrant or filter paper having the same shape as the planar shape of the peripheral edge of the through hole of the measurement plate, whereby the positioning of the through hole of the measurement plate on the penetrant Further, the permeation distance can be easily measured by the eight reference lines extending from the center point having the same shape as the planar shape of the peripheral end portion of the through hole.
The method for defining the excess water value of the exothermic composition of the present invention is easy to operate regardless of the total amount of water in the exothermic composition, can quickly define the excess water amount in the exothermic composition, and can be used at the time of production. In addition to the amount of excess water in the exothermic composition and the amount of excess water in the exothermic composition over time after production, the excess water value of the exothermic composition after the exothermic composition is incorporated into the heating element is also determined over time. The amount of water can be defined as a surplus water value. This is a practical value.

即ち、好ましい、本発明の発熱組成物の余剰水値の規定方法は、
貫通孔を有する余剰水値測定装置と浸透材により、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、現在の発熱組成物の余剰水値を規定する方法であって、前記浸透材が、濾水時間120秒/100ml以下の濾材であり、前記濾材に底打ちされた、前記余剰水値測定装置の測定板の貫通孔内に充填し、その5分後の発熱組成物の水又は水溶液の前記濾材への浸透距離を測定し、その浸透距離を貫通孔の高さで除し、更に100をかけて得られる値を現在の発熱組成物の余剰水値とする発熱組成物の余剰水値の規定方法であり、
円柱状貫通孔を有する余剰水値測定装置と浸透材により、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、現在の発熱組成物の余剰水値を規定する方法であって、前記余剰水値測定装置を非吸水性の素材からなる支持板、測定板、充填板、プラスチックフィルム、押さえ板から構成し、前記浸透材が濾水時間120秒/100ml以下の濾紙であり、20±1℃の環境下において、該環境下に調整された試料である発熱組成物を用いて、中心点から放射状に45°間隔で8本の基準線が書かれた、濾水時間120秒/100ml以下の濾紙を、支持板上に置き、前記濾紙の中心に、直径29mm×高さ20mmの円柱状貫通孔を持つ長さ150mm×幅100mmの表面が平滑な測定板を置き、その円柱状貫通孔付近に発熱組成物を置き、充填板を測定板上に沿って動かし、発熱組成物を充填し、さらに、測定中に発熱組成物が発熱反応を起こさないように、円柱状貫通孔を覆うように非吸水性のプラスチックフィルムを置き、更に、その上に、押さえ板を置き、5分間保持後、該濾紙を取り出し、放射状に書かれた基準線に沿って、水又は水溶液の浸透距離を測定板の円柱状貫通孔の径円から浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を円柱状貫通孔の高さ(mm)でわり、更に100をかけた値を余剰水値とする発熱組成物の余剰水値の規定方法であり、
円柱状貫通孔を有する余剰水値測定装置と浸透材により、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、現在の発熱組成物の余剰水値を規定する方法であって、前記余剰水値測定装置を非吸水性の素材からなる支持板、測定板、充填板、プラスチックフィルム、押さえ板から構成し、前記浸透材がJIS P3801「2種」濾紙であり、20±1℃の環境下において、該環境下に調整された試料である発熱組成物を用いて、中心点から放射状に45°間隔で8本の基準線が書かれた、前記JIS P3801「2種」濾紙を、支持板上に置き、前記濾紙の中心に、直径29mm×高さ20mmの円柱状貫通孔を持つ長さ150mm×幅100mmの表面が平滑な測定板を置き、その円柱状貫通孔付近に発熱組成物を置き、充填板を測定板上に沿って動かし、発熱組成物を充填し、さらに、測定中に発熱組成物が発熱反応を起こさないように、円柱状貫通孔を覆うように非吸水性のプラスチックフィルムを置き、更に、その上に、押さえ板を置き、5分間保持後、該濾紙を取り出し、放射状に書かれた基準線に沿って、水又は水溶液の浸透距離を測定板の円柱状貫通孔の径円から浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を円柱状貫通孔の高さ(mm)でわり、更に100ををかけた値を余剰水値とする発熱組成物の余剰水値の規定方法であり、
円柱状貫通孔を有する余剰水値測定装置と浸透材により、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、現在の発熱組成物の余剰水値を規定する方法であって、前記余剰水値測定装置を非吸水性の素材からなる支持板、測定板、充填板、プラスチックフィルム、押さえ板から構成し、前記浸透材が保留粒子径4〜6μmで、且つ、濾水時間70〜90秒/100mlの濾紙であり、20±1℃の環境下において、該環境下に調整された試料である発熱組成物を用いて、中心点から放射状に45°間隔で8本の基準線が書かれた、前記保留粒子径4〜6μmで、且つ、濾水時間70〜90秒/100mlの濾紙を、支持板上に置き、前記濾紙の中心に、直径29mm×高さ20mmの円柱状貫通孔を持つ長さ150mm×幅100mmの表面が平滑な測定板を置き、その円柱状貫通孔付近に発熱組成物を置き、充填板を測定板上に沿って動かし、発熱組成物を充填し、さらに、測定中に発熱組成物が発熱反応を起こさないように、円柱状貫通孔を覆うように非吸水性のプラスチックフィルムを置き、更に、その上に、押さえ板を置き、5分間保持後、該濾紙を取り出し、放射状に書かれた基準線に沿って、水又は水溶液の浸透距離を測定板の円柱状貫通孔の径円から浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を円柱状貫通孔の高さ(mm)でわり、更に100ををかけた値を余剰水値とする発熱組成物の余剰水値の規定方法である。
That is, a preferable method for defining the excess water value of the exothermic composition of the present invention is:
A method for measuring surplus water of an exothermic composition as an index value of a current surplus water amount by a surplus water value measuring device having a through-hole and a penetrant, and defining a surplus water value of a current exothermic composition, The permeating material is a filtering material having a filtering time of 120 seconds / 100 ml or less, filled in the through hole of the measuring plate of the surplus water value measuring device bottomed on the filtering material, and the exothermic composition after 5 minutes. Exothermic composition of water or an aqueous solution of water, measuring the permeation distance into the filter medium, dividing the permeation distance by the height of the through-hole, and multiplying by 100 to obtain the surplus water value of the current exothermic composition It is a method for defining the surplus water value of goods,
It is a method of measuring the surplus water value of the exothermic composition as an index value of the current surplus water amount by the surplus water value measuring device having a cylindrical through-hole and a penetrant, and defining the surplus water value of the current exothermic composition. The surplus water value measuring device is composed of a support plate made of a non-water-absorbing material, a measurement plate, a filling plate, a plastic film, and a pressure plate, and the permeation material is filter paper having a drainage time of 120 seconds / 100 ml or less, In an environment of 20 ± 1 ° C., using a heat-generating composition that is a sample prepared in the environment, eight reference lines were written radially from the center point at intervals of 45 °. / 100 ml or less of filter paper is placed on a support plate, and a measuring plate having a cylindrical surface with a diameter of 29 mm × height 20 mm and a length of 150 mm × width of 100 mm is placed at the center of the filter paper. Exothermic composition near the columnar through hole Place and move the filling plate along the measurement plate to fill the exothermic composition, and to cover the cylindrical through-hole so that the exothermic composition does not cause an exothermic reaction during the measurement. Place a film, place a pressure plate on it, hold it for 5 minutes, take out the filter paper, and measure the penetration distance of water or aqueous solution along the radial reference line. The distance from the diameter circle to the penetration tip is read in mm units, and the eight average penetration values (m1, m2, m3, m4, m5, m6, m7, m8) that have been read are calculated (mm) as a circle. It is a method for defining the surplus water value of the exothermic composition that is divided by the height (mm) of the columnar through-hole and further multiplied by 100 as the surplus water value.
It is a method of measuring the surplus water value of the exothermic composition as an index value of the current surplus water amount by the surplus water value measuring device having a cylindrical through-hole and a penetrant, and defining the surplus water value of the current exothermic composition. The surplus water value measuring device is composed of a support plate made of a non-water-absorbing material, a measurement plate, a filling plate, a plastic film, and a pressure plate, and the permeation material is JIS P3801 “Type 2” filter paper, 20 ± 1 JIS P3801 “Type 2” filter paper in which eight reference lines are written at 45 ° intervals radially from the center point using a heat-generating composition that is a sample adjusted to the environment under the environment of ℃ Is placed on the support plate, and a measuring plate having a length of 150 mm × width of 100 mm having a cylindrical through-hole with a diameter of 29 mm × height of 20 mm is placed in the center of the filter paper, and the vicinity of the cylindrical through-hole is placed. Place the exothermic composition and the filling plate Move along the measurement plate, fill the exothermic composition, and place a non-water-absorbing plastic film so as to cover the cylindrical through-hole so that the exothermic composition does not cause an exothermic reaction during the measurement, Then, put a press plate on it, hold it for 5 minutes, take out the filter paper, and permeate the penetration distance of water or aqueous solution from the diameter circle of the cylindrical through hole of the measurement plate along the radial reference line The distance to the tip is read in mm, and the value (mm) obtained by arithmetically averaging the eight permeation distances (m1, m2, m3, m4, m5, m6, m7, m8) read is the height of the cylindrical through-hole. It is a method of defining the surplus water value of the exothermic composition with the surplus water value divided by (mm) and further multiplied by 100,
It is a method of measuring the surplus water value of the exothermic composition as an index value of the current surplus water amount by the surplus water value measuring device having a cylindrical through-hole and a penetrant, and defining the surplus water value of the current exothermic composition. The surplus water value measuring device is composed of a support plate, a measurement plate, a filling plate, a plastic film, and a pressing plate made of a non-water-absorbing material, the penetrant has a retained particle diameter of 4 to 6 μm, and a drainage time 70 standard-to-90 seconds / 100 ml filter paper, in an environment of 20 ± 1 ° C., using the exothermic composition that is a sample adjusted in the environment, and eight criteria radially at 45 ° intervals from the center point A filter paper having a retained particle diameter of 4 to 6 μm and a drainage time of 70 to 90 seconds / 100 ml is placed on a support plate, and a circle having a diameter of 29 mm and a height of 20 mm is placed in the center of the filter paper. 150mm long x 100m wide with columnar through holes Place a measuring plate with a smooth surface, place the exothermic composition in the vicinity of the cylindrical through hole, move the filling plate along the measuring plate, fill the exothermic composition, and the exothermic composition during the measurement In order not to cause an exothermic reaction, a non-water-absorbing plastic film is placed so as to cover the cylindrical through-hole, and further, a holding plate is placed thereon, and after holding for 5 minutes, the filter paper is taken out and written radially. Along the reference line, the permeation distance of water or aqueous solution was read in millimeters from the diameter circle of the cylindrical through hole of the measurement plate to the permeation tip, and each of the eight permeation distances (m1, m2, m3) read , M4, m5, m6, m7, m8) of the exothermic composition in which the value (mm) obtained by arithmetic averaging is divided by the height (mm) of the cylindrical through hole, and the value multiplied by 100 is the surplus water value. This is a method for defining surplus water values.

本発明の発熱組成物の水又は水溶液の浸透距離は貫通孔の内壁面からの浸透材又は濾紙での浸透先端までの距離である。また、円柱状貫通孔の内壁面である径円から浸透材又は濾紙での浸透先端までの距離である。   The penetration distance of water or an aqueous solution of the exothermic composition of the present invention is the distance from the inner wall surface of the through hole to the penetration tip of the penetration material or filter paper. Moreover, it is the distance from the diameter circle which is an inner wall surface of a cylindrical through-hole to the penetration | infiltration tip by a osmosis | permeation material or filter paper.

本発明の余剰水値により、水分を有する発熱組成物は余剰水値が0の含水発熱組成物と余剰水値が0を超える含余剰水発熱組成物とに分類される。
更に、型成形性を有する含余剰水発熱組成物としては余剰水値が0.5〜80の含余剰水発熱組成物が好ましい。
型成形性とは、含余剰水発熱組成物の一つの機能であり、貫通孔を有する型に含余剰水発熱組成物を充填し、型を取り去った後でも、該成形された含余剰水発熱組成物の発熱組成物成形体が貫通孔の形状を維持できる機能である。
According to the surplus water value of the present invention, the exothermic composition having moisture is classified into a hydrous exothermic composition having a surplus water value of 0 and a surplus water exothermic composition having a surplus water value exceeding 0.
Furthermore, as the surplus water exothermic composition having moldability, the surplus water exothermic composition having an excess water value of 0.5 to 80 is preferable.
Mold formability is a function of the excess water exothermic composition, and the excess water exothermic heat is formed even after the mold having a through hole is filled with the excess water exothermic composition and the mold is removed. The exothermic composition molded body of the composition has a function capable of maintaining the shape of the through hole.

本発明の発明者は、発熱組成物中の余剰水の浸透材(濾材又は濾紙等)への浸透距離は、発熱組成物中の余剰水量と発熱組成物の高さ又は厚みに比例することを見いだし、発熱組成物に含まれる水分のうち、容易に、自由に系外へ移動できる又は浸透できる余剰水量を数値化し、余剰水値とした。   The inventor of the present invention indicates that the permeation distance of surplus water in the exothermic composition into the permeation material (filter medium or filter paper) is proportional to the amount of surplus water in the exothermic composition and the height or thickness of the exothermic composition. As a result, of the water contained in the exothermic composition, the amount of surplus water that can be easily and freely moved out of the system or penetrated was quantified to obtain the surplus water value.

本発明の発熱組成物やその成分混合物を部分酸化処理した発熱混合物やその前駆体であり、部分酸化処理する前の発熱組成物の成分の混合物である反応混合物等も同様に処理できる。   The exothermic composition or its component mixture of the present invention, which is an exothermic mixture obtained by partial oxidation treatment or a precursor thereof, and a reaction mixture that is a mixture of components of the exothermic composition before partial oxidation treatment can be similarly treated.

本発明の発熱組成物中の余剰水値の規定方法は、発熱組成物中の全水分量に関係なく、測定時の発熱組成物中の余剰水量が規定でき、測定の操作が簡単で、容易であり、迅速に測定でき、測定時の発熱組成物中の余剰水量を示す、新しい余剰水量の規定値を算出する方法である。   Regardless of the total amount of water in the exothermic composition, the method for defining the excess water value in the exothermic composition of the present invention can specify the excess water amount in the exothermic composition at the time of measurement, and the measurement operation is simple and easy. This is a method of calculating a new specified amount of surplus water that can be measured quickly and indicates the amount of surplus water in the exothermic composition at the time of measurement.

本発明の発熱組成物中の余剰水値の規定方法により規定された余剰水値を有する本発明の発熱組成物は、成形性や発熱性を予想でき、発熱組成物や発熱体の設計に役立つ。また、発熱体の製造後においても、発熱体中の発熱組成物の余剰水値を測定することにより、水分減少による発熱組成物や発熱体の劣化状態、即ち、その時の発熱組成物や発熱体の状態がわかり、発熱体の健康診断が簡単にできる。   The exothermic composition of the present invention having an excess water value defined by the method for defining the excess water value in the exothermic composition of the present invention can predict moldability and exothermic properties, and is useful for designing exothermic compositions and exothermic bodies. . In addition, even after manufacturing the heating element, by measuring the excess water value of the heating composition in the heating element, the deterioration state of the heating composition and the heating element due to moisture reduction, that is, the heating composition and heating element at that time The health of the heating element can be easily checked.

本発明の発熱組成物や混合組成物中の余剰水は適量になると、組成物の成分中の親水基に対しては双極子相互作用又は水素結合等によって水和し、また、疎水基の周辺においても高い構造性を有して存在すると推定される。これにより砂ダンゴ状態になり、発熱組成物の成形性が生ずると推定される。何らかの意味で余剰水は連結物質といえる。これ以外に、自由に動ける自由水と呼べる状態の水分もあり、余剰水が増加すれば構造が軟化し、自由水が増加すると思われる。適量の余剰水を用いることにより、水分の表面張力で各成分粒子をつなぎ止め、発熱組成物に成形性を生じさせ、水分が実質的に空気遮断層として機能しないため、発熱組成物は空気と接触して発熱する。適量の余剰水を決めるのが本発明の余剰水値である。   When the surplus water in the exothermic composition or mixed composition of the present invention becomes an appropriate amount, the hydrophilic groups in the components of the composition are hydrated by dipolar interaction or hydrogen bonding, and the vicinity of the hydrophobic groups. It is presumed to exist with high structural properties. As a result, it is estimated that sandy sand is formed, and moldability of the exothermic composition occurs. In some sense, surplus water is a connected substance. In addition to this, there is also water in a state that can be called free water, and if excess water increases, the structure will soften and free water will increase. By using an appropriate amount of surplus water, each component particle is held together by the surface tension of moisture, causing the exothermic composition to form, and the moisture does not substantially function as an air barrier layer. It generates heat upon contact. It is the surplus water value of the present invention that determines an appropriate amount of surplus water.

本発明の発熱組成物の余剰水値の規定方法は、濾水時間が120秒/100ml以下の濾材上に設けられた、直径29mm×高さ20mmの円柱状の型板の穴に存在する発熱組成物の周囲に浸透した、5分後の水又は水溶液の型板の径円からの浸透距離を測定し、測定板の円筒状の貫通孔の高さである発熱組成物の高さ(mm)で浸透距離(mm)を除して、更に100をかけた値、即ち、発熱組成物の単位高さ(mm)当たりの浸透距離(mm)に100をかけた値を余剰水値とする。   The method for defining the surplus water value of the exothermic composition of the present invention is the exothermic heat present in a hole in a cylindrical template having a diameter of 29 mm and a height of 20 mm provided on a filter medium having a drainage time of 120 seconds / 100 ml or less. The permeation distance from the diameter circle of the template of water or aqueous solution 5 minutes after penetrating the periphery of the composition was measured, and the height (mm) of the exothermic composition which is the height of the cylindrical through hole of the measurement plate ) By dividing the permeation distance (mm) and multiplying by 100, that is, the value obtained by multiplying the permeation distance (mm) per unit height (mm) of the exothermic composition by 100 is the surplus water value. .

更に好ましくは、本発明の発熱組成物の余剰水値の規定方法は、JIS P3801「2種」濾紙上に設けられた、直径29mm×高さ20mmの円柱状の型板の穴に存在する発熱組成物の周囲に浸透した、5分後の水又は水溶液の型板の径円からの浸透距離を測定し、測定板の円筒状の貫通孔の高さである発熱組成物の高さ(mm)で浸透距離(mm)を除して、更に100をかけた値、即ち、発熱組成物の単位高さ(mm)当たりの浸透距離(mm)に100をかけた値を余剰水値とする。   More preferably, the method for defining the excess water value of the exothermic composition of the present invention is the exothermic heat present in a hole in a cylindrical template having a diameter of 29 mm and a height of 20 mm provided on JIS P3801 “Type 2” filter paper. The permeation distance from the diameter circle of the template of water or aqueous solution 5 minutes after penetrating the periphery of the composition was measured, and the height (mm) of the exothermic composition which is the height of the cylindrical through hole of the measurement plate ) By dividing the permeation distance (mm) and multiplying by 100, that is, the value obtained by multiplying the permeation distance (mm) per unit height (mm) of the exothermic composition by 100 is the surplus water value. .

本発明の浸透材は、発熱組成物の余剰水が浸透距離として特定できれば、制限はないが、紙、濾材、不織布等が一例としてあげられる。濾材が好ましい。   The penetrating material of the present invention is not limited as long as the excess water of the exothermic composition can be specified as the penetrating distance, but examples thereof include paper, filter media, and non-woven fabric. Filter media is preferred.

前記濾材は、不織布、濾紙等が一例としてあげられる。好ましい濾材は、濾紙である。   Examples of the filter medium include nonwoven fabric and filter paper. A preferred filter medium is filter paper.

前記濾紙は、濾水時間が、好ましくは1800秒/100ml以下であり、より好ましくは濾水時間が720秒/100mlであり、更に好ましくは濾水時間が480秒/100mlであり、更に好ましくは濾水時間が300秒/100mlであり、更に好ましくは濾水時間が240秒/100mlであり、更に好ましくは濾水時間が120秒/100ml以下の濾紙であり、更に好ましくは濾水時間が10〜120秒/100mlであり、更に好ましくは濾水時間が70〜120秒/100mlであり、更に好ましくは濾水時間が70〜90秒/100mlであり、 更に好ましくは保留粒子径が4〜9μmで、且つ、濾水時間が70〜90秒/100mlであり、更に好ましくは保留粒子径が4〜8μmで、且つ、濾水時間が70〜90秒/100mlであり、 更に好ましくは保留粒子径が4〜7μmで、且つ、濾水時間が70〜90秒/100mlであり、 更に好ましくは保留粒子径が4〜6μmで、且つ、濾水時間が70〜90秒/100mlであり、更に好ましくは保留粒子径が4.5〜5.5μmで、且つ、濾水時間が70〜90秒/100mlであり、 更に好ましくは保留粒子径が5μmで、且つ、濾水時間が80秒/100mlである。   The filter paper has a drainage time of preferably 1800 seconds / 100 ml or less, more preferably a drainage time of 720 seconds / 100 ml, still more preferably a drainage time of 480 seconds / 100 ml, still more preferably. The drainage time is 300 seconds / 100 ml, more preferably the drainage time is 240 seconds / 100 ml, more preferably the filter paper has a drainage time of 120 seconds / 100 ml or less, more preferably the drainage time is 10 To 120 seconds / 100 ml, more preferably the drainage time is 70 to 120 seconds / 100 ml, more preferably the drainage time is 70 to 90 seconds / 100 ml, and still more preferably the retained particle size is 4 to 9 μm. And the drainage time is 70 to 90 seconds / 100 ml, more preferably the retained particle diameter is 4 to 8 μm, and the drainage time is 70 to 90 seconds. 100 ml, more preferably the retained particle diameter is 4 to 7 μm, and the drainage time is 70 to 90 seconds / 100 ml, more preferably the retained particle diameter is 4 to 6 μm and the drainage time is 70. ˜90 seconds / 100 ml, more preferably the retained particle diameter is 4.5 to 5.5 μm, the drainage time is 70 to 90 seconds / 100 ml, more preferably the retained particle diameter is 5 μm, and The drainage time is 80 seconds / 100 ml.

前記濾紙は、好ましくは、JIS P3801の「1種」、「2種」、「3種」、「4種」、「5種A」、「5種B」、「5種C」、「6種」の各濾紙が一例として挙げられる。
前記濾紙はJIS P3801「2種」濾紙が好ましい。
JIS P3801「2種」濾紙は、濾水時間が120秒/100ml以下である。
本発明のJIS P3801「2種」濾紙は、保留粒子径が4〜9μmで、且つ、濾水時間が70〜90秒/100mlである濾紙等のJIS P3801「2種」濾紙に相当する濾紙も含む。
The filter paper is preferably JIS P3801, “1 type”, “2 types”, “3 types”, “4 types”, “5 types A”, “5 types B”, “5 types C”, “6” An example of each type of filter paper is “Seeds”.
The filter paper is preferably JIS P3801 “Type 2” filter paper.
JIS P3801 “Type 2” filter paper has a drainage time of 120 seconds / 100 ml or less.
The JIS P3801 “Type 2” filter paper of the present invention is a filter paper corresponding to JIS P3801 “Type 2” filter paper such as a filter paper having a retained particle diameter of 4 to 9 μm and a drainage time of 70 to 90 seconds / 100 ml. Including.

前記JIS P3801「2種」濾紙は、東洋濾紙(株)製濾紙No.2や中村理科工業(株)製濾紙No.2やワットマン社製濾紙グレード2等が一例として挙げられる。   The JIS P3801 “Type 2” filter paper is a filter paper No. manufactured by Toyo Filter Paper Co., Ltd. 2 and filter paper No. manufactured by Nakamura Science Co., Ltd. 2 and Whatman filter paper grade 2 are examples.

前記濾紙等の浸透材の形状は、余剰水値が規定できれば制限はない。円形や四角形が一例として挙げられる。   The shape of the permeation material such as the filter paper is not limited as long as the excess water value can be defined. An example is a circle or a rectangle.

本発明の発熱組成物の余剰水値の規定方法を、JIS P3801「2種」濾紙及び余剰水値測定装置15を使用し、図1〜図5を用いて説明する。
図1は、基準線を設けた濾紙を示す平面図である。
図2は、測定装置を示す断面図である。
図3は、操作を示す断面図である。
図4は、測定を示す断面図である。
図5は、余剰水値を算出する濾紙を示す平面図である。
20℃の環境下において、該環境下に調整された試料である発熱組成物14を用いて、中心点から放射状に45°間隔で8本の基準線2が書かれた、JIS P3801「2種」(No.2)濾紙1(図1)を、支持板(ステンレス板等)8上に置き、前記濾紙1の中心に、直径29mm×高さ20mmの円柱状貫通孔4を持つ長さ150mm×幅100mmの表面が平滑な測定板3を置き(図2)、その円柱状貫通孔4付近に発熱組成物(試料)14を置き、充填板9を測定板3上に沿って動かし(図3)、発熱組成物14を充填し、さらに、測定中に発熱組成物14が発熱反応を起こさないように、円柱状貫通孔4を覆うように非吸水性のプラスチックフィルム(70μmポリエチレンフィルム等)11を置き、更に、その上に、押さえ板(厚さ5mm×長さ150mm×幅150mmのステンレス製平板)10を置き(図4)、5分間保持後、濾紙1を取り出し(図5)、放射状に書かれた基準線2に沿って、水又は水溶液の浸透距離13を測定板3の、直径5が29mmの円柱状貫通孔の径円7から浸透跡12の浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離13(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を円柱状貫通孔の高さ(mm)6でわり、更に100をかけた値を求め、余剰水値とする。
試料の余剰水値としては、 制限はないが、同一試料に対して、3点測定し、その3個の余剰水値を平均し、その平均値をその試料の余剰水値とすることが好ましい。該余剰水値は現在の発熱組成物の余剰水量に関係し、発熱組成物の全水分量に関係ない値である。
A method for defining the surplus water value of the exothermic composition of the present invention will be described with reference to FIGS. 1 to 5 using JIS P3801 “Type 2” filter paper and surplus water value measuring device 15.
FIG. 1 is a plan view showing a filter paper provided with a reference line.
FIG. 2 is a cross-sectional view showing the measuring apparatus.
FIG. 3 is a cross-sectional view showing the operation.
FIG. 4 is a cross-sectional view showing the measurement.
FIG. 5 is a plan view showing a filter paper for calculating the surplus water value.
In an environment of 20 ° C., using the exothermic composition 14 which is a sample prepared in the environment, eight reference lines 2 are written radially at 45 ° intervals from the center point. (No. 2) The filter paper 1 (FIG. 1) is placed on a support plate (stainless steel plate or the like) 8 and a length of 150 mm having a cylindrical through-hole 4 having a diameter of 29 mm and a height of 20 mm at the center of the filter paper 1. X A measuring plate 3 having a smooth surface of 100 mm in width is placed (FIG. 2), a heat generating composition (sample) 14 is placed in the vicinity of the cylindrical through hole 4, and the filling plate 9 is moved along the measuring plate 3 (see FIG. 2). 3) A non-water-absorbing plastic film (70 μm polyethylene film or the like) is filled so as to cover the cylindrical through-hole 4 so that the exothermic composition 14 is filled and the exothermic composition 14 does not cause an exothermic reaction during the measurement. 11 is placed on top of it. 5 mm long × 150 mm long × 150 mm wide stainless steel plate 10 is placed (FIG. 4), and after holding for 5 minutes, the filter paper 1 is taken out (FIG. 5), along the radial reference line 2 with water or The penetration distance 13 of the aqueous solution was read in mm from the diameter 7 of the cylindrical through-hole having a diameter of 5 mm of the measuring plate 3 to the penetration tip of the penetration mark 12 and each of the eight penetration distances 13 ( m1, m2, m3, m4, m5, m6, m7, m8) is calculated by dividing the value (mm) by the height (mm) 6 of the cylindrical through-hole, and multiplying it by 100, to obtain a value obtained by surplus water Value.
The surplus water value of the sample is not limited, but it is preferable to measure three points for the same sample, average the three surplus water values, and use the average value as the surplus water value of the sample. . The surplus water value is related to the amount of surplus water in the current exothermic composition and is not related to the total amount of water in the exothermic composition.

本発明の余剰水値は、
浸透距離(mm)
余剰水値=───────────────────── × 100
測定板の貫通孔(発熱組成物)の高さ(mm)
であり、好ましくは、

8個の各浸透距離を算術平均した値(mm)
余剰水値=─────────────────────× 100
測定板の円柱状貫通孔の高さ(mm)

である。
The surplus water value of the present invention is
Penetration distance (mm)
Excess water value = ────────────────────── × 100
Height of through hole (exothermic composition) of measurement plate (mm)
And preferably

Arithmetic average of 8 penetration distances (mm)
Surplus water value = ───────────────────── × 100
Height of cylindrical through-hole of measurement plate (mm)

It is.

前記発熱組成物の余剰水値の規定方法において使用される浸透材、例えば濾紙等は、浸透距離を測定できる領域内で、任意の点を中心点とし、該中心点に収斂でき、且つ、等角度で設けられた、8本の基準線と、測定板の貫通孔の周辺端部の平面形状と同じ形状の周辺形状線、例えば、円柱状貫通孔の径円(図1の点線円)等を記載した濾紙等の浸透材が好ましい。記載時の線種は問わない。浸透材と接触する部分の貫通孔の断面が円以外の形状の場合はその断面形状にあわせた形状を記載すればよい。言うまでもなく、前記基準線や貫通孔の底部の周辺端部の平面形状が描かれていない濾紙等の浸透材も使用できる。   The penetrant used in the method for defining the excess water value of the exothermic composition, such as filter paper, can be converged at the center point at an arbitrary point in the region where the permeation distance can be measured, and so on. Eight reference lines provided at an angle and a peripheral shape line having the same shape as the planar shape of the peripheral end of the through hole of the measurement plate, for example, a diameter circle (dotted circle in FIG. 1) of the cylindrical through hole Penetration materials such as filter papers are preferred. The line type at the time of description does not matter. When the cross section of the through-hole in the portion that comes into contact with the penetrating material has a shape other than a circle, the shape corresponding to the cross-sectional shape may be described. Needless to say, a penetrating material such as filter paper on which the reference line and the planar shape of the peripheral end of the bottom of the through hole are not drawn can also be used.

前記測定板等の余剰水値測定装置の材質は、濾紙等の浸透材を除き、非水性であれば制限はないが、ステンレス等の金属、熱可塑性樹脂や熱硬化性樹脂等の合成樹脂、石や岩石等の鉱物等が一例として挙げられる。   The material of the surplus water value measuring device such as the measurement plate is not limited as long as it is non-aqueous except for a penetrating material such as filter paper, but a metal such as stainless steel, a synthetic resin such as a thermoplastic resin or a thermosetting resin, Examples include minerals such as stones and rocks.

本発明の余剰水値を使用した発熱体の製造方法は、前記余剰水値測定方法により、発熱組成物の余剰水値を測定し、成形性含余剰水発熱組成物の組成の決定や品質管理により、含余剰水発熱組成物を製造する方法であり、また、該含余剰水発熱組成物の余剰水値を管理しながら、発熱組成物成形体を成形し、多種形状、多種サイズの発熱体を製造する方法である。   The method for producing a heating element using the surplus water value of the present invention measures the surplus water value of the exothermic composition by the surplus water value measuring method, and determines the composition and quality control of the moldable surplus water exothermic composition. And a method for producing an excess water exothermic composition, and by controlling the excess water value of the excess water exothermic composition, the exothermic composition molded body is molded into various shapes and sizes of heating elements. It is a method of manufacturing.

本発明の含余剰水発熱組成物は、余剰水の濾材又は濾紙への浸透距離を測定発熱組成物の高さである測定板の貫通孔の高さで割った値に基づく余剰水値が0を超える、余剰水を有する発熱組成物であり、好ましくは濾水時間が120秒/100ml以下の濾材、より好ましくは濾水時間が120秒/100ml以下の濾紙、更に好ましくはJIS P3801「2種」濾紙、更に好ましくは保留粒子径4〜6μmで、且つ、濾水時間70〜90秒/100mlの濾紙を使用した前記余剰水値の規定方法で規定した余剰水値が0を超え、型成形性がある発熱組成物である。特に余剰水値が0.5〜80で、型成形性があり、立ち上がり昇温速度が0℃/5分以上、好ましくは1℃/5分以上の含余剰水発熱組成物が好ましい。
本発明の含水発熱組成物は、JIS P3801「2種」濾紙、好ましくは保留粒子径4〜6μmで、且つ、濾水時間70〜90秒/100mlの濾紙を使用した前記余剰水値の規定方法で規定した余剰水値が0の発熱組成物である。
本発明の含余剰水発熱組成物と本発明の含水発熱組成物は、余剰水値が異なるが、構成成分は同じものが使用できる。
The surplus water exothermic composition of the present invention has an excess water value of 0 based on a value obtained by dividing the permeation distance of surplus water into the filter medium or filter paper by the height of the through hole of the measurement plate, which is the height of the measurement exothermic composition. Exothermic composition having excess water, preferably a filter medium having a drainage time of 120 seconds / 100 ml or less, more preferably a filter paper having a drainage time of 120 seconds / 100 ml or less, more preferably JIS P3801 “2 types” The surplus water value specified by the above surplus water value regulation method using a filter paper, more preferably a filter paper having a retained particle diameter of 4 to 6 μm and a drainage time of 70 to 90 seconds / 100 ml exceeds 0. It is an exothermic composition having a property. In particular, a surplus water exothermic composition having an excess water value of 0.5 to 80, moldability, and a rising temperature rising rate of 0 ° C./5 minutes or more, preferably 1 ° C./5 minutes or more is preferred.
The water-containing exothermic composition of the present invention is a method for defining the excess water value using JIS P3801 “Type 2” filter paper, preferably filter paper having a retention particle diameter of 4 to 6 μm and a drainage time of 70 to 90 seconds / 100 ml. It is an exothermic composition whose surplus water value prescribed | regulated by 0 is 0.
Although the surplus water exothermic composition of the present invention and the hydrous exothermic composition of the present invention have different surplus water values, the same components can be used.

本発明の発熱体中の発熱組成物(発熱組成物成形体も含む)の余剰水値は、発熱体から発熱組成物を取り出し、前記発熱組成物の余剰水値規定方法にしたがって規定すればよい。   The surplus water value of the exothermic composition (including the exothermic composition molded body) in the exothermic body of the present invention may be defined according to the method for defining the excess water value of the exothermic composition by taking out the exothermic composition from the exothermic body. .

以下、余剰水値が0.5〜80の型成形性含水発熱組成物を使用して説明する。
本発明の含余剰水発熱組成物は、発熱に必要な水分と、発熱組成物の固形成分を集約し、型成形ができるための余剰水を有する。多種形状、多種サイズの発熱体を製造する場合には、型成形ができ、多種形状、多種サイズの発熱組成物成形体ができる、型成形性の含余剰水発熱組成物が不可欠である。
前記余剰水は型成形に必要であるが、発熱を制御するように働くため発熱には不必要である。発熱体中の発熱組成物の余剰水値を本発明の方法で測定し、規定することにより、経時的に発熱組成物の型成形性と発熱特性を使い分けて、発熱特性の優れた前記発熱体が製造できる。
本発明の型成形性のある、余剰水値が0.5〜80の含余剰水発熱組成物を使用することにより、多種サイズ、多種形状の発熱組成物成形体が成形でき、その結果、単一発熱部発熱体、矩形発熱体、温灸発熱体、足温発熱体、区分発熱部発熱体、剛軟発熱体、ストライプ発熱体、切り離し自在発熱体、伸縮発熱体、バンド発熱体、トンネル通気発熱体、薬剤発熱体、切り離し自在トンネル通気発熱体、切り離し自在薬剤発熱体、目温発熱体、顔温発熱体、外袋付き外仮着折り畳み発熱体等の多種サイズ、多種形状の発熱体が製造、提供できる。
さらに、本発明の余剰水値が0.5〜80の型成形性含余剰水発熱組成物を使用し、多種形状、多種サイズの発熱体を製造後、余剰水を発熱体から除去することにより、より立ち上がり発熱特性が向上した、多種形状、多種サイズを有する発熱体が量産できる。余剰水値は、発熱組成物の全水分量に関係なく、現在の発熱組成物の余剰水量を指標化できる、実用性高い機能数値である。
Hereinafter, description will be made using a moldable water-containing exothermic composition having an excess water value of 0.5 to 80.
The surplus water-containing exothermic composition of the present invention has surplus water for gathering the water necessary for heat generation and the solid components of the exothermic composition to allow for molding. In the case of producing various shapes and sizes of heating elements, a moldable excess water heating composition capable of forming a mold and forming various shapes and sizes of exothermic composition is indispensable.
The excess water is necessary for molding, but is unnecessary for heat generation because it works to control the heat generation. By measuring and defining the excess water value of the exothermic composition in the exothermic body by the method of the present invention, the exothermic element having excellent exothermic characteristics by selectively using the moldability and exothermic characteristics of the exothermic composition over time. Can be manufactured.
By using the surplus water-containing exothermic composition having an excess water value of 0.5 to 80, which has moldability according to the present invention, a variety of sizes and shapes of exothermic composition molded bodies can be molded. Single heating element, rectangular heating element, warm heating element, foot heating element, segment heating element, rigid heating element, stripe heating element, detachable heating element, expansion heating element, band heating element, tunnel ventilation heating element Manufactures various sizes and shapes of heating elements such as body, drug heating element, detachable tunnel ventilation heating element, detachable drug heating element, eye temperature heating element, face temperature heating element, outer temporary folding heating element with outer bag Can provide.
Furthermore, by using the moldability-containing surplus water exothermic composition having a surplus water value of 0.5 to 80 according to the present invention, and producing a heat generating element of various shapes and sizes, the excess water is removed from the heat generating element. Thus, it is possible to mass-produce heating elements having various shapes and sizes, which have improved heat generation characteristics. The surplus water value is a highly practical function value that can index the surplus water amount of the current exothermic composition regardless of the total water content of the exothermic composition.

本発明の含余剰水発熱組成物は、前記発熱組成物の余剰水値の規定方法により、規定した余剰水値が0を超え、鉄粉、炭素成分、反応促進剤、水を必須成分とし、且つ、立ち上がり昇温速度が、0℃/5分以上、好ましくは1℃/5分以上あり、型成形性を有する含余剰水発熱組成物であり、好ましくは、JIS P3801「2種」濾紙、より好ましくは保留粒子径4〜6μmで、且つ、濾水時間70〜90秒/100mlの濾紙を使用した前記余剰水値の規定方法で規定した余剰水値が0.5〜80の発熱組成物である。
以下、本発明の含余剰水発熱組成物をJIS P3801「2種」濾紙、好ましくは保留粒子径4〜6μmで、且つ、濾水時間70〜90秒/100mlの濾紙を使用した前記余剰水値の規定方法で規定した余剰水値が0.5〜80の発熱組成物として説明する。
The excess water exothermic composition of the present invention has a specified excess water value exceeding 0 by the method for defining the excess water value of the exothermic composition, and includes iron powder, a carbon component, a reaction accelerator, and water as essential components. And the rising temperature rising rate is 0 ° C./5 minutes or more, preferably 1 ° C./5 minutes or more, and is a surplus water exothermic composition having moldability, preferably JIS P3801 “Type 2” filter paper, More preferably, the exothermic composition has a retained particle size of 4 to 6 μm and a surplus water value of 0.5 to 80 defined by the method for defining surplus water value using a filter paper having a drainage time of 70 to 90 seconds / 100 ml. It is.
Hereinafter, the surplus water exothermic composition of the present invention is a JIS P3801 “Type 2” filter paper, preferably a filter paper having a retention particle diameter of 4 to 6 μm and a drainage time of 70 to 90 seconds / 100 ml. This is explained as an exothermic composition having a surplus water value of 0.5 to 80 defined by the regulation method.

本発明の含余剰水発熱組成物は、前記成分の他に、成形助剤、機能性物質、木粉やバーミキュライト等の保水剤、ポリ(メタ)アクリル酸架橋体やポリ(メタ)アクリルアミド架橋体等の吸水性ポリマー、亜硫酸ナトリウム等の水素発生抑制剤、消石灰等のpH調整剤、、化石サンゴ等の骨材、ポリオキシエチレンアルキルエーテル等のノニオン、両性イオン、アニオン、カチオン等の界面活性剤、ポリエチレンやポリプロピレン等の疎水性高分子化合物、ジメチルシリコーンオイル等の有機ケイ素化合物、セラミック等の遠赤外線放射物質、トルマリン等のマイナスイオン発生剤や焦電物質、塩化第一鉄等の発熱助剤、ケイ素やアルミニウム等の鉄以外の金属(含半導体)、二酸化マンガン等の酸化鉄以外の金属酸化物、塩酸やマレイン酸や酢酸等の酸性物質、パルプやコットン等の繊維状物、尿素等の肥料成分、グリセリンやヒアルロン酸等の保湿剤、離型剤又はこれらの混合物からなる付加的な成分から選ばれた少なくとも一種を含有してもよい。尚、本発明の発熱組成物の成分は、従来から開示されている又は市販されている又は公知の使い捨てカイロや発熱体に使用される発熱組成物の如何なる成分をも適宜選択して使用できる。   Excess water exothermic composition of the present invention includes, in addition to the above components, a molding aid, a functional substance, a water retention agent such as wood flour and vermiculite, a crosslinked poly (meth) acrylic acid and a crosslinked poly (meth) acrylamide. Water-absorbing polymers such as sodium sulfite, pH regulators such as slaked lime, aggregates such as fossil coral, nonions such as polyoxyethylene alkyl ethers, surfactants such as amphoteric ions, anions and cations , Hydrophobic polymer compounds such as polyethylene and polypropylene, organosilicon compounds such as dimethyl silicone oil, far-infrared emitting materials such as ceramics, negative ion generators such as tourmaline, pyroelectric materials, and heat generation aids such as ferrous chloride , Metals other than iron (including semiconductors) such as silicon and aluminum, metal oxides other than iron oxide such as manganese dioxide, hydrochloric acid and maleic acid At least one selected from acidic substances such as acetic acid, fibrous materials such as pulp and cotton, fertilizer components such as urea, moisturizers such as glycerin and hyaluronic acid, mold release agents or mixtures thereof You may contain. In addition, the component of the exothermic composition of this invention can select and use suitably any component of the exothermic composition conventionally disclosed or marketed or used for a well-known disposable body warmer and a heat generating body.

本発明の型外圧縮とは発熱組成物が型からはなれ、発熱組成物成形体になった後、前記発熱組成物成形体をロール等で圧縮するものである。これは通常、発熱組成物成形体を敷材及び/又は被覆材で覆った後に行うが、覆わなくてもよい。加圧時の圧力は制限はない。圧縮率も制限はない。   In the out-of-mold compression of the present invention, the exothermic composition is separated from the mold and becomes a exothermic composition molded body, and then the exothermic composition molded body is compressed with a roll or the like. This is usually performed after the exothermic composition molded body is covered with a covering material and / or a covering material, but it may not be covered. There is no restriction on the pressure during pressurization. There is no restriction on the compression rate.

本発明の型成形性とは、貫通孔を有する型に収納し、型を取り去った後でも、貫通孔の形状を維持できる機能である。図25、図26は、型成形性を説明する断面図である。
図25(a)〜(d)は、型成形性を説明する断面図である。
型成形性を有する発熱組成物14の型成形性を説明している。型成形性測定装置64を使用して測定する。支持板8上に設けられた非吸水性のプラスチックフィルム11の上に測定板3を置き、次に、発熱組成物14を該測定板3上に置き、更に磁石65と充填板9により測定板3の円柱状貫通孔4に充填し、磁石65を取り除いた後に、測定板3を取り去っても、該型成形性を有する発熱組成物14は、型成形性を有しているので、円柱状貫通孔4の形状を維持している。
図26(a)〜(d)は、非型成形性を説明する断面図である。
型成形性のない発熱組成物14の非型成形性を説明している。図25と同様の操作をするが、該非型成形性の発熱組成物14は型成形性を有していないので、測定板3を取り去った後、円柱状貫通孔4の形状を維持できず、四方へ崩れている。
The moldability of the present invention is a function capable of maintaining the shape of the through-hole even after being housed in a mold having a through-hole and removing the mold. 25 and 26 are cross-sectional views illustrating the moldability.
25 (a) to 25 (d) are cross-sectional views illustrating moldability.
Explains the moldability of the exothermic composition 14 having moldability. Measurement is performed using a moldability measuring device 64. The measurement plate 3 is placed on the non-water-absorbing plastic film 11 provided on the support plate 8, and then the exothermic composition 14 is placed on the measurement plate 3, and the measurement plate is further moved by the magnet 65 and the filling plate 9. 3 after filling the cylindrical through-hole 4 and removing the magnet 65, the exothermic composition 14 having the moldability has a moldability even if the measuring plate 3 is removed. The shape of the through hole 4 is maintained.
FIGS. 26A to 26D are cross-sectional views illustrating non-moldability.
The non-molding property of the exothermic composition 14 having no moldability is described. Although the same operation as FIG. 25 is performed, since the non-molding exothermic composition 14 does not have moldability, the shape of the cylindrical through-hole 4 cannot be maintained after the measurement plate 3 is removed. It has collapsed in all directions.

本発明の立ち上がり昇温速度とは、立ち上がり昇温速度測定方法において、発熱開始時の温度(Ts)と発熱5分後の温度(Te)の差(Te−Ts)である。
前記含余剰水発熱組成物の立ち上がり昇温速度は、0℃/5分以上であり、好ましくは1℃/5分以上であり、より好ましくは2℃/5分以上であり、更に好ましくは3℃/5分以上であり、更に好ましくは4℃/5分以上であり、更に好ましくは5℃/5分以上であり、更に好ましくは6℃/5分以上であり、更に好ましくは7℃/5分以上であり、更に好ましくは8℃/5分以上であり、更に好ましくは9℃/5分以上であり、更に好ましくは10℃/5分以上である。
The rising temperature rising rate of the present invention is the difference (Te−Ts) between the temperature (Ts) at the start of heat generation and the temperature (Te) after 5 minutes of heat generation in the method of measuring the rising temperature rising rate.
The rising temperature rising rate of the excess water exothermic composition is 0 ° C./5 minutes or more, preferably 1 ° C./5 minutes or more, more preferably 2 ° C./5 minutes or more, and further preferably 3 ° C / 5 min or more, more preferably 4 ° C / 5 min or more, further preferably 5 ° C / 5 min or more, more preferably 6 ° C / 5 min or more, and further preferably 7 ° C / min. It is 5 minutes or more, more preferably 8 ° C / 5 minutes or more, further preferably 9 ° C / 5 minutes or more, and further preferably 10 ° C / 5 minutes or more.

前記含余剰水発熱組成物の余剰水値は、0を超えており、好ましくは0.5〜80であり、より好ましくは1〜80であり、更に好ましくは2.5〜80であり、更に好ましくは5〜80であり、更に好ましくは5〜70であり、更に好ましくは5〜65であり、更に好ましくは5〜60であり、更に好ましくは10〜60であり、更に好ましくは10〜55であり、更に好ましくは10〜50であり、更に好ましくは10〜40であり、更に好ましくは10〜35であり、更に好ましくは10〜30である。   The surplus water value of the surplus water-containing exothermic composition exceeds 0, preferably 0.5 to 80, more preferably 1 to 80, still more preferably 2.5 to 80, and further Preferably it is 5-80, More preferably, it is 5-70, More preferably, it is 5-65, More preferably, it is 5-60, More preferably, it is 10-60, More preferably, it is 10-55 More preferably, it is 10-50, More preferably, it is 10-40, More preferably, it is 10-35, More preferably, it is 10-30.

前記含余剰水発熱組成物は、酸化処理した発熱組成物や少なくとも表面の一部に酸化鉄のような結合性酸素を有する活性化鉄粉や炭素成分を有する活性鉄粉を含有する含水発熱組成物も用いることができる。   The surplus water exothermic composition includes an oxidized exothermic composition, an activated iron powder having binding oxygen such as iron oxide at least partially on the surface, and an active iron powder having a carbon component. Things can also be used.

本発明の発熱組成物の非水溶性固形成分の粒径の制限はないが、好ましくは900μm以下であり、より好ましくは300μm以下である。粒径は細かいほど好ましい。特に、0.1〜300μmのものを用いることが好ましい。また、鉄粉の粒径が、120〜300μm、好ましくは150〜300μmのものは長時間発熱用に好ましく、また、5〜40μm、好ましくは10〜32μmのものは即発熱用に好ましい。
尚、発熱組成物の成形性及び保形性は反応促進剤と水溶性物質と水を除く非水溶性固形成分の粒径が小さければ小さいほど良くなる。
前記粒径とは、該粒径は篩通過分をその篩目開き(篩の口径)等からμm単位で表示した形態における最大長さ又は動的光散乱法、レーザー回折法等により測定される平均粒径をいう。
Although there is no restriction | limiting of the particle size of the water-insoluble solid component of the exothermic composition of this invention, Preferably it is 900 micrometers or less, More preferably, it is 300 micrometers or less. The smaller the particle size, the better. In particular, it is preferable to use a 0.1-300-micrometer thing. In addition, iron powder having a particle size of 120 to 300 μm, preferably 150 to 300 μm is preferable for long-term heat generation, and 5 to 40 μm, preferably 10 to 32 μm is preferable for immediate heat generation.
The moldability and shape retention of the exothermic composition are improved as the particle size of the water-insoluble solid component excluding the reaction accelerator, the water-soluble substance and water is smaller.
The particle size is measured by the maximum length in a form in which the portion passing through the sieve is indicated in μm units from the sieve opening (diameter of the sieve) or the like, by the dynamic light scattering method, the laser diffraction method, or the like. Mean particle size.

本発明の発熱組成物は、その配合割合は特に限定されるものではないが、鉄粉100重量部に対して、炭素成分0.01〜50重量部、反応促進剤0.01〜50重量部、水0.5〜60重量部になるように配合割合を選択するのが好ましい。
更に、好ましくは、前記発熱組成物に下記のものを鉄粉に対して、下記の配合割合で加えてもよい。
即ち、鉄粉100重量部に対して、保水剤0.01〜20重量部、吸水性ポリマー0.01〜20重量部、pH調整剤0.01〜5重量部、水素発生抑制剤0.01〜12重量部、鉄以外の金属1.0〜50重量部、酸化鉄以外の金属酸化物1.0〜50重量部、界面活性剤0.01〜5重量部、疎水性高分子化合物、骨材、繊維状物、機能性物質、有機ケイ素化合物、焦電物質はそれぞれ0.01〜10重量部、保湿剤、肥料成分、発熱助剤はそれぞれ0.01〜10重量部、酸性物質0.01〜1重量部が好ましい。尚、磁性体を更に配合するようにしてもよく、配合割合は所望により適宜決めればよい。尚、この配合割合は、反応混合物にも適用することができる。また、反応混合物を部分酸化して酸化皮膜を有する鉄成分を含有する発熱組成物を製造する場合、反応混合物の余剰水値は1未満が好ましい。また、磁性体を更に配合するようにしてもよく、配合割合は所望により適宜決めればよい。
The mixing ratio of the exothermic composition of the present invention is not particularly limited, but the carbon component is 0.01 to 50 parts by weight and the reaction accelerator is 0.01 to 50 parts by weight with respect to 100 parts by weight of the iron powder. The mixing ratio is preferably selected so that the water content is 0.5 to 60 parts by weight.
Further preferably, the following composition may be added to the exothermic composition at the following blending ratio with respect to the iron powder.
That is, with respect to 100 parts by weight of iron powder, water retaining agent 0.01-20 parts by weight, water-absorbing polymer 0.01-20 parts by weight, pH adjuster 0.01-5 parts by weight, hydrogen generation inhibitor 0.01 ~ 12 parts by weight, metals other than iron 1.0-50 parts by weight, metal oxides other than iron oxide 1.0-50 parts by weight, surfactant 0.01-5 parts by weight, hydrophobic polymer compound, bone Materials, fibrous materials, functional materials, organosilicon compounds and pyroelectric materials are each 0.01 to 10 parts by weight, moisturizers, fertilizer components and exothermic assistants are each 0.01 to 10 parts by weight, acidic substances 01 to 1 part by weight is preferred. In addition, you may make it mix | blend a magnetic body further and should just determine a mixing | blending ratio suitably as needed. This blending ratio can also be applied to the reaction mixture. Moreover, when manufacturing the exothermic composition which contains the iron component which has an oxide film by partially oxidizing a reaction mixture, the excess water value of a reaction mixture is less than one. Moreover, you may make it mix | blend a magnetic body further and should just determine a mixing | blending ratio suitably as needed.

前記鉄粉は、鉄を50重量%以上含む金属であれば、制限はないが、鋳鉄鉄粉、アトマイズ鉄粉、電解鉄粉、還元鉄粉、スポンジ鉄粉及びそれらの鉄合金粉等が一例として使用できる。更に、これら鉄粉が炭素や酸素を含有していてもよく、また、鉄を50重量%以上含む鉄で、他の金属を含んでいてもよい。合金等として含まれる金属の種類は鉄成分が発熱組成物の成分として働けば特に制限はないが、アルミニウム、マンガン、銅、ケイ素等の金属、半導体が一例として挙げられる。本発明の金属には半導体も含める。また、繊維状の形態を有する鉄粉やその他の金属としては、スチール繊維、アルミ繊維、マグネシウム繊維等が挙げられる。
本発明の鉄粉において、前記鉄以外の金属の含有量は、鉄粉全体に対して通常0.01〜50重量%であり、好ましくは0.1〜40重量%であり、より好ましくは0.1〜10重量%である。
The iron powder is not limited as long as it contains 50% by weight or more of iron, but examples include cast iron powder, atomized iron powder, electrolytic iron powder, reduced iron powder, sponge iron powder, and iron alloy powder thereof. Can be used as Furthermore, these iron powders may contain carbon or oxygen, or may contain other metals by iron containing 50% by weight or more of iron. The type of metal contained as an alloy or the like is not particularly limited as long as the iron component acts as a component of the exothermic composition, but examples include metals such as aluminum, manganese, copper, and silicon, and semiconductors. The metal of the present invention includes a semiconductor. Examples of the iron powder having a fibrous form and other metals include steel fibers, aluminum fibers, and magnesium fibers.
In the iron powder of the present invention, the content of metals other than iron is usually 0.01 to 50% by weight, preferably 0.1 to 40% by weight, more preferably 0, based on the whole iron powder. .1 to 10% by weight.

前記鉄の表面の少なくとも一部に酸素含有皮膜を有する鉄粉としては、
A.発熱組成物の必須成分又はそれに酸性物質やその他必要成分を加えたものを酸化性ガスと接触処理し、鉄成分を部分酸化し、鉄成分の表面を少なくとも部分酸化した活性鉄粉、
B.ウスタイトの含有量が、鉄のX線ピーク強度比として、2〜50重量%の活性鉄粉、
C.厚さ3nm以上の鉄酸化皮膜を表面に有する鉄粉、
D.鉄粉、炭素成分、反応促進剤、水を必須成分とし、余剰水値が0.5〜80の含余剰水発熱組成物を型成形により成形した発熱組成物成形体を非吸水性の基材及び非吸水性の被覆材に挟んだ発熱体を、透湿度が0.1〜6.0g/(m・day)、酸素透過度が0.05〜10ml/(m・day)である包材から構成される外袋に封入後、損傷を受けない自然環境下、及び、保持温度が1〜80℃且つ保持湿度1〜90%の環境下から選ばれた一種の制御環境下に保持された保持時間を、少なくとも25時間〜2年間とすることにより、前記発熱組成物中の鉄成分の少なくとも一部が、少なくとも表面の一部に鉄の酸化物を有するように変換された鉄粉、
E.活性鉄粉と活性鉄粉以外の鉄粉の混合物、
等が一例として挙げられる。
As the iron powder having an oxygen-containing film on at least a part of the iron surface,
A. An active iron powder in which an essential component of an exothermic composition or an acidic substance or other necessary component added thereto is contact-treated with an oxidizing gas, the iron component is partially oxidized, and the surface of the iron component is at least partially oxidized,
B. An active iron powder having a wustite content of 2 to 50% by weight as an X-ray peak intensity ratio of iron,
C. Iron powder having an iron oxide film with a thickness of 3 nm or more on the surface,
D. Non-water-absorbing base material made of exothermic composition formed by molding a surplus water exothermic composition containing iron powder, carbon component, reaction accelerator and water as essential components and surplus water value of 0.5-80 And a heating element sandwiched between non-water-absorbing coating materials, the water vapor permeability is 0.1 to 6.0 g / (m 2 · day), and the oxygen permeability is 0.05 to 10 ml / (m 2 · day). After being enclosed in an outer bag made of packaging material, it is held in a kind of controlled environment selected from a natural environment that is not damaged and a holding temperature of 1 to 80 ° C. and a holding humidity of 1 to 90%. Iron powder in which at least a part of the iron component in the exothermic composition is converted to have an iron oxide on at least a part of the surface by setting the retained holding time to at least 25 hours to 2 years ,
E. A mixture of active iron powder and iron powder other than active iron powder,
Etc. are mentioned as an example.

前記鉄粉の表面を覆う酸素含有皮膜である鉄酸化皮膜の厚さは、オージェ電子分光法を用いて、通常3nm以上であり、好ましくは3nm〜100μmであり、より好ましくは20nm〜100μmであり、更に好ましくは30nm〜100μmであり、更に好ましくは30nm〜50μmであり、更に好ましくは30nm〜1μmであり、更に好ましくは30nm〜500nmであり、更に好ましくは50nm〜300nmである。鉄の酸素含有被膜の厚さを3nm以上とすることにより、鉄の酸素含有被膜の厚さが酸化反応の促進効果を発揮でき、空気等の酸化性ガスと接触して、酸化反応をすぐに開始させることができる。鉄の酸素含有被膜の厚さが100μm以上であると、発熱時間が短くなるおそれがあるが、用途によっては使用できる。
また、もう1つはウスタイトを有する活性鉄粉で、ウスタイト量は、鉄とのX線強度比として、通常は2〜50重量%であり、好ましくは5.01〜50重量%であり、より好ましくは5.01〜40重量%であり、更に好ましくは6〜40重量%であり、更に好ましくは7〜30重量%であり、更に好ましくは7〜25重量%である。50重量%を超えても立ち上がり発熱性はよいが、発熱持続時間が短くなる。2重量%未満であると立ち上がり発熱性が鈍くなる。
ウスタイト量は、X線解析装置を用い、鉄の110面のピークの積分強度に対するウスタイトの220面のピークの積分強度の比として評価した。
The thickness of the iron oxide film which is an oxygen-containing film covering the surface of the iron powder is usually 3 nm or more, preferably 3 nm to 100 μm, more preferably 20 nm to 100 μm, using Auger electron spectroscopy. More preferably, the thickness is 30 nm to 100 μm, more preferably 30 nm to 50 μm, still more preferably 30 nm to 1 μm, still more preferably 30 nm to 500 nm, and still more preferably 50 nm to 300 nm. By making the thickness of the iron-containing film of iron 3 nm or more, the thickness of the iron-containing film of iron can exert an effect of promoting the oxidation reaction, and immediately contact the oxidizing gas such as air to cause the oxidation reaction immediately. Can be started. If the thickness of the iron oxygen-containing coating is 100 μm or more, the heat generation time may be shortened, but it can be used depending on the application.
The other is active iron powder having wustite, and the amount of wustite is usually 2 to 50% by weight, preferably 5.01 to 50% by weight, as an X-ray intensity ratio with iron. Preferably it is 5.01 to 40 weight%, More preferably, it is 6 to 40 weight%, More preferably, it is 7 to 30 weight%, More preferably, it is 7 to 25 weight%. Even if it exceeds 50% by weight, the heat build-up is good, but the heat generation duration is shortened. When it is less than 2% by weight, the heat build-up becomes dull.
The amount of wustite was evaluated using an X-ray analyzer as a ratio of the integrated intensity of the peak of wustite 220 to the integrated intensity of the peak of 110 face of iron.

前記炭素成分としては、炭素質物質であれば制限はない。活性炭(榔子殻炭、木炭粉、暦青炭、泥炭、亜炭)、カーボンブラック、アセチレンブラック、黒鉛、カーボンナノチューブ、カーボンナノホーン等が一例として挙げられる。 また、活性炭繊維等の繊維状の形態のものを用いることもできる。   The carbon component is not limited as long as it is a carbonaceous material. Examples include activated carbon (coconut shell charcoal, charcoal powder, calendar bituminous coal, peat, lignite), carbon black, acetylene black, graphite, carbon nanotube, carbon nanohorn, and the like. Moreover, the thing of fibrous forms, such as activated carbon fiber, can also be used.

前記反応促進剤としては、発熱の反応促進ができるものであれば制限はない。塩化ナトリウム、塩化カリウム、塩化カルシウム等の無機電解質が一例として挙げられる。公知の使い捨てカイロや発熱体に使用されている電解質も用いることもできる。これらの反応促進剤は、前記粒径の対象にはならない。   The reaction accelerator is not limited as long as it can accelerate the exothermic reaction. Examples include inorganic electrolytes such as sodium chloride, potassium chloride, and calcium chloride. The electrolyte currently used for the well-known disposable warmer and a heat generating body can also be used. These reaction accelerators are not subject to the particle size.

前記吸水性ポリマーとしては、架橋構造を有し、かつ自重に対するイオン交換水の吸水倍率が3倍以上の樹脂であれば特に限定されるものではない。また、表面を架橋したものでもよい。従来公知の吸水性ポリマーや市販のものも用いることもできる。吸水性ポリマーとしては、ポリ(メタ)アクリル酸架橋体、ポリ(メタ)アクリル酸塩架橋体、ポリオキシアルキレン基を有するポリ(メタ)アクリル酸エステル架橋体、ポリN−ビニルカルボン酸アミド系架橋体、ポリビニルアルコール系架橋体、ポリ(メタ)アクリルアミド架橋体等が一例として挙げられる。これらは単独で用いてもよく、二種以上を併用してもよい。   The water-absorbing polymer is not particularly limited as long as it has a crosslinked structure and has a water absorption ratio of 3 times or more with respect to its own weight. Moreover, what cross-linked the surface may be used. Conventionally known water-absorbing polymers and commercially available products can also be used. As the water-absorbing polymer, a crosslinked poly (meth) acrylic acid, a crosslinked poly (meth) acrylate, a crosslinked poly (meth) acrylate having a polyoxyalkylene group, a poly N-vinylcarboxylic acid amide-based crosslinked Examples include a crosslinked body, a polyvinyl alcohol-based crosslinked body, and a crosslinked poly (meth) acrylamide. These may be used alone or in combination of two or more.

前記成形助剤は、水分との組み合わせにより、水膜の強度を向上させ、鉄粉等の発熱組成物の組成物質粒子間の凝集を強化し、発熱組成物成形体の強度を向上させ、形状の維持を強化できれば制限はないが、水溶性高分子、親水性高分子、無機化合物等がある。セルロース系、デンプン系、ポリ(メタ)アクリル酸(塩、エステル)系、シロップ系、海藻類、植物粘質物、微生物による粘質物、タンパク質系、多糖類系、有機系、無機系、合成系等の高分子成形助剤等が一例として挙げられる。例えば、カルボキシメチルセルロース(CMC)、カルボキシメチルセルロースナトリウム、酢酸エチルセルロース、ヒドロキシメチルセルロースなどのセルロース誘導体系成形助剤、デキストリン、α化澱粉、加工用澱粉などの澱粉系吸水剤、ポリアクリル酸ナトリウム等のポリアクリル酸塩、コーンシロップ、マンニットシロップ等のシロップ系、カラギーナン、寒天などの海草抽出物、アラビアガム、トラントガム、カラヤガム等の植物樹脂粘物質、キサンタンガム、ジユランガム、ブルラン、ガードラン等の微生物産生粘物質、ゼラチン、アルブミン、カゼイン等の動物蛋白質、大豆蛋白質、小麦蛋白質などの植物蛋白質、ペクチン、アラピノガラクタン等の植物果実粘物質などの多糖類系増粘剤、ローカストピーンガム、タマリンドシードガム、タラガム等の植物種子粘物質、アルギン酸ソーダ等のアルギン酸塩、アラビアゴム、トラガカントゴム、ローカストピーンガム、グアーガム、アラビアガム、ペクチン、コーンスターチ等の有機系、ベントナイト、モンモリロナイト、カオリン、珪酸ソーダ、珪酸アルミニウム等の無機系、ステアリン酸塩、ポリエチレンオキサイド、ポリビニルアルコール、ポリビニルピロリドン、ポリ酢酸ビニルエマルジョン、アクリルスルホン酸系高分子物質、ポリーN−ビニルアセトアミド、又はメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、カルメロースナトリウム、カルボキシビニルポリマー、エチレン−無水マレイン酸共重合体等の無水マレイン酸共重合体、アクリル酸−デンプン共重合体、微晶質セルロース、N−ビニルアセトアミド共重合体等を単独、或いは、二種以上の組み合わせ等が一例として挙げられる。また、従来公知の水溶性高分子や増粘剤も使用できる。   The molding aid, in combination with moisture, improves the strength of the water film, strengthens the aggregation between the composition material particles of the exothermic composition such as iron powder, improves the strength of the exothermic composition molded body, There is no limitation as long as the maintenance of this can be strengthened, but there are water-soluble polymers, hydrophilic polymers, inorganic compounds, and the like. Cellulose-based, starch-based, poly (meth) acrylic acid (salt, ester) -based, syrup-based, seaweed, plant mucilage, microbial mucilage, protein-based, polysaccharide-based, organic-based, inorganic-based, synthetic system, etc. Examples of the polymer molding aids are as follows. For example, cellulose derivative-based molding aids such as carboxymethylcellulose (CMC), sodium carboxymethylcellulose, ethyl acetate, hydroxymethylcellulose, starch-based water absorbents such as dextrin, pregelatinized starch, and starch for processing, and polyacrylic such as sodium polyacrylate Syrups such as acid salts, corn syrup, and mannit syrup, seaweed extracts such as carrageenan and agar, plant resin mucous substances such as gum arabic, trant gum, caraya gum, and mucous substances produced by microorganisms such as xanthan gum, jiylang gum, bull run, and guardland Animal thickeners such as gelatin, albumin and casein, plant proteins such as soybean protein and wheat protein, polysaccharide thickeners such as plant fruit mucilage such as pectin and arapinogalactan, locust peanut gum, tamarin Plant seed mucous substances such as seed gum and tara gum, alginates such as sodium alginate, gum arabic, tragacanth gum, locust pea gum, guar gum, gum arabic, pectin, corn starch, etc., bentonite, montmorillonite, kaolin, sodium silicate, aluminum silicate Inorganic materials such as stearates, polyethylene oxide, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate emulsion, acrylic sulfonic acid polymers, poly N-vinylacetamide, or methylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, carmellose Sodium, carboxyvinyl polymer, maleic anhydride copolymer such as ethylene-maleic anhydride copolymer, acrylic acid-starch copolymer Coalescence, microcrystalline cellulose, alone N- vinylacetamide copolymer, or a combination of two or more, and the like as an example. Conventionally known water-soluble polymers and thickeners can also be used.

前記成形助剤の含有量は、発熱性能を著しく低下させなければ制限はないが、鉄粉100重量部に対して、好ましくは0.001〜2重量部であり、より好ましくは0.001〜1.5重量部であり、更に好ましくは0.001〜1重量部であり、更に好ましくは0.01〜1重量部であり、更に好ましくは0.01〜0.5重量部であり、更に好ましくは0.01〜0.2重量部であり、更に好ましくは0.01〜0.1重量部であり、更に好ましくは0.01〜0.099重量部であり、更に好ましくは0.01〜0.095重量部であり、更に好ましくは0.02〜0.095重量部であり、更に好ましくは0.05〜0.090重量部である。   The content of the molding aid is not limited as long as the heat generation performance is not significantly lowered, but is preferably 0.001 to 2 parts by weight, more preferably 0.001 to 100 parts by weight with respect to 100 parts by weight of the iron powder. 1.5 parts by weight, more preferably 0.001 to 1 part by weight, still more preferably 0.01 to 1 part by weight, still more preferably 0.01 to 0.5 part by weight, Preferably it is 0.01-0.2 weight part, More preferably, it is 0.01-0.1 weight part, More preferably, it is 0.01-0.099 weight part, More preferably, it is 0.01 It is -0.095 weight part, More preferably, it is 0.02-0.095 weight part, More preferably, it is 0.05-0.090 weight part.

前記機能性物質としては、薬効、芳香等の何らかの機能を有していればいかなるものでもよい。香料、薬草、ハーブ、葛根湯等の漢方薬、サフラワーオイル等のオイル、ヨモギやビワの葉やモグサ等の植物乾燥物、経皮吸収性薬物、医薬活性物質、芳香剤、化粧水、乳液、湿布剤、防カビ剤、抗菌剤、殺菌剤、消臭剤又は脱臭剤、磁気体等が一例として挙げられる。
更に、機能性物質としては、具体的に一例を挙げれば、カテキン、酸性ムコポリサッカライド、カミツレ、セイヨウトチノキ、ビタミンE、ニコチン酸誘導体、アルカロイド化合物等の血行促進剤;セイヨウトチノキ、フラボン誘導体、アントシアニジン、ビタミンP、きんせんか、シラノール、テルミナリア、マユス等のむくみ改善剤;アミノフィリン、茶エキス、カフェイン、キサンテン誘導体、イノシット、デキストラン硫酸誘導体、セイヨウトチノキ、エスシン、アントシアニジン、有機ヨウ素化合物、オトギリ草、スギナ、マンネンロウ、朝鮮人参、ヒアノレウロニダーゼ等のスリム化剤;インドメタシン、カンフル、ケトプロフェン、ショーガエキス、トウガラシエキス、サリチル酸メチル、サリチル酸グリコール等の鎮痛剤;ラベンダー、ローズマリー、シトロン、ジェニパー、メントール、ニクズク、テレピン油、杉胚油、ヒノキチオール油、ペパーミント、ユーカリ、ロズウッド、オレンジ等の香料、ヒアルロン酸やグリセリン等の保湿剤等が挙げられ、一種以上を用いることができる。
The functional substance may be any substance as long as it has some function such as medicinal effect and aroma. Perfumes, herbs, herbs, Chinese medicines such as Kakkonto, oils such as safflower oil, dried plants such as mugwort and loquat leaves and mogusa, transdermal drugs, pharmaceutically active substances, fragrances, lotions, emulsions, Examples include poultices, fungicides, antibacterial agents, bactericides, deodorants or deodorizers, magnetic materials, and the like.
Furthermore, specific examples of functional substances include catechin, acidic mucopolysaccharide, chamomile, horse chestnut, vitamin E, nicotinic acid derivatives, blood circulation promoters such as alkaloid compounds; horse chestnut, flavone derivatives, anthocyanidins , Vitamin P, Kinsenka, Silanol, Terminaria, Mayus, etc., swelling improver; aminophylline, tea extract, caffeine, xanthene derivative, inosit, dextran sulfate derivative, horse chestnut, escin, anthocyanidin, organic iodine compound, hypericum grass, horsetail , Slimming agents such as mannenrou, ginseng, hyanoreuronidase; analgesics such as indomethacin, camphor, ketoprofen, shoga extract, pepper extract, methyl salicylate, glycolic salicylate; Fragrances such as dander, rosemary, citron, juniper, menthol, nutmeg, turpentine oil, cedar embryo oil, hinokitiol oil, peppermint, eucalyptus, rosewood, orange, and moisturizers such as hyaluronic acid and glycerin. Can be used.

前記経皮吸収性薬物としては、経皮吸収性のものであれば特に限定されるものではないが、例えば皮膚刺激剤、サリチル酸やインドメタシン等の沈痛消炎剤、中枢神経作用剤(睡眠鎮静剤、抗てんかん剤、精神神経用剤)、利尿剤、血圧降下剤、蓮血管拡張剤、鎮咳去疾剤、抗ヒスタミン剤、不整脈用剤、強心剤、副腎皮質ホルモン剤、局所麻酔剤等が挙げられる。これら薬剤は、一種又は必要に応じて二種以上配合されて用いられる。   The percutaneously absorbable drug is not particularly limited as long as it is percutaneously absorbable. For example, skin stimulants, analgesic anti-inflammatory agents such as salicylic acid and indomethacin, central nervous system agents (sleep sedatives, Antiepileptics, neuropsychiatric agents), diuretics, antihypertensives, lotus vasodilators, antitussives, antihistamines, arrhythmic agents, cardiotonic agents, corticosteroids, local anesthetics, and the like. These drugs are used alone or in combination of two or more as required.

本発明の基材及び被覆材の包材は、実質的に平面状の面を有する。   The base material and the covering material of the covering material of the present invention have a substantially planar surface.

本発明において、実質的に平面状の面とは、発熱組成物成形体を収納する又は覆うために予め設けられた収納用のポケット、収納区画、収納区域、覆いポケット、覆い区画、覆い区域、波形状覆い等の収納用凹部や凸部を有しない平らな面 をいう。
前記ポケットとは、発熱組成物全体を収納するために、予め包材に設けられた収納用ポケットであり、特表2001−507593号公報に記載されているようなポケットである。
前記収納区画とは、発熱組成物全体を収納するために、予め包材に設けられた収納用収納区画であり、特許316160号公報、特表平11−508314号公報に記載されているような収納区画である。
従って、発熱組成物成形体の高さより浅い凹凸、又は、発熱組成物成形体全体を収納できない凹凸、又は、意図的に発熱組成物成形体を収納しない又は覆うためでない凹凸は存在してもよい。そのような凹凸が基材又は被覆材にあっても、実質的な平面状の基材又は実質的な平面状の被覆材とする。
In the present invention, the substantially planar surface means a storage pocket, storage compartment, storage area, cover pocket, cover compartment, cover area, which are previously provided for storing or covering the exothermic composition molded body, A flat surface that does not have a concave or convex portion for storage, such as a corrugated cover.
The pocket is a storage pocket provided in advance in the packaging material for storing the entire exothermic composition, and is a pocket described in JP-T-2001-507593.
The storage compartment is a storage compartment provided in the packaging material in advance to store the entire exothermic composition, as described in Japanese Patent No. 316160 and Japanese Patent Publication No. 11-508314. It is a storage compartment.
Accordingly, there may be irregularities shallower than the height of the exothermic composition molded body, irregularities that cannot accommodate the entire exothermic composition molded body, or irregularities that are not intended to contain or cover the exothermic composition molded body intentionally. . Even if such unevenness is present in the base material or the covering material, the substantially flat base material or the substantially flat covering material is used.

本発明の基材や被覆材や敷材や局所通気材や支持体を構成する包材としては、発熱体用の包材として機能すれば制限はない。該包材は単層構造でもよく、多層構造でもよく、その構造には制限はない。
透湿性包材、非透湿性包材、通気性包材、非通気性包材、吸水性包材、非吸水性包材、伸長性包材、伸縮性包材、発泡ポリウレタンや発泡ポリスチレン等の発泡包材、ヒートシール層を有するヒートシール性包材等が一例として挙げられ、フィルム、シート、不織布、織布等及びそれらの複合体の所望の形態で、所望の用途により適宜使用できる。フィルム、不織布、織物、シート等又はそれらの組み合わせが一例として挙げられる。具体的な一例としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、ポリアミド、ポリウレタン、ポリスチレン、ポリエチレン−酢酸ビニル共重合体等の熱可塑性樹脂や合成樹脂、紙類、天然ゴム、再生ゴム、合成ゴム、エラストマー、伸縮性形状記憶ポリマー等を素材としたフィルム、シート、不織布、織布や発泡体やワックスやオイル等により非吸水性処理した非吸水性紙類等及びそれらの複合体が一例として挙げられる。開示されている又は市販されている又は公知の使い捨てカイロや発熱体に使用されている如何なる包材からも適宜選択して使用できる。
The packaging material constituting the base material, covering material, covering material, local ventilation material and support of the present invention is not limited as long as it functions as a packaging material for a heating element. The packaging material may have a single-layer structure or a multilayer structure, and the structure is not limited.
Breathable packaging materials, non-breathable packaging materials, breathable packaging materials, non-breathable packaging materials, water-absorbing packaging materials, non-water-absorbing packaging materials, extensible packaging materials, stretchable packaging materials, polyurethane foam, polystyrene foam, etc. Examples thereof include a foam packaging material, a heat-sealable packaging material having a heat seal layer, and the like, and can be appropriately used depending on a desired application in a desired form of a film, a sheet, a nonwoven fabric, a woven fabric, and the like and a composite thereof. Examples thereof include films, nonwoven fabrics, woven fabrics, sheets and the like, or combinations thereof. Specific examples include polyolefins such as polyethylene and polypropylene, polyesters, polyamides, polyurethanes, polystyrenes, thermoplastic resins and synthetic resins such as polyethylene-vinyl acetate copolymers, papers, natural rubber, recycled rubber, synthetic rubber, Examples include films, sheets, non-woven fabrics, woven fabrics, foams, non-water-absorbing papers that have been non-water-absorbing treated with wax, oil, and the like, and composites thereof. . Any packaging material disclosed or commercially available or used for known disposable warmers or heating elements can be appropriately selected and used.

本発明の基材、被覆材、支持体を含む肌と接触する表面は、風合いがよく、フレキシブルな材で構成されることが好ましい。
該表面を構成する材としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル、ポリアミド、ポリウレタン、ポリスチレン、ポリエチレン−酢酸ビニル共重合体、ポリエチレンテレフタレート等の合成樹脂、コットン、麻等の植物繊維、ウール、シルク等の動物繊維、レーヨン、キュプラ等の再生繊維、アセテート等の半合成繊維等を用いた不織布や繊維、和紙、洋紙、合成紙、布、毛織物等の織物材料、皮革材料等が一例として挙げられる。これらは単独又は複数枚を重ねて用いることもできる。また、基材、被覆材で発熱組成物成形体を挟んで封入した後で、更に、風合いのよい第二の基材、第二の被覆材をそれらに被覆してもよい。
The surface in contact with the skin including the base material, the covering material, and the support of the present invention preferably has a good texture and is composed of a flexible material.
Materials constituting the surface include polyolefins such as polyethylene and polypropylene, polyesters, polyamides, polyurethanes, polystyrenes, polyethylene-vinyl acetate copolymers, synthetic resins such as polyethylene terephthalate, plant fibers such as cotton and hemp, wool, silk Examples include animal fibers such as rayon, recycled fiber such as rayon and cupra, non-woven fabrics and fibers using semi-synthetic fibers such as acetate, textile materials such as Japanese paper, western paper, synthetic paper, cloth, woolen fabric, leather materials, etc. . These can be used alone or in a stack of a plurality. Further, after encapsulating the exothermic composition molded body with the base material and the covering material, the second base material and the second covering material having a good texture may be further coated thereon.

通常、前記基材は非通気性包材、被覆材は通気性包材から構成されるが、発熱組成物又は発熱組成物成形体を積層する包材が基材であり、発熱組成物成形体に被せる包材が被覆材であり、通気性のありなしは関係ない。発熱体としては少なくとも発熱体の一部が通気性を有していればよい。発熱体を構成する収納体の通気性は、通気性包材を袋の片面又は両面に用いることによって得ることができる。   Usually, the base material is made of a non-breathable packaging material, and the covering material is made of a breathable packaging material. The exothermic composition or the packaging material on which the exothermic composition molded body is laminated is the base material, and the exothermic composition molded body. The packaging material to be covered is a coating material, and it does not matter whether air permeability is present or not. As the heating element, at least a part of the heating element only needs to have air permeability. The breathability of the housing constituting the heating element can be obtained by using a breathable packaging material on one or both sides of the bag.

前記通気性包材や発熱部や区分発熱部の通気性は、リッシー法(JIS K−7129A法)による透湿度で,好ましくは50〜10,000g/(m・day)であり、より好ましくは100〜5,000g/(m・day)であり、更に好ましくは100〜2,000g/(m・day)であり、更に好ましくは100〜1,000g/(m・day)であり、更に好ましくは100〜600g/(m・day)であり、さらに好ましくは150〜500g/(m・day)である。
この透湿度が、50g/(m・day)未満であると発熱量が少なくなり、十分な温熱効果が得られないので通常の発熱体の用途では好ましくなく、一方、10,000g/(m・day)を越えると発熱温度が高くなって安全性に問題が生じる虞が生じるので好ましくない。ただし、用途によっては、10,000g/(m・day)を越えたり、場合によっては開放系に近い透湿度で使用することも制限されない。
The air permeability of the air permeable packaging material, the heat generating part, and the section heat generating part is a water vapor transmission rate by the Lissy method (JIS K-7129A method), preferably 50 to 10,000 g / (m 2 · day), more preferably. Is 100 to 5,000 g / (m 2 · day), more preferably 100 to 2,000 g / (m 2 · day), and still more preferably 100 to 1,000 g / (m 2 · day). Yes, more preferably 100 to 600 g / (m 2 · day), and still more preferably 150 to 500 g / (m 2 · day).
If the moisture permeability is less than 50 g / (m 2 · day), the amount of heat generation is reduced, and a sufficient heating effect cannot be obtained. Exceeding 2 · day) is not preferable because the heat generation temperature becomes high and a safety problem may occur. However, depending on the application, it is not limited to use at a moisture permeability exceeding 10,000 g / (m 2 · day) or in some cases close to an open system.

前記非通気性包材は、非通気性を有する包材であれば、制限はないが、透湿度が、好ましくは10g/(m・day)以下であり、より好ましくは0.1〜10g/(m・day)であり、更に好ましくは0.1〜6g/(m・day)である。 The non-breathable packaging material is not limited as long as it is a non-breathable packaging material, but the moisture permeability is preferably 10 g / (m 2 · day) or less, more preferably 0.1 to 10 g. / a (m 2 · day), more preferably from 0.1~6g / (m 2 · day) .

前記基材、被覆材の層構造は、制限はないが、一層構造から四層構造を有していることが好ましい。
前記基材は不織布/多孔質フィルムの二層構造、非通気性フィルム/不織布の二層構造、非通気性フィルム/粘着剤層/セパレータの三層構造、非通気性フィルム/不織布/粘着剤層/セパレータの四層構造、セパレータ/通気性粘着剤層/不織布/多孔質フィルムの四層構造が一例として挙げられる。
前記被覆材は、不織布/多孔質フィルムの二層構造、不織布/穿孔フィルムの二層構造、セパレータ/通気性粘着剤層/不織布/多孔質フィルムの四層構造が一例として挙げられる。また、スパンボンド不織布、メルトブローン不織布、スパンボンド不織布/メルトブローン不織布/スパンボンド不織布の積層体である複合不織布も有用である。
前記基材は発熱組成物成形体が積層される包材であり、被覆材は発熱組成物成形体を覆う包材である。基材又は被覆材において、通気性、非通気性は、任意に選択できる。
Although there is no restriction | limiting in the layer structure of the said base material and coating | covering material, It is preferable to have a four-layer structure from a single layer structure.
The base material is a non-woven film / porous film two-layer structure, a non-breathable film / non-woven cloth two-layer structure, a non-breathable film / adhesive layer / separator three-layer structure, a non-breathable film / non-woven cloth / adhesive layer For example, a four-layer structure of / separator and a four-layer structure of separator / breathable pressure-sensitive adhesive layer / nonwoven fabric / porous film may be mentioned.
Examples of the covering material include a two-layer structure of nonwoven fabric / porous film, a two-layer structure of nonwoven fabric / perforated film, and a four-layer structure of separator / breathable pressure-sensitive adhesive layer / nonwoven fabric / porous film. Also useful are composite nonwoven fabrics that are laminates of spunbond nonwoven fabrics, meltblown nonwoven fabrics, spunbond nonwoven fabrics / meltblown nonwoven fabrics / spunbond nonwoven fabrics.
The base material is a packaging material on which the exothermic composition molded body is laminated, and the covering material is a packaging material that covers the exothermic composition molded body. In the base material or the covering material, air permeability and non-air permeability can be arbitrarily selected.

前記通気性包材としては、通気性があれば制限はない。
例えば、多孔質フィルム、ポリエチレンフィルム等の非通気性フィルムに針等の穿孔により微細な孔を設けて通気性を持たせる穿孔フィルム、不織布、織物、紙類及びそれらを含む積層体、不織布にポリエチレンフィルムがラミネートされた非通気性の包材に針等を用いて微細な孔を設けて通気性を持たせたもの、繊維が積層され熱圧着されて通気性を制御された不織布、多孔質フイルム、或いは、多孔質フィルムに不織布を通気性粘着層又は通気性接着層等を介して積層した積層体等のフィルムやシート等が一例として挙げられる。
前記通気性素材は一層のみでもよいが、複数枚を重ねて用いることにより、発熱体の色合いの隠蔽性付与、脱落粉末の表面析出防止等の効果を与えることができる。
The breathable packaging material is not limited as long as it has breathability.
For example, perforated films, nonwoven fabrics, woven fabrics, papers and laminates containing them, which are made by providing fine pores by perforation with a needle or the like in a non-breathable film such as a porous film or polyethylene film, polyethylene in the nonwoven fabric Non-breathable packaging material laminated with a film, which has fine holes using needles, etc. to make it breathable, non-woven fabric, porous film that has been laminated and thermo-compressed to control breathability, porous film Alternatively, a film or sheet such as a laminate in which a nonwoven fabric is laminated on a porous film via a breathable pressure-sensitive adhesive layer or a breathable adhesive layer is an example.
The breathable material may be only one layer, but by using a plurality of layers, it is possible to provide effects such as imparting a concealing property of the color of the heating element and preventing surface precipitation of the fallen powder.

前記多孔質フィルムとしては、制限はないが、ポリエチレン、直鎖状低密度ポリエチレンやポリプロピレン等のポリオレフイン系樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂等と硫酸カルシウム、硫酸バリウム、酸化チタン等の無機フィラーとの混合シートを延伸により界面剥離させ微孔を設けた多孔質フィルムで、適宜選択することができる。   The porous film is not limited, but is a polyolefin resin such as polyethylene, linear low-density polyethylene or polypropylene, a fluorine resin such as polytetrafluoroethylene, and an inorganic material such as calcium sulfate, barium sulfate, or titanium oxide. A porous film provided with micropores by interfacial peeling of a mixed sheet with a filler can be selected as appropriate.

前記不織布としては、制限はないが、レーヨン、ナイロン(ポリアミド)、ポリエステル、アクリル、ポリプロピレン、ビニロン、ポリエチレン、ポリウレタン、キュプラ等の熱可塑性樹脂、綿、セルロース、合成パルプ、木材パルプ、非木材パルプ、レーヨン、アセテート等の半合成繊維、ビニロン繊維、ポリエステル繊維等から形成された乾式不織布、湿式不織布、スパンボンド、スパンレース等が一例として挙げられる。芯鞘構造の複合繊維からなる不織布でもよい。肌と接する面の不織布は起毛の(毛羽立てた)不織布が好ましい。また、伸縮性不織布や非伸縮性不織布も使用できる。   Examples of the nonwoven fabric include, but are not limited to, thermoplastic resins such as rayon, nylon (polyamide), polyester, acrylic, polypropylene, vinylon, polyethylene, polyurethane, and cupra, cotton, cellulose, synthetic pulp, wood pulp, non-wood pulp, Examples include semi-synthetic fibers such as rayon and acetate, dry nonwoven fabrics, wet nonwoven fabrics, spunbonds and spunlaces formed from vinylon fibers and polyester fibers. The nonwoven fabric which consists of composite fiber of a core sheath structure may be sufficient. The nonwoven fabric on the surface in contact with the skin is preferably a brushed (fluffed) nonwoven fabric. Moreover, a stretchable nonwoven fabric and a non-stretchable nonwoven fabric can also be used.

前記非通気性包材としては、非通気性であれば制限はない。ポリエチレン、ポリプロピレン、ナイロン、塩化ビニル、塩化ビニリデン、アクリル、ポリエステル、ポリビニルアルコール、エチレン−酢酸ビニル共重合体等ポリマー等からなるフィルム、シート、塗布物及びそれらの積層体等及びそれらにアルミニウム等の金属や酸化ケイ素等の金属(半導体も含む)化合物を積層したものやそれらを使った複合包材が一例として挙げられる。半導体を含む金属化合物としては、酸化ケイ素層、酸化アルミニウム、酸窒化ケイ素、窒化ケイ素等の酸化物、窒化物及び酸窒化物が一例として挙げられる。   The non-breathable packaging material is not limited as long as it is non-breathable. Polyethylene, polypropylene, nylon, vinyl chloride, vinylidene chloride, acrylic, polyester, polyvinyl alcohol, ethylene-vinyl acetate copolymer and other films, sheets, coatings and laminates thereof, and metals such as aluminum Examples thereof include a laminate of metal (including semiconductor) compounds such as silicon oxide and a composite packaging material using them. Examples of the metal compound containing a semiconductor include silicon oxide layers, oxides such as aluminum oxide, silicon oxynitride, and silicon nitride, nitrides, and oxynitrides.

前記芯材としては、芯材として機能すれば制限はないが、ポリエチレン、ポリプロピレン、ナイロン、アクリル、ポリエステル、ポリビニルアルコール、エチレンー酢酸ビニル共重合体等のポリマーからなるフィルムやシート及びクレープ紙、クラフト等の薄紙、段ボールライナー紙、段ボール中芯、コートポール等の厚紙等の紙類、ゴム類或いは、これらの一種又は二種以上の積層体並びにこれらを使った複合素材が一例としてあげられる。
設置法は、制限はなく、単独でもよいが、滑り止め層と芯材を兼ねたゴムを使用するとか、基材や被覆材の構成と同じ材料を使用してもよい。尚、剛性は適用される足の部位により適宜選択すればよい。
The core material is not limited as long as it functions as a core material, but a film or sheet made of a polymer such as polyethylene, polypropylene, nylon, acrylic, polyester, polyvinyl alcohol, ethylene-vinyl acetate copolymer, crepe paper, craft, etc. Examples include thin paper, corrugated liner paper, corrugated core, paper such as thick paper such as a coat pole, rubbers, or one or two or more laminates thereof, and composite materials using these.
The installation method is not limited and may be used alone, but rubber that serves as an anti-slip layer and a core material may be used, or the same material as that of the base material or the covering material may be used. In addition, what is necessary is just to select rigidity suitably with the site | part of the applied foot.

前記紙類としては吸水性を有する紙であれば特に限定されるものではないが、例えば、ティッシュペーパー、クレープ紙、及びクラフト等の薄紙、ライナー紙、段ボール中芯、コートポール等の厚紙、或いは、これらの一種又は二種以上の積層体が挙げられる。該紙類を非吸水性の包材として使用する場合は、非吸水性のプラスチックフィルムとの積層体や、ワックスや油等の含浸や塗布等により非吸水化して非吸水性紙を使用すればよい。   The paper is not particularly limited as long as it is water-absorbing paper. For example, tissue paper, crepe paper, thin paper such as craft, liner paper, cardboard core, thick paper such as a coat pole, or 1 type, or 2 or more types of these laminated bodies are mentioned. When the paper is used as a non-water-absorbing packaging material, if a non-water-absorbing paper is used by making it non-water-absorbing by a laminate with a non-water-absorbing plastic film, impregnation or coating with wax or oil, etc. Good.

前記伸長性包材としては、張力を与えると破損することなく、元の長さの1.005倍以上伸長するフィルム、シート、不織布、織布、又はそれらの積層体等が一例として挙げられる。この張力を除くと元の状態に戻るか否かは問わない。伸長性は伸縮性も含有する。 天然ゴム、合成ゴム、エラストマー、伸縮性形状記憶ポリマー等の単品やこれらと非伸縮性素材との混合品、混抄品やこれらの組み合わせ品から構成される織物、フィルム、スパンデックス糸、糸、紐、平板、ストランド、リボン、テープ、スリットフィルム、スクリム構造弾性体、発泡体、不織布、又はこれら同士又はこれらと非伸長性のものや非伸縮性のものとの積層等による複合化伸縮材等が一例として挙げられる。また、互い違い切り込みを設けた包材も伸縮性包材の一例として挙げられる。   Examples of the stretchable packaging material include films, sheets, nonwoven fabrics, woven fabrics, or laminates thereof that extend 1.005 times or more of the original length without being damaged when tension is applied. It does not matter whether this tension is removed or not. Extensibility also includes stretchability. Textiles, films, spandex yarns, yarns, strings, natural rubber, synthetic rubber, elastomers, stretchable shape memory polymers, etc., mixed products of these and non-stretchable materials, mixed papers, and combinations thereof Examples include flat plates, strands, ribbons, tapes, slit films, scrim structure elastic bodies, foams, non-woven fabrics, or composite stretchable materials by laminating them or non-extensible or non-stretchable materials. As mentioned. Moreover, the packaging material which provided the alternate cut | notch is also mentioned as an example of an elastic packaging material.

また、伸長性包材、伸縮性包材等の前記包材は、特開2002−54012号公報のバンドを構成する包材として記載されており、同公報を全部参照する事により、本明細書に組み入れる。   Moreover, the said packaging materials, such as an extensible packaging material and a stretchable packaging material, are described as a packaging material which comprises the band of Unexamined-Japanese-Patent No. 2002-54012, and this specification is referred by referring all the said gazettes. Incorporate

本発明の局所通気材とは、前記区分発熱部と区分け部との高低差を利用して、発熱部を局所通気材で覆うことにより、少なくとも区分発熱部の周縁部の一部に空間を形成し、少なくとも、区分発熱部の周縁部の一部に空気だまりを設ける包材である。該空気だまりを区分発熱部間に設けることにより、外部と区分発熱部との間の通気性を調整し、合わせて保温効果も付与する。また、支持体上に発熱源である区分発熱部を間隔を置いて設けた、高低差のある発熱部を覆い、区分発熱部の通気性を調整し、点在する発熱源である区分発熱部を用いて実用範囲での面発熱を具現化もできる。前記局所通気材には、非通気性包材と通気性包材が使用できる。前記局所通気材及び前記支持体は前記基材、前記被覆材に使用した包材が使用でき、また、従来より開示されている又は市販されている又は公知の使い捨てカイロや発熱体に使用されている如何なる包材からも適宜選択して使用できる。   With the local ventilation material of the present invention, a space is formed in at least a part of the peripheral edge of the divided heat generating part by covering the heat generating part with the local ventilation material using the difference in height between the divided heat generating part and the dividing part. And it is a packaging material which provides an air pocket at least in part of the peripheral part of a division | segmentation heat_generation | fever part. By providing the air reservoir between the divided heat generating portions, the air permeability between the outside and the divided heat generating portions is adjusted, and a heat retaining effect is also provided. In addition, the divided heat generating parts that are the heat generation sources are provided on the support at intervals, covering the heat generating parts with different heights, adjusting the air permeability of the divided heat generating parts, and the divided heat generating parts that are the scattered heat sources. The surface heat generation in the practical range can also be realized using. Non-breathable packaging material and breathable packaging material can be used for the local ventilation material. The local ventilation material and the support can be the packaging material used for the base material and the covering material, and have been conventionally disclosed or commercially available or used for known disposable warmers and heating elements. Any packaging material can be appropriately selected and used.

前記局所通気材を発熱部及び/又は発熱体に固定する方法、粘着剤等の固定剤、形状、状態には、少なくとも一部の区分発熱部間に空気だまりを設けることができれば、制限はない。   The method for fixing the local ventilation material to the heat generating part and / or the heating element, the fixing agent such as an adhesive, the shape, and the state are not limited as long as an air pocket can be provided between at least some of the divided heat generating parts. .

前記局所通気材は、発熱部の通気調整ができれば制限はない。局所通気材が設けられた発熱部や発熱体の通気面の通気性より低い方が好ましい。
多孔質フィルム、不織布、穿孔による孔を有するフィルムやシート等の通気性素材及びそれらの少なくとも一種を構成要員の一部に含む積層体等の複合体、非通気性フィルム、シートやそれらを含む積層体又はそれらに穿孔により通気孔を設けた穿孔フィルム、穿孔シートやそれらを含む穿孔積層体が有用である。また、穿孔等で、局所通気材の局部領域に発熱部又は発熱体本体の通気面(通気孔)より大きい通気性を有する領域(通気孔)を設け、局所の通気性を高くし、他の領域は実質的に非通気性にするか、または前記区分発熱部の通気面の通気性より通気性を低く保つようにし、空気等の気体の流通路及び流通を制御してもよい。これにより、区分発熱部の保温と適切な温度維持ができる。
The local ventilation material is not limited as long as the ventilation of the heat generating part can be adjusted. It is preferable that the heat generation part provided with the local ventilation material or the air permeability of the heat generating body is lower than the air permeability.
Breathable materials such as porous films, non-woven fabrics, films and sheets having holes by perforation, and composites such as laminates including at least one of them as part of constituent members, non-breathable films, sheets and laminates containing them Useful is a perforated film, a perforated film, perforated sheets or perforated laminates containing them. Also, in the local area of the local ventilation material, a region (ventilation hole) having a larger air permeability than the ventilation surface (ventilation hole) of the heating element body is provided in the local region of the local ventilation material so as to increase the local air permeability. The region may be substantially non-breathable, or may be kept less breathable than the breathability of the vent surface of the segmented heat generating portion to control the flow path and flow of gas such as air. Thereby, the heat insulation of a division | segmentation heat-emitting part and appropriate temperature maintenance can be performed.

前記局所通気材を構成する包材は、本発明の明細書に記載の基材、被覆材、外袋に使用される包材、従来より発熱体や化学カイロ(通気性収納体(内袋)や非通気性収納体(外袋))に使用されている包材が使用でき、適宜選択すればよい。   The packaging material constituting the local ventilation material is a base material, a coating material, a packaging material used for an outer bag, a heating element or a chemical warmer (breathable container (inner bag)) conventionally used. Or a packaging material used for a non-breathable container (outer bag) can be used and may be selected as appropriate.

前記通気遮断シートは、少なくとも局所通気材の通気性部分を覆うものであり、非通気性であれば特に限定されず、前記外袋の包材、局所通気材の包材や開示された又は公知の化学カイロや発熱体に使用される非通気性のフィルムやシート等の非通気性包材が使用できる。このフィルムやシートは粘着剤等の手段により、剥離可能な状態で収納体に密着貼り合わせておくが、使用時に剥離しやすいように取っ手(つまみ部分)を設けた方が好ましい。   The ventilation blocking sheet covers at least the breathable portion of the local ventilation material, and is not particularly limited as long as it is non-breathable. The outer bag packaging material, the local ventilation material packaging material, or the disclosed or publicly known Non-breathable packaging materials such as non-breathable films and sheets used for chemical warmers and heating elements can be used. The film or sheet is adhered and adhered to the container in a peelable state by means such as an adhesive, but it is preferable to provide a handle (knob portion) so that it can be easily peeled off during use.

このように前記通気遮断シートを、通気性の局所通気材の通気面に剥離可能に貼り合わせておくことにより、保管・輸送中には通気面から空気(酸素)が区分発熱部内部に侵入することがなく、保管・輸送中の発熱を防止できる。
一方、使用時には通気遮断シートを局所通気材から剥がすことにより通気性を確保できるため、通常の使用により発熱させることができる。従って、従来のように一つ一つの発熱体を個別に包装することなく出荷することが可能となり、数個の発熱体を一つの包袋にまとめて包装し、いわゆる外袋を省くことができる。すなわち、まとめ包装した場合に、その中の一つを使用したとしても、一つ一つの発熱体を個別包装したのと同様に保存でき、開封後密封するなどその保管状態に気を使わずに使用することができる。
In this way, the ventilation block sheet is detachably bonded to the ventilation surface of the breathable local ventilation material, so that air (oxygen) enters the inside of the divided heat generating portion from the ventilation surface during storage and transportation. This prevents heat generation during storage and transportation.
On the other hand, since air permeability can be ensured by peeling the ventilation block sheet from the local ventilation material during use, heat can be generated by normal use. Therefore, it becomes possible to ship without individually packaging each heating element as in the past, and several heating elements can be packaged together in one packaging bag, so-called outer bag can be omitted. . In other words, even if one of them is used when packaged together, it can be stored as if each heating element was individually packaged, and without being concerned about its storage condition such as sealing after opening. Can be used.

本発明の発熱体の中で、風合いを重んじる発熱体には風合い材を設けることが好ましい。目温発熱体や顔温発熱体等が一例として挙げられる。少なくとも、肌等に接する側に設けることが好ましい。
本発明の風合い材は風合いがよければ制限はなく、透明性、通気性については問わない。1)良好な風合い、2)高い 強度、3)発熱部からの粉体の漏れ出し防止等を考慮して、用途に応じて、各種包材から適宜選択すればよい。
本発明の風合い材は基材や被覆材に組み込まれてもよい。サーマルボンド不織布(風合い)等の不織布、エアスルー不織布(風合い)/ポリエチレン製多孔質フィルムの二層積層体、スパンボンド不織布(強度)/メルトブローン不織布(通気、漏れ防止)/サーマルボンド不織布(風合い)の三層積層体等の不織布積層体等の各種不織布等が一例として挙げられる。
前記基材や前記被覆材において通気性、透湿性が制御されている場合は、風合い材の通気性、透湿性は高いことが好ましい。例えば、透湿度が、5000g/(m・ 24hr)を超える風合い材等である。エアスルー不織布は、ポリエチレンテレフタレートを芯とし、ポリエチレンを鞘とする芯鞘型複合繊維を原料とする。 サーマルボンド不織布は、ポリエチレンテレフタレートを芯とし、ポリエチレンを鞘とする芯鞘型複合繊維を原料とする。メルトブローン不織布及びスパンボンド不織布はポリプロピレンを原料とする。
Of the heating elements of the present invention, it is preferable to provide a texture material for the heating elements that value the texture. An eye temperature heating element, a face temperature heating element, and the like can be given as examples. It is preferable to provide at least the side in contact with the skin or the like.
The texture material of the present invention is not limited as long as the texture is good, and the transparency and breathability are not questioned. In consideration of 1) good texture, 2) high strength, 3) prevention of powder leakage from the heat generating part, etc., it may be appropriately selected from various packaging materials according to the application.
The texture material of the present invention may be incorporated into a base material or a coating material. Non-woven fabrics such as thermal bond nonwoven fabric (texture), air-through nonwoven fabric (texture) / two-layer laminate of polyethylene porous film, spunbond nonwoven fabric (strength) / melt blown nonwoven fabric (venting, leak prevention) / thermal bond nonwoven fabric (texture) Examples include various nonwoven fabrics such as a nonwoven fabric laminate such as a three-layer laminate.
When air permeability and moisture permeability are controlled in the base material and the covering material, it is preferable that the air permeability and moisture permeability of the texture material are high. For example, a texture material having a moisture permeability exceeding 5000 g / (m 2 · 24 hr). The air-through nonwoven fabric uses a core-sheath type composite fiber having polyethylene terephthalate as a core and polyethylene as a sheath. The thermal bond nonwoven fabric uses a core-sheath type composite fiber having polyethylene terephthalate as a core and polyethylene as a sheath. The melt blown nonwoven fabric and the spunbond nonwoven fabric are made of polypropylene.

前記ヒートシール層を構成するヒートシール材としては、単独素材でもよく
、ヒートシール層を有する複合素材でもよく、加熱によって少なくともその一部が接合しうるものであれば制限はない。
一例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィンやオレフィン共重合樹脂、エチレン−酢酸ビニル共重合樹脂、エチレン−イソブチルアクリレート共重合樹脂などのエチレンーアクリル酸エステル共重合樹脂等のエチレン系ホットメルト樹脂、ポリアミド系ホットメルト樹脂、ブチラ−ル系ホットメルト樹脂、ポリエステル系ホットメルト樹脂等の熱可塑性系樹脂及びそのフィルムやシートが一例として挙げられる。また、ホットメルト系樹脂及びそのフィルムやシートには、種々の酸化防止剤等添加剤を配合したものも使用することができる。特に、低密度ポリエチレン、メタロセン触媒使用のポリエチレンが有用である。
The heat seal material constituting the heat seal layer may be a single material or a composite material having a heat seal layer, and is not limited as long as at least a part thereof can be joined by heating.
For example, polyolefins such as polyethylene and polypropylene, olefin copolymer resins, ethylene-vinyl acetate copolymer resins, ethylene-acrylic acid ester copolymer resins such as ethylene-isobutyl acrylate copolymer resins, ethylene-based hot melt resins, Examples thereof include thermoplastic resins such as polyamide hot melt resins, butyral hot melt resins, and polyester hot melt resins, and films and sheets thereof. Moreover, what mix | blended various additives, such as antioxidant, can also be used for hot-melt-type resin and its film and sheet | seat. In particular, low density polyethylene and polyethylene using a metallocene catalyst are useful.

前記通気性包材は発熱体の一部、片面又は両面に用いることができる。   The breathable packaging material can be used on a part, one side or both sides of the heating element.

本発明では基材と被覆材とをヒートシールする前に粘着剤を使って、好ましくは、粘着剤からなる通気性の粘着層を使用し基材と被覆材とを仮着し、仮着部を形成後、ヒートシールしてもよい。該ヒートシール部には仮着部を構成する粘着剤とヒートシール材とからなる領域が少なくとも一部に存在する。しわが発生せず、シール切れもなく、確実なヒートシールができる。これによりヒートシールの高速化も可能である。   In the present invention, a pressure-sensitive adhesive is used before heat-sealing the base material and the covering material, and preferably, the base material and the covering material are temporarily attached using a breathable pressure-sensitive adhesive layer made of an adhesive. After forming, heat sealing may be performed. The heat seal part has at least a part of an area composed of an adhesive and a heat seal material constituting the temporary attachment part. There is no wrinkle, no seal breakage, and reliable heat sealing can be achieved. Thereby, the speed of heat sealing can be increased.

本発明の発熱体は、
鉄粉、炭素成分、反応促進剤、水を必須成分として、余剰水値が0.5〜80であり、且つ、立ち上がり昇温速度が0℃/5分以上あり、型成形性を有する含余剰水発熱組成物を成形した発熱組成物成形体を包材の間に有し、該発熱組成物成形体の周縁部の包材がシールされ、少なくとも一部が通気性を有する発熱体であり、
発熱体が単一発熱部発熱体、矩形発熱体、温灸発熱体、足温発熱体から選択された少なくとも一種であり、各発熱体は、少なくとも一部に通気性を有し、且つ、該含水発熱組成物が鉄粉、炭素成分、反応促進剤、水を必須成分とし、余剰水値が0.5〜80であり、且つ、立ち上がり昇温速度が0℃/5分以上である発熱体であり、
鉄粉、炭素成分、反応促進剤、水を必須成分として、余剰水値が0.5〜80である、型成形性を有する含余剰水発熱組成物を成形した発熱組成物成形体を包材の間に有し、該発熱組成物成形体の周縁部の包材がシールされ、少なくとも一部が通気性を有し、間欠的な切り込みを有せず、全足形を有し、最小剛軟度が200mm以上である足温発熱体であり、
鉄粉、炭素成分、反応促進剤、水を必須成分として、余剰水値が0.5〜80である、型成形性を有する含余剰水発熱組成物を成形した発熱組成物成形体及び複数の区分発熱部領域と区分け部が一体化され、少なくとも一部は通気性を有する収納体を備え、該含水発熱組成物が収納された区分発熱部領域である区分発熱部と発熱組成物の非収納領域である区分け部が一体化され、複数の区分発熱部が区分け部を間隔として、間隔をおいて設けられ、少なくとも一部は通気性を有し、該収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、構造的柔軟機能と関節的柔軟機能とに基づく柔軟性を有する発熱体でり、
収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、且つ、少なくとも一つの前記区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上であり、構造的柔軟機能と関節的柔軟機能とに基づく柔軟性を有する発熱体であり、
収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、且つ、少なくとも一つの区分け部のループスティフネスが700mN/cm以下である発熱体であり、
収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、少なくとも前記区分け部の一部の一部領域に間欠的な切り込みが設けられている発熱体であり、
収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、前記各区分発熱部の少なくとも一部が局所通気材で覆われ、区分発熱部の通気側と区分け部と局所通気材により囲まれた空間部を有し、少なくとも区分発熱部の空間部に面した側面通気部より発熱組成物への通気が行われる発熱体であり、
収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、発熱体の最小剛軟度が70mm以下であり、最小剛軟度変化が−95〜0であり、構造的柔軟機能と関節的柔軟機能とに基づく柔軟性を有する発熱体であり、
発熱終了後の発熱体を構成する収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下である発熱体であり、
前記含余剰水発熱組成物を有する発熱体が、区分発熱部発熱体、剛軟発熱体、ストライプ発熱体、切り離し自在発熱体、伸縮発熱体、バンド発熱体、トンネル通気発熱体、薬剤発熱体、切り離し自在トンネル通気発熱体、切り離し自在薬剤発熱体、目温発熱体、顔温発熱体、外袋付き外仮着折り畳み発熱体から選ばれた一種であり、該含余剰水発熱組成物が鉄粉、炭素成分、反応促進剤、水を必須成分とし、余剰水値が0.5〜80であり、前記発熱体を構成する収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、且つ、少なくとも一つの前記区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上であり、発熱体の最小剛軟度が70mm以下であり、最小剛軟度差が0mm以下である発熱体である。
The heating element of the present invention is
Iron powder, carbon component, reaction accelerator, water as essential components, surplus water value is 0.5-80, and rising temperature rise rate is 0 ° C / 5 min or more, and has surplus moldability A heat generating composition molded body obtained by molding a water heat generating composition is provided between the packaging materials, the packaging material at the peripheral edge of the heat generating composition molded body is sealed, and at least a part of the heat generating body has air permeability,
The heating element is at least one selected from a single heating part heating element, a rectangular heating element, a warm heating element, and a foot heating element, and each heating element is at least partially breathable and includes the water content An exothermic composition in which the exothermic composition contains iron powder, a carbon component, a reaction accelerator, and water as essential components, the excess water value is 0.5 to 80, and the rising temperature rise rate is 0 ° C./5 minutes or more. Yes,
An exothermic composition molded body obtained by molding an excess water exothermic composition having moldability and having an excess water value of 0.5 to 80 with iron powder, a carbon component, a reaction accelerator and water as essential components The packaging material at the peripheral edge of the exothermic composition molded body is sealed, at least a part is breathable, has no intermittent cuts, has a full foot shape, and has minimal stiffness and softness. A foot temperature heating element with a degree of 200 mm or more,
An exothermic composition molded body obtained by molding an excess water exothermic composition having moldability, having an excess water value of 0.5 to 80, with iron powder, a carbon component, a reaction accelerator, and water as essential components The divided heat generating region and the divided portion are integrated, and at least a part is provided with a breathable storage body. The divided heat generating portion is a divided heat generating portion region in which the water-containing heat generating composition is stored, and the heat generating composition is not stored. The division part which is an area is integrated, a plurality of division heat generating parts are provided at intervals with the division part as an interval, and at least a part has air permeability, and the divided heat generation part area and the division part of the storage body A heating element having at least one loop stiffness across the length of 700 mN / cm or less, and having flexibility based on structural and articulation flexibility functions;
At least one loop stiffness in the longitudinal direction across the section heating section and section of the container is 700 mN / cm or less, and the maximum tensile strength at 25 ° C. of at least one section is 20 g / mm width or more. The elongation at break at 25 ° C. is 5% or more, and is a heating element having flexibility based on the structural flexible function and the joint flexible function,
A heating element in which at least one loop stiffness in a longitudinal direction crossing the section heating section region and the section of the storage body is 700 mN / cm or less and the loop stiffness of at least one section is 700 mN / cm or less;
Heat generation in which at least one loop stiffness in the longitudinal direction crossing the divided heat generating portion region and the divided portion of the storage body is 700 mN / cm or less, and intermittent cuts are provided in at least a partial region of the divided portion. Body,
At least one loop stiffness in the longitudinal direction crossing the divided heat generating region and the divided portion of the storage body is 700 mN / cm or less, and at least a part of each of the divided heat generating portions is covered with a local ventilation material, and the ventilation of the divided heat generating portion A heating element that has a space surrounded by the side, the partitioning part, and the local ventilation material, and is ventilated from the side ventilation part facing at least the space part of the heating part to the heating composition,
At least one loop stiffness in the longitudinal direction crossing the section heating section region and the section of the storage body is 700 mN / cm or less, the minimum bending resistance of the heating element is 70 mm or less, and the minimum bending resistance change is −95 to A heating element having a flexibility based on a structural flexible function and an articulated flexible function,
A heating element having at least one loop stiffness of 700 mN / cm or less in the longitudinal direction crossing the section heating section region and the section of the storage body constituting the heating element after the end of heat generation;
A heating element having the above-mentioned surplus water heating composition is a segment heating part heating element, a rigid and soft heating element, a stripe heating element, a detachable heating element, a stretchable heating element, a band heating element, a tunnel ventilation heating element, a drug heating element, Separable tunnel ventilation heating element, separable drug heating element, eye temperature heating element, face temperature heating element, outer temporary folding heating element with outer bag, and the excess water heating composition is iron powder A carbon component, a reaction accelerator and water as essential components, and an excess water value of 0.5 to 80, and at least one of the longitudinal direction crossing the section heating section region and the section section of the storage body constituting the heating body The loop stiffness is 700 mN / cm or less, the maximum tensile strength at 25 ° C. of the at least one section is 20 g / mm width or more, the breaking elongation at 25 ° C. is 5% or more, and heat generation Minimum bending resistance is not more 70mm or less, the minimum bending resistance difference is the heating element is not more than 0 mm.

即ち、本発明の発熱体は、鉄粉、炭素成分、反応促進剤、水を必須成分として、余剰水値が0.5〜80であり、且つ、立ち上がり昇温速度が0℃/5分以上あり、より好ましくは1℃/5分以上あり、型成形性を有する含余剰水発熱組成物を成形した発熱組成物成形体を包材の間に有し、該発熱組成物成形体の周縁部の包材がシールされ、少なくとも一部が通気性を有する発熱体であり、単一発熱部発熱体及び区分発熱部発熱体からなる。
本発明の発熱組成物成形体は発熱組成物が圧縮された発熱組成物圧縮体も含む。前記基材や前記発熱組成物成形体と被覆材との間に通気性粘着剤層を設けてもよい。
前記局所通気材や支持体は前記基材及び被覆材の包材が使用できる。発熱体の少なくとも一部は通気性を有する。発熱体の露出部の少なくとも一部に固定手段を設けることが好ましい。
That is, the heating element of the present invention has iron powder, a carbon component, a reaction accelerator and water as essential components, an excess water value of 0.5 to 80, and a rising temperature rising rate of 0 ° C./5 minutes or more. More preferably 1 ° C./5 minutes or more, and a heating composition molded body obtained by molding a surplus water heating composition having moldability between the packaging materials, and a peripheral portion of the heating composition molded body The packaging material is sealed and at least a part of the heating element has air permeability, and is composed of a single heating element heating element and a segment heating element heating element.
The exothermic composition molded body of the present invention includes an exothermic composition compressed body in which the exothermic composition is compressed. A breathable pressure-sensitive adhesive layer may be provided between the substrate or the exothermic composition molded body and the covering material.
As the local ventilation material and the support, the base material and the covering material of the covering material can be used. At least a part of the heating element has air permeability. It is preferable to provide a fixing means on at least a part of the exposed portion of the heating element.

本発明の発熱体は、単一発熱部発熱体、区分発熱部発熱体が一例としてあげられる。本発明の発熱体の外形状は制限はないが、長方形、正方形、そらまめ形、アイマスク形、繭形、瓢箪形、角丸長方形、角丸正方形、卵形、ブーメラン形、まが玉形、星形、翼形、鼻形、提灯形、足形が一例として挙げられる。翼形は、首や肩まわりに適する。 また、発熱体の外形状の角度は略円弧状に形成してもよい。   Examples of the heating element of the present invention include a single heating element heating element and a segment heating element heating element. Although the outer shape of the heating element of the present invention is not limited, it is rectangular, square, broad-blade, eye mask, bowl, bowl, rounded rectangle, rounded square, egg, boomerang, maggot, Examples include star shapes, wing shapes, nose shapes, lantern shapes, and foot shapes. The airfoil is suitable around the neck and shoulders. The angle of the outer shape of the heating element may be formed in a substantially arc shape.

本発明の単一発熱部発熱体とは発熱部が一つの発熱部から形成されている発熱体であり、発熱体の少なくとも一部は通気性を有する。発熱部と発熱体の形状は制限はなく、発熱体の形状と発熱部の形状は必ずしも同じ形状を取る必要はない。また、発熱体及び/又は発熱部は角部を略円弧状(アール(r)状)に設け、角部を曲線状や曲面状にしてもよい。矩形発熱体、温灸発熱体、足温発熱体等が一例として挙げられる。   The single heating part heating element of the present invention is a heating element in which the heating part is formed of one heating part, and at least a part of the heating element has air permeability. The shape of the heat generating part and the heat generating element is not limited, and the shape of the heat generating element and the shape of the heat generating part are not necessarily the same. Further, the heating element and / or the heating part may be provided with corners in a substantially arc shape (R shape), and the corners may be curved or curved. Examples of the heating element include a rectangular heating element, a warm pad heating element, and a foot temperature heating element.

本発明の矩形発熱体は、発熱部、発熱体の形状が矩形の発熱体である。長方形、正方形の形状が一例として挙げられる。   The rectangular heating element of the present invention is a heating element having a rectangular heating element and heating element. Rectangular and square shapes are examples.

本発明の温灸発熱体は、円形、矩形、楕円形等の各種形状を有し、サイズが縦50mm以下×横50mm以下の小形発熱体である。身体のつぼの加温等に適している。   The hot-spring heating element of the present invention is a small heating element having various shapes such as a circle, a rectangle, and an ellipse and having a size of 50 mm or less x 50 mm or less. Suitable for heating the body's vases.

本発明の足温発熱体は、単一発熱部発熱体からなる足温発熱体と区分発熱部発熱体からなる足温発熱体とがあり、足の任意の部位を覆う形状に形成された発熱体であればよい。例えば、足の裏側の一部分を覆う形状、足の裏側の全部を覆う形状(全足形)、足の甲側の一部分を覆う形状、足の甲側の全部を覆う形状の他、足の裏側又は甲側の一部又は全部と、足の横側の一部又は全部とを覆う形状、或いは、足の裏側の一部又は全部と、足の横側の一部又は全部と、足の甲側の一部又は全部とを覆う形状の発熱体等をその一例として挙げることができる。また、発熱体の中央部等に凹部等があってもよい。
本発明の全足形の足温発熱体の最小剛軟度は、200mm以上であり、好ましくは230mm以上であり、より好ましくは250mm以上であり、更に好ましくは270mm以上であり、更に好ましくは300mm以上であり、更に好ましくは350mm以上であり、更に好ましくは400mm以上であり、更に好ましくは500mm以上であり、更に好ましくは600mm以上である。
The foot temperature heating element of the present invention includes a foot temperature heating element consisting of a single heating part heating element and a foot temperature heating element consisting of a segment heating part heating element, and the heat generated in a shape covering any part of the foot Any body is acceptable. For example, a shape that covers a part of the back side of the foot, a shape that covers the entire back side of the foot (full foot shape), a shape that covers a part of the back side of the foot, a shape that covers the entire back side of the foot, A shape that covers part or all of the instep side and part or all of the side of the foot, or part or all of the back side of the foot, part or all of the side of the foot, and the instep side of the foot An example of the heating element is a shape that covers a part or all of the heating element. Moreover, a recessed part etc. may exist in the center part etc. of a heat generating body.
The minimum bending resistance of the all-foot-shaped foot temperature heating element of the present invention is 200 mm or more, preferably 230 mm or more, more preferably 250 mm or more, further preferably 270 mm or more, and further preferably 300 mm or more. More preferably, it is 350 mm or more, More preferably, it is 400 mm or more, More preferably, it is 500 mm or more, More preferably, it is 600 mm or more.

本発明の区分発熱部発熱体とは、余剰水値0.5〜80の含余剰水発熱組成物又はその成形体である発熱組成物成形体を有する区分発熱部とシール領域であり、蝶番である区分け部を有し、2個以上、好ましくは3個以上、より好ましくは4個以上、更に好ましくは5個以上の複数個の区分発熱部が区分け部を間隔として、間隔をおいて設けられている発熱部を有し、該発熱体の収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、構造的柔軟機能及び関節的柔軟機能の二つの機能から構成される柔軟機能を有す発熱体である。該発熱体の少なくとも一部は通気性を有する。区分発熱部、発熱部、発熱体の形状は制限はない。
発熱体及び/又は区分発熱部は角部を略円弧状(アール(r)状)に設け、角部を曲線状や曲面状にしてもよい。
また、発熱終了後の本発明の区分発熱部発熱体において、少なくとも一つの区分け部のループスティフネスが700mN/cm以下であることが好ましい。
The segment heating part heating element of the present invention is a segment heating part and a seal region having a surplus water heating composition containing excess water of 0.5 to 80 or a heating composition molded body that is a molded body thereof, There are two or more, preferably three or more, more preferably four or more, and still more preferably five or more, divided heat generating parts provided with a certain separation part, with a separation part as an interval. And at least one loop stiffness in the longitudinal direction crossing the section heating section region and the section of the storage body of the heating element is 700 mN / cm or less, and has a structural flexible function and an articulated flexible function. A heating element having a flexible function composed of two functions. At least a part of the heating element has air permeability. There are no restrictions on the shape of the section heating section, heating section, and heating element.
The heating element and / or the section heating part may be provided with corners in a substantially arc shape (R shape), and the corners may be curved or curved.
Further, in the segmented heat generating portion heating element of the present invention after the end of heat generation, it is preferable that the loop stiffness of at least one of the segmented portions is 700 mN / cm or less.

本発明の区分発熱部発熱体は、各種物性に支えられた構造的柔軟機能及び関節的柔軟機能の二つの機能から構成される柔軟機能を有し、薄くて、発熱前、発熱中、発熱終了後、即ち使用前、使用中、使用後にわたり柔軟であり、肌触りのよい発熱体である。
また、固定手段を有する発熱体で、特に固定手段を有する区分発熱部発熱体で、皮膚と接触する衣類の皮膚側に発熱体を粘着する場合、特に通気性面側に粘着剤層を固定手段とした発熱体の場合、皮膚に対し、粘着剤による弊害もなく、身体を直接加温でき、直貼り発熱体では得られない特徴を有する。また、両面通気性の発熱体の場合、非通気性面側に粘着剤層を固定手段とした発熱体の場合、皮膚へ発熱体から発生する蒸気を供給できる。
本発明の区分発熱部発熱体は、その変形も含め区分発熱部発熱体群を形成する。剛軟発熱体、ストライプ発熱体、切り離し自在発熱体、伸縮発熱体、バンド発熱体、トンネル通気発熱体、薬剤発熱体、切り離し自在トンネル通気発熱体、切り離し自在薬剤発熱体、外袋付き外仮着折り畳み発熱体が一例としてあげられる。さらに、切り離し自在発熱体、伸縮発熱体、切り離し自在トンネル通気発熱体、切り離し自在薬剤発熱体等に間欠的な切り込みを入れた発熱体等が一例としてあげられる。
本発明の区分発熱部発熱体は、更に下記事項の少なくとも一項目を有することが好ましい。
1)少なくとも一つの前記区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上である発熱体が一例として挙げられる。
2)少なくとも一つの区分け部のループスティフネスが700mN/cm以下である。
3)少なくとも区分け部の一部の一部領域に間欠的な切り込みが設けられている。
4)また、各区分発熱部の少なくとも一部が局所通気材で覆われ、区分発熱部の通気側と区分け部と局所通気材により囲まれた空間部を有し、少なくとも区分発熱部の空間部に面した側面通気部より発熱組成物への通気が行われる。
5)最小剛軟度が70mm以下である。
6)最小剛軟度変化が−95〜0である。
7)最小剛軟度差が0mm以下である。
The heating element according to the present invention has a flexible function composed of two functions of a structural flexible function and an articulated flexible function supported by various physical properties, and is thin, before heat generation, during heat generation, and end of heat generation. It is a heating element that is soft and soft to the touch after use, that is, before use, during use, and after use.
In addition, when the heating element is adhered to the skin side of clothing that comes into contact with the skin with a heating element having a fixing means, in particular, a section heating part heating element having a fixing means, the adhesive layer is particularly fixed to the breathable surface side. In the case of the heating element described above, the body can be directly heated without causing any harmful effects on the skin, and the direct heating element cannot be obtained. In the case of a double-sided breathable heating element, in the case of a heating element having an adhesive layer as a fixing means on the non-breathable surface side, steam generated from the heating element can be supplied to the skin.
The divided heat generating part heating element of the present invention forms a divided heat generating part heating element group including its deformation. Rigid soft heating element, stripe heating element, detachable heating element, telescopic heating element, band heating element, tunnel ventilation heating element, drug heating element, detachable tunnel ventilation heating element, detachable drug heating element, outer temporary attachment with outer bag A folding heating element is an example. In addition, examples include a heat generating element in which an intermittent cut is made in a separable heat generating element, a telescopic heat generating element, a separable tunnel ventilation heat generating element, a separable chemical heating element, and the like.
It is preferable that the segment heating part heating element of the present invention further has at least one of the following items.
1) A heating element having a maximum tensile strength at 25 ° C. of 20 g / mm width or more and an elongation at break of 5% or more at 25 ° C. is an example.
2) The loop stiffness of at least one section is 700 mN / cm or less.
3) At least some partial areas of the section are provided with intermittent cuts.
4) Further, at least a part of each divided heat generating portion is covered with a local ventilation material, and has a space portion surrounded by the ventilation side of the divided heat generation portion, the partitioning portion, and the local ventilation material, and at least a space portion of the divided heat generation portion. The exothermic composition is ventilated from the side vent portion facing the surface.
5) The minimum bending resistance is 70 mm or less.
6) The minimum bending resistance change is -95 to 0.
7) The minimum bending resistance difference is 0 mm or less.

特に本発明の区分発熱部発熱体の収納体のループスティフネスが300mN/cm以下、好ましくは0.01から250mN/cm、より好ましくは0.01から200mN/cmである場合、該区分発熱部発熱体の区分け部が容易に折れ曲がる優れた柔軟性を有する。更に、少なくとも一つの区分け部のループスティフネスが300mN/cm以下、好ましくは0.01から250mN/cm、より好ましくは0.01から200mN/cmである場合、該区分発熱部発熱体の区分け部がより容易に折れ曲がる優れた柔軟性を有する。   In particular, when the loop stiffness of the storage unit for the heating element according to the present invention is 300 mN / cm or less, preferably 0.01 to 250 mN / cm, more preferably 0.01 to 200 mN / cm, It has excellent flexibility that the body part can be easily bent. Further, when the loop stiffness of at least one section is 300 mN / cm or less, preferably 0.01 to 250 mN / cm, more preferably 0.01 to 200 mN / cm, the section of the section heating section heating element is Has excellent flexibility to bend more easily.

本発明の 発熱終了後の本発明の区分発熱部発熱体は、下位概念として、更に下記事項の少なくとも一項目を有することが好ましい。
1)少なくとも一つの区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上であることが好ましい。
2)区分け部のループスティフネス、区分け部の、25℃における最大引張強度及び破断伸びから選ばれた少なくとも一種において、各領域が該当する物性値の平均値の0.3〜1.7倍の物性値を有することが好ましい。
It is preferable that the heating element according to the present invention after the heat generation according to the present invention further has at least one of the following items as a subordinate concept.
1) The maximum tensile strength at 25 ° C. of at least one section is preferably 20 g / mm width or more, and the elongation at break at 25 ° C. is preferably 5% or more.
2) In at least one kind selected from the loop stiffness of the section, the maximum tensile strength at 25 ° C. and the elongation at break of the section, each region has a physical property of 0.3 to 1.7 times the average value of the corresponding physical properties. Preferably it has a value.

本発明の区分発熱部発熱体おいては、
1)収納体のループスティフネスを700mN/cm以下にし、収納体の柔軟性を確保し、区分発熱部発熱体のほどよい柔軟性を確保した。
2) 少なくとも一つの区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上であり、好ましくは、各区分け部の、25℃における最大引張強度が30g/mm幅以上であり、25℃における破断伸びが10%以上にし、区分発熱部発熱体の構造を維持すための強靱性と柔軟性を保持するための伸長性を確保した。
3)少なくとも一つの区分け部のループスティフネスを700mN/cm以下にし、発熱体の関節部の柔軟性を確保した。
4)区分発熱部発熱体の最小剛軟度が70mm以下であり、最小剛軟度変化を−95〜0であり及び/又は最小剛軟度差が0以下とし、使用前、使用中、使用終了後に渡り柔軟性の変わらない発熱体を確保した。
5)発熱終了後の収納体のループスティフネスを700mN/cm以下にし、収納体の柔軟性を確保し、発熱開始から発熱終了まで、発熱開始から、使用終了まで、区分発熱部発熱体のほどよい柔軟性を確保した。
6)各区分発熱部の少なくとも一部を局所通気材で覆い、発熱組成物への通気の調整と保温を行ったり、区分け部の一部の一部領域に間欠的な切り込みを設けるなどして、裾野の広がった区分発熱部発熱体群を形成した。
In the segment heating part heating element of the present invention,
1) The loop stiffness of the storage body was set to 700 mN / cm or less, the flexibility of the storage body was ensured, and the moderate flexibility of the section heating part heating element was ensured.
2) The maximum tensile strength at 25 ° C. of at least one section is 20 g / mm width or more, and the elongation at break at 25 ° C. is 5% or more, preferably the maximum tensile strength at 25 ° C. of each section Is 30 g / mm width or more, the elongation at break at 25 ° C. is 10% or more, and the toughness for maintaining the structure of the heating element of the segmented heating section and the extensibility for maintaining flexibility are ensured.
3) The loop stiffness of at least one section was set to 700 mN / cm or less to ensure the flexibility of the joint of the heating element.
4) The minimum bending resistance of the segment heating element heating element is 70 mm or less, the minimum bending resistance change is −95 to 0 and / or the minimum bending resistance difference is 0 or less, before use, during use, during use A heating element with no change in flexibility was secured after completion.
5) The loop stiffness of the storage body after the end of heat generation is set to 700 mN / cm or less to ensure the flexibility of the storage body. Ensured flexibility.
6) Cover at least a part of each section heat generating part with a local ventilation material, adjust the ventilation to the heat generating composition and keep the temperature in place, or make intermittent cuts in a part of the part of the section part. The heat generating body group of the divided heat generating part with a wide base was formed.

本発明の収納体のループスティフネスは、非シール領域である区分発熱部領域とシール領域である区分け部を混在させる収納体の区分発熱部領域と区分け部をほぼ直交して通過する方向で、発熱体の周辺部のシール部を含めた領域の長手方向に切り取られた、複数の収納体の切片の内、少なくとも一つの切片のループスティフネスが700mN/cm以下であればよい。
本発明の区分け部のループスティフネスは、複数の区分け部が存在する場合、複数の区分け部の内、少なくとも一つの切片のループスティフネスが700mN/cm以下であればよい。
本発明の収納体のループスティフネス及び本発明の区分け部のループスティフネスは室温下、好ましくは25℃で測定された値を採用する。
本発明の25℃における区分け部の最大引張強度は、複数の区分け部が存在する場合、複数の区分け部の内、少なくとも一つの切片の最大引張強度が20g/mm幅以上であればよい。
本発明の25℃における区分け部の破断伸びは、複数の区分け部が存在する場合、複数の区分け部の内、少なくとも一つの切片の破断伸びが5%以上であればよい。
The loop stiffness of the storage body according to the present invention generates heat in a direction that passes through the section heating section region and the section of the storage body in which the section heating section area that is a non-sealing area and the section section that is a sealing area coexist substantially orthogonally. The loop stiffness of at least one of the sections of the plurality of storage bodies cut in the longitudinal direction of the region including the seal portion at the periphery of the body may be 700 mN / cm or less.
The loop stiffness of the segmented portion of the present invention may be such that when there are a plurality of segmented portions, the loop stiffness of at least one of the plurality of segmented portions is 700 mN / cm or less.
As the loop stiffness of the container of the present invention and the loop stiffness of the section according to the present invention, values measured at room temperature, preferably at 25 ° C. are adopted.
The maximum tensile strength of the section at 25 ° C. of the present invention may be such that, when there are a plurality of sections, the maximum tensile strength of at least one of the sections is 20 g / mm width or more.
The breaking elongation at 25 ° C. of the present invention may be such that, when there are a plurality of dividing portions, the breaking elongation of at least one of the plurality of dividing portions is 5% or more.

本発明の「区分発熱部」とは、区分発熱部発熱体にあって、発熱組成物を収容する領域である。   The “classified heat generating portion” of the present invention is a region in the heat generating body of the divided heat generating portion that contains a heat generating composition.

本発明の「区分け部」とは、発熱体の周辺部以外の中央部にあって、発熱組成物の非収納領域であり、基材と被覆材等の包材同士がシールされた領域であり、区分発熱部と区分発熱部との間に存在し、区分発熱部が間隔をもって存在できるようにしている連結部であり、蝶番(屈曲領域)である。区分け部はシール領域であれば、制限はなく、ヒートシール領域、粘着剤(感圧)シール領域、接着剤シール領域等が一例として挙げられる。特にヒートシール領域(ヒートシール部)が好ましい。   The “dividing part” of the present invention is a non-contained area of the exothermic composition in the central part other than the peripheral part of the heating element, and is an area where the packaging materials such as the base material and the covering material are sealed together. It is a connecting part that exists between the segment heat generation part and the segment heat generation part and allows the segment heat generation part to exist at intervals, and is a hinge (bending region). As long as the section is a seal region, there is no limitation, and examples include a heat seal region, an adhesive (pressure-sensitive) seal region, and an adhesive seal region. A heat seal region (heat seal portion) is particularly preferable.

本発明の「複数の区分発熱部」とは、2つ以上の、好ましくは3つ以上の、より好ましくは4つ以上の区分発熱部を意味する。区分発熱部領域も同様とする。本発明の「複数の区分け部」とは、2つ以上の、好ましくは3つ以上の、より好ましくは4つ以上の区分け部を意味する。   The “plurality of divided heat generating portions” of the present invention means two or more, preferably three or more, more preferably four or more divided heat generating portions. The same applies to the divided heat generating area. The “plurality of sections” in the present invention means two or more, preferably three or more, more preferably four or more sections.

前記区分発熱部は前記区分け部を境として、少なくとも片面は凸状になっており、頂上部及び側面部から構成される。   The section heat generating section has a convex shape at least on one side with the section section as a boundary, and is composed of a top and a side section.

前記基材や前記被覆材を構成するポリエチレンフィルムや多孔質フィルム等からなる素材フィルムやヒートシール材等からなるシール層の種類や厚み等から、発熱組成物の収納体の柔軟性は千差万別であり、発熱体の柔軟性に大きく影響する。
前記発熱体を発熱組成物を含有する区分発熱部と発熱組成物を含有しない区分け部とを組み合わせた構造だけ、または、区分発熱部の発熱組成物の重量を増加させ、発熱体の剛軟度を特定値以下にしただけでは、肌触りがよく、柔軟性に優れ装着性が良好な発熱体はできない。
それらに対して、本発明の発熱体は、収納体のループスティフネスを700mN/cm以下に制限することにより、収納体そのものの柔軟性を的確に確保し、区分発熱部の発熱組成物の重量を増加させることなく、人体の関節にあたる区分け部が柔らかく、柔軟性に優れた発熱体になる。
また、前記少なくとも一つの区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上であるので、シールされた連結部である区分け部が区分け部としての形状を維持し、区分発熱部間を維持しながら区分発熱部を確実に支え、蝶番として機能し、発熱組成物を含有する区分発熱部より優先的に曲がる。
更に、区分け部のループスティフネスを700mN/cm以下に制限することにより、より区分け部に良好な腰の強さ(硬さ)を付与できるとともに、良好な蝶番機能が得られる。これら要素を取り入れた上で、発熱体の最小剛軟度が70mm以下であり、最小剛軟度変化を−95〜0及び/又は最小剛軟度差が0以下とすることにより、凹凸がなだらかで違和感がなく、関節にあたる区分け部を柔らかく、柔軟性が有り、発熱体の発熱前と発熱終了後の柔軟性が変化せず、使用前、使用中、使用終了後にわたり、柔軟性が変化しない又は柔軟性が増す発熱体を確保できる。
更に柔軟性が変わらない、もしくは増すことから、身体や物体への貼り付け部からの剥がれが発生しにくくなり、接着性(粘着性)が失われにくく、装着性、密着性に優れた、区分発熱部発熱体が得られる。 発熱終了後の収納体のループスティフネス及び収納体の少なくとも一つの区分け部のループスティフネスが700mN/cm以下であることが好ましい。
Due to the kind and thickness of the sealing layer made of a raw material film or a heat seal material made of a polyethylene film or a porous film constituting the base material or the covering material, the flexibility of the exothermic composition container is infinite. It is different and greatly affects the flexibility of the heating element.
Only the structure in which the heating element is a combination of a segment heating part containing a heating composition and a segmenting part not containing a heating composition, or by increasing the weight of the heating composition of the segment heating part, the stiffness of the heating element A heating element with good touch, good flexibility, and good wearability cannot be achieved simply by setting the value below a specific value.
On the other hand, the heating element of the present invention limits the loop stiffness of the storage body to 700 mN / cm or less, thereby ensuring the flexibility of the storage body accurately, and reducing the weight of the heating composition of the section heating part. Without increasing, the section corresponding to the joint of the human body is soft, and the heating element is excellent in flexibility.
In addition, since the maximum tensile strength at 25 ° C. of the at least one section is 20 g / mm width or more and the elongation at break at 25 ° C. is 5% or more, the section that is a sealed connection section is the section. The section heat generation part is maintained and the section heat generation part is surely supported while maintaining the shape as above, functions as a hinge, and bends preferentially over the section heat generation part containing the heat generation composition.
Furthermore, by limiting the loop stiffness of the segmented portion to 700 mN / cm or less, it is possible to impart better waist strength (hardness) to the segmented portion and obtain a favorable hinge function. Incorporating these factors, the minimum bending resistance of the heating element is 70 mm or less, and the change in minimum bending resistance is −95 to 0 and / or the difference in minimum bending resistance is 0 or less. There is no sense of incongruity, the section corresponding to the joint is soft and flexible, the flexibility of the heating element does not change before and after the heat generation, and the flexibility does not change before, during, and after use. Alternatively, a heating element with increased flexibility can be secured.
Furthermore, since the flexibility does not change or increases, it is difficult for the body or object to peel off from the affixed part, the adhesiveness (adhesiveness) is not easily lost, and the wearability and adhesion are excellent. A heating element heating element is obtained. It is preferable that the loop stiffness of the storage body after the end of heat generation and the loop stiffness of at least one section of the storage body are 700 mN / cm or less.

本発明の区分発熱部発熱体は、区分発熱部と区分け部とから構成され、ループスティフネスで規定された収納体を構成要員に組み込んだ、構造的柔軟機能及び関節的柔軟機能からなる柔軟性を有し、発熱体自身の柔軟性により身体にフィットするフィット性に優れ、被加温体への沿い性が良好で、無反発性で、装着感や肌触りが良好な、実用的な柔軟性を有する発熱体である。
本発明の区分発熱部発熱体の通気性は少なくとも区分発熱部発熱体の一部にあればよい。両面にあってもよい。本発明の区分発熱部発熱体の露出部の少なくとも一部に固定手段を有することが好ましい。本発明の発熱体の形状と区分発熱部の形状は必ずしも同じ形状を取る必要はない。また、発熱体及び/又は区分発熱部は角部を略円弧状(アール(r)状)に設け、角部を曲線状や曲面状にしてもよい。
The section heating part heating element of the present invention is composed of a section heating part and a sectioning part, and has a flexibility consisting of a structural flexible function and an articulated flexible function, incorporating a storage body defined by loop stiffness into the constituent members. It has excellent flexibility to fit the body due to the flexibility of the heating element itself, good conformity to the heated body, non-repulsive, good wearing feeling and touch, and practical flexibility It has a heating element.
The air permeability of the segment heating part heating element of the present invention may be at least part of the segment heating part heating element. It may be on both sides. It is preferable to have a fixing means in at least a part of the exposed portion of the heat generating element according to the present invention. The shape of the heating element of the present invention and the shape of the section heating part are not necessarily the same. Further, the heating element and / or the section heating part may be provided with corners in a substantially arc shape (R shape), and the corners may be curved or curved.

前記構造的柔軟機能とは、発熱体が曲がりにくい領域と曲がりやすい領域とを合わせ持つ構造から生ずる柔軟性を付与する機能である。即ち、発熱体全体を柔軟にする機能である。具体的には、曲がりにくい領域を含水発熱組成物を有する区分発熱部で構成し、曲がりやすい領域を含水発熱組成物を有せず、シールされた領域である区分け部で構成した発熱体である。発熱体を構成する収納体のループスティフネスを所定値に規定することにより、発熱体全体の柔軟性と感触の良さを具現化している。   The structural flexible function is a function that imparts flexibility resulting from a structure in which the heating element has a region that is difficult to bend and a region that is easily bent. That is, it is a function that makes the entire heating element flexible. Specifically, it is a heating element composed of a segment heating part having a hydrous heat generating composition in a region that is difficult to bend, and a segmenting part that is a sealed region without a hydrous heat generating composition in a region that is easily bent. . By defining the loop stiffness of the housing constituting the heating element to a predetermined value, the flexibility and feel of the entire heating element are realized.

前記関節的柔軟機能とは、発熱体の関節部に当たる区分け部に柔軟性を与え、区分け部がスムーズに折り曲げできる機能である。いわば、弱い力で作用する蝶番機能である。収納体等のループスティフネスを小さくすることにより、区分発熱部発熱体の区分け部が折れ曲がることができ、実用的な柔軟性が確保できる。   The articulating flexible function is a function that gives flexibility to a section corresponding to the joint of the heating element, and the section can be bent smoothly. In other words, it is a hinge function that operates with a weak force. By reducing the loop stiffness of the storage body or the like, the section of the section heating section heating element can be bent, and practical flexibility can be secured.

前記構造的柔軟機能と前記関節的柔軟機能とを組み合わせることにより、発熱前、発熱中、発熱終了後にわたり、区分け部がスムーズに折り曲げできる機能を確保した。   By combining the structural flexible function and the articulating flexible function, the function that the section can be smoothly bent before, during, and after the heat generation was secured.

前記含水発熱組成物を収納する区分発熱部領域と、非収納領域であり、シール領域であり、連結部であり、蝶番(屈曲領域)である区分け部からなる収納体の少なくとも一つの区分け部のループスティフネスを700mN/cm以下にする、及び、少なくとも一つの区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上であり、好ましくは、各区分け部の、25℃における最大引張強度が30g/mm幅以上であり、25℃における破断伸びが10%以上にすることにより、ほどよい腰の強さと肌触りが良好で、感触の良さを示す蝶番機能を具現化している。   At least one section of a storage body including a section heat generating area for storing the water-containing heat generating composition, a non-storage area, a seal area, a connecting section, and a section that is a hinge (bending area). The loop stiffness is 700 mN / cm or less, and the maximum tensile strength at 25 ° C. of the at least one section is 20 g / mm width or more, and the elongation at break at 25 ° C. is 5% or more. Hinge showing good waist strength and softness with a maximum tensile strength at 25 ° C of 30 g / mm width and a breaking elongation at 25 ° C of 10% or more. It embodies the function.

前記発熱終了後の収納体のループスティフネス及び収納体の少なくとも一つの区分け部のループスティフネスが700mN/cm以下にすることや、発熱前と発熱終了後の収納体のループスティフネス及び収納体の少なくとも一つの区分け部のループスティフネスがほぼ等しいか、変化しないようにすることにより、発熱前、発熱中、発熱終了後にわたり、区分け部がよりスムースに折り曲げできる機能を確保でき、より柔軟性に優れた発熱体が確保できる。   The loop stiffness of the storage body after the end of heat generation and the loop stiffness of at least one section of the storage body are set to 700 mN / cm or less, the loop stiffness of the storage body before and after the end of heat generation, and at least one of the storage body. By making the loop stiffness of the two sections almost equal or not changing, it is possible to secure the function that the section can be bent more smoothly before heating, during heating, and after the end of heating, and heat generation with more flexibility. The body can be secured.

これら要素を取り入れた上で、更に、前記発熱体の最小剛軟度が70mm以下であり、最小剛軟度変化を−95〜0及び/又は最小剛軟度差が0以下とすることにより、凹凸がなだらかで違和感がなく、関節にあたる区分け部を柔らかで、柔軟性が有り、発熱体の発熱前と発熱終了後の柔軟性が変化せず、使用前、使用中、使用終了後にわたり、柔軟性が変化しない又は柔軟性が増す発熱体を確保できる。柔軟性が変わらない、もしくは増すことから、身体や物体等の被加温体の形状に沿う沿い性がよく、貼り付け部からの剥がれが発生しにくくなり、装着性、密着性に優れた、区分発熱部発熱体を提供できる。   After incorporating these elements, the minimum bending resistance of the heating element is 70 mm or less, the minimum bending resistance change is −95 to 0 and / or the minimum bending resistance difference is 0 or less, The unevenness is gentle, there is no sense of incongruity, the section that hits the joint is soft and flexible, the flexibility of the heating element before and after the heat generation does not change, and it is flexible before use, during use, after use It is possible to secure a heating element that does not change its property or increases its flexibility. Because flexibility does not change or increases, along the shape of the heated body such as the body and objects, it is easy to peel off from the affixed part, excellent wearability and adhesion, A segment heating element can be provided.

本発明の収納体のループスティフネスは、発熱体の柔軟性を示す指標であり、収納体の撓み性と無反発性の両方を加味し、数値表現した指標である。
これにより、発熱体の柔軟性、特に、複数の区分発熱部と区分け部とからなる区分発熱部発熱体及びその類似発熱体の柔軟性を的確に数値表現できる。
また、発熱体を身体等の被加温体に沿わせたときに、発熱体が有する発熱組成物の重量に関係なく、容易に被加温体に沿わすことができ、沿わせた後も反発力で元に戻ることがない無反発性の発熱体を実現するための指標である。
前記収納体のループスティフネスが大きくなれば、反発力が高まり、収納体の屈曲性が失われ、発熱体が硬直化し、柔軟性が失われ、手触りもよくなくなる。
前記収納体のループスティフネスは、撓み性及び反発性の両方を規定できるが、最小剛軟度は、撓み性を規定できても、屈曲に伴う反発性は規定できない。
発熱体の柔軟性を規定する場合、撓み性と無反発性の両方が規定できて、柔軟性が規定できるというものである。
本発明のループスティフネスで規定された収納体を有する発熱体は、発熱体の柔軟性、特に、複数の区分発熱部と区分け部とからなる区分発熱部発熱体及びその類似発熱体の柔軟性を的確に数値表現可能にした、手触りのよい柔軟性を有する発熱体を具現化し、その提供を可能にしたものである。
本発明の収納体のループスティフネスの調整方法には制限はないが、包材、ヒートシート層等のシール層、粘着剤層、区分け部の幅や数等で調整することが好ましい。
The loop stiffness of the storage body of the present invention is an index indicating the flexibility of the heating element, and is an index expressed numerically by taking into account both the flexibility and non-repulsiveness of the storage body.
Thereby, the flexibility of the heating element, in particular, the flexibility of the divided heating part heating element composed of a plurality of divided heating parts and the dividing part and the similar heating element can be accurately expressed numerically.
In addition, when the heating element is placed along a body to be heated, the heating element can be easily placed along the heating body regardless of the weight of the heating composition of the heating element. This is an index for realizing a non-repulsive heating element that does not return to its original state due to repulsive force.
If the loop stiffness of the storage body is increased, the repulsive force is increased, the flexibility of the storage body is lost, the heating element is stiffened, the flexibility is lost, and the touch is not good.
The loop stiffness of the storage body can define both flexibility and resilience, but the minimum bending resistance cannot define resilience due to bending even if it can define flexibility.
When the flexibility of the heating element is defined, both flexibility and repulsion can be defined, and flexibility can be defined.
The heating element having the storage body defined by the loop stiffness of the present invention has the flexibility of the heating element, in particular, the flexibility of the divided heating part heating element composed of a plurality of divided heating parts and the dividing part and the similar heating element. A heating element that is capable of accurately expressing numerical values and has good touch and flexibility is realized and can be provided.
Although there is no restriction | limiting in the adjustment method of the loop stiffness of the storage body of this invention, It is preferable to adjust with sealing layers, such as a packaging material and a heat sheet layer, an adhesive layer, and the width | variety and number of division parts.

本発明の区分け部のループスティフネスは、区分発熱部発熱体の蝶番である屈曲領域である区分け部の撓み性と無反発性の両方を加味し、数値表現した指標である。該区分け部のループスティフネスが大きくなれば、反発力が高まり、区分け部の屈曲性が失われ、発熱体が硬直化し、柔軟性が失われ、手触りもよくなくなる。
前記区分け部のループスティフネスは、前記収納体のループスティフネスとは独立しているが、双方が相まって、柔軟性が有り、手触りのよい区分発熱部発熱体群(区分発熱部発熱体及びその類似発熱体を言う)を具現化している。
The loop stiffness of the section of the present invention is an index expressed numerically by taking into account both the flexibility and the non-repulsive property of the section, which is the bent region that is the hinge of the section heating element heating element. When the loop stiffness of the section is increased, the repulsive force is increased, the flexibility of the section is lost, the heating element is stiffened, the flexibility is lost, and the touch is not good.
The loop stiffness of the section is independent from the loop stiffness of the storage body, but when combined, the section heat generator group (the section heat generator and its similar heat generation is flexible and comfortable to touch. To say the body).

前記区分け部において、少なくとも一つの区分け部のループスティフネスを700mN/cm以下に制限することにより、区分け部に良好な腰の強さ(硬さ)を付与できるとともに、良好な蝶番機能が得られ、発熱体の関節部の柔軟性を確保した。    In the section, by limiting the loop stiffness of at least one section to 700 mN / cm or less, it is possible to impart good waist strength (hardness) to the section, and a good hinge function is obtained, The flexibility of the joint of the heating element was secured.

本発明の発熱終了後の収納体のループスティフネスとは、得られた区分発熱部発熱体を通常の雰囲気下で発熱させ、該区分発熱部発熱体の温度が37℃を下回った時点を、使用終了と仮定し、発熱終了後の発熱体の区分発熱部の端部を開け、発熱組成物を取り出し、残った包材である収納体の非シール部である区分発熱部領域とシール部である区分け部をほぼ直交して通過する方向で、区分発熱部発熱体の周辺部のシール部を含めた領域の長手方向に切り取られた収納体の切片のループスティフネスである。発熱終了後の収納体の柔軟性の指標である。   The loop stiffness of the storage body after the end of heat generation according to the present invention is used when the obtained segment heating part heating element is heated in a normal atmosphere and the temperature of the segment heating part heating element falls below 37 ° C. Assuming the end, the end of the heating section of the heating element after the end of heat generation is opened, the heating composition is taken out, and the heating section area and the sealing section are the non-sealing part of the container that is the remaining packaging material. It is the loop stiffness of the section of the storage body cut in the longitudinal direction of the region including the seal portion at the periphery of the segment heating element heating element in a direction passing through the segmenting section almost orthogonally. This is an index of the flexibility of the storage body after the end of heat generation.

前記収納体は、実質的に平面状である包材から構成される基材及び被覆材を使用し、含余剰水発熱組成物を収納する領域と蝶番(屈曲領域)からなる構造を有し、少なくとも収納体の一面の一部が通気性を有する。
粘着剤、接着剤、ヒートシール材等からなる層又は領域を有する包材は、一つの包材として扱い、風合い材、敷材、緩衝材等の包材が収納体周辺部以外に収納体に固定されていない場合は該包材を除いて、ループスティフネス等の機械的物性を測定する。
The storage body uses a base material and a covering material composed of a substantially flat packaging material, and has a structure consisting of a region for storing the excess water heating composition and a hinge (bending region), At least a part of one surface of the storage body has air permeability.
A packaging material having a layer or region composed of an adhesive, an adhesive, a heat seal material, etc. is treated as a single packaging material, and a packaging material such as a texture material, a laying material, a cushioning material, etc. When not fixed, the packaging material is removed, and mechanical properties such as loop stiffness are measured.

本発明の発熱前の収納体のループスティフネスは、700mN/cm以下であり、好ましくは600mN/cm以下であり、より好ましくは0.01〜600mN/cmであり、更に好ましくは0.01〜500mN/cmであり、更に好ましくは0.01〜400mN/cmであり、更に好ましくは0.01〜300mN/cmであり、更に好ましくは0.1〜300mN/cmであり、更に好ましくは0.1〜250mN/cmであり、更に好ましくは0.1〜200mN/cmであり、更に好ましくは0.5〜200mN/cmであり、更に好ましくは1〜200mN/cmであり、更に好ましくは5〜200mN/cmであり、更に好ましくは10〜200mN/cmである。900mN/cmを超えると収納体の腰が強くなり、区分発熱部熱発熱体群の各柔軟性が得られない。   The loop stiffness of the container before heat generation according to the present invention is 700 mN / cm or less, preferably 600 mN / cm or less, more preferably 0.01 to 600 mN / cm, and still more preferably 0.01 to 500 mN. / Cm, more preferably 0.01 to 400 mN / cm, still more preferably 0.01 to 300 mN / cm, still more preferably 0.1 to 300 mN / cm, and still more preferably 0.1. To 250 mN / cm, more preferably 0.1 to 200 mN / cm, more preferably 0.5 to 200 mN / cm, still more preferably 1 to 200 mN / cm, and still more preferably 5 to 200 mN. / Cm, more preferably 10 to 200 mN / cm. When it exceeds 900 mN / cm, the waist of a storage body will become strong and each softness | flexibility of a division | segmentation heat_generation | fever part heat heating element group will not be obtained.

本発明の発熱前の少なくとも一つの区分け部のループスティフネスは、700mN/cm以下であり、好ましくは600mN/cm以下であり、より好ましくは0.01〜600mN/cmであり、更に好ましくは0.01〜500mN/cmであり、更に好ましくは0.01〜400mN/cmであり、更に好ましくは0.01〜300mN/cmであり、更に好ましくは0.1〜300mN/cmであり、更に好ましくは0.1〜250mN/cmであり、更に好ましくは0.1〜200mN/cmであり、更に好ましくは0.5〜200mN/cmであり、更に好ましくは1〜200mN/cmであり、更に好ましくは5〜200mN/cmであり、更に好ましくは10〜200mN/cmである。900mN/cmを超えると収納体の腰が強くなり、区分発熱部熱発熱体群の各柔軟性が得られない。   The loop stiffness of at least one section before heat generation according to the present invention is 700 mN / cm or less, preferably 600 mN / cm or less, more preferably 0.01 to 600 mN / cm, and still more preferably 0.8. It is 01-500 mN / cm, More preferably, it is 0.01-400 mN / cm, More preferably, it is 0.01-300 mN / cm, More preferably, it is 0.1-300 mN / cm, More preferably It is 0.1-250 mN / cm, More preferably, it is 0.1-200 mN / cm, More preferably, it is 0.5-200 mN / cm, More preferably, it is 1-200 mN / cm, More preferably It is 5-200 mN / cm, More preferably, it is 10-200 mN / cm. When it exceeds 900 mN / cm, the waist of a storage body will become strong and each softness | flexibility of a division | segmentation heat_generation | fever part heat heating element group will not be obtained.

前記発熱終了後の収納体のループスティフネスは、700mN/cm以下であり、好ましくは600mN/cm以下であり、より好ましくは0.01〜600mN/cmであり、更に好ましくは0.01〜500mN/cmであり、更に好ましくは0.01〜400mN/cmであり、更に好ましくは0.01〜300mN/cmであり、更に好ましくは0.1〜300mN/cmであり、更に好ましくは0.1〜250mN/cmであり、更に好ましくは0.1〜200mN/cmであり、更に好ましくは0.5〜200mN/cmであり、更に好ましくは1〜200mN/cmであり、更に好ましくは5〜200mN/cmであり、更に好ましくは10〜200mN/cmである。900mN/cmを超えると収納体の腰が強くなり、区分発熱部熱発熱体群の各柔軟性が得られない。   The loop stiffness of the container after the heat generation is 700 mN / cm or less, preferably 600 mN / cm or less, more preferably 0.01 to 600 mN / cm, and still more preferably 0.01 to 500 mN / cm. cm, more preferably 0.01 to 400 mN / cm, still more preferably 0.01 to 300 mN / cm, still more preferably 0.1 to 300 mN / cm, still more preferably 0.1 to 300 mN / cm. 250 mN / cm, more preferably 0.1 to 200 mN / cm, more preferably 0.5 to 200 mN / cm, still more preferably 1 to 200 mN / cm, still more preferably 5 to 200 mN / cm. cm, more preferably 10 to 200 mN / cm. When it exceeds 900 mN / cm, the waist of a storage body will become strong and each softness | flexibility of a division | segmentation heat_generation | fever part heat heating element group will not be obtained.

前記発熱終了後の少なくとも一つの区分け部のループスティフネスは、700mN/cm以下であり、好ましくは600mN/cm以下であり、より好ましくは0.01〜600mN/cmであり、更に好ましくは0.01〜500mN/cmであり、更に好ましくは0.01〜400mN/cmであり、更に好ましくは0.01〜300mN/cmであり、更に好ましくは0.1〜300mN/cmであり、更に好ましくは0.1〜250mN/cmであり、更に好ましくは0.1〜200mN/cmであり、更に好ましくは0.5〜200mN/cmであり、更に好ましくは1〜200mN/cmであり、更に好ましくは5〜200mN/cmであり、更に好ましくは10〜200mN/cmである。900mN/cmを超えると収納体の腰が強くなり、区分発熱部熱発熱体群の各柔軟性が得られない。   The loop stiffness of at least one section after the end of heat generation is 700 mN / cm or less, preferably 600 mN / cm or less, more preferably 0.01 to 600 mN / cm, and still more preferably 0.01. To 500 mN / cm, more preferably 0.01 to 400 mN / cm, still more preferably 0.01 to 300 mN / cm, still more preferably 0.1 to 300 mN / cm, and still more preferably 0. 0.1 to 250 mN / cm, more preferably 0.1 to 200 mN / cm, more preferably 0.5 to 200 mN / cm, still more preferably 1 to 200 mN / cm, and still more preferably 5 It is -200mN / cm, More preferably, it is 10-200mN / cm. When it exceeds 900 mN / cm, the waist of a storage body will become strong and each softness | flexibility of a division | segmentation heat_generation | fever part heat heating element group will not be obtained.

前記発熱前と発熱終了後の収納体のループスティフネスの差及び発熱前と発熱終了後の区分け部のループスティフネスの差は、好ましくは±500mN/cmであり、より好ましくは±300mN/cmであり、更に好ましくは±100mN/cmであり、更に好ましくは±80mN/cmであり、更に好ましくは±50mN/cmであり、更に好ましくは±20mN/cmであり、更に好ましくは±10mN/cmであり、更に好ましくは±5mN/cmであり、更に好ましくは0mN/cmである。   The difference between the loop stiffness of the container before the heat generation and the end of the heat generation, and the difference of the loop stiffness of the section before the heat generation and the end of the heat generation are preferably ± 500 mN / cm, more preferably ± 300 mN / cm. More preferably ± 100 mN / cm, further preferably ± 80 mN / cm, further preferably ± 50 mN / cm, further preferably ± 20 mN / cm, and further preferably ± 10 mN / cm. More preferably, it is ± 5 mN / cm, and more preferably 0 mN / cm.

本発明の区分け部の最大引張強度、破断伸びは、発熱体の構造を維持すための強靱性と柔軟性を保持するため物性である。
少なくとも一つの区分け部の、25℃における最大引張強度が20g/mm幅以上であり、25℃における破断伸びが5%以上であるので、シールされた連結部である区分け部が区分け部としての形状を維持し、区分発熱部間を維持しながら区分発熱部を確実に支え、蝶番として機能し、発熱組成物を含有する区分発熱部より優先的に曲がる。
The maximum tensile strength and elongation at break of the section of the present invention are physical properties for maintaining toughness and flexibility for maintaining the structure of the heating element.
At least one section has a maximum tensile strength at 25 ° C. of 20 g / mm width or more and a breaking elongation at 25 ° C. of 5% or more. The segment heating unit is securely supported while maintaining the interval between the segment heating units, functions as a hinge, and preferentially bends over the segment heating unit containing the heating composition.

前記少なくとも一つの区分け部の、25℃における最大引張強度は、好ましくは20g/mm幅以上であり、より好ましくは20〜2000g/mm幅であり、更に好ましくは20〜1000g/mm幅であり、更に好ましくは20〜800g/mm幅であり、更に好ましくは20〜700g/mm幅であり、更に好ましくは20〜600g/mm幅であり、更に好ましくは20〜500g/mm幅であり、更に好ましくは20〜400g/mm幅であり、更に好ましくは20〜300g/mm幅であり、更に好ましくは20〜200g/mm幅である。   The maximum tensile strength at 25 ° C. of the at least one section is preferably 20 g / mm width or more, more preferably 20 to 2000 g / mm width, still more preferably 20 to 1000 g / mm width, More preferably, it is 20-800 g / mm width, More preferably, it is 20-700 g / mm width, More preferably, it is 20-600 g / mm width, More preferably, it is 20-500 g / mm width, More preferably Is 20-400 g / mm width, More preferably, it is 20-300 g / mm width, More preferably, it is 20-200 g / mm width.

前記少なくとも一つの区分け部の、25℃における破断伸びは、好ましくは5%以上であり、より好ましくは5〜900%であり、更に好ましくは5〜800%であり、更に好ましくは5〜700%であり、更に好ましくは5〜600%であり、更に好ましくは5〜500%であり、更に好ましくは5〜400%であり、更に好ましくは5〜300%であり、更に好ましくは5〜200%であり、更に好ましくは10〜200%であり、更に好ましくは20〜200%である。   The elongation at break of the at least one section at 25 ° C. is preferably 5% or more, more preferably 5 to 900%, still more preferably 5 to 800%, still more preferably 5 to 700%. More preferably, it is 5-600%, More preferably, it is 5-500%, More preferably, it is 5-400%, More preferably, it is 5-300%, More preferably, it is 5-200% More preferably, it is 10-200%, More preferably, it is 20-200%.

前記発熱終了後の収納体の、少なくとも一つの区分け部の、25℃における最大引張強度は、好ましくは20g/mm幅以上であり、より好ましくは20〜2000g/mm幅であり、更に好ましくは20〜1000g/mm幅であり、更に好ましくは20〜800g/mm幅であり、更に好ましくは20〜700g/mm幅であり、更に好ましくは20〜600g/mm幅であり、更に好ましくは20〜500g/mm幅であり、更に好ましくは20〜400g/mm幅であり、更に好ましくは20〜300g/mm幅であり、更に好ましくは20〜200g/mm幅である。   The maximum tensile strength at 25 ° C. of at least one section of the storage body after the end of heat generation is preferably 20 g / mm width or more, more preferably 20 to 2000 g / mm width, and still more preferably 20 -1000 g / mm width, more preferably 20-800 g / mm width, more preferably 20-700 g / mm width, still more preferably 20-600 g / mm width, more preferably 20-500 g. / Mm width, more preferably 20 to 400 g / mm width, still more preferably 20 to 300 g / mm width, and still more preferably 20 to 200 g / mm width.

前記発熱終了後の収納体の、少なくとも一つの区分け部の、25℃における破断伸びは、好ましくは5%以上であり、より好ましくは5〜900%であり、更に好ましくは5〜800%であり、更に好ましくは5〜700%であり、更に好ましくは5〜600%であり、更に好ましくは5〜500%であり、更に好ましくは5〜400%であり、更に好ましくは5〜300%であり、更に好ましくは5〜200%であり、更に好ましくは10〜200%であり、更に好ましくは20〜200%である。   The breaking elongation at 25 ° C. of at least one section of the container after the heat generation is preferably 5% or more, more preferably 5 to 900%, and further preferably 5 to 800%. More preferably, it is 5-700%, More preferably, it is 5-600%, More preferably, it is 5-500%, More preferably, it is 5-400%, More preferably, it is 5-300% More preferably, it is 5-200%, More preferably, it is 10-200%, More preferably, it is 20-200%.

前記区分け部の最大引張強度、破断伸び、ループスティフネスの少なくとも一種は、好ましくは当該各区分け部の該物性値の平均値の0.3〜1.7倍であり、より好ましくは0.4〜1.6倍であり、更に好ましくは0.5〜1.5倍であり、更に好ましくは0.6〜1.4倍であり、更に好ましくは0.7〜1.3倍である。   At least one of the maximum tensile strength, breaking elongation, and loop stiffness of the section is preferably 0.3 to 1.7 times the average value of the physical properties of each section, and more preferably 0.4 to 1.6 times, more preferably 0.5 to 1.5 times, still more preferably 0.6 to 1.4 times, and even more preferably 0.7 to 1.3 times.

前記発熱終了後の区分け部の最大引張強度、破断伸び、ループスティフネスの少なくとも一種は、好ましくは当該各区分け部の該物性値の平均値の0.3〜1.7倍であり、より好ましくは0.4〜1.6倍であり、更に好ましくは0.5〜1.5倍であり、更に好ましくは0.6〜1.4倍であり、更に好ましくは0.7〜1.3倍である。   At least one of the maximum tensile strength, breaking elongation and loop stiffness of the section after the end of heat generation is preferably 0.3 to 1.7 times the average value of the physical properties of each section, more preferably 0.4 to 1.6 times, more preferably 0.5 to 1.5 times, further preferably 0.6 to 1.4 times, more preferably 0.7 to 1.3 times. It is.

前記発熱体の最小剛軟度は、好ましくは70mm以下であり、より好ましくは1〜70mmであり、更に好ましくは5〜70mmであり、更に好ましくは5〜60mmであり、更に好ましくは5〜50mmであり、更に好ましくは10〜50mmであり、更に好ましくは10〜40mmであり、更に好ましくは10〜30mmである。これにより、身体への接触時や使用時に好感触が得られる。   The minimum bending resistance of the heating element is preferably 70 mm or less, more preferably 1 to 70 mm, still more preferably 5 to 70 mm, still more preferably 5 to 60 mm, and further preferably 5 to 50 mm. More preferably, it is 10-50 mm, More preferably, it is 10-40 mm, More preferably, it is 10-30 mm. Thereby, a favorable touch is obtained at the time of contact with the body or use.

前記発熱体の最小剛軟度変化は、−95〜0であり、好ましくは−90〜0であり、より好ましくは−90〜−0.01であり、更に好ましくは−80〜−0.01であり、更に好ましくは−70〜−0.01であり、−60〜−0.01であり、更に好ましくは−50〜−0.01である。   The minimum bending resistance change of the heating element is −95 to 0, preferably −90 to 0, more preferably −90 to −0.01, and further preferably −80 to −0.01. More preferably, it is -70 to -0.01, -60 to -0.01, and more preferably -50 to -0.01.

前記発熱体の最小剛軟度差は、0以下であり、好ましくは−69〜0であり、より好ましくは−60〜0であり、更に好ましくは−50〜0であり、更に好ましくは−40〜0であり、更に好ましくは−30〜0であり、更に好ましくは−20〜0であり、更に好ましくは−10〜0であり、更に好ましくは−5〜0である。   The minimum bending resistance difference of the heating element is 0 or less, preferably −69 to 0, more preferably −60 to 0, still more preferably −50 to 0, and still more preferably −40. It is -0, More preferably, it is -30-0, More preferably, it is -20-0, More preferably, it is -10-0, More preferably, it is -5-0.

前記発熱体の厚みは、柔軟性のある発熱体として使用できれば制限はないが、好ましくは0.05〜15mmであり、より好ましくは0.05〜10mmであり、更に好ましくは0.1〜10mmであり、更に好ましくは0.1〜9mmであり、更に好ましくは0.3〜8mmであり、更に好ましくは0.3〜7mmであり、更に好ましくは0.5〜7mmであり、更に好ましくは0.5〜5mmであり、更に好ましくは0.3〜3mmである。   The thickness of the heating element is not limited as long as it can be used as a flexible heating element, but is preferably 0.05 to 15 mm, more preferably 0.05 to 10 mm, and still more preferably 0.1 to 10 mm. More preferably, it is 0.1-9 mm, More preferably, it is 0.3-8 mm, More preferably, it is 0.3-7 mm, More preferably, it is 0.5-7 mm, More preferably It is 0.5-5 mm, More preferably, it is 0.3-3 mm.

本発明の剛軟発熱体は、2個以上、好ましくは3個以上、より好ましくは4個以上、更に好ましくは5個以上複数の発熱組成物成形体から構成される区分発熱部と1個以上の区分け部からなる発熱部を有し、該収納体の区分発熱部領域と区分け部を横切る長手方向の少なくとも一つのループスティフネスが700mN/cm以下であり、発熱体の最小剛軟度が70mm以下である区分発熱部発熱体である。区分発熱部と区分け部がストライプ状に構成されることが好ましい。
前記発熱組成物を含有する区分発熱部の間に発熱組成物を含有しない、シール部である区分け部が存在する構造を有する剛軟発熱体において、発熱が進むにつれ、わずかであるが、発熱組成物の重さが増し、蝶番である区分け部を境にして、剛軟発熱体は曲がりやすくなり、被加温体により密着する。最小剛軟度変化は−95〜0であり、及び又は、最小剛軟度差は0mm以下である。
前記剛軟発熱体の最小剛軟度率は、好ましくは100以下であり、より好ましくは1〜100であり、更に好ましくは1〜80であり、更に好ましくは1〜50であり、更に好ましくは1〜40であり、更に好ましくは1〜30であり、更に好ましくは1〜20である。
前記剛軟発熱体の最大剛軟度比は、制限はないが、好ましくは1.1以上であり、より好ましくは1.15以上であり、更に好ましくは1.2以上であり、更に好ましくは1.25以上であり、更に好ましくは2.0以上であり、更に好ましくは2.5以上であり、更に好ましくは3.0以上である。
The rigid and soft heating elements of the present invention have two or more, preferably three or more, more preferably four or more, and still more preferably five or more divided heat generating parts composed of a plurality of exothermic composition molded bodies and one or more. The heating element has a heating portion composed of a plurality of sections, and at least one loop stiffness in the longitudinal direction crossing the section heating section region and the section of the storage body is 700 mN / cm or less, and the minimum bending resistance of the heating element is 70 mm or less. It is a segment heating part heating element which is. It is preferable that the divided heat generating portion and the divided portion are configured in a stripe shape.
In the rigid and soft heating element having a structure in which there is a classification part which is a seal part and does not contain a heat generation composition between the classification heat generation parts containing the heat generation composition, the heat generation composition is slight as heat generation proceeds. The weight of the object increases, and the bending and soft heating element becomes easy to bend at the partitioning portion which is a hinge, and is closely attached to the heated body. The minimum bending resistance change is −95 to 0 and / or the minimum bending resistance difference is 0 mm or less.
The minimum bending resistance of the bending-soft heating element is preferably 100 or less, more preferably 1 to 100, still more preferably 1 to 80, still more preferably 1 to 50, still more preferably. It is 1-40, More preferably, it is 1-30, More preferably, it is 1-20.
The maximum bending resistance ratio of the bending-soft heating element is not limited, but is preferably 1.1 or more, more preferably 1.15 or more, still more preferably 1.2 or more, and still more preferably. It is 1.25 or more, More preferably, it is 2.0 or more, More preferably, it is 2.5 or more, More preferably, it is 3.0 or more.

本発明のストライプ発熱体は区分発熱部がストライプ状に設けられた区分発熱部発熱体である。   The stripe heating element of the present invention is a segment heating part heating element in which the segment heating parts are provided in a stripe shape.

本発明の切り離し自在発熱体は、本発明の区分発熱部発熱体の区分発熱部以外の領域に手切れ可能なミシン目を設けた区分発熱部発熱体である。少なくとも1個以上の区分け部に手切れ可能なミシン目を有する区分発熱部発熱体が好ましい。   The separable heating element of the present invention is a segmented heating element heating element provided with a perforated perforation in a region other than the segment heating part of the segment heating element heating element of the present invention. A segment heating part heating element having perforated perforations in at least one section is preferable.

本発明の伸縮発熱体は、本発明の区分発熱部発熱体の区分発熱部以外の領域に互い違い切り込みを設けた区分発熱部発熱体である。少なくとも1個以上の区分け部の一部に互い違い切り込みを有する区分発熱部発熱体が好ましい。   The expansion / contraction heating element of the present invention is a segment heating part heating element in which staggered cuts are provided in regions other than the segment heating part of the segment heating part heating element of the present invention. A segment heating part heating element having a staggered cut in a part of at least one section is preferable.

本発明のバンド発熱体は、長尺の伸縮性支持体を有する区分発熱部発熱体である。長尺の伸縮性支持体や支持体に区分発熱部又は区分発熱部発熱体を粘着剤、接着剤やヒートシール材等を介して固定したものが一例として挙げられる。
前記発熱体以外の支持体の領域の少なくとも一部に粘着剤やファスナー等の固定手段を設けた発熱体としてもよい。該支持体としては、発熱体が固定できれば制限はないが、基材や被覆材に使用される包材が一例として挙げられる。該支持体が非通気性である場合は、発熱体の非通気性面が支持体面と向かいあうように固定する。該支持体が通気性である場合は、適宜選択して発熱体を支持体に固定する。
The band heating element of the present invention is a segment heating element heating element having a long stretchable support. An example is a long stretchable support or a support in which a segmented heat generating unit or a segmented heat generating unit is fixed via an adhesive, an adhesive, a heat seal material, or the like.
It is good also as a heat generating body which provided fixing means, such as an adhesive and a fastener, in at least one part of area | regions of support bodies other than the said heat generating body. The support is not limited as long as the heating element can be fixed. Examples of the support include packaging materials used for base materials and covering materials. When the support is non-breathable, it is fixed so that the non-breathable surface of the heating element faces the support surface. When the support is breathable, the heating element is fixed to the support by selecting as appropriate.

本発明のトンネル通気発熱体は、外部へ通じる局所通気部と発熱組成物へ通じる広域通気部とその間のトンネル(空間部)とから構成される通気部を有する発熱体であって、1個の通気孔のサイズは局所通気部の方が広域通気部より大きく、通気孔の数は広域通気部の方が局所通気部より多いことが好ましい。
区分発熱部と区分け部とから構成される発熱部の少なくとも一部が局所通気材に覆われ、区分発熱部の側面通気部と区分け部と局所通気材より空間部が形成された発熱体が一例として挙げられる。
区分発熱部と区分け部をベースにしたトンネル通気発熱体において、局所通気材が1個以上の区分発熱部の頂上部の少なくとも一部に粘着剤又は接着剤等からなる接着層を介して固定されているトンネル通気発熱体、及び、局所通気材が区分発熱部の頂上部に固定されていないトンネル通気発熱体がある。
The tunnel ventilation heating element of the present invention is a heating element having a ventilation part composed of a local ventilation part leading to the outside, a wide area ventilation part leading to the heat generating composition, and a tunnel (space part) therebetween. It is preferable that the size of the ventilation holes is larger in the local ventilation portion than in the wide area ventilation portion, and the number of ventilation holes is larger in the wide area ventilation portion than in the local ventilation portion.
An example is a heating element in which at least a part of a heat generating part composed of a divided heat generating part and a divided part is covered with a local ventilation material, and a space part is formed by a side ventilation part, a divided part, and a local ventilation material of the divided heating part As mentioned.
In a tunnel ventilation heating element based on a section heating section and a section section, a local ventilation material is fixed to at least a part of the top of one or more section heating sections through an adhesive layer made of an adhesive or an adhesive. There is a tunnel ventilation heating element that is not, and a tunnel ventilation heating element in which the local ventilation material is not fixed to the top of the section heating part.

本発明の薬剤発熱体は、区分発熱部と区分け部とから構成される発熱部の少なくとも一部が通気孔を有する局所通気材に覆われ、区分発熱部の空間部に面する側面通気部と区分け部と局所通気材より空間部が形成され、該局所通気材が少なくとも発熱体の全周辺部でシールにより固定された発熱体である。局所通気材が1個以上の区分発熱部の頂上部の少なくとも一部に粘着剤又は接着剤等からなる接着層を介して固定されている薬剤発熱体、及び、局所通気材が区分発熱部の頂上部に固定されていない薬剤発熱体がある。基材と局所通気材に非通気性包材を使用することにより、発熱組成物と発熱体の露出部との相互作用が防止できる。従って、発熱組成物と機能物質を含有する粘着剤層との相互作用が防げ、それぞれの機能が維持できる。
従来の発熱体では発熱組成物と発熱体の露出部との相互作用が防止できず、発熱組成物と機能物質を含有する粘着剤層の双方が変質し、実用に耐える薬剤発熱体ができなかった。
また、本発明の薬剤発熱体は、機能物質を含有させずに、通常の発熱体や貼布剤としても使用できる。
The drug heating element of the present invention includes a side ventilation portion that faces at least a part of a heat generation portion composed of a divided heat generation portion and a partitioning portion and is covered with a local ventilation material having a vent hole, and faces a space portion of the division heat generation portion. A space is formed by the section and the local ventilation member, and the local ventilation member is a heating element fixed at least at the entire peripheral portion of the heating element by a seal. A chemical heating element in which a local ventilation material is fixed to at least a part of the top of one or more segmental heating parts via an adhesive layer made of an adhesive or an adhesive, and a local ventilation material of the segmental heating part There is a drug heating element that is not fixed to the top. By using a non-breathable packaging material for the base material and the local ventilation material, the interaction between the exothermic composition and the exposed portion of the heating element can be prevented. Therefore, the interaction between the exothermic composition and the pressure-sensitive adhesive layer containing the functional substance can be prevented, and the respective functions can be maintained.
In the conventional heating element, the interaction between the heating composition and the exposed portion of the heating element cannot be prevented, and both the heating composition and the pressure-sensitive adhesive layer containing the functional material are altered, and a drug heating element that can withstand practical use cannot be obtained. It was.
Moreover, the chemical | medical agent heating element of this invention can be used also as a normal heating element or a patch, without containing a functional substance.

本発明の切り離し自在トンネル通気発熱体は、トンネル通気発熱体の局所通気材が少なくとも1個以上の区分け部に固定され、該固定されている区分け部の少なくとも1個以上に手切れ可能なミシン目を設けたものである。   The separable tunnel ventilation heat generating body of the present invention has a perforation that can be cut into at least one or more of the fixed section portions, wherein the local ventilation material of the tunnel ventilation heat generating body is fixed to at least one or more section portions. Is provided.

本発明の切り離し自在薬剤発熱体は、薬剤発熱体の局所通気材が少なくとも1個以上の区分け部に固定され、該固定されている区分け部の少なくとも1個以上に手切れ可能なミシン目を設けたものである。   In the detachable drug heating element of the present invention, the local ventilation material of the drug heating element is fixed to at least one section, and a perforated line is provided in at least one of the fixed section. It is a thing.

前記通気遮断シート付き局所通気材を有するトンネル通気発熱体や薬剤発熱体は前記通気遮断シートを取り除くまで、発熱を起こさず、長期保存ができる。
外袋の包材が省略できるので、ゴミが減り、環境問題にも貢献できる。
局所通気材を含めたトンネル通気発熱体、薬剤発熱体の露出部の少なくとも一部に固定手段を設けることは有用である。
The tunnel ventilation heating element and the drug heating element having the local ventilation material with the ventilation blocking sheet do not generate heat until the ventilation blocking sheet is removed, and can be stored for a long time.
Since the packaging material of the outer bag can be omitted, the amount of garbage is reduced and it can contribute to environmental problems.
It is useful to provide a fixing means on at least a part of the exposed portion of the tunnel ventilation heating element and the drug heating element including the local ventilation material.

前記トンネル通気発熱体、薬剤発熱体は、空間部による通気調整ができるので、最高温度を42℃未満、好ましくは41℃以下、より好ましくは36〜41℃、更に好ましくは36〜40℃で長時間、加温ができる。これにより低温やけどの起こらない発熱体ができる。ちなみに、皮膚の温度を6時間以上42〜44℃にすると、低温やけどが起こると言われている。区分発熱部発熱体をベースにしたものは発熱前から発熱終了後まで、発熱組成物の偏りがないので、快適に加温できる。
前記トンネル通気発熱体、薬剤発熱体は、大きな通気孔による局所通気、空間、小さな通気孔による広域通気により発熱組成物への通気を微細に調整できる発熱体である。
Since the tunnel ventilation heating element and the drug heating element can adjust the ventilation by the space, the maximum temperature is less than 42 ° C, preferably 41 ° C or less, more preferably 36-41 ° C, and further preferably 36-40 ° C. Can warm up time. This creates a heating element that does not cause low temperature burns. Incidentally, it is said that low temperature burns occur when the skin temperature is raised to 42-44 ° C. for 6 hours or more. Since the heating element based on the segment heating part heating element has no bias in the heating composition from before the heat generation to after the end of the heat generation, it can be heated comfortably.
The tunnel ventilation heating element and the drug heating element are heating elements capable of finely adjusting the ventilation to the heat-generating composition by local ventilation by a large ventilation hole, space, and wide ventilation by a small ventilation hole.

本発明の顔温発熱体は、顔を覆うことができる発熱体である。
特に目及びその周辺を加温する顔温発熱体は、目温発熱体と称する。
また、鼻及びその周辺を加温する顔温発熱体は、鼻温発熱体と称する。
1.顔温発熱体の様態は、1)発熱部とその支持体が一体化された一体式、2)発熱部とその支持体が分離して設けられ、使用時に一体化する組み立て式がある。
2.一体式顔温発熱体は、すぐに利用でき、利便性に富む。広範囲の加温から特定領域の加温まで、各用途に応じて、区分発熱部の数、大きさ、配置等を選択して、多種の製品が提供される。
3.組み立て式顔温発熱体は、1)支持体の収納部に発熱体や発熱部を収納する挿入式、2)粘着剤層等の固定手段を介して発熱体や発熱部を支持体に固定する貼り付け式がある。
該顔温発熱体は、顔の特定領域のみを加温する場合、極小発熱体をマスク等の支持体に挿入したり、粘着剤等の固定手段により支持体に貼り付けたりして利用でき経済的にも有用である。
該極小発熱体は、制限はないが、単一発熱部を有する極小発熱体、2個以上の区分発熱部を有し、区分け部に手切れ可能な切り込み(ミシン目等)を設けた切り離し自在発熱体から切り離された区分発熱部等が一例として挙げられる。
4.顔温発熱体の形状は、制限はないが、矩形、マスク形、アイマスク形が一例として挙げられる
5 顔温発熱体の顔側やその反対側である外側の少なくとも一方に風合い材を設けて、より感触をよくすることは好ましい。
6.顔温発熱体の顔等への固定手段としては、制限はないが、耳掛け帯、耳掛けひもや耳掛けゴム等が一例として挙げられる。
7.互い違い切り込みを設けた伸縮発熱体の構造や各種伸縮機能を有する顔温伸縮発熱体は顔等への密着固定に好ましい。組み立て式の例としてはマスク等の支持体に互い違い切り込みを設け、互い違い切り込みの間に単一発熱部又は小単一発熱部発熱体を挿入又は貼り付けする発熱体が一例として挙げられる。
8.顔温発熱体の内部や外側に機能性物質等を担持し、芳香効果や薬理効果等を持たせても良い。水性パップの基剤を塗布したシート材を使用した一体式や押入式が一例として挙げられる。
9.顔温発熱体の被加温体への適温維持(被加温体への接触温度が42℃以下,好ましくは40℃以下、より好ましくは36〜40℃)のために、トンネル通気発熱体や薬剤発熱体の構造を有する、局所通気材を設けた発熱部や発熱体を顔温発熱体に使用することが好ましい。温度緩衝材も有用である。
10.顔温発熱体は、少なくとも区分発熱部の一部が、透湿度による通気性を有し、透湿性も有するので、肌側面を透湿性にして、発熱組成物からの水蒸気を肌に向けて放出するタイプ、肌側面を非透湿性にして、発熱組成物からの水蒸気を肌に向けて放出しないタイプを用途に合わせ選択するのが好ましい。
11.目温発熱体及び鼻温発熱体にも、上記1.〜10.の記載事項が適用できる。
12.鼻温発熱体は少なくとも鼻の両側に相当する位置に各1個以上の発熱部又は小発熱体を設けることが好ましい。組み立て式の場合はマスク等の収容体の該領域に各1個以上の発熱部や小発熱体が取り付けられるようにすることが好ましい。
13.前記発熱体の一例として、1)一体式は一体式顔温発熱体、一体式目温発熱体、一体式鼻温発熱体、2)組み立て式は、組み立て式顔温発熱体、組み立て式目温発熱体、組み立て式鼻温発熱体、3)挿入式は、挿入式顔温発熱体、挿入式目温発熱体、挿入式鼻温発熱体、4)貼り付け式は、貼り付け式顔温発熱体、貼り付け式目温発熱体、貼り付け式鼻温発熱体、5)各式における顔温伸縮発熱体、目温伸縮発熱体、鼻温伸縮発熱体が挙げられる。
また、
1)本発明のマスク等の収容体には、発熱体と別個に水蒸気を放出する水分保持体を設けてもよい。水分保持体としては、不織布、織布、多孔質ポリマー等に水を含浸させたもの、吸水性ポリマーに水を吸水させたもの等を使用することができる。
2)マスクの本体形状や素材については、前記発熱体を装着でき、鼻及び口の双方又はいずれかを覆うことができるかぎり、制限はない。
The face temperature heating element of the present invention is a heating element that can cover the face.
In particular, a face temperature heating element that heats the eyes and the vicinity thereof is referred to as an eye temperature heating element.
A face temperature heating element that heats the nose and its surroundings is referred to as a nasal temperature heating element.
1. The face temperature heating element includes 1) an integrated type in which the heating part and its support are integrated, and 2) an assembly type in which the heating part and its support are provided separately and integrated in use.
2. The integrated face temperature heating element can be used immediately and is convenient. Various types of products are provided by selecting the number, size, arrangement, etc. of the divided heat generating portions according to each application, from a wide range of heating to a specific region.
3. The assembly-type face temperature heating element is 1) an insertion type in which the heating element and the heating part are stored in the storage part of the support, and 2) fixing the heating element and the heating part to the support through fixing means such as an adhesive layer. There is a pasting formula.
When heating only a specific area of the face, the facial temperature heating element can be used by inserting a minimal heating element into a support such as a mask or by attaching it to the support with a fixing means such as an adhesive. It is also useful.
The minimal heating element is not limited, but is a minimal heating element having a single heating part, having two or more divided heating parts, and provided with a cut (perforation, etc.) that can be cut off manually in the dividing part. An example is a segmented heat generating part separated from the heat generating element.
4). The shape of the face temperature heating element is not limited, but examples include rectangular, mask shape, and eye mask shape. 5 A texture material is provided on at least one of the face side and the opposite side of the face temperature heating element. It is preferable to improve the feel.
6). The means for fixing the face temperature heating element to the face or the like is not limited, but examples include an ear strap, an ear strap, and an ear strap rubber.
7). The structure of the expansion / contraction heating element provided with alternate cuts and the face temperature expansion / contraction heating element having various expansion / contraction functions are preferable for tight fixation to the face or the like. As an example of the assembly type, a heating element in which a staggered cut is provided in a support such as a mask and a single heat generating part or a small single heat generating part is inserted or stuck between the staggered cuts is an example.
8). A functional substance or the like may be carried inside or outside the face temperature heating element to have a fragrance effect or a pharmacological effect. For example, an integral type or a push-in type using a sheet material coated with an aqueous pap base is cited.
9. In order to maintain an appropriate temperature of the face temperature heating element to the warmed body (contact temperature to the warmed body is 42 ° C. or lower, preferably 40 ° C. or lower, more preferably 36 to 40 ° C.) It is preferable to use a heating part or a heating element having a structure of a drug heating element provided with a local ventilation material for the face temperature heating element. Temperature buffer materials are also useful.
10. In the face temperature heating element, at least a part of the section heating part is breathable due to moisture permeability, and also has moisture permeability, so the skin side is moisture permeable and water vapor from the heating composition is released toward the skin. It is preferable to select a type that makes the skin side surface moisture-impermeable and does not release water vapor from the exothermic composition toward the skin.
11. For the eye temperature heating element and the nasal temperature heating element, the above 1. -10. The following items are applicable.
12 The nasal temperature heating element is preferably provided with one or more heating parts or small heating elements at positions corresponding to at least both sides of the nose. In the case of the assembly type, it is preferable that one or more heating parts or small heating elements are attached to the region of the container such as a mask.
13. As an example of the heating element, 1) the integrated type is an integrated face temperature heating element, the integrated eye temperature heating element, the integrated nose temperature heating element, and 2) the assembled type is an assembled type face temperature heating element, an assembled type eye temperature. Heating element, assembled nose temperature heating element, 3) insertion type is insertion type face temperature heating element, insertion type eye temperature heating element, insertion type nose temperature heating element, 4) pasting type is pasting type face temperature heating element Body, pasting type temperature heating element, pasting type nose temperature heating element, 5) face temperature expansion and contraction heating element, eye temperature expansion and contraction heating element, and nasal temperature stretching and heating element in each formula.
Also,
1) The container such as the mask of the present invention may be provided with a moisture holding body that releases water vapor separately from the heating element. As the moisture retainer, non-woven fabric, woven fabric, porous polymer impregnated with water, water-absorbing polymer water absorbed, or the like can be used.
2) The shape and material of the mask body are not limited as long as the heating element can be attached and either or both of the nose and mouth can be covered.

本発明の温度緩衝材の構成素材としては、発熱部からの温度の緩衝ができれば制限はないが、(1)ガーゼ、種々の織布、不織布、(2)紙、合成紙等の紙類、(3)プラスチック、天然ゴム、再生ゴム又は合成ゴムから形成した多孔性フィルム又は多孔性シート、(4)穿孔を有するウレタンフォーム等の発泡プラスチック、(5)穿孔を有するアルミニウム等の金属箔の一種又は複数種の組み合わせ等が一例として挙げられる。なお、これらの温度緩衝材を用いて温度制御する場合、温度緩衝材の材料や厚みの選択等は、適宜選択する。発熱体から発生する水蒸気を目や顔面に到達するようにする場合も適宜選択すればよい。前記温度緩衝材は、目用や顔面用のみでなく、他の発熱体にも使用できる。   The constituent material of the temperature buffer material of the present invention is not limited as long as the temperature from the heat generating part can be buffered, but (1) gauze, various woven fabrics, nonwoven fabrics, (2) papers such as paper and synthetic paper, (3) Porous film or porous sheet formed from plastic, natural rubber, recycled rubber or synthetic rubber, (4) Foamed plastic such as urethane foam having perforations, (5) A kind of metal foil such as aluminum having perforations Or a combination of a plurality of types can be cited as an example. In addition, when controlling temperature using these temperature buffer materials, selection of the material, thickness, etc. of a temperature buffer material are selected suitably. What is necessary is just to select suitably also when making the water vapor | steam which generate | occur | produces from a heat generating body reach eyes or a face. The temperature buffer material can be used not only for eyes and faces but also for other heating elements.

また、本発明の顔面に到達する温度を制御するための空隙としては、発熱体と顔面との距離を1〜10cmとすることが好ましい。   Moreover, as a space | gap for controlling the temperature which reaches | attains the face of this invention, it is preferable that the distance of a heat generating body and a face shall be 1-10 cm.

本発明の目温発熱体、顔温発熱体の一例である局所通気材付目温発熱体、局所通気材付顔温発熱体は、目温発熱体又は顔温発熱体の通気面に局所通気材を設けた発熱体であり、局所通気により、温度をより精密に調節することができ、38〜45℃、好ましくは38〜40℃等の適温を維持できる。   The eye temperature heating element of the present invention, the eye temperature heating element with a local ventilation material, which is an example of the face temperature heating element, and the face temperature heating element with a local ventilation material are locally ventilated on the ventilation surface of the eye temperature heating element or the face temperature heating element. It is a heating element provided with a material, the temperature can be adjusted more precisely by local ventilation, and an appropriate temperature such as 38 to 45 ° C., preferably 38 to 40 ° C. can be maintained.

本発明における耳掛け部は、制限はないが、ゴムひも、綿ひも、中ぐり(中抜け)の不織布等が一例として挙げられる。   The ear hooking part in the present invention is not limited, and examples thereof include rubber strings, cotton strings, and hollow (boring) nonwoven fabrics.

本発明の外袋付き外仮着折り畳み発熱体は、発熱体を折り畳んだ状態又は巻いた状態で非通気性収納体に収納された発熱体で、発熱体本体(発熱体)の露出部の少なくとも一部は、非通気性収納体である外袋の内面と仮着(以下、外仮着という)されていてもよい。外仮着とは発熱体本体と非通気性収納体である外袋とが再剥離製弱粘着剤層を介して、少なくとも一部で接触していることである。これにより、少なくとも発熱体本体が外袋の包材と共に折り畳まれるまで、発熱体本体の該包材上の移動が防止できる。これにより、発熱体の高速製造が可能になる。外仮着の数、面積等に制限はない。粘着剤層等の固定手段を保護するセパレータを有する発熱体の場合は、セパレータも発熱体として扱う。   An outer temporary folding folded heating element with an outer bag of the present invention is a heating element stored in a non-breathable storage body in a folded or wound state, and at least an exposed portion of the heating element body (heating element). A part of the bag may be temporarily attached to the inner surface of the outer bag, which is a non-breathable container (hereinafter referred to as outer temporary attachment). Outer temporary attachment means that the heating element main body and the outer bag which is a non-breathable container are in contact with each other at least partially via the re-peeling weak adhesive layer. Thereby, the movement of the heating element body on the packaging material can be prevented at least until the heating element body is folded together with the packaging material of the outer bag. Thereby, high-speed manufacture of a heating element is attained. There are no restrictions on the number, area, etc. of outer temporary wear. In the case of a heating element having a separator that protects fixing means such as an adhesive layer, the separator is also treated as a heating element.

本発明の発熱体は、外仮着なしで、外袋に封入、又は外袋に折り畳んで封入してもよい。   The heating element of the present invention may be enclosed in an outer bag or folded and enclosed in an outer bag without external temporary attachment.

前記発熱組成物成形体又は区分発熱部の形状は如何なるものでもよいが、平面形状で、円、楕円、フットボール形、三角形、正方形、長方形、六角形、多角形、星形、花形、リング形等が一例として挙げられる。立体形状では、ディスク状、ピラミッド状、球状、立方体状、多角錐形状、円錐形状、錐台形状、球形状、平行六面体形状、円筒体形状、長方形状平行六面体形状、多面体形状、楕円体形状、半円柱体形状、半楕円柱体形状、蒲鉾形状、円柱体形状、楕円柱体形状等が一例として挙げられる。
また、これらの形状は角部を略円弧状(アール(r)状)に設け、角部を曲線状や曲面状にしてもよいし、中央部等に凹部があってもよい。
本発明では、発熱組成物成形体、発熱部、区分発熱部、発熱体、シール部、貫通孔、凹部、凸部等の角部にあたる領域(端部の角部)を略円弧状(アール(r)状)に設けてもよい。
この略円弧状(アール(r)状)の形状としての曲率半径は、制限はないが、好ましくは0.1〜20.0mmであり、より好ましくは0.1〜10.0mmであり、更に好ましくは0.1〜5.0mmであり、更に好ましくは0.3〜5.0mmであり、更に好ましくは0.3〜3.0mmであり、更に好ましくは0.5〜2.0mmである。
The shape of the exothermic composition molded body or the section heating portion may be any shape, but it is a planar shape, such as a circle, an ellipse, a football shape, a triangle, a square, a rectangle, a hexagon, a polygon, a star shape, a flower shape, a ring shape, etc. Is given as an example. In three-dimensional shape, disk shape, pyramid shape, spherical shape, cube shape, polygonal pyramid shape, cone shape, frustum shape, spherical shape, parallelepiped shape, cylindrical shape, rectangular parallelepiped shape, polyhedron shape, ellipsoid shape, Examples include a semi-cylindrical shape, a semi-elliptical cylinder shape, a bowl shape, a cylindrical shape, and an elliptic cylinder shape.
In addition, in these shapes, the corners may be provided in a substantially arc shape (R shape), the corners may be curved or curved, or the center may have a recess.
In the present invention, a region corresponding to a corner (an end corner) such as an exothermic composition molded body, a heat generating portion, a segmented heat generating portion, a heat generating body, a seal portion, a through hole, a concave portion, or a convex portion is substantially arc-shaped (R ( r) shape).
Although there is no restriction | limiting in the curvature radius as this substantially circular arc shape (r (r) shape) shape, Preferably it is 0.1-20.0 mm, More preferably, it is 0.1-10.0 mm, Furthermore, Preferably it is 0.1-5.0 mm, More preferably, it is 0.3-5.0 mm, More preferably, it is 0.3-3.0 mm, More preferably, it is 0.5-2.0 mm .

前記区分発熱部構造において、区分発熱部は、少なくとも2つの対面する表面、好ましくはフィルム層基材表面を有する統一した構造に形成され、その際少なくとも一つの表面は酸素(空気)透過性であり、発熱組成物成形体が収納されたとき、発熱組成物成形体容積、空間容積、区分発熱部容積は、次の関係を有する。発熱組成物成形体容積は、発熱組成物成形体自身の容積であり、空間容積は区分発熱部内で、発熱組成物成形体に占められていない容積であり、区分発熱部容積は区分発熱部の容積であり、空間容積と発熱組成物成形体容積の和である。   In the section heat generating portion structure, the section heat generating portion is formed in a unified structure having at least two facing surfaces, preferably a film layer substrate surface, wherein at least one surface is oxygen (air) permeable. When the exothermic composition molded body is accommodated, the exothermic composition molded body volume, the space volume, and the section heat generating portion volume have the following relationship. The exothermic composition molded body volume is the volume of the exothermic composition molded body itself, the spatial volume is the volume not occupied by the exothermic composition molded body in the section heating section, and the section heating section volume is the volume of the section heating section. The volume is the sum of the space volume and the exothermic composition molded body volume.

前記区分発熱部のサイズには制限はないが、好ましくは以下のサイズである。
1)ディスク形状及びディスク類似形状の場合
直径又は最大径は、好ましくは1〜60mmであり、より好ましくは2〜50mmであり、更に好ましくは10〜40mmであり、更に好ましくは20〜30mmである。高さは、好ましくは0.1〜20mmであり、より好ましくは0.3〜20mmであり、更に好ましくは0.5〜20mmであり、更に好ましくは0.5〜10mmであり、更に好ましくは0.5〜9mmであり、更に好ましくは0.5〜8mmであり、更に好ましくは0.5〜7mmであり、更に好ましくは1〜7mmである。容積は、好ましくは約0.0045〜20cmであり、より好ましくは0.2〜11cmである。
2)前記1)以外の形状(矩形、矩形類似形状等)である場合
幅は、好ましくは0.5〜60mmであり、より好ましくは0.5〜50mmであり、更に好ましくは1〜50mmであり、更に好ましくは3〜50mmであり、更に好ましくは3〜30mmであり、更に好ましくは5〜20mmであり、更に好ましくは5〜15mmであり、更に好ましくは5〜10mmである。また、高さは、好ましくは0.1〜30mmであり、より好ましくは0.1〜20mmであり、更に好ましくは0.1〜10mmであり、更に好ましくは0.3〜10mmであり、更に好ましくは0.5〜10mmであり、更に好ましくは0.5〜7mmであり、更に好ましくは1〜7mmである。また、長さは、好ましくは5〜300mmであり、より好ましくは5〜200mmであり、更に好ましくは5〜100mmであり、更に好ましくは20〜100mmであり、更に好ましくは30〜100mmである。
また、表面積は区分発熱部としての機能を有すれば制限はないが、好ましくは約50cm以下であり、より好ましくは約40cm以下であり、更に好ましくは約25cm未満であり、更に好ましくは20cm未満である。
前記区分発熱部の容積又は発熱組成物成形体の容積は、通常、0.015〜500cmであり、好ましくは0.04〜500cmであり、より好ましくは0.04〜30cmであり、更に好ましくは0.1〜30cmであり、更に好ましくは1〜30cmであり、更に好ましくは1.25〜20cmであり、更に好ましくは1.25〜10cmであり、更に好ましくは3〜10cmである。
Although there is no restriction | limiting in the size of the said division | segmentation heat_generation | fever part, Preferably it is the following size.
1) In the case of disk shape and disk-like shape The diameter or maximum diameter is preferably 1 to 60 mm, more preferably 2 to 50 mm, still more preferably 10 to 40 mm, and further preferably 20 to 30 mm. . The height is preferably 0.1 to 20 mm, more preferably 0.3 to 20 mm, still more preferably 0.5 to 20 mm, still more preferably 0.5 to 10 mm, and still more preferably. It is 0.5-9 mm, More preferably, it is 0.5-8 mm, More preferably, it is 0.5-7 mm, More preferably, it is 1-7 mm. The volume is preferably about 0.0045-20 cm 3 , more preferably 0.2-11 cm 3 .
2) When the shape is other than the above 1) (rectangular, rectangular-like shape, etc.) The width is preferably 0.5 to 60 mm, more preferably 0.5 to 50 mm, still more preferably 1 to 50 mm. Yes, more preferably 3 to 50 mm, still more preferably 3 to 30 mm, still more preferably 5 to 20 mm, still more preferably 5 to 15 mm, and still more preferably 5 to 10 mm. Further, the height is preferably 0.1 to 30 mm, more preferably 0.1 to 20 mm, still more preferably 0.1 to 10 mm, still more preferably 0.3 to 10 mm, and further Preferably it is 0.5-10 mm, More preferably, it is 0.5-7 mm, More preferably, it is 1-7 mm. Further, the length is preferably 5 to 300 mm, more preferably 5 to 200 mm, still more preferably 5 to 100 mm, still more preferably 20 to 100 mm, and further preferably 30 to 100 mm.
Further, the surface area is not limited as long as it has a function as a segmented heat generating portion, but is preferably about 50 cm 2 or less, more preferably about 40 cm 2 or less, still more preferably less than about 25 cm 2 , still more preferably. Is less than 20 cm 2 .
The volume of the segment heat generating part or the volume of the exothermic composition molded body is usually 0.015 to 500 cm 3 , preferably 0.04 to 500 cm 3 , more preferably 0.04 to 30 cm 3 , More preferably, it is 0.1-30 cm < 3 >, More preferably, it is 1-30 cm < 3 >, More preferably, it is 1.25-20 cm < 3 >, More preferably, it is 1.25-10 cm < 3 >, More preferably, 3 -10 cm 3 .

前記区分け部の幅は、制限はないが、好ましくは0.1〜50mmであり、より好ましくは0.2〜50mmであり、更に好ましくは0.3〜50mmであり、更に好ましくは0.3〜40mmであり、更に好ましくは0.5〜40mmであり、更に好ましくは0.5〜30mmであり、更に好ましくは1〜20mmであり、更に好ましくは3〜10mmである。   The width of the section is not limited, but is preferably 0.1 to 50 mm, more preferably 0.2 to 50 mm, still more preferably 0.3 to 50 mm, and still more preferably 0.3. It is -40mm, More preferably, it is 0.5-40mm, More preferably, it is 0.5-30mm, More preferably, it is 1-20mm, More preferably, it is 3-10mm.

前記区分発熱部において、発熱組成物収納領域である区分発熱部に発熱組成物成形体が収容された時に、発熱組成物成形体占有領域である発熱組成物成形体の容積と発熱組成物収納領域である区分発熱部の容積との容積比は、通常、0.6〜1であり、好ましくは0.7〜1であり、より好ましくは0.8〜1であり、更に好ましくは0.9〜1である。   When the exothermic composition molded body is accommodated in the segmented exothermic part, which is the exothermic composition storage area, the volume of the exothermic composition molded body, which is the exothermic composition molded area, and the exothermic composition storage area, The volume ratio with the volume of the divided heat generating part is usually 0.6 to 1, preferably 0.7 to 1, more preferably 0.8 to 1, and still more preferably 0.9. ~ 1.

本発明の区分発熱部を「ストライプ状に間隔をおいて設ける」とは、複数の区分発熱部が、スジ状(細長く一続き状)に間隔をおいて(平行線状や平行曲線状等に)設けられたものである。1本のスジは1個の区分発熱部により構成されていることが好ましい。この場合、区分発熱部及び区分け部は直線的でも曲線的でもよい。また、下記の条件を満たしていれば、1本のスジは2個以上の区分発熱部と1個以上の区分け部とから構成されていてもよい。

T≧2.5S 及び P≦0.5T

T :1個の区分発熱部の長さ
S :1個の区分発熱部の幅
P :区分け部の長さ

平行縞状(縦縞、横縞 斜め縞、縦波縞、横波縞 斜め波縞等)に区分発熱部からなるスジを配置することが 一例として挙げられる。
“Providing the segmented heat generating portions of the present invention at intervals in the form of stripes” means that a plurality of segmented heat generating portions are spaced in a streak shape (elongated and continuous) (parallel lines, parallel curves, etc.) ) Is provided. One streak is preferably composed of one section heat generating portion. In this case, the section heating section and the section section may be linear or curved. Moreover, as long as the following conditions are satisfied, one streak may be composed of two or more divided heat generating portions and one or more divided portions.

T ≧ 2.5S and P ≦ 0.5T

T: Length of one section heating part
S: Width of one section heating part
P: Length of the section

An example is the arrangement of streaks composed of segmented heat generating parts in parallel stripes (vertical stripes, horizontal stripes, diagonal stripes, vertical wave stripes, horizontal wave stripes, diagonal wave stripes, etc.).

前記固定部とは、発熱体を製造する時に包材と固定する領域であり、接着層、粘着層、ヒートシール層等又はそれらの任意の混合層、それらの組み合わせから構成される。   The said fixing | fixed part is an area | region fixed to a packaging material when manufacturing a heat generating body, and is comprised from an adhesive layer, an adhesion layer, a heat seal layer etc. or those arbitrary mixed layers, and those combinations.

前記接着層とは、接着剤、粘着剤、ヒートシール材等から構成され、発熱体を製造する時に、包材と包材、及び/又は、包材を発熱体に固定したり、貼り合わせたりする等の固定層であり、包材等が固定できれば制限はない。構成材料としては、シアン系接着剤等の接着剤、本明細書に記載の粘着剤、ヒートシール材が一例としてあげられる。   The adhesive layer is composed of an adhesive, a pressure-sensitive adhesive, a heat seal material, etc., and when the heating element is manufactured, the packaging material and the packaging material, and / or the packaging material is fixed to the heating element or bonded together. There is no limitation as long as the packaging material can be fixed. Examples of the constituent material include an adhesive such as a cyan adhesive, a pressure-sensitive adhesive described in the present specification, and a heat seal material.

前記粘着層とは、粘着剤から構成され、発熱体を製造する時に、包材と包材、及び/又は、包材を発熱体に固定したり、貼り合わせたりする等の固定層であり、包材等が固定できれば制限はない。構成材料としては、本明細書に記載の粘着剤が一例としてあげられる。   The pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive, and is a fixing layer such as a packaging material and a packaging material, and / or a packaging material fixed to the heating element or bonded together when manufacturing the heating element, There is no limitation as long as the packaging material can be fixed. An example of the constituent material is the pressure-sensitive adhesive described in the present specification.

前記混合層とは、接着層、粘着層、ヒートシール層の各構成成分から選ばれた少なくとも二種以上を有する層である。   The mixed layer is a layer having at least two or more selected from the constituent components of an adhesive layer, an adhesive layer, and a heat seal layer.

前記接着層、粘着層、仮着層の構成材料は、従来、化学カイロや発熱体や湿布剤に使用されているもの、技術的に開示されたものも使用できる。   As the constituent material of the adhesive layer, the pressure-sensitive adhesive layer, and the temporary adhesive layer, those conventionally used in chemical warmers, heating elements, and poultices, and those technically disclosed can be used.

前記基材、被覆材等の包材をヒートシールする場合、通常のヒートシール方法の外に、少なくとも一方のヒートシール層の上に粘着剤、好ましくは弱粘着剤から構成される仮着層を設け、押し圧により仮着層を介して仮着を行い、その後ヒートシールを行う仮着ヒートシール方法を行ってもよい。この場合、シール部は仮着層成分とヒートシール材とが混在する層がヒートシール材の層が存在する。仮着ヒートシール方法はヒートシールの高速化に有用なシール方法である。ヒートシール材は基材、被覆材等の包材が兼ねてもよい。   When heat-sealing a packaging material such as the base material or the covering material, in addition to a normal heat-sealing method, a temporary adhesive layer composed of an adhesive, preferably a weak adhesive, is provided on at least one heat-sealing layer. A temporary heat sealing method may be performed in which temporary attachment is performed via a temporary attachment layer by means of a pressing pressure, and then heat sealing is performed. In this case, the seal portion includes a layer of the heat sealing material in which the temporary adhesive layer component and the heat sealing material are mixed. The temporary heat sealing method is a sealing method useful for increasing the speed of heat sealing. The heat sealing material may also serve as a packaging material such as a base material or a coating material.

本発明において、粘着剤層、粘着層、接着層、仮着層の設置方法やパターンや形状については、発熱体が発熱体として機能すれば、制限はなく、全面的に、部分的に、連続的に、間欠的に設けたり、点状、網状(網目状)、ストライプ状、格子状、ドット状、帯状等、各種パターン、形状が一例として挙げられる。
前記設置方法としてはメルトブロー方式やカーテンスプレー方式或いはグラビア方式などの適宜な方式が一例として挙げられる。
通気性粘着剤層の形成には、例えばホットメルト型の粘着性物質を加熱溶融下に熱風を介して吹き付け展開し、網状(蜘蛛の巣状)に設けるメルトブロー方式や粘着剤を間欠的に設けるグラビア方式などによる塗布方式は有用である。
In the present invention, there are no restrictions on the installation method, pattern, and shape of the pressure-sensitive adhesive layer, pressure-sensitive adhesive layer, adhesive layer, and temporary bonding layer, as long as the heat generating element functions as a heat generating element. In addition, examples include various patterns and shapes such as intermittent provision, dot shape, mesh shape (mesh shape), stripe shape, lattice shape, dot shape, and belt shape.
Examples of the installation method include an appropriate method such as a melt blow method, a curtain spray method, or a gravure method.
For forming the breathable pressure-sensitive adhesive layer, for example, a hot-melt type pressure-sensitive adhesive material is blown and developed through hot air under heating and melting, and a melt-blow method or a pressure-sensitive adhesive is provided intermittently. A coating method such as a gravure method is useful.

前記粘着剤層、粘着層、接着層、仮着層を構成する素材は、それら機能を維持できれば、制限はなく、前記粘着剤や、アクリル系、エポキシ系等の接着剤や、公知のカイロや発熱体に使用されている粘着剤や市販されている接着剤や粘着剤、公知の接着剤や粘着剤等が使用できる。   The material constituting the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer, the adhesive layer, and the temporary attachment layer is not limited as long as these functions can be maintained, and the pressure-sensitive adhesive, acrylic-based, epoxy-based adhesives, known warmers, A pressure-sensitive adhesive used for the heating element, a commercially available adhesive or pressure-sensitive adhesive, a known adhesive or pressure-sensitive adhesive, or the like can be used.

前記仮着層(粘着層)の厚さとしては、仮着できれば制限はないが、好ましくは0.1〜1000μmである。   The thickness of the temporary adhesive layer (adhesive layer) is not limited as long as it can be temporarily applied, but is preferably 0.1 to 1000 μm.

前記局所通気材を固定する接着層の厚さとしては、局所通気材が固定できれば制限はないが、好ましくは1〜1000μmである。   The thickness of the adhesive layer for fixing the local ventilation material is not limited as long as the local ventilation material can be fixed, but is preferably 1 to 1000 μm.

前記粘着剤層の厚さとしては、発熱体が固定できれば制限はないが、好ましくは5〜1000μmである。   The thickness of the pressure-sensitive adhesive layer is not limited as long as the heating element can be fixed, but is preferably 5 to 1000 μm.

前記固定手段としては、発熱体を所要部に固定できる固定能力を有するものであれば制限はない。更に、固定手段は取り外しができることが好ましい。前記固定手段として一般的に採用されている、粘着剤層、鍵ホック、ホックボタン、マジックテープ(登録商標)等の面ファスナー、マグネット、バンド、ひも、耳かけ等及びそれらを組み合わせたものを任意に使用できる。
尚、バンドの場合、面ファスナーと粘着剤層との組み合わせで調整用固定手段を更に構成しても構わない。固定手段の設置方法、設置場所、設置パターン等に付いては制限はなく、適宜決めればよく、発熱体の露出部の少なくとも1部に設けることが好ましい。また、使用されるまでの間の保護としてセパレータを固定手段に付与してもよい。該セパレータには背割り等の切り込みなどを設けてその剥離が容易となるようにしてもよい。尚、本発明の固定手段は、従来より開示されている又は市販されている又は公知の使い捨てカイロや発熱体に使用される固定手段(含取り外しできる取り付け手段等)を適宜選択して使用できる。
The fixing means is not limited as long as it has a fixing capability capable of fixing the heating element to a required portion. Furthermore, the fixing means is preferably removable. Adhesive layers, key hooks, hook buttons, hook and loop fasteners such as magic tape (registered trademark), magnets, bands, strings, ear hooks, etc., which are generally used as the fixing means, and combinations thereof are arbitrarily selected Can be used for
In the case of a band, the adjustment fixing means may be further configured by a combination of a hook-and-loop fastener and an adhesive layer. There are no restrictions on the installation method, installation location, installation pattern, and the like of the fixing means, and it may be determined as appropriate. Moreover, you may provide a separator to a fixing means as protection until it is used. The separator may be provided with a notch such as a back split to facilitate its peeling. Note that the fixing means of the present invention can be used by appropriately selecting fixing means (including attaching means that can be removed) that have been conventionally disclosed or commercially available, or that are used for known disposable warmers or heating elements.

前記粘着剤層は、粘着剤から構成される。該粘着剤は発熱体が固定できれば制限はなく、従来、化学カイロや発熱体や湿布材に使用されているものや技術的に開示されたものも使用できる。
前記粘着剤層を構成する粘着剤としては、皮膚や衣服に付着するのに必要な粘着力を有するものであれば、制限はなく、溶剤系、水性系、エマルジョン型、ホットメルト型、反応性、感圧系、或いは、非親水性粘着剤、混合粘着剤、親水性粘着剤(ジェル等)などの各種形態が用いられる。
また、粘着剤層としては、通気性を有するものであっても、通気性を有しないものであってもよい。用途に応じて適宜選択をすればよい。通気性粘着剤層は、部分的に粘着剤が存在し、領域全体として通気性がある粘着剤層、例えば、網目状粘着剤層やストライプ状粘着剤層が一例として挙げられる。通気性の基材及び/又は被覆材に粘着剤をそのまま層状に積層したり、セパレータに積層した粘着剤を基材及び/又は被覆材に貼り付けてもよい。
The pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive. The pressure-sensitive adhesive is not limited as long as the heating element can be fixed, and those conventionally used for chemical warmers, heating elements and poultices, and those technically disclosed can be used.
The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not limited as long as it has an adhesive force necessary for adhering to the skin and clothes, and is solvent-based, aqueous-based, emulsion-type, hot-melt-type, and reactive. Various forms such as a pressure-sensitive system or a non-hydrophilic pressure-sensitive adhesive, a mixed pressure-sensitive adhesive, a hydrophilic pressure-sensitive adhesive (gel, etc.) are used.
Moreover, as an adhesive layer, even if it has air permeability, it may not have air permeability. What is necessary is just to select suitably according to a use. Examples of the air-permeable pressure-sensitive adhesive layer include a pressure-sensitive adhesive layer in which the pressure-sensitive adhesive is partially present and the whole region is air-permeable, for example, a mesh-shaped pressure-sensitive adhesive layer or a stripe-shaped pressure-sensitive adhesive layer. The pressure-sensitive adhesive may be laminated as it is on the breathable base material and / or the covering material, or the pressure-sensitive adhesive laminated on the separator may be attached to the base material and / or the covering material.

前記非親水性粘着剤層を構成する粘着剤としては、例えばアクリル系、ウレタン系、ゴム系、シリコーン系、ポリイソプレン系、ポリイソブテレン系、スチレン−イソプレン−スチレン(SIS)系、スチレン−イソプレン系等の各粘着剤を用いることができる。特に、ホットメルト加工処理できるアクリル系又はスチレン含有系が好適に用いられる。スチレン含有系粘着剤としては、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、又はこれらの水添タイプ(SEBS、SIPS)等をベースポリマーとするスチレン系ホットメルト粘着剤が一例として挙げられる。   Examples of the adhesive constituting the non-hydrophilic adhesive layer include acrylic, urethane, rubber, silicone, polyisoprene, polyisobutene, styrene-isoprene-styrene (SIS), styrene-isoprene, and the like. Each pressure-sensitive adhesive can be used. In particular, acrylic or styrene-containing systems that can be hot-melt processed are preferably used. As the styrene-containing pressure-sensitive adhesive, a styrene-butadiene-styrene block copolymer (SBS), a styrene-isoprene-styrene block copolymer (SIS), or a hydrogenated type thereof (SEBS, SIPS) or the like is used as a base polymer. An example is a styrenic hot melt pressure sensitive adhesive.

前記親水性粘着剤層を構成する親水性粘着剤としては、親水性ポリマーや水溶性ポリマーを主成分として、粘着性を有し、粘着剤として親水性であれば特に制限はない。具体的に言えば、ポリアクリル酸等の親水性ポリマーやポリアクリル酸ナトリウムやポリビニルピロリドン等の水溶性ポリマー等が一例として挙げられる。   The hydrophilic pressure-sensitive adhesive constituting the hydrophilic pressure-sensitive adhesive layer is not particularly limited as long as it has adhesiveness with a hydrophilic polymer or a water-soluble polymer as a main component and is hydrophilic as the pressure-sensitive adhesive. Specifically, hydrophilic polymers such as polyacrylic acid, water-soluble polymers such as sodium polyacrylate and polyvinylpyrrolidone, and the like are listed as examples.

前記発熱体の露出部及び粘着剤層の少なくとも一部は、保水剤、吸水性ポリマー、pH調整剤、界面活性剤、有機ケイ素化合物、疎水性高分子化合物、焦電物質、酸化防止剤、骨材、繊維状物、保湿剤、機能性物質又はこれらの混合物からなる付加的な成分から選ばれた少なくとも一種を含有してもよい。   At least a part of the exposed portion of the heating element and the pressure-sensitive adhesive layer is a water retention agent, a water-absorbing polymer, a pH adjuster, a surfactant, an organosilicon compound, a hydrophobic polymer compound, a pyroelectric material, an antioxidant, a bone You may contain at least 1 type chosen from the additional component which consists of material, a fibrous material, a moisturizer, a functional substance, or these mixtures.

本発明の間欠的な切り込みは、貫通した切り込み部及び繋ぎ部(切り込み部と切り込み部との間)からなる。該間欠的な切り込み、切り込み部及び繋ぎ部において、それらの形状、種類やサイズ(長さや幅等)やそれらの組み合わせは、制限はない。該間欠的な切り込みにノッチを設けてもよい。
前記間欠的な切り込みの形状は、(a)互い違い切り込み、(b)直線形切り込み(ミシン目)、(b)Vノッチ付き互い違い切り込み、(b)Vノッチ付直線形切り込み(Vノッチ付ミシン目)等が一例として挙げられる。 該Vノッチを、Uノッチ、Iノッチ等の他のノッチに変えてもよい。
本発明のミシン目や互い違い切り込み等の間欠的な切り込みの少なくとも一つの端部は発熱体の少なくとも一つの辺や少なくとも一つのノッチと接触していてもよいし、接触していなくてもよい。
The intermittent cut according to the present invention includes a cut portion and a connecting portion (between the cut portion and the cut portion) penetrating therethrough. There are no restrictions on the shape, type, size (length, width, etc.), and combinations of these intermittent cuts, cuts, and joints. You may provide a notch in this intermittent notch.
The intermittent incision shapes are: (a) alternate notches, (b) straight notches (perforations), (b) alternate notches with V notches, (b) straight notches with V notches (perforations with V notches). ) Etc. are mentioned as an example. The V notch may be changed to another notch such as a U notch or an I notch.
At least one end of intermittent cuts such as perforations and staggered cuts of the present invention may or may not be in contact with at least one side of the heating element and at least one notch.

本発明の発熱体における間欠的な切り込みの設置場所、数としては、区分発熱部以外の任意の領域に、任意の数で設けることができるが、設置領域としては、区分け部が好ましい。また、セパレータを有する発熱体に設けられた切り込みは、セパレータを貫通する切り込みでもよいし、セパレータを貫通しない切り込みでもよい。   The installation location and number of intermittent cuts in the heating element of the present invention can be provided in any number in any region other than the segmented heat generating portion, but the segmented portion is preferable as the installation region. Further, the cut provided in the heating element having the separator may be a cut that penetrates the separator, or may be a cut that does not penetrate the separator.

前記間欠的な切り込みの一種である手切れ可能なミシン目や互い違い切り込みは、切り込み部が繋ぎ部より長いことが好ましい。また、包材の種類等により手切れが可能である場合、曲げ性を向上する場合、伸縮が可能である場合等には、この限りではない。また、間欠的な切り込みの端部や発熱体の辺の近傍においてはこの限りではない。包材の種類や発熱体の辺の近傍、ノッチの近傍等のミシン目の位置等を考慮して、各長さを選択すればよい。   In the perforated perforations and alternate cuts, which are a kind of the intermittent cuts, the cut portions are preferably longer than the joint portions. Further, this is not the case when hand cutting is possible depending on the type of packaging material, the bendability is improved, and the case where expansion and contraction is possible. Further, this is not the case in the vicinity of the end of the intermittent notch or the side of the heating element. Each length may be selected in consideration of the type of packaging material, the vicinity of the side of the heating element, the position of the perforation such as the vicinity of the notch, and the like.

本発明のミシン目は、通常、一列であるが、隣接して複数列設ける、平行に設ける、互い違いに設ける、及びこれらの組み合わせ等、用途にあわせて選択できる。   The perforations of the present invention are usually in a single row, but can be selected according to the application, such as providing a plurality of adjacent rows, providing them in parallel, providing them in a staggered manner, and combinations thereof.

本発明の互い違い切り込みは、2個以上複数の間欠的な切り込みを互い違いに配置したものである。切り込み部と繋ぎ部とからなり、独立した一組の複数の間欠的な切り込みの中で、少なくとも切り込み部と繋ぎ部との配置周期が異なる一対の間欠的な切り込みがあり、少なくとも一方向に引っ張ると間欠的な切り込みが変形し、引っ張り方向の少なくとも一部が引っ張り方向に伸長する及び/又は伸縮することのできる方向を1個以上有する間欠的な切り込みの集団であれば制限はないが、好ましくは複数の間欠的な切り込みが間隔を置いて配置され、一方向に対して隣接の間欠的な切り込みの配置周期が異なるように配置されており、3列を一組にした互い違い切り込みや4列を一組にした互い違い切り込みや5列を一組にした互い違い切り込みが一例として挙げられる。
前記互い違い切り込みは引き延ばされた場合、互い違いに配設した厚さ方向に貫通する複数の切り込み部の形状が変化し、該互い違い切り込みが網目構造に変形することにより、伸長や伸縮することができる。
The alternate cuts of the present invention are two or more intermittent cuts arranged alternately. There are a pair of intermittent cuts that are different from each other in the arrangement cycle of at least the cut part and the connecting part, and are pulled in at least one direction. There is no limitation as long as it is a group of intermittent cuts having one or more directions in which at least a part of the pulling direction is deformed and / or can be extended and / or expanded and contracted. Are arranged such that a plurality of intermittent cuts are arranged at intervals, and the arrangement cycle of adjacent intermittent cuts is different with respect to one direction. Examples of staggered cuts with a set of 5 and staggered cuts with a set of 5 rows.
When the staggered cuts are stretched, the shapes of a plurality of cuts that pass through the staggered thickness in the thickness direction change, and the staggered cuts are deformed into a network structure, so that they can expand and contract. it can.

本発明の伸長性とは、張力を加えると張力を加えた方向に伸びる性質であり、この張力を除いた後の長さは問わない。即ち元の状態に戻るか否かは問わない。伸長率で表示される。伸長性は伸縮性も含む。   The extensibility of the present invention is a property that extends in the direction in which tension is applied when tension is applied, and the length after removing the tension is not limited. That is, it does not matter whether or not to return to the original state. Displayed as an expansion rate. Extensibility includes elasticity.

本発明の収縮性とは、伸長状態で、張力を除くと、伸長時の長さより短くなる性質である。収縮率で表示される。収縮性は収縮すれば良く、必ずしも収縮して、伸長以前の状態に戻らなくてもよい。   The contractility of the present invention is a property that is shorter than the length at the time of elongation when tension is removed in the stretched state. Displayed as shrinkage. The contraction property may be contracted, and it is not always necessary to contract and return to the state before extension.

本発明の伸縮性とは、前記伸長性と前記収縮性とからなる性質である。伸長率と収縮率とで表示する。収縮性は収縮すれば良く、必ずしも収縮して、伸長以前の状態に戻らなくてもよい。   The stretchability of the present invention is a property composed of the extensibility and the contractility. Displayed in terms of elongation and shrinkage. The contraction property may be contracted, and it is not always necessary to contract and return to the state before extension.

本発明の間欠的な切り込みにおいて、繋ぎ部に対する切り込み部の比率(切り込み部/繋ぎ部)は、好ましくは1.0〜30であり、より好ましくは1.01〜30であり、更に好ましくは1.01〜20であり、更に好ましくは1.1〜20であり、更に好ましくは1.3〜20であり、更に好ましくは1.5〜20であり、更に好ましくは1.5〜15であり、更に好ましくは1.5〜10であり、更に好ましくは2.0〜10である。   In the intermittent incision according to the present invention, the ratio of the incision part to the joint part (notch part / joint part) is preferably 1.0 to 30, more preferably 1.01 to 30, and still more preferably 1. 0.01 to 20, more preferably 1.1 to 20, more preferably 1.3 to 20, still more preferably 1.5 to 20, and still more preferably 1.5 to 15. More preferably, it is 1.5-10, More preferably, it is 2.0-10.

前記切り込み部のサイズは、制限はないが、長さが、好ましくは1〜100mmであり、より好ましくは1〜50mmであり、更に好ましくは1.5〜50mmであり、更に好ましくは2〜30mmであり、更に好ましくは5〜20mmである。
幅が、好ましくは0mmを超えており、より好ましくは0を超えて5mm以下であり、更に好ましくは0.001〜5mmであり、更に好ましくは0.001〜4mmであり、更に好ましくは0.001〜3mmであり、更に好ましくは0.001〜2mmであり、更に好ましくは0.001〜1mmであり、更に好ましくは0.01〜1mmである。
尚、線状の切り込み部の幅の最小値は制限はなく、切れていればよい。より好ましくは前記記載の通りである。
前記切り込み部の延長方向の隣接する切り込み部の間隔である繋ぎ部のサイズは制限はないが、長さが、好ましくは0.01〜20mmであり、より好ましくは0.01〜10mmであり、更に好ましくは0.1〜10mmであり、更に好ましくは0.1〜8mmであり、更に好ましくは0.1〜7mmであり、更に好ましくは0.1〜5mmである。幅は、切り込み部の幅と同じである。
前記隣接する間欠的な切り込みの間隔(隣接間隔)は制限はないが、好ましくは0.1〜20mmであり、より好ましくは0.1〜15mmであり、更に好ましくは0.1〜10mmであり、更に好ましくは0.1〜5mmであり、更に好ましくは0.5〜5mmである。
前記切り込み部が円形や楕円形の場合は上記の長さを直径又は長軸とする。
The size of the cut portion is not limited, but the length is preferably 1 to 100 mm, more preferably 1 to 50 mm, still more preferably 1.5 to 50 mm, and further preferably 2 to 30 mm. More preferably, it is 5-20 mm.
The width is preferably more than 0 mm, more preferably more than 0 and 5 mm or less, still more preferably 0.001 to 5 mm, still more preferably 0.001 to 4 mm, still more preferably 0.00. It is 001-3 mm, More preferably, it is 0.001-2 mm, More preferably, it is 0.001-1 mm, More preferably, it is 0.01-1 mm.
In addition, the minimum value of the width | variety of a linear notch part does not have a restriction | limiting, What is necessary is just to cut | disconnect. More preferably, as described above.
The size of the connecting portion, which is the interval between adjacent cut portions in the extending direction of the cut portion, is not limited, but the length is preferably 0.01 to 20 mm, more preferably 0.01 to 10 mm, More preferably, it is 0.1-10 mm, More preferably, it is 0.1-8 mm, More preferably, it is 0.1-7 mm, More preferably, it is 0.1-5 mm. The width is the same as the width of the cut portion.
The interval between the adjacent intermittent cuts (adjacent interval) is not limited, but is preferably 0.1 to 20 mm, more preferably 0.1 to 15 mm, and further preferably 0.1 to 10 mm. More preferably, it is 0.1-5 mm, More preferably, it is 0.5-5 mm.
When the cut portion is circular or elliptical, the above length is the diameter or long axis.

本発明の伸長性は、伸びる程度である伸長率で表示すれば、伸長率は、1を越えていれば、制限はないが、用途にもよるが、好ましくは1.005〜10であり、より好ましくは1.01〜10であり、更に好ましくは1.01〜5であり、更に好ましくは1.01〜4であり、更に好ましくは1.01〜3であり、更に好ましくは1.01〜2であり、更に好ましくは1.02〜2であり、更に好ましくは1.03〜2であり、更に好ましくは1.04〜2であり、更に好ましくは1.05〜2である。
ここで、伸長率とは、伸長後の長さを伸長前の長さで除した商を意味する。 即ち、 発熱体の伸長率=発熱体の伸長後の長さ/発熱体の伸長前の長さである。
The extensibility of the present invention is expressed as an elongation ratio that is an extent of elongation, and the elongation ratio is not limited as long as it exceeds 1. More preferably, it is 1.01-10, More preferably, it is 1.01-5, More preferably, it is 1.01-4, More preferably, it is 1.01-3, More preferably, it is 1.01 It is -2, More preferably, it is 1.02-2, More preferably, it is 1.03-2, More preferably, it is 1.04-2, More preferably, it is 1.05-2.
Here, the extension ratio means a quotient obtained by dividing the length after extension by the length before extension. That is, the rate of elongation of the heating element = length after extension of the heating element / length before extension of the heating element.

本発明の収縮性は、短くなる程度である収縮率で表示すれば、収縮率は、1を越えていれば、制限はないが、用途にもよるが、好ましくは1.005〜10であり、より好ましくは1.01〜10であり、更に好ましくは1.01〜5であり、更に好ましくは1.01〜4であり、更に好ましくは1.01〜3であり、更に好ましくは1.01〜2であり、更に好ましくは1.02〜2であり、更に好ましくは1.03〜2であり、更に好ましくは1.04〜2であり、更に好ましくは1.05〜2である。
ここで、収縮率とは、伸長時の長さを外力を取り去った後の長さで除した商を意味する。
即ち、 発熱体の収縮率=発熱体の伸長時の長さ/外力を取り去った後の発熱体の長さである。
If the shrinkage of the present invention is expressed by a shrinkage rate that is short, the shrinkage rate is not limited as long as it exceeds 1, but it is preferably 1.005 to 10 although it depends on the application. More preferably, it is 1.01-10, More preferably, it is 1.01-5, More preferably, it is 1.01-4, More preferably, it is 1.01-3, More preferably, it is 1. It is 01-2, More preferably, it is 1.02-2, More preferably, it is 1.03-2, More preferably, it is 1.04-2, More preferably, it is 1.05-2.
Here, the shrinkage rate means a quotient obtained by dividing the length at the time of extension by the length after removing the external force.
That is, the contraction rate of the heating element = the length when the heating element is extended / the length of the heating element after the external force is removed.

本発明の局所通気材とは、前記区分発熱部と区分け部との高低差を利用して、発熱部を局所通気材で覆うことにより、少なくとも区分発熱部の周縁部の一部に空間を形成し、少なくとも、区分発熱部の周縁部の一部に空気だまりを設ける包材である。
該空気だまりを区分発熱部間に設けることにより、外部と区分発熱部との間の通気性を調整し、合わせ保温効果も付与する。また、支持体上に発熱源である区分発熱部を間隔を置いて設けた、高低差のある発熱部を局所通気材で覆い、区分発熱部の通気性を調整し、点在する発熱源を用いて実用範囲での面発熱を具現化もできる。前記局所通気材及び前記支持体は前記基材、前記被覆材に使用した包材が使用でき、また、従来より開示されている又は市販されている又は公知の使い捨てカイロや発熱体に使用されている如何なる包材からも適宜選択して使用できる。
With the local ventilation material of the present invention, a space is formed in at least a part of the peripheral edge of the divided heat generating part by covering the heat generating part with the local ventilation material using the difference in height between the divided heat generating part and the dividing part. And it is a packaging material which provides an air pocket at least in part of the peripheral part of a division | segmentation heat_generation | fever part.
By providing the air reservoir between the divided heat generating portions, air permeability between the outside and the divided heat generating portions is adjusted, and a combined heat retaining effect is also provided. In addition, the divided heat generating parts, which are heat generating sources, are provided on the support at intervals, and the heat generating parts with different elevations are covered with a local ventilation material, the air permeability of the divided heat generating parts is adjusted, It can also be used to realize surface heat generation within a practical range. The local ventilation material and the support can be the packaging material used for the base material and the covering material, and have been conventionally disclosed or commercially available or used for known disposable warmers and heating elements. Any packaging material can be appropriately selected and used.

前記局所通気材を発熱部及び/又は発熱体に固定する方法、粘着剤等の固定剤、形状、状態には、少なくとも一部の区分発熱部間に空気だまりを設けることができれば、制限はない。   The method for fixing the local ventilation material to the heat generating part and / or the heating element, the fixing agent such as an adhesive, the shape, and the state are not limited as long as an air pocket can be provided between at least some of the divided heat generating parts. .

前記局所通気材の通気性は、発熱部の通気調整ができれば制限はないが、局所通気材が設けられた発熱部や発熱体本体の通気面の通気性より低い方が好ましい。多孔質フィルム、不織布、穿孔による孔を有するフィルムやシート等の通気性素材及びそれらの少なくとも一種を構成要員の一部に含む積層体等の複合体、 非通気性フィルム、シートやそれらを含む積層体又はそれらに穿孔により通気孔を設けた穿孔フィルム、穿孔シートやそれらを含む穿孔積層体が有用である。
また、穿孔等で、局所通気材の局部領域に発熱部又は発熱体本体の通気孔より大きい通気性を有する通気孔を設け、局所の通気性を高くし、他の領域は実質的に非通気性にするか、または前記区分発熱部の通気面の通気性より通気性を低く保つようにし、空気等の気体の流通路及び流通を制御してもよい。これにより、区分発熱部の保温と適切な温度維持ができる。
The breathability of the local ventilation material is not limited as long as the ventilation of the heat generating portion can be adjusted, but is preferably lower than the breathability of the heat generating portion provided with the local ventilation material or the ventilation surface of the heating element body. Breathable materials such as porous films, non-woven fabrics, films and sheets having holes by perforation, and composites such as laminates including at least one of them as part of constituent members, non-breathable films, sheets and laminates containing them Useful is a perforated film, a perforated film, perforated sheets or perforated laminates containing them.
In addition, in the local area of the local ventilation material, a ventilation hole having a larger air permeability than the ventilation hole of the heating element body is provided in the local area of the local ventilation material to increase local ventilation, and the other areas are substantially non-ventilated. Alternatively, the air permeability may be kept lower than the air permeability of the ventilation surface of the divided heat generating portion, and the flow path and flow of a gas such as air may be controlled. Thereby, the heat insulation of a division | segmentation heat-emitting part and appropriate temperature maintenance can be performed.

前記局所通気材は非通気性領域と通気性領域を有するプラスチックフィルムまたはシートであれば制限はないが、局所通気材を構成する包材は、従来より発熱体や化学カイロ(通気性収納袋(内袋)や非通気性収納袋(外袋))に使用されている包材及び本発明の明細書に記載の基材、被覆材、外袋に使用される包材が使用でき、適宜選択すればよい。たとえば、非通気性素材として、ポリエチレン、ポリプロピレン、塩化ビニル、塩化ビニリデン、ポリエチレンテレフタレート等のポリエステル、ナイロンなどの各種プラスチック材料のフィルム、KOP(塩化ビニリデンコート2軸延伸ポリプロピレンフィルム)等のKコート(塩化ビニリデンコート)フィルム、蒸着フィルム(酸化ケイ素、酸化アルミニウム、窒化ケイ素、窒化アルミニウム、酸窒化ケイ素等の酸素や窒素等との金属化合物又はアルミのような金属を蒸着したフィルム)、不織布と各種フィルムの積層物等の単層又はこれらを含む積層フィルムやシートが一例として挙げられる。更に、PE/粘着剤、PP/粘着剤、PET/粘着剤、PE/不織布/通気性粘着剤、PE/不織布/PE/粘着剤、PE/PET/M/PE/不織布/通気性粘着剤、PE/ヒートシール材、PE/不織布/ヒートシール材、PE/不織布/PE/ヒートシール材、PE/PET/M/PE/不織布/ヒートシール材等が一例として挙げられる。
ここで、PEはポリエチレンフィルム、PPはポリプロピレンフィルム、PETはポリエチレンテレフタレートフィルム、Mはアルミニウム、銀等の金属や酸化ケイ素、酸窒化ケイ素、窒化ケイ素、酸化アルミニウム等の半導体や金属の酸化物、酸窒化物、窒化物を示す金属化合物である。局所通気材としては、不織布とフィルムの積層体が好ましい一例として挙げられる。
The local ventilation material is not limited as long as it is a plastic film or sheet having a non-breathable region and a breathable region. However, the packaging material constituting the local breathing material has conventionally been a heating element or a chemical warmer (breathable storage bag ( Inner bags) and non-breathable storage bags (outer bags)) and the packaging materials used for the base materials, covering materials and outer bags described in the specification of the present invention can be used and selected as appropriate. do it. For example, as a non-breathable material, polyethylene, polypropylene, vinyl chloride, vinylidene chloride, polyester such as polyethylene terephthalate, films of various plastic materials such as nylon, KOP (vinylidene chloride coated biaxially stretched polypropylene film), etc. K coat (chlorinated) Vinylidene coat) film, vapor-deposited film (silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, silicon oxynitride and other metal compounds such as oxygen and nitrogen, or films deposited with metal such as aluminum), nonwoven fabrics and various films As an example, a single layer such as a laminate or a laminated film or sheet containing these may be mentioned. Furthermore, PE / adhesive, PP / adhesive, PET / adhesive, PE / nonwoven fabric / breathable adhesive, PE / nonwoven fabric / PE / adhesive, PE / PET / M / PE / nonwoven fabric / breathable adhesive, Examples include PE / heat seal material, PE / nonwoven fabric / heat seal material, PE / nonwoven fabric / PE / heat seal material, PE / PET / M / PE / nonwoven fabric / heat seal material, and the like.
Here, PE is a polyethylene film, PP is a polypropylene film, PET is a polyethylene terephthalate film, M is a metal such as aluminum or silver, or a semiconductor or metal oxide such as silicon oxide, silicon oxynitride, silicon nitride, or aluminum oxide, or an acid. Nitride, a metal compound exhibiting nitride. As a local ventilation material, the laminated body of a nonwoven fabric and a film is mentioned as a preferable example.

前記通気遮断シートは、少なくとも局所通気材の通気性部分を覆うものであり、非通気性であれば特に限定されず、前記外袋の包材、局所通気材の包材や開示された又は公知の化学カイロや発熱体に使用される非通気性のフィルムやシート等の非通気性包材が使用できる。このフィルムやシートは粘着剤等の手段により、剥離可能な状態で収納体に密着貼合されるが、使用時に剥離しやすいように取っ手(つまみ部分)を設けた方が好ましい。   The ventilation blocking sheet covers at least the breathable portion of the local ventilation material, and is not particularly limited as long as it is non-breathable. The outer bag packaging material, the local ventilation material packaging material, or the disclosed or publicly known Non-breathable packaging materials such as non-breathable films and sheets used for chemical warmers and heating elements can be used. The film or sheet is adhered and bonded to the container in a peelable state by means such as an adhesive, but it is preferable to provide a handle (knob portion) so that it can be easily peeled off during use.

このように前記通気遮断シートを、局所通気材の通気面(通気性シート)に剥離可能に貼り合わせておくことにより、保管・輸送中には通気面から空気(酸素)が区分発熱部内部に侵入することがなく、保管・輸送中の発熱を防止できる。一方、使用時には通気遮断シートを局所通気材から剥がすことにより通気性を確保できるため、通常の使用により発熱させることができる。従って、従来のように一つ一つの発熱体を個別に包装することなく出荷することが可能となり、数個の発熱体を一つの包袋にまとめて包装し、いわゆる外袋を省くことができる。すなわち、まとめ包装した場合に、その中の一つを使用したとしても、一つ一つの発熱体を個別包装したのと同様に保存でき、開封後密封するなどその保管状態に気を使わずに使用することができる。   In this way, the air blocking sheet is detachably bonded to the ventilation surface (breathable sheet) of the local ventilation material, so that air (oxygen) is allowed to enter the inside of the divided heat generating part from the ventilation surface during storage and transportation. It does not invade and can prevent heat generation during storage and transportation. On the other hand, since air permeability can be ensured by peeling the ventilation block sheet from the local ventilation material during use, heat can be generated by normal use. Therefore, it becomes possible to ship without individually packaging each heating element as in the past, and several heating elements can be packaged together in one packaging bag, so-called outer bag can be omitted. . In other words, even if one of them is used when packaged together, it can be stored as if each heating element was individually packaged, and without being concerned about its storage condition such as sealing after opening. Can be used.

本発明の発熱体においては、予め通気性包材と非通気性包材により区分発熱部を形成し、局所通気材を設けた後、通気遮断シートを貼り合わせることも考えられるが、製造工程上は、まず通気性シートと通気遮断シートとを積層して予め複合シートを作製した後、当該複合シートと非通気性シートとを貼り合わせて、通気遮断シートが備えられた発熱体を作製しても良い。   In the heating element of the present invention, it is conceivable to form a section heating part with a breathable wrapping material and a non-breathable wrapping material in advance and provide a local ventilation material, and then bond a ventilation blocking sheet together. First, a breathable sheet and a ventilation blocking sheet are laminated to prepare a composite sheet in advance, and then the composite sheet and a non-breathable sheet are bonded together to produce a heating element provided with the ventilation blocking sheet. Also good.

本発明の「折り畳む」とは、少なくとも折り畳み部の先端等の一部が非折り畳み部の領域に接触していることをいう。
また、発熱体の折り畳み部にあたる区分け部の幅(A)と、その両側の区分発熱部の厚さの和(B)に対する比(A/B)は、0.5以上であり、好ましくは0.5〜10であり、より好ましくは0.55〜10であり、更に好ましくは0.6〜10であり、更に好ましくは0.7〜10であり、更に好ましくは1.0〜10であり、更に好ましくは1.2〜10であり、更に好ましくは1.2〜5であり、更に好ましくは1.2〜3であり、更に好ましくは2〜3である。
また、前記発熱体の折り畳み部にあたる区分け部の幅が、一面側と他の一面側とで異なる場合は、狭い(短い)幅を区分け部の幅(A)とする。
“Folding” in the present invention means that at least a part of the folded portion is in contact with the region of the non-folded portion.
The ratio (A / B) of the width (A) of the section corresponding to the folded portion of the heating element and the sum (B) of the thicknesses of the section heating sections on both sides thereof is 0.5 or more, preferably 0. 0.5-10, more preferably 0.55-10, even more preferably 0.6-10, even more preferably 0.7-10, and even more preferably 1.0-10. More preferably, it is 1.2-10, More preferably, it is 1.2-5, More preferably, it is 1.2-3, More preferably, it is 2-3.
Moreover, when the width of the division part which corresponds to the folding part of the said heat generating body differs in the one surface side and the other one surface side, a narrow (short) width is made into the width (A) of a division part.

また、前記発熱体が2つ以上複数折り畳み状態で封入されるため、発熱体が大きくても包装された状態では非常にコンパクトとなり、携帯性に優れており、発熱特性の経時変化が少なく、従来の使い捨てカイロと比べて部材数を少なくでき、コストを削減できる他、使用時に出るゴミを削減でき、地球環境に優しいという利点もある。
また、本発明の区分発熱部発熱体、特にストライプ発熱体は、巻いた状態で、外袋に封入してもよい。
In addition, since two or more heating elements are enclosed in a folded state, even if the heating element is large, the heating element is very compact when packaged, has excellent portability, and has little change over time in the heat generation characteristics. Compared with the disposable body warmer, the number of members can be reduced, the cost can be reduced, the waste generated during use can be reduced, and there are also advantages of being friendly to the global environment.
Moreover, you may enclose the division | segmentation heat generating part heat generating body of this invention, especially a stripe heat generating body in the outer bag in the wound state.

前記外袋のシール部内に設けられるノッチは、発熱体本体が収納されている側であるシール部の内側を除けば、任意の位置に、任意の数で、設けることができる。シール部の外側に当接しているノッチやシール部で、その内側にも外側にも当接していないノッチが一例として挙げられる。ノッチ(Vノッチ、Uノッチ、Iノッチ等)により、使用者が外袋を容易に引き裂いて開封できる。   The notch provided in the seal portion of the outer bag can be provided in any number and in any position except for the inside of the seal portion on the side where the heat generating body is housed. Examples include notches that are in contact with the outside of the seal portion and notches that are not in contact with either the inside or the outside of the seal portion. The notch (V notch, U notch, I notch, etc.) allows the user to easily tear and open the outer bag.

前記外袋には、シールしたときにそのシール部分が容易に引き剥がし可能な軟接着状態となるいわゆるイージーピールフィルムを用いてもよい。このイージーピールフィルムよりなる包装シートは、非通気性の合成樹脂フィルムにイージーピール性を有するスチロール樹脂等をコーティングしたもの等、公知の材料を適宜用いることができる。   For the outer bag, a so-called easy peel film may be used that, when sealed, is in a soft-adhesive state where the sealed portion can be easily peeled off. As the packaging sheet made of the easy peel film, a known material such as a non-breathable synthetic resin film coated with a styrene resin having an easy peel property can be appropriately used.

前記発熱体を収納する外袋の包材は、非通気性の包材が使用できる。前記非通気性包材や従来公知の発熱体の外袋に使用されている包材が使用できる。   A non-breathable packaging material can be used as the packaging material of the outer bag that houses the heating element. The non-breathable packaging material or a packaging material used for a conventionally known outer bag of a heating element can be used.

前記外仮着に使用される外仮着層を構成する粘着剤は、粘着力が弱く、折り畳み作業が終わるまで、発熱体を包材に保留させることができれば、制限はない。再剥離性弱粘着剤が一例として挙げられる。場合によっては再剥離性弱粘着剤の代わりに接着力の弱い接着剤を使用してもよい。具体的には、ホットメルト型粘着剤、アクリル系粘着剤等のエマルジョン系粘着剤、ゴム系粘着剤等の溶剤系粘着剤等がある。特に、ガラス転移温度を高くした配合のものが好ましく、アクリル系ではアクリル酸の成分の比率を高くしたもの、ゴム系では高融点のタッキファイヤーを配合したもの等が好ましい。
また、ポストイット/Post−it(スリーエム社の商品名)として販売されている着脱型の付箋紙に使用される粘着剤も使用できる。
また、ホットメルト型粘着剤、特に、ホットメルト系粘着剤(SIS等のスチレン系粘着剤、アクリル系粘着剤、ポリプロピレン系粘着剤、ポリエチレン系粘着剤、エチレンープロピレン共重合体系粘着剤等)が好ましい。公知又は公開された、粘着力や接着力の弱い粘着剤や接着剤も使用できる。
The adhesive constituting the outer temporary attachment layer used for the outer temporary attachment is not limited as long as the adhesive force is weak and the heating element can be retained in the packaging material until the folding operation is completed. A re-peelable weak pressure-sensitive adhesive is an example. In some cases, an adhesive having weak adhesive strength may be used instead of the re-peelable weak adhesive. Specific examples include hot-melt adhesives, emulsion-based adhesives such as acrylic adhesives, and solvent-based adhesives such as rubber-based adhesives. In particular, a compound having a high glass transition temperature is preferable, an acrylic compound having a high ratio of the acrylic acid component, and a rubber compound having a high melting point tackifier are preferable.
Moreover, the adhesive used for the removable sticky note sold as Post-it / Post-it (trade name of 3M Co., Ltd.) can also be used.
Also, hot melt adhesives, especially hot melt adhesives (styrene adhesives such as SIS, acrylic adhesives, polypropylene adhesives, polyethylene adhesives, ethylene-propylene copolymer adhesives, etc.) preferable. Known or publicly available adhesives or adhesives with weak adhesive strength or adhesive strength can also be used.

前記粘着力については、折り畳み作業が終わるまで、発熱体と包材とを貼着しておくことができるものであれば制限はないが、180度ピール強度(JIS Z−0237)が、好ましくは0.01g/25mm〜0.9kg/25mmであり、より好ましくは、0.01g/25mm〜0.5kg/25mmであり、更に好ましくは、0.01g/25mm〜0.3kg/25mmであり、更に好ましくは、0.01g/25mm〜0.1kg/25mmであり、更に好ましくは0.1g/25mm〜100g/25mmである。   The adhesive strength is not limited as long as the heating element and the packaging material can be pasted until the folding work is finished, but 180 degree peel strength (JIS Z-0237) is preferable. 0.01 g / 25 mm to 0.9 kg / 25 mm, more preferably 0.01 g / 25 mm to 0.5 kg / 25 mm, still more preferably 0.01 g / 25 mm to 0.3 kg / 25 mm, More preferably, it is 0.01g / 25mm-0.1kg / 25mm, More preferably, it is 0.1g / 25mm-100g / 25mm.

また、前記粘着剤の塗布厚についても特に制限はないが、好ましくは3mm以下であり、より好ましくは0.1μm〜3mmであり、更に好ましくは0.1μm〜2mmであり、更に好ましくは0.1μm〜1mmである。   Moreover, there is no restriction | limiting in particular also about the application | coating thickness of the said adhesive, Preferably it is 3 mm or less, More preferably, it is 0.1 micrometer-3 mm, More preferably, it is 0.1 micrometer-2 mm, More preferably, it is 0.00. 1 μm to 1 mm.

本発明の発熱体は、余剰水値が0.5〜80の含余剰水発熱組成物を成形した発熱組成物成形体を使用し製造され、少なくとも一部が通気性を有する。発熱体の全面が通気性を有していてもよく、部分的に通気性を有していてもよい。発熱組成物成形体は、圧縮された発熱組成物成形体である発熱組成物圧縮体も含む。   The heating element of the present invention is manufactured using a heating composition molded body obtained by molding a surplus water heating composition having an excess water value of 0.5 to 80, and at least a part thereof has air permeability. The entire surface of the heating element may be air permeable or partially air permeable. The exothermic composition compact also includes a exothermic composition compact that is a compressed exothermic composition compact.

本発明の発熱体の製造方法は、前記発熱組成物の余剰水値の規定方法により、発熱組成物の余剰水値を指標として発熱組成物の組成の決定を含めた品質管理を行う発熱体の製造方法であれば制限はないが、前記発熱組成物の余剰水値規定方法を使用した品質管理を行い、成形性含余剰水発熱組成物を型成形により成形した発熱組成物成形体を基材上に積層し、被覆材を被せ、発熱組成物成形体の周縁部をシールすることにより発熱体を製造する方法が一例として挙げられる。貫通孔である抜き型を使った型通し成形法や凹部を有する鋳込み型を使った鋳込み成形法により、所望の形状に成形性発熱組成物を成形し、その成形体を基材等に積層し、更に別の基材を被せ、シールして発熱体を製造する方法である。この場合、磁石を使用してもよい。平滑充填用ブレードと磁石の組み合わせによる発熱組成物の型内への収容や、磁石によるその成形体の型からの離脱に利用できる。発熱組成物成形体の成形や発熱体の製造がより容易になる。
本発明の品質管理は、発熱組成物の余剰水値を使用した製造方法であれば制限はない。
The method for producing a heating element of the present invention is a heating element that performs quality control including determination of the composition of the exothermic composition by using the excess water value of the exothermic composition as an index by the method for defining the excess water value of the exothermic composition. There is no limitation as long as it is a production method, but the quality control using the method for determining the excess water value of the exothermic composition is performed, and the exothermic composition molded body obtained by molding the moldable excess water exothermic composition by molding is used as a base material. An example is a method of producing a heating element by laminating on it, covering with a covering material, and sealing the peripheral edge of the heating composition molded body. A moldable exothermic composition is formed into a desired shape by a mold-through molding method using a punching die that is a through-hole or a casting mold method using a casting mold having a recess, and the molded body is laminated on a substrate or the like. In this method, a heating element is manufactured by covering and sealing another base material. In this case, a magnet may be used. The heat generating composition can be accommodated in a mold by a combination of a smooth filling blade and a magnet, and the molded body can be removed from the mold by a magnet. Molding of the exothermic composition molded body and production of the heating element become easier.
The quality control of the present invention is not limited as long as it is a production method using the surplus water value of the exothermic composition.

本発明の好ましい発熱体の製造方法の一例を挙げれば、実質的に平面状の包材上に余剰水値が0.5〜80の発熱組成物を成形した発熱組成物成形体を積層し、更に他の包材を積層し、発熱組成物成形体の周縁部をシールし、余分なところをカットし、発熱体とする方法が挙げられる。   If an example of the manufacturing method of the preferable heat generating body of this invention is given, the exothermic composition molded object which shape | molded the exothermic composition whose surplus water value will be 0.5-80 on a substantially planar packaging material will be laminated | stacked, Further, there is a method of laminating other packaging materials, sealing the peripheral edge of the exothermic composition molded body, and cutting off excess portions to form a heating element.

前記型通し成形方法や鋳込み成形法等の型成形法により発熱組成物成形体を製造する場合は、発熱組成物の余剰水値は、0.5〜80である。型内にある発熱組成物を脱水し、包材上に積層し、被覆材で覆い、発熱組成物成形体の周縁部を粘着剤を使用した感圧(圧着)シールやヒートシール層を使用したヒートシール等でシールし、発熱体を製造してもよい。また、成形した発熱組成物成形体を吸水性包材上に積層し、被覆材で覆い、発熱組成物成形体の周縁部を粘着剤を使用した感圧(圧着)シールやヒートシール層を使用したヒートシール等でシールし、発熱体を製造してもよい。また、成形した発熱組成物成形体を不織布上に積層し、更に不織布を被せ、プレスロールでプレスし、30〜100℃の熱風(窒素または空気等)にて乾燥し、カットしてシートを基材上に積層し、被覆材を被せ、発熱組成物成形体の周縁部をシールすることにより製造してもよい。   In the case of producing a heat generating composition molded body by a mold forming method such as the die-through forming method or the casting method, the surplus water value of the heat generating composition is 0.5 to 80. The exothermic composition in the mold was dehydrated, laminated on the packaging material, covered with a coating material, and the periphery of the exothermic composition molded body was used with a pressure-sensitive (crimp) seal or heat seal layer using an adhesive. The heating element may be manufactured by sealing with heat sealing or the like. In addition, the molded exothermic composition molded body is laminated on a water-absorbent packaging material, covered with a covering material, and the periphery of the exothermic composition molded body is used with a pressure-sensitive (pressure-bonding) seal or a heat seal layer. The heating element may be manufactured by sealing with a heat seal or the like. Further, the molded exothermic composition molded body is laminated on the nonwoven fabric, and further covered with the nonwoven fabric, pressed with a press roll, dried with hot air (nitrogen or air, etc.) at 30 to 100 ° C., cut, and then based on the sheet. You may manufacture by laminating | stacking on a material, covering with a coating | covering material, and sealing the peripheral part of a heat-generating composition molded object.

前記型通し成形方法とは抜き型を使用し、成形性含余剰水発熱組成物を成形し、基材の上に型の抜き形状の発熱組成物成形体を積層し、発熱組成物成形体を製造する方法である。抜き型とは所望の形状、厚さを持った貫通孔を有した型である。中空のドラム状回転体の回転面に該貫通孔が設けられているドラム状成形装置や該貫通孔を有するシート状型を複数個設けたチェーンコンベア状回転体を使ったチェーンコンベア状成形装置などが一例として挙げられる。
連続製造方法としては、回転式抜き型を使用し、長尺の基材の上に型の抜き形状の発熱組成物成形体を積層する成形機とそれを長尺の被覆材で覆い、目的とする区分け部分及び基材と被覆材の周辺部をシール(ヒートシールや圧着シールや熱圧着シール等)できる回転式のシール器を用いて、そのシール器を介し、発熱組成物成形体の周辺部及び区分け部分の必要箇所をヒートシールし、封入処理する連続製造方法が一例として挙げられる。
The mold-through molding method uses a punching die, molds a moldable excess water exothermic composition, laminates a punching exothermic composition molded body on a substrate, and forms a exothermic composition molded body. It is a manufacturing method. The punching die is a die having a through hole having a desired shape and thickness. A drum-shaped forming device in which the through hole is provided on the rotating surface of a hollow drum-shaped rotating body, a chain conveyor-shaped forming device using a chain conveyor-shaped rotating body in which a plurality of sheet-shaped molds having the through hole are provided, and the like Is given as an example.
As a continuous manufacturing method, a rotary punching die is used, and a molding machine for laminating a die-shaped exothermic composition molded body on a long base material and covering it with a long covering material, Using the rotary sealer that can seal the peripheral part of the part to be separated and the base material and the covering material (heat seal, pressure seal, thermocompression seal, etc.), the peripheral part of the exothermic composition molded body through the sealer As an example, a continuous manufacturing method in which a necessary portion of the sorting portion is heat-sealed and sealed.

前記鋳込み成形法とは成形性含余剰水発熱組成物を凹部を有する鋳込み型へ充填し、成形した発熱組成物成形体を基材へ積層することにより、発熱組成物成形体を製造する方法である。抜き型とは所望の形状、厚さを持った凹部を有した型である。中空のドラム状回転体の外面に凹部を設けられている発熱組成物成形体製造装置等が一例として挙げられる。
前記連続製造方法としては、中空のドラム状回転体による凹部への充填と基材への移設により、発熱組成物成形体を長尺基材上へ積層する成形機とそれを長尺の被覆材で覆い、目的とする区分け部分及び基材と被覆材の周辺部をシール(ヒートシールや圧着シールや熱圧着シール等)できる回転式のシール器を用いて、そのシール器を介し、発熱組成物成形体の周縁部及び区分け部分の必要箇所をヒートシールし、封入処理する連続製造方法が一例として挙げられる。
The casting molding method is a method for producing a heating composition molded body by filling a moldable excess water heating composition into a casting mold having a recess and laminating the molded heating composition molding on a substrate. is there. The punching die is a die having a recess having a desired shape and thickness. An example of the exothermic composition molded body manufacturing apparatus in which a concave portion is provided on the outer surface of a hollow drum-shaped rotating body is an example.
The continuous production method includes a molding machine for laminating a heat generating composition molded body on a long base material by filling the recess with a hollow drum-shaped rotating body and transferring it to the base material, and a long covering material. Using a rotary sealer that can cover the target section and seal the periphery of the base material and the covering material (heat seal, pressure seal, thermocompression seal, etc.), the exothermic composition through the seal An example is a continuous production method in which the peripheral portions of the molded body and the necessary portions of the divided portions are heat sealed and sealed.

本発明の発熱組成物や発熱組成物成形体を圧縮してもよい。発熱組成物成形体は圧縮した発熱組成物圧縮体を含む。圧縮は制限はないが、型内圧縮や型外圧縮が一例として挙げられる。   The exothermic composition or exothermic composition molded body of the present invention may be compressed. The exothermic composition compact includes a compressed exothermic composition compact. Compression is not limited, but in-mold compression and out-of-mold compression are examples.

前記型内圧縮とは、発熱組成物が型の収納部内に存在している間に、柔軟性のあるゴムロールや収納部と相似形の圧縮型等により発熱組成物を型内で圧縮するものであり、圧縮率として、圧縮体(発熱組成物圧縮体)の厚みは、制限はないが、好ましくは型厚みの50〜99.5%であり、より好ましくは50〜95%であり、更に好ましくは55〜95%であり、更に好ましくは60〜95%であり、更に、好ましくは70〜90%である。加圧時の圧力は、成形性発熱組成物を所定の厚みに圧縮できれば、制限はない。また、圧縮成形に用いる圧縮手段としては、制限はないが、ゴム等の弾力のある平板やロ一ル、型穴に挿入できる押し込み部を有した平板やロ一ルが一例として挙げられる。   The in-mold compression is to compress the exothermic composition in the mold with a flexible rubber roll or a compression mold similar to the accommodating section while the exothermic composition exists in the mold accommodating section. Yes, as the compression ratio, the thickness of the compressed body (the exothermic composition compressed body) is not limited, but is preferably 50 to 99.5% of the mold thickness, more preferably 50 to 95%, still more preferably. Is from 55 to 95%, more preferably from 60 to 95%, still more preferably from 70 to 90%. The pressure at the time of pressurization is not limited as long as the moldable exothermic composition can be compressed to a predetermined thickness. The compression means used for compression molding is not limited, but examples include a flat plate and roll having elasticity such as rubber, and a flat plate and roll having a pushing portion that can be inserted into a mold cavity.

前記型外圧縮とは発熱組成物が型からはなれ、発熱組成物成形体になった後、前記発熱組成物成形体をロール等で圧縮するものである。これは通常、発熱組成物成形体を敷材及び/又は被覆材で覆った後に行うが、覆わなくてもよい。加圧時の圧力は制限はない。圧縮率は制限はない。   The out-of-mold compression is to compress the exothermic composition molded body with a roll or the like after the exothermic composition is separated from the mold and becomes a exothermic composition molded body. This is usually performed after the exothermic composition molded body is covered with a covering material and / or a covering material, but it may not be covered. There is no restriction on the pressure during pressurization. There is no restriction on the compression rate.

以下、本発明の発熱体の実施形態を図6〜図24に基づいて説明するが、本図での説明のみに制限されるものではない。
本説明の発熱組成物の余剰水値は0.5〜80である。
本説明の区分発熱部発熱体群の各収納体、及び、区分発熱部と区分け部とからなる発熱部の収納体のループスティフネスは700mN/cm以下であるので、本説明の区分発熱部発熱体群の各発熱体は手触り感覚のよい柔軟性を有している。更に好ましくは該発熱体の最小剛軟度が70mm以下である。
本説明の区分発熱部発熱体群は、剛軟発熱体、ストライプ発熱体、切り離し自在発熱体、伸縮発熱体、バンド発熱体、トンネル通気発熱体、薬剤発熱体、切り離し自在薬剤発熱体、目温発熱体、顔温発熱体、鼻温発熱体、外袋付き外仮着折り畳み発熱体等を含む。
Hereinafter, although embodiment of the heat generating body of this invention is described based on FIGS. 6-24, it is not restrict | limited only to description by this figure.
The surplus water value of the exothermic composition of this description is 0.5-80.
Since the loop stiffness of each storage body of the divided heat generating portion heating element group of the present description and the heat generating portion storage body composed of the divided heat generating portion and the dividing portion is 700 mN / cm or less, the divided heat generating portion heat generating element of the present description Each heating element in the group has a soft feel. More preferably, the minimum bending resistance of the heating element is 70 mm or less.
The classification heating element heating element group in this description includes a rigid and soft heating element, a stripe heating element, a detachable heating element, an expansion heating element, a band heating element, a tunnel ventilation heating element, a drug heating element, a detachable drug heating element, and an eye temperature. A heating element, a face temperature heating element, a nasal temperature heating element, an outer temporary folding heating element with an outer bag, and the like are included.

図6(a)は、矩形発熱体17Aの一例を示す平面図である。
図6(b)は、同A−Aの断面図である。
周辺部にシール部34を有する発熱部31が1個である、長方形の矩形発熱体17Aである。セパレータ43付きソリッド状アクリル系の粘着剤層39を設けた、非通気性の基材36と通気性の被覆材35との間に発熱組成物成形体30が挟まれ、周辺部がシールされている。通常、衣服の外側に矩形発熱体17Aを貼り、衣服を通して身体に熱を伝達するようにしたものである。。
FIG. 6A is a plan view showing an example of the rectangular heating element 17A.
FIG. 6B is a cross-sectional view taken along the line AA.
This is a rectangular heating element 17A having one heating part 31 having a seal part 34 at the periphery. The exothermic composition molded body 30 is sandwiched between a non-breathable base material 36 and a breathable coating material 35 provided with a solid acrylic pressure-sensitive adhesive layer 39 with a separator 43, and the periphery is sealed. Yes. Usually, a rectangular heating element 17A is pasted on the outside of the garment to transfer heat to the body through the garment. .

図7(a)は、温灸発熱体18の一例を示す平面図である。
図7(b)は、同B−Bの断面図である。
周辺部にシール部34を有する発熱部31が1個である、平面形状が円形の温灸発熱体18である。
セパレータ43付粘着剤層39を設けた基材36と通気性の被覆材35に発熱組成物成形体30を挟んだ、円形の温灸発熱体18である。この直径20mmの温灸発熱体18を身体のつぼに貼り、身体に熱を伝達するようにして使用する。
図7(c)は、温灸発熱体18の他の一例を示す断面図である。
セパレータ43付粘着剤層39を設けた基材36と通気性の被覆材35に発熱組成物成形体30を挟み、粘着剤層39の中央に直径約8mmの空間部41を設けた温灸発熱体18である。
通常の温度を保持する場合は前記通気性を有する包材でよいが,特に高い温度を所望する場合、前記通気性より、高い通気性の被覆材等の包装材を使用することが好ましい。
該通気性は、JIS P8117の測定法によるガーレ一式気体透過度に準じた気体透過度で、好ましくは9sec/300cc以下であり、より好ましくは5sec/300cc以下であり、更に好ましくは3sec/300cc以下であり、更に好ましくは2sec/300cc以下である。
また、ガーレ一式気体透過度に準じた気体透過度は約0.4sec/300ccが測定限界であるので、前記測定限界を超える気体透過度はJIS L1096 の測定法によるフラジール透気度が好ましくは40cc/(cm・sec)以下であり、より好ましくは1〜40cc/(cm・sec)であり、更に好ましくは1〜20cc/(cm・sec)である。
FIG. 7A is a plan view showing an example of the warm iron heating element 18.
FIG.7 (b) is sectional drawing of the same BB.
This is the hot-air heating element 18 having a circular planar shape with one heating part 31 having a seal part 34 in the peripheral part.
This is a circular hot-air heating element 18 in which a heating composition molded body 30 is sandwiched between a base material 36 provided with an adhesive layer 39 with a separator 43 and a breathable coating material 35. The hot-spring heating element 18 having a diameter of 20 mm is attached to the body's pot and used so as to transfer heat to the body.
FIG. 7C is a cross-sectional view showing another example of the hot-air heater 18.
A heating element heating element in which a heat generating composition molded body 30 is sandwiched between a base material 36 provided with a pressure-sensitive adhesive layer 39 with a separator 43 and a breathable coating material 35, and a space 41 having a diameter of about 8 mm is provided in the center of the pressure-sensitive adhesive layer 39. 18.
When maintaining a normal temperature, the air-permeable packaging material may be used, but when a particularly high temperature is desired, it is preferable to use a packaging material such as a highly air-permeable covering material than the air-permeability.
The air permeability is a gas permeability according to the Gurley type gas permeability measured by JIS P8117, preferably 9 sec / 300 cc or less, more preferably 5 sec / 300 cc or less, and further preferably 3 sec / 300 cc or less. More preferably, it is 2 sec / 300 cc or less.
In addition, since the gas permeability according to the Gurley type gas permeability is about 0.4 sec / 300 cc, the measurement limit is about 0.4 sec / 300 cc. / (Cm 2 · sec) or less, more preferably 1 to 40 cc / (cm 2 · sec), still more preferably 1 to 20 cc / (cm 2 · sec).

図8(a)は、足温発熱体19の一例を示す平面図である。
図8(b)は、同C−Cの断面図である。
1個の発熱部31の周辺部にシール部34を有し、間欠的な切り込みを有しない、全足形の足温発熱体19である。ポリエチレン製の滑り止め材38/段ボールライナー紙(芯材37)/ポリエチレン製の基材36の積層体と、多孔質フィルムとナイロン製の不織布の積層体である被覆材35を使用している。発熱組成物成形体30を挟んだ、ポリエチレン製の基材36と被覆材35の多孔質フィルム間のシールは、ヒートシールであるが、粘着剤を使用した圧着シールでもよい。該足温発熱体19の最小剛軟度は、200mm以上である。
また、図示はしないが、多孔質フィルム側にメルトブロー法等により通気性粘着剤層40を設けた被覆材35を、含余剰水発熱組成物29を成形した発熱組成物成形体30を積層した基材36に被せ、発熱組成物成形体30の周縁部を圧着シールし、全足形の足温発熱体19にしてもよい。また、ポリエチレン製の滑り止め材38と非吸水性処理をした段ボールライナー紙等の非吸水性包材の積層体である基材36を使用し、非吸水性包材側に発熱組成物成形体30を積層し、更に非吸水性の被覆材35を被せ、同様にして通気性粘着剤層40を介して、発熱組成物成形体30の周縁部を圧着シールし、全足形の足温発熱体19にしてもよい。
図8(c)は、足温発熱体19の他の一例を示す平面図である。
足温発熱体19のほぼ中央部でわかれるようにして、2個の区分発熱部32、32を形成し、発熱組成物成形体30のない区分け部33のほぼ中央部にミシン目47を設けた、折り畳み可能な足温発熱体19である。ポリエチレン製の基材36と被覆材35の多孔質フィルム間のシールは、粘着剤を使用した圧着シールである。該足温発熱体19を折り畳んで外袋57に収納すると、小さくなり持ち運びやすく、外袋57の節約にもなる。
足温発熱体19における発熱組成物成形体30の周縁部のシールは、粘着剤を使用した圧着シール、ヒートシール材を使用したヒートシール、粘着剤で仮着した後にヒートシールをした仮着ヒートシールから選択して使用できる。
FIG. 8A is a plan view showing an example of the foot temperature heating element 19.
FIG. 8B is a cross-sectional view taken along the line CC.
This is a full-foot-shaped foot temperature heating element 19 which has a seal portion 34 around one heat generating portion 31 and does not have intermittent cuts. A laminate of a non-slip material 38 made of polyethylene / corrugated liner paper (core material 37) / a substrate 36 made of polyethylene and a laminate of a porous film and a non-woven fabric made of nylon are used. The seal between the polyethylene base material 36 and the porous film of the covering material 35 sandwiching the exothermic composition molded body 30 is a heat seal, but may be a pressure-bonded seal using an adhesive. The minimum bending resistance of the foot temperature heating element 19 is 200 mm or more.
Although not shown, a base material obtained by laminating a covering material 35 provided with a breathable pressure-sensitive adhesive layer 40 on the porous film side by a melt blow method or the like and a heat generating composition molded body 30 formed by molding an excess water heat generating composition 29 is laminated. It may be covered with the material 36 and the peripheral portion of the heat generating composition molded body 30 may be pressure-bonded and sealed to form a full-foot-shaped foot temperature heating element 19. Further, a base material 36, which is a laminate of a non-slip material 38 made of polyethylene and a non-water-absorbing packaging material such as a non-water-absorbing corrugated cardboard liner paper, is used, and a heating composition molded body is formed on the non-water-absorbing packaging material side. 30, and further covered with a non-water-absorbing coating material 35. Similarly, the peripheral edge of the heat generating composition molded body 30 is pressure-bonded and sealed through the breathable pressure-sensitive adhesive layer 40. It may be 19.
FIG. 8C is a plan view showing another example of the foot temperature heating element 19.
Two divided heat generating portions 32 and 32 are formed so as to be separated at the substantially central portion of the foot temperature heating element 19, and a perforation 47 is provided at substantially the central portion of the divided portion 33 without the exothermic composition molded body 30. This is a foldable foot temperature heating element 19. The seal between the polyethylene base material 36 and the porous film of the covering material 35 is a pressure-bonding seal using an adhesive. When the foot temperature heating element 19 is folded and stored in the outer bag 57, it becomes small and easy to carry, and the outer bag 57 can be saved.
The peripheral edge of the exothermic composition molded body 30 in the foot temperature heating element 19 is a pressure-bonding seal using an adhesive, a heat seal using a heat seal material, or a temporary heat that is temporarily sealed with an adhesive and then heat-sealed. It can be used by selecting from the seal.

図9(a)は、剛軟発熱体21の一例を示す平面図である。
12個の楕円形の区分発熱部32が、区分け部33を挟んで、縦横方向に所定の間隔で設けられている。
図9(b)は、剛軟発熱体21の他の一例を示す平面図である。
ダンベル形状の中に、6個の長方形の区分発熱部32が、区分け部33を挟んで、所定の間隔で設けられている。
尚、図9(a)及び図9(b)の発熱体の収納体のループスティフネスは700mN/cm以下であるので、該剛軟発熱体21は手触り感覚のよい柔軟性を有している。該剛軟発熱体21の最小剛軟度が70mm以下であり、最小剛軟度変化は0以下である。発熱前と発熱終了後において、柔軟性が悪くなる方向への変化がない発熱体である。
FIG. 9A is a plan view showing an example of the rigid / soft heating element 21.
Twelve elliptical segment heat generating portions 32 are provided at predetermined intervals in the vertical and horizontal directions with the segment portion 33 interposed therebetween.
FIG. 9B is a plan view showing another example of the rigid and soft heating element 21.
In the dumbbell shape, six rectangular divided heat generating portions 32 are provided at predetermined intervals with the dividing portion 33 interposed therebetween.
9A and 9B has a loop stiffness of 700 mN / cm or less, and thus the rigid and soft heating element 21 has flexibility with a good touch feeling. The minimum bending resistance of the bending-soft heating element 21 is 70 mm or less, and the minimum bending resistance change is 0 or less. The heating element does not change in the direction in which the flexibility deteriorates before and after the heat generation.

図10(a)は、ストライプ発熱体22の一例を示す平面図である。
図10(b)は、同D−Dの断面図である。
6個の長方形の区分発熱部32が区分け部33を間隔として、ストライプ状に設けられた最小剛軟度が50mm以下のストライプ発熱体22である。
基材36の上に、6個の平面形状が長方形の発熱組成物成形体30が間隔をおいて積層され、通気性の被覆材35により覆われ、発熱組成物成形体30の周縁部及び該発熱体22の周辺部がヒートシールされ、非通気面である基材36上にSIS系ホットメルト系粘着剤からなる粘着剤層39を設け、その上にセパレータ43を設けたものである。SIS系ホットメルト系粘着剤をアクリル系粘着剤に換えてもよい。
衣服の外側にストライプ発熱体22を貼り、衣服を通して身体に熱を伝達するようにしてもよい。身体用の粘着剤層39を用いて、身体に貼り、身体に熱を伝達するようにしてもよい。また、両面を通気性面とし、身体側に発熱体から発生する水蒸気をあてるようにしてもよい。
図10(c)は、ストライプ発熱体22の他の一例を示す断面図である。
通気面側に、セパレータ43付きメルトブロー法による網目状の通気性粘着剤層40が設けられた、最小剛軟度が50mm以下のストライプ発熱体22である。下着等の衣服の内側に通気面側を貼り、該ストライプ発熱体22の非通気面を通して身体に熱を伝達するようにしたものである。また、両面を通気性面とし、身体側に発熱体から発生する水蒸気をあてるようにしてもよい。
また、衣服の外側に該ストライプ発熱体22を貼り、衣服を通して身体に熱を伝達するようにしてもよい。
図10(d)は、ストライプ発熱体22の他の一例を示す断面図である。
粘着剤層39が設けられていない最小剛軟度が50mm以下のストライプ発熱体22である。区分発熱部の側面通気部62と区分発熱部の頂上部63が通気性を有している。
また、図示はしないが、該ストライプ発熱体22の両面を通気性面とし、通気性粘着剤層40、又は部分的に設けた非通気性の粘着剤層39を身体側に向けて貼り、身体側に該ストライプ発熱体22から発生する水蒸気をあてるようにしてもよい。
FIG. 10A is a plan view showing an example of the stripe heating element 22.
FIG.10 (b) is sectional drawing of the DD.
Six rectangular segment heating parts 32 are stripe heating elements 22 having a minimum bending resistance of 50 mm or less provided in a stripe shape with the segment part 33 as an interval.
On the base material 36, six exothermic composition molded bodies 30 having a rectangular planar shape are laminated at intervals and covered with a breathable coating material 35. The peripheral portion of the heating element 22 is heat-sealed, and an adhesive layer 39 made of a SIS hot-melt adhesive is provided on a base material 36 that is a non-ventilated surface, and a separator 43 is provided thereon. The SIS hot melt adhesive may be replaced with an acrylic adhesive.
A stripe heating element 22 may be affixed to the outside of the garment to transfer heat to the body through the garment. The body adhesive layer 39 may be used to attach to the body and transfer heat to the body. Further, both sides may be made to be air permeable and water vapor generated from the heating element may be applied to the body side.
FIG. 10C is a cross-sectional view showing another example of the stripe heating element 22.
The stripe heating element 22 having a minimum bending resistance of 50 mm or less, in which a mesh-like breathable pressure-sensitive adhesive layer 40 by a melt blow method with a separator 43 is provided on the ventilation surface side. A ventilation surface side is attached to the inside of clothes such as underwear, and heat is transmitted to the body through the non-ventilation surface of the stripe heating element 22. Further, both sides may be made to be air permeable and water vapor generated from the heating element may be applied to the body side.
Alternatively, the stripe heating element 22 may be attached to the outside of the clothes to transfer heat to the body through the clothes.
FIG. 10D is a cross-sectional view showing another example of the stripe heating element 22.
The stripe heating element 22 has a minimum bending resistance of 50 mm or less without the adhesive layer 39. The side ventilation part 62 of the segment heating part and the top 63 of the segment heating part are air permeable.
Although not shown, both sides of the stripe heating element 22 are made air permeable, and the air permeable pressure-sensitive adhesive layer 40 or the partially non-air permeable pressure-sensitive adhesive layer 39 is applied to the body side, Water vapor generated from the stripe heating element 22 may be applied to the side.

図11(a)は、切り離し自在発熱体23の一例を示す平面図である。
8個の区分発熱部32がストライプ状に設けられ、各区分け部33に手切れ可能なミシン目47が設けられている。
また、ミシン目47は該発熱体23の辺に当接しているが、手切れ可能であれば、ミシン目47は該発熱体23の辺に当接していなくてもよい。
図11(b)は、小発熱体23Aの一例を示す平面図である。
本小発熱体23Aは、図11(a)の切り離し自在発熱体23の最小単位で、区分発熱部32の周辺部にシール部34を有する、切り離された小発熱体23Aである。
図11(c)は、切り離し自在発熱体23の他一例を示す平面図である。
幅9mmの区分け部33を間隔として、合計16個の区分発熱部(幅8mm×長さ50mm)32が、上下に設けられている。
各区分け部33のほぼ中央部には手切れ可能なミシン目47が設けられており、該ミシン目47の端部と該発熱体23の周辺部に設けられたVノッチ49とが当接している。
図11(d)は、小発熱体23Aの他の一例を示す平面図である。
本小発熱体23Aは、図11(c)の切り離し自在発熱体23の最小単位で、区分発熱部32の周辺部にシール部34を有する、切り離された小発熱体23Aである。
尚、図11(a)、図11(c)の切り離し自在発熱体23は、 任意のミシン目47に沿って、所望の小発熱体23Aに切り分けることができ、所望によりいくつかの離れた小領域を同時に温めることができる。
FIG. 11A is a plan view showing an example of the detachable heating element 23.
Eight divided heat generating portions 32 are provided in stripes, and perforated portions 47 that can be cut by hand are provided in each divided portion 33.
Further, the perforation 47 is in contact with the side of the heating element 23, but the perforation 47 may not be in contact with the side of the heating element 23 as long as it can be cut by hand.
FIG.11 (b) is a top view which shows an example of the small heat generating body 23A.
This small heating element 23A is a separated small heating element 23A having a seal portion 34 in the peripheral part of the section heating part 32, which is the smallest unit of the separable heating element 23 in FIG.
FIG. 11C is a plan view showing another example of the detachable heating element 23.
A total of 16 divided heat generating portions (width 8 mm × length 50 mm) 32 are provided at the top and bottom with a separation portion 33 having a width of 9 mm as an interval.
A perforation 47 that can be cut by hand is provided at substantially the center of each section 33, and an end portion of the perforation 47 and a V notch 49 provided in the peripheral portion of the heating element 23 are in contact with each other. Yes.
FIG. 11D is a plan view showing another example of the small heating element 23A.
This small heating element 23A is a separated small heating element 23A having a seal portion 34 in the periphery of the section heating part 32, which is the smallest unit of the separable heating element 23 in FIG.
11 (a) and 11 (c) can be separated into a desired small heating element 23A along an arbitrary perforation 47, and several small small heating elements can be separated if desired. The area can be warmed simultaneously.

図12(a)は、伸縮発熱体24の一例を示す平面図である。
図12(b)は、同E−Eの断面図である。
6個の区分発熱部32が幅7mmの区分け部33を間隔として、ストライプ状に設けられており、中央の区分け部33には1.5mm間隔で、3列からなる互い違い切り込み48が形成されている。互い違いの切り込み48の一部は該伸縮発熱体24の周辺部と当接している。セパレータ43付き粘着剤層39を設けた、非通気性の基材36と通気性の被覆材35との間に発熱組成物成形体30が挟まれ、周辺部がシールされている。該粘着剤層39はスチレン−イソプレン−スチレン系の粘着剤からなる厚さ約50μmの層である。互い違いの切り込み48の方向と直交する方向である、長手方向に互い違いの切り込み48が略網目状に可逆変形するので、本伸縮発熱体24は長手方向に変形ができる、即ち、伸縮できる。 他の区分け部33に互い違いの切り込み48を設けて、該伸縮発熱体24の伸縮性を大きくするのも有用である。
FIG. 12A is a plan view showing an example of the expansion / contraction heating element 24.
FIG. 12B is a cross-sectional view taken along line E-E.
Six divided heat generating portions 32 are provided in stripes with a separation portion 33 having a width of 7 mm as an interval, and the middle division portion 33 is formed with three rows of staggered cuts 48 at 1.5 mm intervals. Yes. A part of the alternate cuts 48 is in contact with the peripheral portion of the expandable heating element 24. The exothermic composition molded body 30 is sandwiched between the non-breathable base material 36 provided with the pressure-sensitive adhesive layer 39 with the separator 43 and the breathable coating material 35, and the periphery is sealed. The pressure-sensitive adhesive layer 39 is a layer having a thickness of about 50 μm made of a styrene-isoprene-styrene pressure-sensitive adhesive. Since the alternate cuts 48 are reversibly deformed in a substantially mesh shape in the longitudinal direction, which is a direction orthogonal to the direction of the alternate cuts 48, the expansion / contraction heating element 24 can be deformed in the longitudinal direction, that is, can be expanded / contracted. It is also useful to increase the stretchability of the stretchable heating element 24 by providing alternate cuts 48 in the other section 33.

図13(a)は、伸縮発熱体24の他の一例を示す平面図である。
2個の区分発熱部32を一組としてストライプ状に、短手方向の区分け部(幅10mm)33を挟んで6組設けられ、短手方向の各区分け部33に3列からなる互い違いの切り込み48が設けられ、該互い違い切り込み48の端部の少なくとも一部は該発熱体24の周辺部に設けられたVノッチ49と当接している。
図13(b)は、伸縮発熱体24の他の一例を示す平面図である。
長手方向に4個の区分発熱部32が、幅10mmの区分け部33を間隔として設けられ、各区分け部33に1.5mm間隔で、3列からなる互い違い切り込み48が形成され、該互い違い切り込み48は該伸縮発熱体24の周辺部と当接している。尚、図示はしないが、非通気性の基材36には粘着剤層39がセパレータ43付きで設けられている。
FIG. 13A is a plan view showing another example of the expansion / contraction heating element 24.
Six sets of two divided heat generating portions 32 are provided in a striped manner with a short-side divided portion (width 10 mm) 33 interposed therebetween, and three rows of staggered cuts are formed in each short-side divided portion 33. 48 is provided, and at least a part of the end of the alternate cut 48 is in contact with a V notch 49 provided in the peripheral portion of the heating element 24.
FIG. 13B is a plan view showing another example of the expansion / contraction heating element 24.
In the longitudinal direction, four divided heat generating portions 32 are provided with intervals of the dividing portions 33 having a width of 10 mm, and three rows of staggered cuts 48 are formed at intervals of 1.5 mm in each of the divided portions 33. Is in contact with the peripheral portion of the expansion / contraction heating element 24. Although not shown, the non-breathable substrate 36 is provided with an adhesive layer 39 with a separator 43.

図14は、バンド発熱体25の一例を示す平面図である。
6個の区分発熱部32を有する発熱部31をバンド56のほぼ中央部に固定したものであり、該バンド56の両端部付近には面ファスナー42,42,42が設置面を違えて設けられ、該発熱部31を挟んでバンド56に互い違い切り込み48、48が設けられている。バンド56は不織布とエラストマーフィルムの積層体からなる非伸長性の可換性保持部材(一例として、長さ10〜100cm×幅1〜15cm)である。該発熱部31は該バンド56の任意の位置に固定してよい。該位置にあわせ、互い違い切り込み48が設けられる。
本例では、互い違い切り込み48により該バンド発熱体25に伸縮性を付与したが、ポリマー製メッシュ(スクリム)、やゴム等の伸縮材を包材間に挟んで結合した伸縮材料をバンド56に使用してもよい。
FIG. 14 is a plan view showing an example of the band heating element 25.
A heat generating portion 31 having six divided heat generating portions 32 is fixed to a substantially central portion of the band 56, and hook and loop fasteners 42, 42, 42 are provided in the vicinity of both ends of the band 56 with different installation surfaces. The band 56 is provided with alternate cuts 48 and 48 with the heat generating portion 31 interposed therebetween. The band 56 is a non-extensible replaceable holding member (for example, 10 to 100 cm in length × 1 to 15 cm in width) made of a laminate of a nonwoven fabric and an elastomer film. The heat generating portion 31 may be fixed at an arbitrary position of the band 56. In accordance with this position, alternate cuts 48 are provided.
In this example, the band heating element 25 is provided with stretchability by staggered cuts 48, but a stretchable material in which a stretchable material such as a polymer mesh (scrim) or rubber is sandwiched between the packaging materials is used for the band 56. May be.

図15(a)は、トンネル通気発熱体26の一例を示す平面図である。
図15(b)は、同F−Fの断面図である。
6個の発熱組成物成形体30が被覆材35と基材36の間に挟まれ、局所通気材51は、6個の区分発熱部32の通気面側を覆うようにして設けられ、長手方向の両端部に粘着剤等からなる固定部(接着層、粘着層、ヒートシール層等)50、50で固定されている。該局所通気材51と区分発熱部の側面通気部62と区分け部33とから実質的な空間部52が形成され、両端の通気孔53から空気を取り入れる。セパレータ43付き粘着剤層39が基材36側に設けられている。
所望により局所通気材51に穿孔等による通気孔53を設けてもよい。
また、図示しないが、局所通気材51は1個以上の区分発熱部の頂上部63の少なくとも一部に粘着剤からなる固定部50を介して固定されてもよい。また、2個の区分発熱部32と1個の区分け部33と1個以上の空間部52を一組として、該区分発熱部32の外側の区分け部33において、局所通気材51と区分け部33を粘着剤や接着剤等からなる固定部50を介して固定し、そのほぼ中央部に手切れ可能なミシン目47を設け、該区分け部33で連接された切り離し自在薬剤発熱体27Aとしてもよい。
FIG. 15A is a plan view showing an example of the tunnel ventilation heat generator 26.
FIG. 15B is a cross-sectional view taken along the line F-F.
Six exothermic composition molded bodies 30 are sandwiched between the covering material 35 and the base material 36, and the local ventilation material 51 is provided so as to cover the ventilation surface side of the six section heating portions 32, in the longitudinal direction. Are fixed by fixing parts (adhesive layer, adhesive layer, heat seal layer, etc.) 50, 50 made of an adhesive or the like. A substantial space 52 is formed by the local ventilation member 51, the side ventilation part 62 of the divided heat generating part, and the dividing part 33, and air is taken in from the ventilation holes 53 at both ends. An adhesive layer 39 with a separator 43 is provided on the substrate 36 side.
If desired, the local ventilation member 51 may be provided with a ventilation hole 53 by perforation or the like.
Moreover, although not shown in figure, the local ventilation material 51 may be fixed to the at least one part of the top part 63 of one or more division heat generating parts via the fixing | fixed part 50 which consists of adhesives. In addition, a group of two divided heat generating portions 32, one divided portion 33, and one or more space portions 52 are used as a set, and in the divided portion 33 outside the divided heat generating portion 32, the local ventilation member 51 and the divided portion 33 are disposed. May be fixed through a fixing portion 50 made of an adhesive, an adhesive, or the like, and a perforated 47 that can be cut by hand is provided at almost the center thereof, and the detachable medicine heating element 27A connected by the section 33 may be used. .

図16(a)は、トンネル通気発熱体26の空間部52の近傍の一例を示す部分拡大断面図である。
発熱組成物成形体30がセパレータ43付粘着剤層39を有する基材36と通気性の被覆材35に挟まれ、局所通気材51が区分け部33に固定されておらず、区分発熱部32の頂上部63を覆い、区分け部33に区分発熱部の側面通気部62と区分け部33と局所通気材51とから構成される空間部52を1つ設けたものである。
図16(b)は、トンネル通気発熱体26の空間部52の近傍の他の一例を示す部分拡大断面図である。
トンネル通気発熱体26の区分け部33のほぼ中央部に、局所通気材51を粘着剤からなる固定部50を介して固定し、1つの区分け部33に空間部52を2つ設けたものである。
FIG. 16A is a partial enlarged cross-sectional view showing an example of the vicinity of the space 52 of the tunnel ventilation heat generator 26.
The exothermic composition molded body 30 is sandwiched between the base material 36 having the pressure-sensitive adhesive layer 39 with the separator 43 and the air-permeable covering material 35, and the local air-permeable material 51 is not fixed to the dividing portion 33. The top portion 63 is covered, and the partition portion 33 is provided with one space portion 52 composed of the side ventilation portion 62 of the partition heating portion, the partition portion 33 and the local ventilation member 51.
FIG. 16B is a partial enlarged cross-sectional view showing another example of the vicinity of the space 52 of the tunnel ventilation heat generator 26.
A local ventilation member 51 is fixed to a substantially central portion of the partitioning portion 33 of the tunnel ventilation heating element 26 via a fixing portion 50 made of an adhesive, and two space portions 52 are provided in one partitioning portion 33. .

図17(a)は、薬剤発熱体27の一例を示す平面図である。
図17(b)は、同G−Gの断面図である。
セパレータ43付き粘着剤層39を設けた、非通気性の基材36と通気性の被覆材35との間に発熱組成物成形体30が挟まれ、周辺部がシールされ、更に、区分発熱部32と区分け部33とからなる凹凸状の表面に穿孔した通気孔53を有する局所通気材51が固定部(粘着層、接着層、ヒートシール層等)50を介して薬剤発熱体27の全周辺部で固定され、局所通気材51と区分発熱部の側面通気部62と区分け部33とから実質的な空間部52が形成され、局所通気材51の通気孔53から空気を取り入れる。薬剤発熱体27の最小剛軟度は50mm以下である。局所通気材51は非通気性包材に穿孔した通気孔53を設けた包材である。また、局所通気材51は1個以上の区分発熱部の頂上部63の少なくとも一部に固定部50を介して固定されてもよい。非通気性の基材36はセパレータ43付き、機能物質を含有する粘着剤層39が設けられている。
図17(c)は、薬剤発熱体27の他の一例を示す平面図である。
局所通気材51の通気孔53に、取っ手55付き非通気性の通気遮断シート54が取り外し可能に貼り合わせられている。
図17(d)は、薬剤発熱体27の他の一例を示す断面図である。
粘着剤層39及びセパレータ43を設けていない薬剤発熱体27である。
機能性物質は、薬剤発熱体27の露出部の少なくとも一部に含有されている。
該薬剤発熱体27は、基材36と局所通気材51が非通気性であるので、発熱組成物30と機能性物質を含有する、該露出部との相互作用が防げ、それぞれの機能が維持できる。また、通気遮断シート54で通気孔53を塞ぐことにより発熱組成物成形体30と薬剤発熱体27の露出部との相互作用が防止でき、長期保存にも耐えうる薬剤発熱体27が得られる。
FIG. 17A is a plan view showing an example of the drug heating element 27.
FIG. 17B is a cross-sectional view taken along the line GG.
The exothermic composition molded body 30 is sandwiched between the non-breathable base material 36 and the breathable coating material 35 provided with the pressure-sensitive adhesive layer 39 with the separator 43, the peripheral portion is sealed, and further, the divided heat generation portion The local ventilation member 51 having a vent hole 53 perforated on the concavo-convex surface composed of 32 and the partitioning portion 33 is attached to the entire periphery of the drug heating element 27 via a fixing portion (adhesive layer, adhesive layer, heat seal layer, etc.) 50 A substantial space 52 is formed by the local ventilation member 51, the side ventilation portion 62 of the segment heat generation unit, and the sorting portion 33, and air is taken in from the vent hole 53 of the local ventilation member 51. The minimum bending resistance of the drug heating element 27 is 50 mm or less. The local ventilation material 51 is a packaging material provided with a ventilation hole 53 perforated in a non-breathable packaging material. Further, the local ventilation member 51 may be fixed to at least a part of the apex portion 63 of one or more divided heat generating portions via the fixing portion 50. The non-breathable substrate 36 is provided with a separator 43 and an adhesive layer 39 containing a functional substance.
FIG. 17C is a plan view showing another example of the drug heating element 27.
A non-breathable ventilation blocking sheet 54 with a handle 55 is detachably bonded to the ventilation hole 53 of the local ventilation member 51.
FIG. 17D is a cross-sectional view showing another example of the drug heating element 27.
This is a drug heating element 27 in which the adhesive layer 39 and the separator 43 are not provided.
The functional substance is contained in at least a part of the exposed portion of the drug heating element 27.
In the drug heating element 27, since the base material 36 and the local ventilation material 51 are impermeable, the interaction between the exothermic composition 30 and the exposed portion containing the functional substance can be prevented, and the respective functions are maintained. it can. Further, by closing the ventilation hole 53 with the ventilation blocking sheet 54, the interaction between the exothermic composition molded body 30 and the exposed portion of the drug heating element 27 can be prevented, and the drug heating element 27 that can withstand long-term storage can be obtained.

図18(a)は、薬剤発熱体27の他の一例を示す平面図である。
図18(b)は、同H−Hの断面図である。非通気性の基材36と通気性の被覆材35との間に発熱組成物成形体30が挟まれ、周辺部がシールされ、更に、被覆材35側に、粘着剤層39(通気性粘着剤層40でも良い)を設けた、穿孔した通気孔53を有する局所通気材51が固定部50を介して薬剤発熱体27の全周辺部で固定されている。通気孔53には少なくとも通気を遮断する程の粘着剤層39は設けられていない。局所通気材51と区分発熱部の側面通気部62と区分け部33とから実質的な空間部52が形成され、局所通気材51の通気孔53から空気を取り入る。機能性物質は、薬剤発熱体27の基材36の表面に含有されている。粘着剤層39(又は通気性粘着剤層40)上にセパレータ43を設けることが好ましい。
FIG. 18A is a plan view showing another example of the drug heating element 27.
FIG. 18B is a cross-sectional view taken along the line HH. The exothermic composition molded body 30 is sandwiched between the non-breathable base material 36 and the breathable coating material 35, the peripheral portion is sealed, and further, the pressure-sensitive adhesive layer 39 (breathable pressure-sensitive adhesive) is formed on the coating material 35 side. A local ventilation member 51 having a perforated ventilation hole 53 provided with an agent layer 40 is fixed on the entire periphery of the drug heating element 27 via a fixing unit 50. The vent hole 53 is not provided with the pressure-sensitive adhesive layer 39 that at least blocks the ventilation. A substantial space 52 is formed by the local ventilation member 51, the side ventilation portion 62 of the section heat generating portion, and the partition portion 33, and air is taken in from the vent hole 53 of the local ventilation member 51. The functional substance is contained on the surface of the base material 36 of the drug heating element 27. The separator 43 is preferably provided on the pressure-sensitive adhesive layer 39 (or the air-permeable pressure-sensitive adhesive layer 40).

図19(a)は、切り離し自在薬剤発熱体27Aの一例を示す平面図である。
図19(b)は、同I−Iの断面図である。
区分発熱部32区分け部33とからなる凹凸状の表面に穿孔した通気孔53を有する局所通気材51が固定部(粘着層、接着層、ヒートシール層等)50を介して切り離し自在薬剤発熱体27Aの全周辺部で固定され、更に、一つおきに区分け部33と局所通気材51が固定部(粘着層、接着層、ヒートシール層等)50を介して固定されている。区分発熱部の頂上部63は局所通気材51で覆われている。該区分け部33と該局所通気材51が固定されている領域のほぼ中央部に手切れ可能なミシン目47が設けられ、2個の区分発熱部32と1個の区分け部33を一組として、3組が連接されている。各組は通気孔53付き局所通気材51と区分発熱部の側面通気部62と区分け部33とから形成された実質的な空間部52を有し、局所通気材51の通気孔53から空気を取り入れる。
手切れ可能なミシン目47の端部は切り離し自在薬剤発熱体27Aの周辺部に当接しているが、手切れが可能であれば該発熱体27Aの周辺部に当接していなくてもよい。基材36側にはセパレータ43付き、機能物質を含有する粘着剤層39が設けてある。所望により、ミシン目47はセパレータ43を貫通してもよいし、貫通しなくてもよい。また、所望により切り離し自在薬剤発熱体27Aの周辺部にある手切れ可能なミシン目47の端部にVノッチ49等を設けてもよい。
図19(c)は、小薬剤発熱体27Bの一例を示す断面図である。
切り離し自在薬剤発熱体27Aを、手切れ可能なミシン目47で切り離した1個の小薬剤発熱体27Bである。
発熱組成物成形体30がセパレータ43付粘着剤層39を有する基材36と通気性の被覆材35に挟まれ、区分発熱部の側面通気部62と区分け部33と通気孔53付局所通気材51とから構成される空間部52を有している小薬剤発熱体27Bである。
使用時、所望に合わせて、切り離し自在薬剤発熱体27Aを複数の小薬剤発熱体27Bに分け、所望の場所に貼ることができる。
FIG. 19A is a plan view showing an example of the separable medicine heating element 27A.
FIG. 19B is a cross-sectional view taken along the line II.
A local ventilation member 51 having a vent hole 53 perforated on a concavo-convex surface composed of a section heating section 32 and a section section 33 is separable via a fixing section (adhesive layer, adhesive layer, heat seal layer, etc.) 50. 27A is fixed at all peripheral portions, and every other section 33 and local ventilation material 51 are fixed via fixing portions (adhesive layer, adhesive layer, heat seal layer, etc.) 50. The top 63 of the section heat generating part is covered with the local ventilation material 51. A perforated 47 which can be cut by hand is provided at a substantially central portion of the region where the partitioning portion 33 and the local ventilation member 51 are fixed, and the two partition heating portions 32 and one partitioning portion 33 are taken as a set. Three sets are connected. Each set has a substantial space portion 52 formed by a local ventilation member 51 with a vent hole 53, a side ventilation portion 62 of a segmental heat generating portion, and a segmentation portion 33, and air is passed through the vent hole 53 of the local ventilation member 51. Incorporate.
The end portion of the perforated 47 that can be cut by hand is in contact with the peripheral portion of the detachable medicine heating element 27A, but may not be in contact with the peripheral portion of the heating element 27A if it can be cut by hand. A pressure-sensitive adhesive layer 39 with a separator 43 and containing a functional substance is provided on the substrate 36 side. The perforations 47 may or may not penetrate the separator 43 as desired. Moreover, you may provide the V notch 49 etc. in the edge part of the perforated perforation 47 in the peripheral part of the separable medicine heat generating body 27A as needed.
FIG. 19C is a cross-sectional view showing an example of the small medicine heating element 27B.
This is a small medicine heating element 27 </ b> B in which the separable medicine heating element 27 </ b> A is separated by a perforated perforation 47.
The exothermic composition molded body 30 is sandwiched between a base material 36 having a pressure-sensitive adhesive layer 39 with a separator 43 and a gas-permeable covering material 35, and a side ventilation part 62, a division part 33, and a local ventilation material with a ventilation hole 53. 51 is a small medicine heating element 27 </ b> B having a space portion 52 composed of 51.
At the time of use, the separable medicine heating element 27A can be divided into a plurality of small medicine heating elements 27B and pasted to a desired place as desired.

図20(a)は、目温発熱体66の一例を示す平面図である。
図20(b)は、同J−Jの断面図である。
非通気性の基材36と通気性の被覆材35との間に発熱組成物成形体30が挟まれ、周辺部がシールされ、更に、両端部に穴74、74付耳掛け部73、73の各端部が発熱体本体の両端部にシールされた固定部50、50を介して固定され、中央部の上側にVノッチ49が設けられ、鼻周縁部にあたる下側は曲面になっており、その両側に各3個の区分発熱部32、32、32が設けられている。更に本発明の目温発熱体66は、該Vノッチ49を大きいV状の切り込みに換えたり、曲面にする等、中央部に切り込み、ノッチ、曲面等の加工を加えてもよい。
図20(c)は、目温発熱体66の他の一例を示す平面図である。
目温発熱体66の目側67を示す。中央部に手切れ可能な切り込み(ミシン目47)が設けられた穴74、74付耳掛け部73、73の各端部が発熱体本体の両端部にシールされた固定部50、50を介して固定され、中央部の上側にVノッチ49が設けられ、鼻周縁部にあたる下側は曲面になっている。
図20(d)は、目温発熱体66の他の一例を示す断面図である。
目温発熱体66の両側に不織布からなる風合い材68、68が設けられている。区分け部33、33と風合い材68、68との間に空間部52、52が形成されている。該風合い材68の少なくとも一方を局所通気材51又は風合い材68付局所通気材51に換えてもよい。 例えば目側67の風合い材68を局所通気材51又は風合い材68付局所通気材51に換えてもよい。
図20(e)は、顔温発熱体69の一例を示す平面図である。
マスク形の顔温発熱体69である。両端部に耳掛け部73である耳掛けゴム75、75が設けられ、中央の区分け部33は幅が広く、両側に各3個の区分発熱部32、32、32が設けられている。該耳掛けゴム75、75は耳掛けひも75に換えてもよい。
図20(f)は、顔温発熱体69の他の一例を示す斜視図である。
組み立て式の顔温発熱体69である。両端部に耳掛けゴム75、75を有し、発熱体保持部72に支持された発熱体収納部71を設けたマスク70にストライプ発熱体22等の区分発熱部発熱体20を挿入して使用する。
該区分発熱部発熱体20としてトンネル通気発熱体26や薬剤発熱体27の構造を有する発熱体にすると、より適温で使用できる。
図20(g) は、鼻温発熱体69Aの一例を示す平面図である。
中央の区分け部33の両側に区分発熱部32を各1個有する発熱部31を設け、少なくとも鼻の両側に相当する領域を加温できるようした、一体式の鼻温発熱体69Aである。
該発熱部31をトンネル通気発熱体26や薬剤発熱体27の構造を有する発熱部にすると、より適温で使用できる。
図20(h)は、顔温発熱体69及び鼻温発熱体69A用のトンネル通気発熱体26の他の一例を示す平面図である。
局所通気材51が、中央の区分け部33を挟んで設けられた2個の区分発熱部32、32を覆い、トンネル通気発熱体26の両端部に固定部50、50を介して固定されている。
FIG. 20A is a plan view showing an example of the eye temperature heating element 66.
FIG. 20B is a cross-sectional view taken along the line JJ.
The exothermic composition molded body 30 is sandwiched between the non-breathable base material 36 and the breathable covering material 35, the peripheral portion is sealed, and furthermore, the ear hook portions 73, 73 with holes 74, 74 are provided at both ends. Are fixed through fixing portions 50 and 50 sealed at both ends of the heating element body, a V notch 49 is provided on the upper side of the central portion, and the lower side corresponding to the peripheral edge of the nose is a curved surface. Three divided heat generating portions 32, 32, 32 are provided on both sides thereof. Furthermore, the eye temperature heating element 66 of the present invention may be cut into the central portion such as by replacing the V notch 49 with a large V-shaped notch or by making a curved surface, and processing such as a notch or a curved surface may be added.
FIG. 20C is a plan view showing another example of the eye temperature heating element 66.
The eye side 67 of the eye temperature heating element 66 is shown. Holes 74 provided with hand-cuttable cuts (perforations 47) at the center are provided through fixing portions 50, 50 in which end portions of the ear hook portions 73, 73 with 74 are sealed at both ends of the heating element body. The V notch 49 is provided on the upper side of the central part, and the lower side corresponding to the peripheral part of the nose is a curved surface.
FIG. 20D is a cross-sectional view showing another example of the eye temperature heating element 66.
Texture materials 68 and 68 made of non-woven fabric are provided on both sides of the eye temperature heating element 66. Space portions 52 and 52 are formed between the sorting portions 33 and 33 and the texture materials 68 and 68. At least one of the texture materials 68 may be replaced with the local ventilation material 51 or the local ventilation material 51 with the texture material 68. For example, the texture material 68 on the eye side 67 may be replaced with the local ventilation material 51 or the local ventilation material 51 with the texture material 68.
FIG. 20E is a plan view showing an example of the face temperature heating element 69.
This is a mask-shaped face temperature heating element 69. Ear hook rubbers 75 and 75 which are ear hooks 73 are provided at both ends, the central section 33 is wide, and three section heat generating sections 32, 32 and 32 are provided on both sides. The ear hook rubber 75, 75 may be replaced with an ear hook string 75.
FIG. 20F is a perspective view showing another example of the face temperature heating element 69.
This is an assembled face temperature heating element 69. The segment heating element heating element 20 such as the stripe heating element 22 is inserted and used in a mask 70 having ear rubbers 75 and 75 at both ends and provided with a heating element accommodating part 71 supported by the heating element holding part 72. To do.
If the heating element having the structure of the tunnel ventilation heating element 26 or the drug heating element 27 is used as the segment heating part heating element 20, it can be used at a more appropriate temperature.
FIG. 20 (g) is a plan view showing an example of the nasal heating element 69A.
An integrated nasal heating element 69A is provided with a heating section 31 having one section heating section 32 on each side of the central section 33, and can heat at least areas corresponding to both sides of the nose.
If the heat generating part 31 is a heat generating part having the structure of the tunnel ventilation heat generating element 26 or the drug heat generating element 27, it can be used at a more appropriate temperature.
FIG. 20 (h) is a plan view showing another example of the tunnel ventilation heating element 26 for the face temperature heating element 69 and the nose temperature heating element 69A.
The local ventilation member 51 covers the two divided heat generating portions 32 and 32 provided with the central dividing portion 33 interposed therebetween, and is fixed to both end portions of the tunnel vent heat generating body 26 via fixing portions 50 and 50. .

図21(a)は、折り畳まれる前の剛軟発熱体21の他の一例を示す平面図である。中央の区分け部33が両側の区分発熱部32、32の高さの和の半分より大きい幅の区分け部33を有する。
図21(b)は、外袋付き外仮着折り畳み発熱体28の一例を示す平面図である。
図21(c)は、同K−Kの断面図である。
剛軟発熱体21を通気性の被覆材35側を内側にして中央の区分け部33で2つに折り畳まれた発熱体60が、外袋57の一部と外仮着層58を介して外仮着され、非通気性の収納体である外袋57に封入された外袋付き外仮着折り畳み発熱体28である。Iノッチ49が、外袋57のシール部59内に設けられ、シール部59の周辺部とは当接していない。
図21(d)は、外袋付き外仮着折り畳み発熱体28の他の一例を示す平面図である。
外袋57の一部と外仮着層58を介して外仮着し、折り畳まれた発熱体60が外袋57に封入され、Iノッチ49が外袋57のシール部59内に設けられ、その一端が外袋57のシール部59の外側周辺部に当接して設けられている。 また、図示はしないが、Iノッチ49を互い違い切り込み48に換えてもよい。外袋57の一辺のシール部59内の一部領域又は全領域に設けてもよい。
FIG. 21A is a plan view showing another example of the rigid / soft heating element 21 before being folded. The central section 33 has a section 33 having a width larger than half the sum of the heights of the section heat generating sections 32 and 32 on both sides.
FIG. 21B is a plan view showing an example of the outer temporary folding folding heating element 28 with an outer bag.
FIG.21 (c) is sectional drawing of the same KK.
A heating element 60 in which the rigid and soft heating element 21 is folded in two at the central section 33 with the breathable covering material 35 side inward is attached to the outside through a part of the outer bag 57 and the outer temporary attachment layer 58. The outer temporary folding folding heating element 28 with an outer bag is temporarily attached and enclosed in an outer bag 57 which is a non-breathable storage body. An I notch 49 is provided in the seal portion 59 of the outer bag 57 and is not in contact with the peripheral portion of the seal portion 59.
FIG. 21D is a plan view showing another example of the outer temporary folding folded heating element 28 with an outer bag.
A part of the outer bag 57 is temporarily attached to the outer temporary bonding layer 58 and the folded heating element 60 is enclosed in the outer bag 57, and an I notch 49 is provided in the seal portion 59 of the outer bag 57, One end thereof is provided in contact with the outer peripheral portion of the seal portion 59 of the outer bag 57. Although not shown, the I notches 49 may be replaced with alternate cuts 48. You may provide in the one part area | region in the seal part 59 of one side of the outer bag 57, or all the areas.

図22は、剛軟発熱体21の柔軟性を示す断面図である。
支持台61から突き出された6個の区分発熱部を有する剛軟発熱体21は途中から折れ曲がり、支持台61の斜め辺に接触しており、高い柔軟性を示している。
FIG. 22 is a cross-sectional view showing the flexibility of the rigid / soft heating element 21.
The rigid and soft heating element 21 having six divided heat generating portions protruding from the support base 61 is bent from the middle and is in contact with the oblique side of the support base 61, and exhibits high flexibility.

図23は、単一発熱部発熱体17の非柔軟性を示す断面図である。
支持台61から突き出された市販の貼るカイロである単一発熱部発熱体17は突き出し方向に伸びたままで、支持台61の斜め辺に接触しておらず、 柔軟性はない。
FIG. 23 is a cross-sectional view showing the non-flexibility of the single heating element heating element 17.
The single heating element heating element 17 which is a commercially available sticker protruding from the support base 61 extends in the protruding direction, does not contact the oblique sides of the support base 61, and is not flexible.

図24(a)は、間欠的な切り込み44の一種である互い違い切り込み48の一例を示す平面図である。3列の、切り込み部45が繋ぎ部46より長い互い違い切り込み48である。
図24(b)は、間欠的な切り込み44の一種であるミシン目47の一例を示す平面図である。切り込み部45が繋ぎ部46より長いミシン目47である。手切れ可能用として好ましい。
図24(c)は、間欠的な切り込み44の一種であるミシン目47の他の一例を示す平面図である。
切り込み部45と繋ぎ部46が同じ長さのミシン目47の一例である。
FIG. 24A is a plan view showing an example of staggered cuts 48 that are a kind of intermittent cuts 44. Three rows of cuts 45 are staggered cuts 48 in which the cuts 45 are longer than the connecting parts 46.
FIG. 24B is a plan view showing an example of a perforation 47 that is a kind of intermittent cuts 44. The cut portion 45 is a perforation 47 longer than the joint portion 46. It is preferable for hand cutting.
FIG. 24C is a plan view showing another example of a perforation 47 which is a kind of intermittent cuts 44.
The cut portion 45 and the connecting portion 46 are an example of a perforation 47 having the same length.

本発明の発熱体の物性においては、同一発熱組成物、同一包材を使用して製造された複数の収納体、発熱体をそれぞれを一つの群と見なし、その群は同一物性を有するとする。これに基づき個々の収納体、発熱体の物性を規定する。即ち、複数の物性が、同一サンプルから測定採取できない場合は、一つの群から複数のサンプルを取り出し、測定し、それらを組み合わせた物性をその群に属する、各サンプルの物性とする。
前記「 同一発熱組成物、同一包材を使用して製造された」には、同一製造番号を有する複数の発熱体等も含む。同一製造番号の発熱体は同一物性や同一特性を有するものとする。
In the physical properties of the heating element of the present invention, a plurality of storage bodies and heating elements manufactured using the same exothermic composition and the same packaging material are regarded as one group, and the group has the same physical properties. . Based on this, the physical properties of the individual storage bodies and heating elements are defined. That is, when a plurality of physical properties cannot be measured and collected from the same sample, a plurality of samples are taken out from one group, measured, and the physical property obtained by combining them is set as the physical property of each sample belonging to the group.
The “manufactured using the same heating composition and the same packaging material” includes a plurality of heating elements having the same manufacturing number. The heating elements with the same serial number have the same physical properties and characteristics.

前記同一製造番号を有する複数の発熱体とは、
1.製造番号が同一である発熱体で2個以上複数の発熱体からなる群か ら選ばれた発熱体
2.製造番号が付与されておらず、同一原料、同一包材を使用して製造 された2個以上複数の発熱体からなる群から選ばれた発熱体
3.余剰水値が0を超える含余剰水発熱組成物を使用する場合は、該含 余剰水発熱組成物を含有した発熱体の製造番号を採用する。
The plurality of heating elements having the same production number is
1. 1. A heating element having the same production number selected from the group consisting of two or more heating elements. 2. A heating element selected from the group consisting of two or more heating elements which are not assigned a serial number and are manufactured using the same raw material and the same packaging material. When using an excess water exothermic composition having an excess water value exceeding 0, the production number of the heating element containing the excess water exothermic composition is adopted.

前記製造番号とは、発熱体の製造の手がかりを示す番号、記号等を意味する。発熱体、外袋に収容された発熱体の外袋、ピロー包装や箱等の2個以上複数の発熱体を有するまとめ袋の何れかに付与されている製造番号又はそれに相当する番号、記号、ロットナンバー、製造ロット、バーコード等で、生産年、月、製造機械等の情報を有する。複数の発熱体が多くまとめられ、番号や記号が明確なものであれば制限はない。S10 2437、7B08、510264等が一例として挙げられる。   The production number means a number, a symbol or the like indicating a clue for producing the heating element. Production number given to any of the heating element, the outer bag of the heating element accommodated in the outer bag, and the collective bag having two or more heating elements such as pillow packaging and boxes, or the corresponding number, symbol, It has lot number, production lot, barcode, etc., and information on production year, month, production machine, etc. There are no restrictions as long as a plurality of heating elements are collected and the numbers and symbols are clear. Examples include S10 2437, 7B08, 510264, and the like.

一例として、同一製造番号の試料群を例に挙げて、物性測定を説明すると、 試料群から 第一のサンプル、第二のサンプル、第三のサンプルを選び、第一のサンプルは、発熱前の発熱組成物の余剰水値及び立ち上がり昇温速度、収納体のループスティフネスを測定する。
第二のサンプルは、発熱終了後の収納体のループスティフネスを測定する。 第三のサンプルは、発熱前の最小剛軟度及び発熱終了後の最小剛軟度を測定する。ただし、 発熱前の最小剛軟度を第三のサンプルで、発熱終了後の最小剛軟度を第四のサンプルで測定してもよい。
サンプルの数としては、第一のサンプルの数は、1個以上であり、好ましくは2個以上であり、より好ましくは3個以上である。第二のサンプルの数は、1個以上であり、好ましくは2個以上であり、より好ましくは3個以上である。
前記余剰水値、ループスティフネス、最小剛軟度等の各サンプルの値はサンプル数の算術平均を採用するのが好ましい。
As an example, taking a sample group with the same serial number as an example, physical property measurement will be described. Select the first sample, second sample, and third sample from the sample group, and the first sample is The surplus water value of the exothermic composition, the rising temperature rise rate, and the loop stiffness of the container are measured.
The second sample measures the loop stiffness of the container after the end of heat generation. The third sample measures the minimum bending resistance before heat generation and the minimum bending resistance after heat generation. However, the minimum bending resistance before heat generation may be measured with the third sample, and the minimum bending resistance after heat generation may be measured with the fourth sample.
As the number of samples, the number of first samples is 1 or more, preferably 2 or more, and more preferably 3 or more. The number of second samples is 1 or more, preferably 2 or more, more preferably 3 or more.
It is preferable that the arithmetic mean of the number of samples is adopted as the value of each sample such as the surplus water value, loop stiffness and minimum bending resistance.

前記発熱体の厚みは、ノギスを用いて3点以上を測定し、平均値を求めることにより測定する。   The thickness of the heating element is measured by measuring three or more points using a caliper and obtaining an average value.

前記「発熱終了後の発熱体の区分発熱部の端部を開け」の端部とは、区分発熱部の一端部又は両端部の少なくとも一方を示す。   The end of “open the end of the divided heat generating portion of the heating element after the end of heat generation” indicates at least one of one end or both ends of the divided heat generating portion.

1.ループスティフネスの測定
幅0.5〜1cm、好ましくは1cmで、ループ長50mm以上の帯状のサンプルの中央付近で、ループ長50mm円形ループをつくり、この円形ループを外側から5mm押し込んだときにかかる荷重をサンプル幅当たりに換算し、mN/cm単位で表示した値をループスティフネスとする。
また、必要であれば、1gF≒9.8mNで換算する。
即ち、
ループスティフネス〔mN/cm〕=測定ループスティフネス〔mN〕/測 定サンプルの幅〔cm〕
測定点は、1点以上であり、好ましくは2点以上であり、より好ましくは3 点以上である。

2.ループスティフネスの測定用サンプルン
1)発熱前の発熱体の収納体のサンプル
発熱体の区分発熱部の端部を開け、含水発熱組成物を取り出し、残った収納体の非シール領域である区分発熱部領域とシール領域である区分け部をほぼ直交して通過する方向で、発熱体の周辺部のシール部を含めた領域の長手方向に切り取られた収納体の切片をサンプルとする。
2)発熱終了後の発熱体の収納体のサンプル
発熱体を通常の雰囲気下で発熱させ、該発熱体の温度が37℃を下回った時点を、使用終了と仮定し、発熱終了後の発熱体の区分発熱部の端部を開け、発熱組成物を取り出し、残った収納体の非シール領域である区分発熱部領域とシール領域である区分け部をほぼ直交して通過する方向で、発熱体の周辺部のシール部を含めた領域の長手方向に切り取られた収納体の切片をサンプルとする。
3)発熱前の発熱体の区分け部のサンプル
発熱前の発熱体の区分け部に沿って、発熱体の周辺部のシール部を含めた領域の長手方向に切り取られた切片をサンプルとする。発熱前の発熱体の収納体の区分け部でもよい。
4)発熱終了後の発熱体の区分け部のサンプル
発熱終了後の発熱体の区分け部に沿って、発熱体の周辺部のシール部を含めた領域の長手方向に切り取られた切片をサンプルとする。発熱終了後の発熱体の収納体の区分け部でもよい。
1. Loop stiffness measurement
A circular loop with a loop length of 50 mm is formed near the center of a strip-shaped sample having a width of 0.5 to 1 cm, preferably 1 cm, and a loop length of 50 mm or more, and the load applied when the circular loop is pushed in by 5 mm from the outside is measured per sample width. The value displayed in mN / cm is defined as loop stiffness.
If necessary, it is converted with 1 gF≈9.8 mN.
That is,
Loop stiffness [mN / cm] = measurement loop stiffness [mN] / measurement sample width [cm]
The number of measurement points is 1 point or more, preferably 2 points or more, and more preferably 3 points or more.

2. Sample for measurement of loop stiffness 1) Open the end of the segment heating element of the sample heating element of the heating element container before heat generation, take out the water-containing heat generating composition, and classify heat generation that is the non-sealed area of the remaining container A section of the storage body cut in the longitudinal direction of the region including the seal portion at the peripheral portion of the heating element in a direction that passes through the section portion that is the partial region and the seal region substantially orthogonally is used as a sample.
2) Sample of storage body for heating element after completion of heat generation When the heating element is heated in a normal atmosphere and the temperature of the heating element falls below 37 ° C, it is assumed that the use has ended, and the heating element after the end of heat generation Open the end of the segment heat generating part, take out the heat generating composition, and pass the heat generating element in a direction passing through the section heat generating area which is the non-sealed area of the remaining container and the section which is the seal area almost orthogonally. A section of the storage body cut in the longitudinal direction of the region including the peripheral seal portion is taken as a sample.
3) Sample of section of heating element before heat generation A section cut in the longitudinal direction of the region including the seal portion around the heating element along the section of the heating element before heat generation is used as a sample. It may be a section of the storage body of the heating element before heat generation.
4) Sample of the section of the heating element after the end of heat generation A sample cut in the longitudinal direction of the region including the seal part at the periphery of the heating element along the section of the heating element after the end of heat generation is used as a sample. . It may be a section of the storage body of the heating element after the end of heat generation.

前記サンプルのループスティフネスの測定において、
1)ループ長50mmのループ形成部位にマジックペンやフェルトペン等でマーキングを施してもよい。
2)粘着層等の固定手段を有する場合は、該固定手段が内側になるようにし、セパレータは除いて、ループスティフネスを測定する。
3)前記サンプルの長さが短い場合は、サンプルに、固定用フィルム等を継ぎ足して測定してもよい。例えば、ループ長50mmのサンプルに、固定用フィルム等を継ぎ足して測定してもよい。
4)発熱体又は収納体が局所通気材、風合い材、温度緩衝材等をを有する場合は、それらを取り除き、サンプルを切り出す。しかし、それらが発熱体又は収納体に固定され、それらを外すと発熱体又は収納体が壊れてしまう場合は、できる限りそれらを除き、サンプルを作成する。これは、最大引張強度や破断伸びの測定用サンプルにも適用する。
In measuring the loop stiffness of the sample,
1) Marking may be performed with a magic pen, a felt pen, or the like on a loop forming portion having a loop length of 50 mm.
2) When the fixing means such as the adhesive layer is provided, the loop stiffness is measured with the fixing means inside, except for the separator.
3) When the length of the sample is short, it may be measured by adding a fixing film or the like to the sample. For example, measurement may be performed by adding a fixing film or the like to a sample having a loop length of 50 mm.
4) If the heating element or the storage body has a local ventilation material, a texture material, a temperature buffer material, etc., remove them and cut out the sample. However, when they are fixed to the heating element or the storage body and the heating element or the storage body breaks when they are removed, samples are prepared by removing them as much as possible. This also applies to samples for measuring maximum tensile strength and elongation at break.

前記発熱体又は収納体の区分け部の最大引張強度及び破断伸び測定用サンプルは、発熱体又は収納体の区分け部を切り取り、区分け部の破断伸びは、区分け部の長手方向に沿って伸ばしたときの破断伸びの値を採用する。
区分け部の最大引張強度、破断伸びを測定するサンプルの幅と長さは、最大引張強度及び破断伸びが測定できれば制限はない。区分け部のサイズにしたがってサンプルを作成し、測定すればよい。幅は20mm以下、長さは200mm以下が好ましい。
When the sample for measuring the maximum tensile strength and breaking elongation of the heating element or storage section is cut out from the heating element or storage section, the breaking elongation of the section is extended along the longitudinal direction of the section. The value of elongation at break is used.
The width and length of the sample for measuring the maximum tensile strength and breaking elongation of the section are not limited as long as the maximum tensile strength and breaking elongation can be measured. A sample may be prepared and measured according to the size of the section. The width is preferably 20 mm or less and the length is preferably 200 mm or less.

前記ループスティフネスを測定する装置は、ループスティフネスが測定できれば制限はないが、東洋精機(株)製ループスティフネステスタ、テスター産業(株)製ループスティフネステスタ等が一例として挙げられる。   The apparatus for measuring the loop stiffness is not limited as long as the loop stiffness can be measured, but examples include a loop stiffness tester manufactured by Toyo Seiki Co., Ltd., a loop stiffness tester manufactured by Tester Sangyo Co., Ltd., and the like.

本発明の引張試験は、JIS L1096に準じて行われる。例えば、包材は、幅8mm×長さ80mmにカットされたサンプルの端部をロードセルに荷重をかけることなく、すべてゆるみを除去するのに十分な引張力をかけられ、チャック間距離を20mmに調整され、装置に設置される。次に試料の温度は所望の試験温度(例えば25℃、80℃等)に安定化された後、装置を稼働させ、クロスヘッド速度を約50mm/分でチャック間を伸ばし、チャートに記録する。
尚、測定用サンプルは、幅が3〜20mm、長さが30〜200mmであることが好ましく、チャック間距離は、10〜100mmであることが好ましい。
1)最大引張強度 (g/mm)
試料の引張強度のうち最大の値をチャートから読みとり、試料幅で除して、 mm単位に換算した値を最大引張強度とする。
2)破断伸び
試料が破断した時の伸びをチャートから読みとり、破断伸びとする。
即ち、
P(%)=100×(LB−LS)/LS
P : 破断伸び
LB : 破断時の試料の長さ(破断時のチャック間距離)
LS : 設置時の試料の長さ(設置時のチャック間距離)
また、試料の幅が狭い場合は、台紙等に固定し、試験してもよい。
The tensile test of the present invention is performed according to JIS L1096. For example, the wrapping material can be subjected to a tensile force sufficient to remove all looseness without applying a load to the load cell at the end of the sample cut to a width of 8 mm and a length of 80 mm, and the distance between chucks is 20 mm. Adjusted and installed in the device. Next, after the temperature of the sample is stabilized at a desired test temperature (for example, 25 ° C., 80 ° C., etc.), the apparatus is operated, and the crosshead speed is increased to about 50 mm / min.
The measurement sample is preferably 3 to 20 mm in width and 30 to 200 mm in length, and the distance between chucks is preferably 10 to 100 mm.
1) Maximum tensile strength (g / mm)
The maximum value of the tensile strength of the sample is read from the chart, divided by the sample width, and the value converted to mm unit is the maximum tensile strength.
2) Elongation at break
The elongation at the time when the sample breaks is read from the chart and defined as the breaking elongation.
That is,
P (%) = 100 × (LB−LS) / LS
P: Elongation at break
LB: Length of sample at break (distance between chucks at break)
LS: Length of sample at installation (distance between chucks at installation)
In addition, when the width of the sample is narrow, it may be fixed to a mount or the like and tested.

本発明の立ち上がり昇温速度測定方法は、発熱組成物や発熱組成物成形体を使用し、風のない、周囲温度が23 〜30℃、好ましくは23 ℃の条件下、試料が測定時、空気と接触できる状態で測定する。発熱組成物や発熱組成物成形体が熱を有している場合は、発熱組成物や発熱組成物成形体を周囲温度にしてから測定をすることが好ましい。発熱温度の測定はデータコレクタを用い、測定タイミング2秒で、試験開始時の温度(Ts)と試験開始5分後の温度(Te)を測定する。温度計を用いることもできる。
1)脚付き支持台の塩化ビニル等のプラスチック製支持板(厚さ5mm×長さ600mm×幅600mm)の裏面の中央部付近に成形型の抜き穴形状を覆うように磁石を設ける。
2)温度センサー又は温度計の球部を支持板中央部上に置く。
3)厚さ約80μmの粘着剤層付き厚さ25μm×長さ250mm×幅200mmのポリエチレンフィルムの中央がセンサー又は温度計の球部のところにくるようにして、粘着剤層を介して支持板に貼り付ける。
4)前記ポリエチレンフィルムの中央部上に、長さ80mm×幅50mm×高さ4mmの抜き穴を持つ長さ250mm×幅200mmの型板を置き、その抜き穴付近に試料を置き、充填板を型板面に沿って動かし、型内に試料を充填する。次に、支持板下の磁石を除き、温度測定を開始する。
2.発熱組成物成形体の場合
1)〜3)は発熱組成物の場合と同じである。
4)前記ポリエチレンフィルムの中央部上に、発熱組成物成形体を置き、温度測定を開始する。発熱組成物成形体が簡単に崩れる場合は崩して発熱組成物と同じようにして測定する。測定する発熱組成物は、発熱組成物を外袋等の非通気性袋に封入して、23℃の環境下に置き、発熱組成物が該環境下になってから測定することが好ましい。
3.立ち上がり昇温速度
立ち上がり昇温速度は発熱開始時の温度(Ts)と試験開始5分後の温度(Te)の差(Te−Ts)である。
The rising temperature rising rate measuring method of the present invention uses an exothermic composition or an exothermic composition molded body, is airless, has an ambient temperature of 23 to 30 ° C., and preferably 23 ° C. Measure in a state where it can come into contact with When the exothermic composition or the exothermic composition molded body has heat, the measurement is preferably performed after the exothermic composition or exothermic composition molded body is brought to the ambient temperature. The exothermic temperature is measured using a data collector, and the temperature at the start of the test (Ts) and the temperature 5 minutes after the start of the test (Te) are measured at a measurement timing of 2 seconds. A thermometer can also be used.
1) A magnet is provided in the vicinity of the center of the back surface of a plastic support plate (thickness 5 mm × length 600 mm × width 600 mm) such as vinyl chloride of a support base with legs so as to cover the shape of the punched hole of the mold.
2) Place the bulb of the temperature sensor or thermometer on the center of the support plate.
3) Support plate through the adhesive layer so that the center of the polyethylene film with a thickness of 25 μm × length 250 mm × width 200 mm with an adhesive layer of about 80 μm is at the sphere of the sensor or thermometer Paste to.
4) On the center of the polyethylene film, place a template plate of length 250 mm x width 200 mm with a hole of length 80 mm x width 50 mm x height 4 mm, place a sample near the hole and place the filling plate Move along the template surface to fill the sample with the sample. Next, temperature measurement is started except for the magnet under the support plate.
2. In the case of the exothermic composition molded body, 1) to 3) are the same as in the case of the exothermic composition.
4) Place the exothermic composition molded body on the center of the polyethylene film, and start temperature measurement. When the exothermic composition molded body is easily broken, it is broken and measured in the same manner as the exothermic composition. The exothermic composition to be measured is preferably measured after the exothermic composition is sealed in a non-breathable bag such as an outer bag and placed in an environment of 23 ° C. and the exothermic composition is in that environment.
3. Rise temperature rise rate The rise temperature rise rate is the difference (Te−Ts) between the temperature (Ts) at the start of heat generation and the temperature (Te) 5 minutes after the start of the test.

本発明の発熱性能試験は、発熱体を使用し、風のない、周囲温度23〜30℃、好ましくは23℃の条件下、試料が測定時、空気と接触できる状態で測定する。発熱体を周囲温度にしてから測定をすることが好ましい。発熱温度の測定はデータコレクタを用い、発熱特性を測定する。温度計を用いることもできる。
1)脚付き支持台の塩化ビニル等のプラスチック製支持板(厚さ5mm×長さ600mm×幅600mm)上にタオル布を4枚重ねて敷く。
2)温度センサー又は温度計の球部をタオル布中央部上に置く。
3)発熱体の非通気面を温度センサー又は温度計の球部に向けて、発熱体の中央部を該温度センサー又は温度計の球部のところにくるようにして置く。
4)その上にタオル布を4枚重ねる。
5)温度測定を開始する。
In the heat generation performance test of the present invention, a heating element is used, and measurement is performed in a state where the sample can be in contact with air at the time of measurement under the condition of no wind and ambient temperature of 23 to 30 ° C., preferably 23 ° C. It is preferable to make the measurement after bringing the heating element to ambient temperature. The heat generation temperature is measured using a data collector. A thermometer can also be used.
1) Lay four towel cloths on a plastic support plate (thickness 5 mm × length 600 mm × width 600 mm) such as vinyl chloride on a support base with legs.
2) Place the bulb of the temperature sensor or thermometer on the center of the towel cloth.
3) Place the non-ventilated surface of the heating element toward the bulb of the temperature sensor or thermometer, and place the center of the heating element at the bulb of the temperature sensor or thermometer.
4) Overlay four towel cloths on it.
5) Start temperature measurement.

本発明における剛軟度とは、剛性(ハリ、コシ)又は柔軟性を示し、JIS L 1096A法(45°カンチレバー法)に準じ、試料として発熱体自身を用いたこと以外は同法に従ったものである。即ち、一端が45°(度)の斜面をもつ表面の滑らかな水平台の上に発熱体の一辺をスケール基線に合わせて置く。次に、適当な方法によって発熱体を斜面の方向に緩やかに滑らせて、発熱体の一端の中央点が斜面と接したときに他端の位置をスケールによって読む。剛軟度は発熱体が移動した長さ(mm)で示され、それぞれ発熱体5個を測り、平均値を出す。ただし、水平台には、発熱体の発熱組成物入り発熱部が移動方向距離が5mm以上、移動方向と直交する方向の距離が20mm以上残っていることとする。また、水平台に置かれた発熱体の長さは発熱組成物が存在している領域を横断していること又は発熱組成物が存在している領域と存在していない領域を直線的に横断していることとする。
1)粘着剤層を有する発熱体の剛軟度の測定算出方法
(1)発熱体の粘着剤層を有しない側の面を水平台上に置いて測定する。
(2)発熱体の粘着剤層を有する側が水平台側面に向かい合い、粘着剤層 が水平台につき測定できない場合は、粘着剤層にカバーを付け、カ バーを付けた粘着剤層側の面を水平台上に置いて測定する。
(3)粘着剤層付き発熱体の粘着剤層を覆うカバーは、剛軟度が30mm 以下の、好ましくは20mm以下の、より好ましくは10mm以下 の、更に好ましくは5mm以下のプラスチックフィルム、及び/又 は、厚み50μm以下、好ましくは25μm以下、より好ましくは 1μm〜25μm、更に好ましくは1μm〜15μm、更に好まし くは1μm〜10μmの腰のないプラスチックフィルム、或いは、 軽く揉んでシワができるプラスチックフィルム等の腰のない、柔ら かいフィルムを使用する。ポリエチレンフィルム、塩化ビニリデン フィルム、塩化ビニルフィルム等のラップフィルムやロール状ポリ 袋が一例として挙げられる。
2)本発明の最小剛軟度の測定と算出方法
1個の発熱体について、一面を水平台上に置いて、各方向の剛軟度を測定する。次に、他の一面を水平台上に置いて、同様に測定して、それぞれの剛軟度を出す。各値の中で最も小さい値の剛軟度を最小剛軟度とする。
3)基材や被覆材等の包装材の剛軟度は、短手100mm×長手200mmの試験片を作成し、長手方向(200mm方向)の剛軟度を採用する。該包材から上記サイズの試験片が作成できない場合は、可能な限り、上記試験片に近いサイズの試験片を作成し測定する。
In the present invention, the bending resistance indicates rigidity (harness, stiffness) or flexibility, and conforms to the JIS L 1096A method (45 ° cantilever method) except that the heating element itself is used as a sample. Is. That is, one side of the heating element is placed on the scale base line on a smooth horizontal table having a slope with a 45 ° (degree) at one end. Next, the heating element is slid gently in the direction of the slope by an appropriate method, and when the central point of one end of the heating element contacts the slope, the position of the other end is read on the scale. The bending resistance is indicated by the length (mm) that the heating element has moved. Each of the five heating elements is measured and an average value is obtained. However, it is assumed that the heating unit containing the heat generating composition of the heating element has a moving direction distance of 5 mm or more and a distance in the direction orthogonal to the moving direction of 20 mm or more remains on the horizontal table. In addition, the length of the heating element placed on the horizontal table crosses the region where the exothermic composition exists, or linearly crosses the region where the exothermic composition exists and the region where the exothermic composition does not exist. Suppose you are.
1) Measurement calculation method of bending resistance of heating element having pressure-sensitive adhesive layer (1) The surface of the heating element that does not have the pressure-sensitive adhesive layer is placed on a horizontal table and measured.
(2) If the side of the heating element that has the adhesive layer faces the side of the horizontal base and the adhesive layer cannot be measured on the horizontal base, attach the cover to the adhesive layer and cover the adhesive layer side with the cover. Place on a horizontal table and measure.
(3) The cover covering the pressure-sensitive adhesive layer of the heating element with the pressure-sensitive adhesive layer has a plasticity film having a bending resistance of 30 mm or less, preferably 20 mm or less, more preferably 10 mm or less, more preferably 5 mm or less, and / or Alternatively, a plastic film having a thickness of 50 μm or less, preferably 25 μm or less, more preferably 1 μm to 25 μm, still more preferably 1 μm to 15 μm, and even more preferably 1 μm to 10 μm, or plastic that can be wrinkled lightly. Use a soft film such as film. Examples include wrap films such as polyethylene film, vinylidene chloride film, vinyl chloride film, and roll-shaped plastic bags.
2) Measurement and calculation method of minimum bending resistance of the present invention For one heating element, one surface is placed on a horizontal base and the bending resistance in each direction is measured. Next, the other surface is placed on a horizontal table and measured in the same manner to obtain each bending resistance. The smallest value of the bending resistance is set as the minimum bending resistance.
3) As for the bending resistance of the packaging material such as the base material and the covering material, a short 100 mm × longitudinal 200 mm test piece is prepared, and the bending resistance in the longitudinal direction (200 mm direction) is adopted. When a test piece of the above size cannot be produced from the packaging material, a test piece having a size as close to the test piece as possible is produced and measured.

本発明の最小剛軟度差は、発熱前の最小剛軟度と、発熱前の最小剛軟度方向で発熱終了後の剛軟度との差である。
即ち、
最小剛軟度差=(発熱前の最小剛軟度)−(発熱前の最小剛軟度方向で、
発熱終了後の剛軟度)
である。
発熱終了後の最小剛軟度方向の剛軟度は、得られた発熱体を通常の雰囲気下で発熱させ、該発熱体の温度が37℃を下回った時点を、使用終了と仮定し、発熱前の最小剛軟度と同じ方向の発熱終了後の発熱体の剛軟度である。
The minimum bending resistance difference of the present invention is a difference between the minimum bending resistance before heat generation and the bending resistance after heat generation in the direction of minimum bending resistance before heat generation.
That is,
Minimum bending resistance difference = (Minimum bending resistance before heat generation)-(Minimum bending resistance before heat generation)
Bending after heat generation)
It is.
The bending resistance in the direction of the minimum bending resistance after the end of heat generation is determined by causing the obtained heating element to generate heat in a normal atmosphere and assuming that the use is completed when the temperature of the heating element is lower than 37 ° C. This is the bending resistance of the heating element after the end of heating in the same direction as the previous minimum bending resistance.

本発明の最小剛軟度の変化とは、発熱体又は発熱部の発熱前に対する発熱終了後の最小剛軟度の割合を示す値である。最小剛軟度変化は、次式により算出される。
最小剛軟度変化(%) =((B−A)/A)×100
A:発熱前の発熱体の最小剛軟度(mm)
B:発熱終了後の発熱体の該最小剛軟度(mm)
1)測定中の発熱は無視し、速やかに測定する。
2)得られた発熱体を、風のない20℃の環境下の空気中に放置し、発熱させ、発熱が終わり、該発熱体の温度が環境温度と同じになった時点を、発熱終了とし、該発熱体に対して、発熱前の発熱体の最小剛軟度を示した方向に対する剛軟度を測定し、発熱終了後の発熱体の最小剛軟度とする。
または、身体又は衣服に取り付けて、発熱させ、発熱終了後に、該発熱体に対して、発熱前の発熱体の最小剛軟度を示した方向に対する剛軟度を測定し、発熱終了後の発熱体の最小剛軟度とする。
3)発熱前の発熱体の最小剛軟度の測定方向と発熱終了後の発熱体の該最小剛軟度の測定方向は同じ測定方向とする。
4)発熱前の発熱体の最小剛軟度(A)が測定できず、発熱終了後の最小剛軟度(B)が測定できる場合、発熱終了後の発熱体の該最小剛軟度(B)を有する方向と同一方向の発熱体の最長の長さを最小剛軟度(A)とする。
The change in the minimum bending resistance of the present invention is a value indicating the ratio of the minimum bending resistance after the end of heat generation to the heating element or the heating portion before the heat generation. The minimum bending resistance change is calculated by the following equation.
Minimum bending resistance change (%) = ((B−A) / A) × 100
A: Minimum bending resistance (mm) of the heating element before heat generation
B: The minimum bending resistance (mm) of the heating element after completion of heat generation
1) Ignore heat generation during measurement and measure immediately.
2) The obtained heating element is left in air in a 20 ° C. environment without wind to generate heat. When the heating is finished and the temperature of the heating element becomes equal to the environmental temperature, the heating is finished. The bending resistance of the heating element in the direction showing the minimum bending resistance of the heating element before heating is measured to obtain the minimum bending resistance of the heating element after the end of heating.
Or, it is attached to the body or clothes to generate heat, and after the end of heat generation, measure the bending resistance of the heating element in the direction indicating the minimum bending resistance of the heating element before heat generation, and generate heat after the end of heat generation. Let it be the minimum bending resistance of the body.
3) The measurement direction of the minimum bending resistance of the heating element before heat generation and the measurement direction of the minimum bending resistance of the heating element after completion of heat generation are the same measurement direction.
4) When the minimum bending resistance (A) of the heating element before the heat generation cannot be measured and the minimum bending resistance (B) after the heating is completed can be measured, the minimum bending resistance (B) of the heating element after the heating is completed ) Is the longest length of the heating element in the same direction as the direction having the minimum bending resistance (A).

本発明の最小剛軟度率とは、発熱体又は発熱部の最小剛軟度とその方向の全長に対する剛軟度率であり、次式により算出される。
最小剛軟度率(%)=(A/L)×100
A:発熱体又は発熱部の最小剛軟度
L:最小剛軟度を示す方向における発熱体又は発熱部の 全長
The minimum bending resistance of the present invention is the bending resistance with respect to the minimum bending resistance of the heating element or the heating portion and the total length in the direction, and is calculated by the following equation.
Minimum flexural modulus (%) = (A / L) × 100
A: Minimum bending resistance of heating element or heating part
L: Total length of the heating element or heating part in the direction showing the minimum bending resistance

本発明の最大剛軟度比とは、発熱体の最小剛軟度に対する発熱体の最小剛軟度を有する方向と直角方向の剛軟度との比率である。取り扱い性を示す指標であり、この値が大きいほど取り扱い性がよい。すなわち一方向に曲がりやすく、それと直角方向に曲がりにくい構造を有していると、曲げに方向性が生じ、曲がりにくい方向が柱になり、発熱体を人体等に貼りやすい。最大剛軟度比は発熱体の取り扱い易さを示し、値が大きい程、取り扱いが容易である。
最大剛軟度比=(C/A)
A:発熱体又は発熱部の最小剛軟度
C:発熱体の最小剛軟度を有する方向と直角方向の剛軟 度
ただし、最大剛軟度が大きすぎて測定不能の場合は、そ の方向の最大長さを剛軟度とする。
The maximum bending resistance ratio of the present invention is the ratio of the direction having the minimum bending resistance of the heating element to the bending resistance of the heating element relative to the minimum bending resistance of the heating element. This is an index indicating handleability, and the larger the value, the better the handleability. That is, if it has a structure that is easy to bend in one direction and is difficult to bend in a direction perpendicular to it, directionality occurs in the bending, and the direction that is difficult to bend becomes a column, and the heating element is easily attached to a human body or the like. The maximum bending resistance ratio indicates the ease of handling of the heating element, and the larger the value, the easier the handling.
Maximum stiffness ratio = (C / A)
A: Minimum bending resistance of heating element or heating part
C: Bending softness in a direction perpendicular to the direction having the minimum bending softness
However, if the maximum bending resistance is too large to be measured, the maximum length in that direction shall be the bending resistance.

任意の剛軟度、剛軟度の変化を求める場合は、測定方法は同じあり、前記最小剛軟度、最小剛軟度変化、最小剛軟度率、の各項目の記述において、「最小」の文字を除けばよい。また剛軟度率の場合は最大剛軟度率の「最大」の文字を除けばよい。   The measurement method is the same when obtaining arbitrary bending resistance and bending resistance change. In the description of each item of the minimum bending resistance, the minimum bending resistance change, and the minimum bending resistance ratio, “Minimum” You can remove the characters. In the case of the bending resistance, the character “maximum” of the maximum bending resistance may be removed.

前記固定部とは、発熱体を製造する時に包材と固定する領域であり、接着層、粘着層、ヒートシール層等又はそれらの任意の混合層、それらの組み合わせから構成される。   The said fixing | fixed part is an area | region fixed to a packaging material when manufacturing a heat generating body, and is comprised from an adhesive layer, an adhesion layer, a heat seal layer etc. or those arbitrary mixed layers, and those combinations.

前記接着層とは、接着剤、粘着剤、ヒートシール材等から構成され、発熱体を製造する時に、包材と包材、及び/又は、包材を発熱体に固定したり、貼り合わせたりする等の固定層であり、包材等が固定できれば制限はない。構成材料としては、シアン系接着剤等の接着剤、本明細書に記載の粘着剤、ヒートシール材が一例としてあげられる。   The adhesive layer is composed of an adhesive, a pressure-sensitive adhesive, a heat seal material, etc., and when the heating element is manufactured, the packaging material and the packaging material, and / or the packaging material is fixed to the heating element or bonded together. There is no limitation as long as the packaging material can be fixed. Examples of the constituent material include an adhesive such as a cyan adhesive, a pressure-sensitive adhesive described in the present specification, and a heat seal material.

前記粘着層とは、粘着剤から構成され、発熱体を製造する時に、包材と包材、及び/又は、包材を発熱体に固定したり、貼り合わせたりする等の固定層であり、包材等が固定できれば制限はない。構成材料としては、本明細書に記載の粘着剤が一例としてあげられる。   The pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive, and is a fixing layer such as a packaging material and a packaging material, and / or a packaging material fixed to the heating element or bonded together when manufacturing the heating element, There is no limitation as long as the packaging material can be fixed. An example of the constituent material is the pressure-sensitive adhesive described in the present specification.

前記混合層とは、接着層、粘着層、ヒートシール層の各構成成分から選ばれた少なくとも二種以上を有する層である。   The mixed layer is a layer having at least two or more selected from the constituent components of an adhesive layer, an adhesive layer, and a heat seal layer.

前記接着層、粘着層、仮着層の構成材料は、従来、化学カイロや発熱体や湿布剤に使用されているもの、技術的に開示されたものも使用できる。   As the constituent material of the adhesive layer, the pressure-sensitive adhesive layer, and the temporary adhesive layer, those conventionally used in chemical warmers, heating elements, and poultices, and those technically disclosed can be used.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。
前記余剰水値の測定には濾材として中村理科工業(株)製濾紙No.2又は、東洋濾紙(株)製濾紙No.2を使用した。また、 包材、ヒートシール層等のシール層、粘着剤層、区分け部の数や幅等を調整することにより、収納体のループスティフネスを調整した。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.
For the measurement of the excess water value, filter paper No. manufactured by Nakamura Science Co., Ltd. was used as a filter medium. 2 or filter paper No. 2 manufactured by Toyo Filter Paper Co., Ltd. 2 was used. In addition, the loop stiffness of the container was adjusted by adjusting the number and width of the packaging material, the sealing layer such as the heat sealing layer, the pressure-sensitive adhesive layer, and the section.

(実施例1)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)0.8重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し含余剰水発熱組成物を作成した。非通気性収納体である外袋に封入し、20℃の環境下において、20℃に調整した。次に、 外袋より 含余剰水発熱組成物を取り出し、含余剰水発熱組成物の余剰水値を、図1〜図5に示すようにして求めた。
中心点から放射状に45°間隔で8本の線が書かれた、円形の濾紙(中村理科工業(株)製濾紙No.2)(図1)を、ステンレス板上に置き、前記濾紙の中心に、直径30mm×高さ20mmの中空円筒状の穴を持つ長さ150mm×幅100mmの型板を置き、その中空円筒状の穴付近に、前記発熱組成物を置き、押し込み板を型板上に沿って動かし、前記発熱組成物を押し込みながら中空円筒状の穴へ入れ、型板面に沿って、前記発熱組成物を擦り切り、さらに、測定中に発熱反応が起こらないようにするために、前記穴を覆うように非吸水性の70μmポリエチレンフィルムを置き、更に、その上に、厚さ5mm×長さ150mm×幅150mmのステンレス製平板を置き、5分間保持後、該濾紙を取り出し、放射状に書かれた線に沿って、水又は水溶液の浸透軌跡を中空円筒の穴の縁である円周部から浸透先端までの距離として、各線上からその距離をmm単位で読み取り、読み取った8個の各値(a,b,c,d,e,f,g,h)を測定余剰水値とし、その8個の測定余剰水値を算術平均した値(mm)を型板の中空円筒状の穴の高さ(mm)でわり、更に100をかけた値を求めた。前記同一発熱組成物より測定した3個の値を平均した値を前記発熱組成物の余剰水値とした。該含余剰水発熱組成物の余剰水値は25であり、立ち上り昇温速度は、10℃/5分であった。
ナイロン不織布とポリエチレン製多孔質フィルムの積層体を通気性の被覆材に、セパレータ付き粘着剤層を有するポリエチレンフィルムを非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が400g/(m・day)であった。該含余剰水発熱組成物を型通し成形し、発熱組成物成形体を該基材上に積層し、、更に該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、シール幅が8mmで、長さ109mm×幅79mmの発熱部を有する長さ125mm×幅95mmの発熱体を複数個、作成した。さらに、該発熱体を非通気性収の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、肌着に貼り発熱試験をしたが、試験開始後まもなく温かくなり、温かい時間が8時間以上続いた。このように、本発明の発熱組成物の余剰水値の規定方法を使用すれば、発熱熱組成物中の余剰水量を簡単に規定できる。また、該含余剰水発熱組成物は型成形性が優れた発熱組成物であった。
Example 1
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 8 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite and 11% saline were mixed to prepare a surplus water exothermic composition. It sealed in the outer bag which is a non-breathable container, and it adjusted to 20 degreeC in 20 degreeC environment. Next, the excess water exothermic composition was taken out from the outer bag, and the excess water value of the excess water exothermic composition was determined as shown in FIGS.
Place circular filter paper (filter paper No. 2 manufactured by Nakamura Science and Technology Co., Ltd.) (Fig. 1) on which eight lines are written at 45 ° intervals radially from the center point on the stainless steel plate. Is placed on a mold plate of length 150 mm × width 100 mm having a hollow cylindrical hole of diameter 30 mm × height 20 mm, the exothermic composition is placed in the vicinity of the hollow cylindrical hole, and the pushing plate is placed on the mold plate. In order to prevent exothermic reaction from taking place during the measurement, and further scraping the exothermic composition along the template surface, while pushing the exothermic composition into the hollow cylindrical hole. A non-water-absorbing 70 μm polyethylene film is placed so as to cover the hole, and a stainless steel flat plate having a thickness of 5 mm × length of 150 mm × width of 150 mm is placed thereon, and after holding for 5 minutes, the filter paper is taken out and radially Along the line written on the water or The permeation locus of the solution is taken as the distance from the circumference that is the edge of the hole of the hollow cylinder to the permeation tip, and the distance is read in mm units from each line, and each of the eight values (a, b, c, d read) is read. , E, f, g, h) are measured surplus water values, and the arithmetic average of the eight measured surplus water values (mm) is divided by the height (mm) of the hollow cylindrical hole of the template, Further, a value multiplied by 100 was obtained. A value obtained by averaging three values measured from the same exothermic composition was used as an excess water value of the exothermic composition. The excess water value of the excess water exothermic composition was 25, and the rising temperature rising rate was 10 ° C./5 minutes.
A laminate of a nylon nonwoven fabric and a polyethylene porous film was used as a breathable coating material, and a polyethylene film having an adhesive layer with a separator was used as a non-breathable substrate. The breathability of the covering material was 400 g / (m 2 · day) in terms of moisture permeability by the Lissy method. The excess water exothermic exothermic composition is molded through a mold, the exothermic composition molded body is laminated on the substrate, the covering material is further covered, the peripheral edge of the exothermic composition molded body is heat-sealed, and the seal width A plurality of heating elements having a length of 125 mm and a width of 95 mm having a heating part of 10 mm in length and 79 mm in width were prepared. Further, the heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and attached to the underwear, and a heat generation test was conducted. However, the test became warm soon after the start of the test, and the warm time lasted for 8 hours or more. Thus, if the method for defining the excess water value of the exothermic composition of the present invention is used, the amount of excess water in the exothermic composition can be easily defined. The excess water exothermic composition was an exothermic composition with excellent moldability.

(比較例1)
実施例1における吸水性ポリマー(粒径300μm以下)を8.0重量部以外は、実施例1と同様にして、11%食塩水を混合し、余剰水値が100の含余剰水発熱組成物を使用した。該含余剰水発熱組成物の立ち上がり昇温速度は、0℃/5分であった。該含余剰水発熱組成物を使用して、実施例1と同様にして発熱体を複数個、作成した。さらに、該発熱体を非通気性収の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、発熱試験をしたが、温かくならず、温かくなる時間が非常に遅く、温度も低いままで時間が経過した。
(Comparative Example 1)
Excess water exothermic composition having an excess water value of 100 mixed with 11% saline in the same manner as in Example 1 except for 8.0 parts by weight of the water-absorbing polymer (particle size of 300 μm or less) in Example 1. It was used. The rising temperature rising rate of the excess water exothermic composition was 0 ° C./5 minutes. A plurality of heating elements were prepared in the same manner as in Example 1 using the surplus water heating composition. Further, the heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and subjected to a heat generation test. However, the heating did not become warm, the time for warming was very slow, and the time was kept low.

(比較例2)
実施例1におけるカルボキシメチルセルロースナトリウムを4.0重量部にした以外は、実施例1と同様にして、11%食塩水を混合し、余剰水値が25の含水発熱組成物を使用した。該含余剰水発熱組成物の立ち上がり昇温速度は、0℃/5分であった。該含余剰水発熱組成物を使用して、実施例1と同様にして発熱体を複数個、作成した。さらに、該発熱体を非通気性収の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、発熱試験をしたが、温かくならず、温かくなる時間が非常に遅く、温度も低いままで時間が経過した。
(Comparative Example 2)
Except that sodium carboxymethylcellulose in Example 1 was changed to 4.0 parts by weight, 11% saline was mixed and a hydrous exothermic composition having an excess water value of 25 was used in the same manner as in Example 1. The rising temperature rising rate of the excess water exothermic composition was 0 ° C./5 minutes. A plurality of heating elements were prepared in the same manner as in Example 1 using the surplus water heating composition. Further, the heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and subjected to a heat generation test. However, the heating did not become warm, the time for warming was very slow, and the time was kept low.

(実施例2)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)0.5重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。
該含余剰水発熱組成物の余剰水値は30であり、立ち上がり昇温速度は8℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ナイロン不織布とポリエチレン製多孔質フィルムの積層体を通気性の被覆材に、セパレータ付き粘着剤層を有するポリエチレンフィルムを非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が400g/(m・day)であった。
長さ107mm×幅77mmの抜き孔を有する厚さ2mmの抜き型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を長さ150mm×幅120mmの該基材のポリエチレンフィルム面上に積層した。多孔質フィルムとコポリマーフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部を幅8mmで、ヒートシールし、カットし、シール幅が8mmで、長さ109mm×幅79mmの発熱部を有する長さ125mm×幅95mmの発熱体を複数個、作製した。
該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、肌着に貼り発熱試験をしたが、すぐに温かくなり、温かい時間が8時間以上続いた。
(Example 2)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 5 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water heating composition.
The surplus water value of the surplus water-containing exothermic composition was 30, and the rising temperature rising rate was 8 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate of a nylon nonwoven fabric and a polyethylene porous film was used as a breathable coating material, and a polyethylene film having an adhesive layer with a separator was used as a non-breathable substrate. The breathability of the covering material was 400 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
A exothermic composition molded body obtained by molding the surplus water-containing exothermic composition through a die having a thickness of 2 mm and having a punching hole having a length of 107 mm and a width of 77 mm was formed on the base material having a length of 150 mm and a width of 120 mm. Laminated on the polyethylene film surface. Cover the porous film and the copolymer film so that the surfaces of the porous film and the copolymer film overlap each other, and heat seal and cut the peripheral edge of the exothermic composition molded body with a width of 8 mm, the seal width is 8 mm, and the length is 1009 mm. A plurality of heating elements having a length of 125 mm and a width of 95 mm, each having a heat generating part having a width of 79 mm, was produced.
The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and attached to the underwear, and a heat generation test was conducted.

(実施例3)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)1.0重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作製した。
該含余剰水発熱組成物の余剰水値は20であり、立ち上がり昇温速度は8℃/5分であった。余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
多孔質フィルム側にメルトブロー法により通気性粘着剤層を設けた、多孔質フィルムとナイロン不織布の積層体を被覆材に、ポリエチレン製の滑り止め材と非吸水性処理をした段ボールライナー紙の積層体を基材に使用した。被覆材の通気性はリッシー法による透湿度が900g/(m・day)であった。一対の全足形の貫通孔を有する厚さ1.0mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を基材の非吸水性処理をした段ボールライナー紙上に積層し、更に、被覆材の通気性粘着剤層側がそれに対向するように積層し、発熱組成物成形体の周縁部を圧着シールし、間欠的な切り込みのない、単一発熱部発熱体からなり、最大長さが220mmの、一対の全足形の足温発熱体を作製した。全足形の曲面を有する形状の発熱組成物成形体が型成形できるほど、含余剰水発熱組成物は型成形性が優れた発熱組成物であった。被覆材の通気性はリッシー法による透湿度が900g/(m・day)であった。さらに、該足温発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該足温発熱体を外袋より取り出し、使用したが、靴の中で、該足温発熱体が丸まらず、足温用として使い勝手がきわめてよかった。該足温発体の最小剛軟度は220mmを超え、測定不能であり、使用中、足温発熱体が丸まらず、足温用としての役割を確実に果たしていることと一致している。
(Example 3)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 0 part by weight, 0.5 part by weight of slaked lime, 0.7 part by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water heating composition.
The surplus water value of the surplus water-containing exothermic composition was 20, and the temperature rising rate was 8 ° C./5 minutes. The excess water value is the filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
Laminate of corrugated liner paper with non-water-absorbing treatment and non-slip treatment made of polyethylene with a laminate of porous film and nylon non-woven fabric provided with a breathable adhesive layer on the porous film side by melt blow method Was used as a substrate. The breathability of the coating material was 900 g / (m 2 · day) in terms of moisture permeability by the Lissy method. On a corrugated liner paper in which the exothermic composition molded body obtained by molding the surplus water-containing exothermic composition through a mold using a mold having a pair of all-foot-shaped through-holes and subjected to non-water-absorbing treatment of the base material Further, the coating material is laminated so that the breathable pressure-sensitive adhesive layer side of the covering material faces it, and the peripheral edge of the heat-generating composition molded body is pressure-bonded and sealed. Thus, a pair of full-foot-shaped foot temperature heating elements having a maximum length of 220 mm were produced. The surplus water exothermic composition was an exothermic composition excellent in moldability so that the exothermic composition molded body having a shape of a full-leg shape could be molded. The breathability of the coating material was 900 g / (m 2 · day) in terms of moisture permeability by the Lissy method. Further, the foot temperature heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the foot temperature heating element was taken out from the outer bag and used, but the foot temperature heating element did not curl in the shoe, and was very convenient for foot temperature use. The minimum bending resistance of the foot temperature generator exceeds 220 mm, which is not measurable, and is consistent with the fact that the foot temperature heating element does not curl during use and reliably plays a role for foot temperature.

(実施例4)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)7.0重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)1.0重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は26であり、立ち上がり昇度速度は2℃/5分であった。
ナイロン不織布とポリエチレン製多孔質フィルムの積層体を通気性の被覆材に、セパレータ付き粘着剤層を有するポリエチレンフィルムを非通気性の基材に使用した。
6個の貫通孔を有する厚さ2mmの型を用いた型通し成形をした発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、多孔質フィルムとコポリマーフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、区分発熱部が長さ77mm×幅12mmで、区分け部が、長さ77mm×幅10mmであり、6個の区分発熱部が区分け部を間隔として間隔を置いて設けられ、長さ138mm×幅93mmの発熱体を複数個、作製した。被覆材の通気性はリッシー法による透湿度が400であった。余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。さらに、該発熱体を非通気性収の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、肌着に貼り発熱試験をしたが、試験開始後まもなく温かくなり、温かい時間が8時間以上続いた。このように、本発明の発熱組成物の余剰水値の規定方法を使用すれば、発熱熱組成物中の余剰水量を簡単に規定できる。また、長さ77mm×幅12mmの区分発熱部を10mmの間隔を置いて6個も型成形し、設けられるほど、該含余剰水発熱組成物は型成形性が優れた発熱組成物であった。
Example 4
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 7.0 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 0 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water exothermic composition. The surplus water value of the excess water exothermic composition was 26, and the rising rate was 2 ° C / 5 minutes.
A laminate of a nylon nonwoven fabric and a polyethylene porous film was used as a breathable coating material, and a polyethylene film having an adhesive layer with a separator was used as a non-breathable substrate.
A heat-generating composition molded body obtained by die-molding using a 2 mm-thick mold having six through-holes was laminated on the polyethylene film surface of the base material, and the porous film and copolymer film surfaces were superposed on each other. Cover the covering material so that the peripheral edge of the heat-generating composition molded body is heat-sealed, cut, the segmented heat generating part is 77 mm long × 12 mm wide, and the section is 77 mm long × 10 mm wide, Six divided heat generating portions were provided at intervals with the divided portions as an interval, and a plurality of heat generating elements having a length of 138 mm and a width of 93 mm were produced. The breathability of the covering material was 400 by the water permeability by the Lissy method. The excess water value is the filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define. Further, the heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and attached to the underwear, and a heat generation test was conducted. However, the test became warm soon after the start of the test, and the warm time lasted for 8 hours or more. Thus, if the method for defining the excess water value of the exothermic composition of the present invention is used, the amount of excess water in the exothermic composition can be easily defined. Further, as many as six pieces of 77 mm long × 12 mm wide segmented heat generating portions were molded at an interval of 10 mm, and the surplus water exothermic composition was an exothermic composition with excellent moldability. .

(実施例5)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)1.0重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作製した。
該含余剰水発熱組成物の余剰水値は30で、立ち上り昇温速度は、8℃/5分であった。該余剰水値は東洋濾紙(株)製濾紙No.2(円形)を使用して規定した。
ナイロン不織布とポリエチレン製多孔質フィルムの積層体を通気性の被覆材に、セパレータ付き粘着剤層を有するポリエチレンフィルムを非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が400g/(m・day)であった。該被覆材の通気性はリッシー法による透湿度が400g/(m・day)であった。
8個の貫通孔を有する厚さ2.5mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、更に、多孔質フィルムとコポリマーフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部を幅8mmでヒートシールし、カットし、8個の区分発熱部を有し、区分け部が長さ79mm×幅8mm、区分発熱部が長さ79mm×幅10mmの複合発熱部を有する、シール幅が8mmで、長さ152mm×幅95mmの発熱体を複数個、作製した。該被覆材の通気性はリッシー法による透湿度が400g/(m・day)であった。一部の発熱体に各区分け部のほぼ中央に間欠的な切り込みであるミシン目を設け、手切れ可能にした発熱体も作製した。 さらに、これら発熱体を非通気性収納袋である外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、該ミシン目が付与されていない発熱体の物性を測定した。その結果1にその物性値を示す。また、該発熱体の各区分発熱部の一つの端部を切り、発熱組成物を取り出した後の収納体のループスティフネスは98mN/mmであった。また、基材と被覆材の剛軟度は55〜60であった。
また、該発熱体を外袋より取り出し、肌着に貼り発熱試験をしたが、すぐに温かくなり、温かい時間が8時間以上続いた。柔軟性に優れた発熱体である。 また、ミシン目が付与された発熱体は簡単に切り離しができ、切り離された各発熱体を所望の複数のところに貼れ使用でき、通常の発熱体にはない利便性を享受できた。また、該含余剰水発熱組成物は型成形性が優れた発熱組成物であった。
(Example 5)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 0 part by weight, 0.5 part by weight of slaked lime, 0.7 part by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water heating composition.
The surplus water value of the surplus water-containing exothermic composition was 30, and the rising temperature rising rate was 8 ° C./5 minutes. The surplus water value is obtained from Toyo Filter Paper Co., Ltd. 2 (circular) was used to define.
A laminate of a nylon nonwoven fabric and a polyethylene porous film was used as a breathable coating material, and a polyethylene film having an adhesive layer with a separator was used as a non-breathable substrate. The breathability of the covering material was 400 g / (m 2 · day) in terms of moisture permeability by the Lissy method. The breathability of the covering material was 400 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 2.5 mm thick mold having 8 through holes, the exothermic composition molded body obtained by molding the excess water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, Covering the covering material so that the porous film and the copolymer film face each other, heat-sealing the peripheral portion of the heat-generating composition molded body with a width of 8 mm, cutting, and having 8 section heat-generating portions, A plurality of heating elements each having a seal heating width of 8 mm, a length of 152 mm, and a width of 95 mm, each having a composite heating portion with a sorting portion having a length of 79 mm × width of 8 mm and a sorting heating portion having a length of 79 mm × width of 10 mm, were produced. The breathability of the covering material was 400 g / (m 2 · day) in terms of moisture permeability by the Lissy method. Some heating elements were also provided with perforations, which are intermittent cuts, in the middle of each section, so that they could be cut by hand. Further, these heating elements were sealed in an outer bag which is a non-breathable storage bag and left at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag, and the physical properties of the heating element without the perforation were measured. As a result, the physical property values are shown in FIG. Further, the loop stiffness of the storage body after cutting one end of each section heat generating portion of the heat generating body and taking out the heat generating composition was 98 mN / mm. Moreover, the bending resistance of the base material and the covering material was 55-60.
Further, the heating element was taken out from the outer bag and attached to the underwear, and a heat generation test was conducted. However, the heating element immediately became warm and the warm time lasted for 8 hours or more. It is a heating element with excellent flexibility. In addition, the heating elements provided with perforations can be easily separated, and the separated heating elements can be pasted and used at a plurality of desired locations, thereby enjoying the convenience that is not found in ordinary heating elements. The excess water exothermic composition was an exothermic composition with excellent moldability.

(結果1)
項目 : 状態、値
発熱体の表面状 : 両面凹凸面で8個の区分発熱部を有する
サイズ : 長さ152mm×幅95mm
区分発熱部幅 : 10mm
区分け部幅 : 8mm
最小剛軟度(発熱前) : 40mm
最小剛軟度(発熱終了後): 40
最小剛軟度の変化 : 0
最小剛軟度率 : 26
最大剛軟度比 : 2.4
柔軟性 : あり
温熱効果 : 優れる
(Result 1)
Item: State, Value Heating element surface: Eight divided heating parts on both sides of the uneven surface Size: Length 152mm x Width 95mm
Heating section width: 10mm
Section width: 8mm
Minimum bending resistance (before heat generation): 40mm
Minimum bending resistance (after heat generation): 40
Change in minimum bending resistance: 0
Minimum bending resistance: 26
Maximum bending resistance ratio: 2.4
Flexibility: Yes
Thermal effect: Excellent

(実施例6)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)0.5重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含水発熱組成物を作成した。該含水発熱組成物の余剰水値は30であり、立ち上り昇温速度は、8℃/5分であった。余剰水値は東洋濾紙(株)製濾紙No.2を使用して規定した。
ナイロン不織布とポリエチレン製多孔質フィルムの積層体を通気性の被覆材に、セパレータ付き粘着剤層を有するポリエチレンフィルムを非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が400g/(m・24hr)であった。
8個の貫通孔を有する厚さ2mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、更に、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、8個の区分発熱部を有し、区分け部が長さ79mm×幅8mm、区分発熱部が長さ79mm×幅10mmの発熱部を有する、シール幅が8mmで、長さ152mm×幅95mmのストライプ発熱体を複数個、作製した。また、該含余剰水発熱組成物は型成形性に優れた発熱組成物であった。該発熱体を非通気性収納袋である外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。結果2にその物性値を示す。また、該発熱体の収納体のループスティフネスは98mN/cmであり、中央部の区分け部の、25℃における最大引張強度が140g/mm幅であり、25℃における破断伸びが80%であった。次に各区分け部のほぼ中央に手切れ可能なミシン目を設けた。さらに、肌着に貼り発熱試験をしたが、すぐに温かくなり、温かい時間が8時間以上続いた。柔軟性に優れた発熱体である。
(Example 6)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 5 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite and 11% saline were mixed to prepare a hydrous exothermic composition. The excess water value of the hydrous exothermic composition was 30, and the rising temperature rising rate was 8 ° C./5 minutes. The excess water value is the filter paper No. manufactured by Toyo Filter Paper Co., Ltd. 2 was used.
A laminate of a nylon nonwoven fabric and a polyethylene porous film was used as a breathable coating material, and a polyethylene film having an adhesive layer with a separator was used as a non-breathable substrate. The breathability of the coating material was 400 g / (m 2 · 24 hr) in terms of moisture permeability by the Lissy method.
Using a 2 mm thick mold having 8 through-holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through a mold was laminated on the polyethylene film surface of the substrate, and further a polyethylene film The covering material is covered so that the surfaces overlap each other, the peripheral portion of the exothermic composition molded body is heat-sealed, cut, and has eight divided heat generating portions. The dividing portion is 79 mm long × 8 mm wide. A plurality of stripe heating elements having a heating part of 79 mm length × 10 mm width, a seal width of 8 mm, and a length of 152 mm × 95 mm width were prepared. The excess water exothermic composition was an exothermic composition excellent in moldability. The heating element was sealed in an outer bag which is a non-breathable storage bag and left at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties. Results 2 show the physical property values. Further, the loop stiffness of the heating element storage body was 98 mN / cm, the maximum tensile strength at 25 ° C. of the central section was 140 g / mm width, and the elongation at break at 25 ° C. was 80%. . Next, a perforation that can be cut by hand was provided in the approximate center of each section. Furthermore, the exothermic test was carried out on the underwear, but it quickly became warm and the warm time lasted for more than 8 hours. It is a heating element with excellent flexibility.

(結果2)
項目 : 状態、物性
発熱体の表面状 : 両面凹凸面で8個の区分発熱部を有する
サイズ : 長さ152mm×幅95mm
区分発熱部幅 : 10mm
区分け部幅 : 8mm
最小剛軟度(発熱前) : 46mm
最小剛軟度(発熱終了後): 46mm
最小剛軟度の変化 : 0
最小剛軟度率 : 30
最大剛軟度比 : 2.1
柔軟性 : あり
温熱効果 : 優れる
(Result 2)
Item: State, physical properties Heating element surface: Eight divided heat generating parts on both sides uneven surface Size: Length 152mm x Width 95mm
Heating section width: 10mm
Section width: 8mm
Minimum bending resistance (before heat generation): 46mm
Minimum bending resistance (after heat generation): 46mm
Change in minimum bending resistance: 0
Minimum bending resistance: 30
Maximum stiffness ratio: 2.1
Flexibility: Yes
Thermal effect: Excellent

(実施例7)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)0.5重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。
該含余剰水発熱組成物の余剰水値は30であり、立ち上がり昇温速度は、8℃/5分であった。余剰水値は東洋濾紙(株)製濾紙No.2を使用して規定した。
ナイロン不織布とポリエチレン製多孔質フィルムの積層体を通気性の被覆材に、セパレータ付き粘着剤層を有するポリエチレンフィルムを非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が400g/(m・day)であった。
6個の貫通孔を有する型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を基材のポリエチレンフィルム面上に積層した。ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットとし、6個の区分発熱部を有し、区分け部が長さ77mm×幅10mm、区分発熱部が長さ77mm×幅12mmの複合発熱部を有する、シール幅が8mmで、 長さ138mm×幅93mmのストライプ発熱体を5個作製した。さらに、この発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該外袋より該ストライプ発熱体を取り出し、該発熱体の各区分発熱部の一つの端部を切り、発熱組成物を取り出し、収納体のルーフスティフネスを測定した。該ルーフスティフネスは60mN/mmであった。肌着に貼り発熱試験をしたが、すぐに温かくなり、温かい時間が8時間以上続いた。結果3にストライプ発熱体と単一発熱部発熱体の比較を示す。
(Example 7)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 5 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water heating composition.
The surplus water value of the surplus water-containing exothermic composition was 30, and the rising temperature rising rate was 8 ° C./5 minutes. The excess water value is the filter paper No. manufactured by Toyo Filter Paper Co., Ltd. 2 was used.
A laminate of a nylon nonwoven fabric and a polyethylene porous film was used as a breathable coating material, and a polyethylene film having an adhesive layer with a separator was used as a non-breathable substrate. The breathability of the covering material was 400 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a mold having six through-holes, the exothermic composition molded body obtained by molding the excess water exothermic composition through a mold was laminated on the polyethylene film surface of the substrate. The covering material is covered so that the polyethylene film surfaces are overlapped with each other, the peripheral portion of the exothermic composition molded body is heat-sealed, cut, and has six divided heat generating portions. Five stripe heating elements having a seal heating width of 8 mm, a length of 138 mm, and a width of 93 mm, each having a composite heat generating portion having a width of 10 mm and a section heat generating portion of 77 mm long × 12 mm wide, were produced. Further, this heating element was sealed in a non-breathable outer bag and left at room temperature for 24 hours. After 24 hours, the stripe heating element was taken out from the outer bag, one end of each section heating part of the heating element was cut, the heating composition was taken out, and the roof stiffness of the container was measured. The roof stiffness was 60 mN / mm. An exothermic test was performed on the underwear, but it quickly became warm and the warm time lasted more than 8 hours. Result 3 shows a comparison between a stripe heating element and a single heating part heating element.

(結果3)
発熱体 : ストライプ発熱体 : 単一発熱部発熱体
(両面凹凸状) (市販の貼るカイロ)

発熱部種類 : 6個の区分発熱部 : 1個の単一発熱部
サイズ(長さ×幅) : 138mm×93mm : 138mm×93m
発熱体シール幅 : 8mm : 8mm
発熱部(長さ×幅) :122mm×77mm : 122mm×77m
区分発熱部幅 : 12mm : −
区分け部幅 : 10mm : −
最小剛軟度 : 60mm : 曲がらず測定不能
(発熱前)
最小剛軟度 : 48mm : 曲がらず測定不能
(発熱終了後)
最小剛軟度の変化 : −20 : −
最小剛軟度率 : 43 : −
最大剛軟度比 : 1.6 : −
柔軟性 : あ り : なし

該ストライプ発熱体は、発熱前から発熱終了後まで、柔軟性を維持しており、可撓性、柔軟性が如何に優れているかがわかる。
(Result 3)
Heating element: Stripe heating element: Single heating element heating element
(Both sides uneven) (Commercially available body warmers)

Exothermic part type: 6 divisional exothermic parts: 1 single exothermic part
Size (length x width): 138 mm x 93 mm: 138 mm x 93 m
Heating element seal width: 8 mm: 8 mm
Heat generating part (length x width): 122 mm x 77 mm: 122 mm x 77 m
Heating section width: 12mm:-
Section width: 10 mm: −
Minimum bending resistance: 60mm: Cannot be measured without bending
(Before fever)
Minimum bending resistance: 48mm: Cannot be measured without bending
(After the end of fever)
Change in minimum bending resistance: −20: −
Minimum bending resistance: 43: −
Maximum bending resistance ratio: 1.6: −
Flexibility: Yes: None

The stripe heating element maintains flexibility from before the heat generation to after the heat generation, and it can be seen how excellent the flexibility and flexibility are.

(実施例8)
実施例7と同タイプのストライプ発熱体の凹凸状の通気面に、区分発熱部の長さと同じ幅のポリプロピレン不織布/ポリエチレンフィルムからなる局所通気材を被せ、区分発熱部の長さ方向と直交するストライプ発熱体の両端部に粘着剤を介して固定し、トンネル通気発熱体を作製した。各区分け部の両端部が局所通気孔になり、区分け部領域がトンネルになり区分発熱部の側面が微細孔を有する広域通気部が構成する、トンネル通気構造が設けられた。
(Example 8)
The uneven ventilation surface of the stripe heating element of the same type as in Example 7 is covered with a local ventilation material made of a polypropylene nonwoven fabric / polyethylene film having the same width as the length of the segmented heat generating portion, and is orthogonal to the length direction of the segmented heat generating portion. A tunnel heating element was prepared by fixing the both ends of the stripe heating element with an adhesive. A tunnel ventilation structure is provided in which both end portions of each partitioning portion become local ventilation holes, the partitioning portion region becomes a tunnel, and a wide-area ventilation portion in which a side surface of the partitioning heat generating portion has fine holes is formed.

トンネル通気発熱体の粘着剤層側の中央に温度計の球部を取り付け、これを厚さ5mmのプラスチック板上に置き、更にタオル布を4枚重ねて置き、その上に該発熱シートを置き、次にタオル布を4枚重ねて置き、発熱温度の変化を測定した。通気面の透湿度がほぼ同じ市販の扁平状の貼るタイプの使い捨てカイロは70℃まで温度が上昇するのに対し、本実施例のトンネル通気発熱体は、最高温度が41℃に抑えられ、しかもその温度が長時間安定して維持された。このようにトンネル通気構造を設けることにより、発熱の最高温度が抑えられ、低温やけどの原因になるといわれている42℃に達することなく、最適温度を長時間保つことができる。   Attach a thermometer bulb to the center of the adhesive layer side of the tunnel ventilation heating element, place it on a plastic plate with a thickness of 5 mm, place four towel cloths on top of each other, and place the heating sheet on it. Then, four towel cloths were placed on top of each other, and the change in heat generation temperature was measured. The temperature of a commercially available flat-type disposable warmer with substantially the same moisture permeability on the ventilation surface rises to 70 ° C., whereas the tunnel ventilation heating element of this embodiment has a maximum temperature of 41 ° C., and The temperature was stably maintained for a long time. By providing the tunnel ventilation structure in this manner, the maximum temperature of heat generation can be suppressed, and the optimum temperature can be maintained for a long time without reaching 42 ° C., which is said to cause low temperature burns.

(実施例9)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)7.0重量部、木粉(粒径150μm以下)3.0重量部、吸水性ポリマー(粒径300μm以下)0.8重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し含余剰水発熱組成物を作成した。
非通気性収納体である外袋に封入し、20℃の環境下において、20℃に調整した。次に、 外袋より 含余剰水発熱組成物を取り出し、含余剰水発熱組成物の余剰水値を、図1〜図5に示すようにして求めた。
中心点から放射状に45°間隔で8本の線が書かれた、円形の濾紙(東洋濾紙(株)製濾紙No.2)(図1)を、ステンレス板上に置き、前記濾紙の中心に、直径30mm×高さ20mmの中空円筒状の穴を持つ長さ150mm×幅100mmの型板を置き、その中空円筒状の穴付近に、前記発熱組成物を置き、押し込み板を型板上に沿って動かし、前記発熱組成物を押し込みながら中空円筒状の穴へ入れ、型板面に沿って、前記発熱組成物を擦り切り、さらに、測定中に発熱反応が起こらないようにするために、前記穴を覆うように非吸水性の70μmポリエチレンフィルムを置き、更に、その上に、厚さ5mm×長さ150mm×幅150mmのステンレス製平板を置き、5分間保持後、該濾紙を取り出し、放射状に書かれた線に沿って、水又は水溶液の浸透軌跡を中空円筒の穴の縁である円周部から浸透先端までの距離として、各線上からその距離をmm単位で読み取り、読み取った8個の各値(a,b,c,d,e,f,g,h)を測定余剰水値とし、その8個の測定余剰水値を算術平均した値(mm)を型板の中空円筒状の穴の高さ(mm)でわり、更に100をかけた値を求めた。前記同一発熱組成物より測定した3個の値を平均した値を前記発熱組成物の余剰水値とした。含余剰水発熱組成物の余剰水値は15であり、立ち上り昇温速度は、1℃/5分であった。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が600g/(m・day)であった。
6個の貫通孔を有する厚さ1.5mmの型を用いて、該含余剰水発熱組成物を型通し成形をした発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ73mm×幅15mm、区分け部が長さ82mm×幅5mmの発熱部を有する、周辺部のシール幅が6mmで、長さ127mm×幅85mmの発熱体を複数個、作成した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、該発熱体の収納体のルーフスティフネスを測定した。該ルーフスティフネスは60mN/mmであった。該発熱体を肌着に貼り発熱試験をしたが、試験開始後まもなく温かくなり、使用前中ごにわたり柔軟性があり、温かい時間が8時間以上続いた。また、該含余剰水発熱組成物は型成形性が優れた発熱組成物であった。
Example 9
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 7.0 parts by weight, wood powder (particle size 150 μm or less) 3.0 parts by weight, water-absorbing polymer (particle size 300 μm or less) 8 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite and 11% saline were mixed to prepare a surplus water exothermic composition.
It sealed in the outer bag which is a non-breathable container, and it adjusted to 20 degreeC in 20 degreeC environment. Next, the excess water exothermic composition was taken out from the outer bag, and the excess water value of the excess water exothermic composition was determined as shown in FIGS.
A circular filter paper (filter paper No. 2 manufactured by Toyo Filter Paper Co., Ltd.) (Fig. 1) on which eight lines are written at 45 ° intervals radially from the center point is placed on a stainless steel plate, and is placed at the center of the filter paper. A mold plate having a diameter of 30 mm and a height of 20 mm and a hollow cylindrical hole having a length of 150 mm and a width of 100 mm is placed, and the exothermic composition is placed in the vicinity of the hollow cylindrical hole, and the pushing plate is placed on the mold plate. To extrude the exothermic composition into the hollow cylindrical hole, scrape the exothermic composition along the template surface, and to prevent exothermic reaction from occurring during the measurement, A non-water-absorbing 70 μm polyethylene film is placed so as to cover the hole, and further, a stainless steel flat plate having a thickness of 5 mm × length of 150 mm × width of 150 mm is placed thereon, and after holding for 5 minutes, the filter paper is taken out and radially formed. Water or water soluble along the line written Is the distance from the circumference that is the edge of the hole in the hollow cylinder to the penetration tip, and the distance is read in mm from each line, and each of the eight values read (a, b, c, d, e, f, g, h) are measured surplus water values, the value (mm) obtained by arithmetically averaging the eight measured surplus water values is divided by the height (mm) of the hollow cylindrical hole of the template, and The value multiplied by 100 was determined. A value obtained by averaging three values measured from the same exothermic composition was used as an excess water value of the exothermic composition. The surplus water value of the surplus water-containing exothermic composition was 15, and the rising temperature rising rate was 1 ° C./5 minutes.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the coating material was 600 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 1.5 mm thick mold having six through holes, the exothermic composition molded body obtained by molding the excess water exothermic composition through a mold was laminated on the polyethylene film surface of the substrate, and polyethylene Covering the covering material so that the film surfaces are superposed on each other, heat-sealing the peripheral portion of the heat-generating composition molded body, cutting, and separating the six divided heat-generating parts as heat-seal areas as intervals, Provided at intervals, the segment heat generating part has a heat generating part of length 73 mm × width 15 mm, the partition part has a heat generating part of length 82 mm × width 5 mm, the peripheral seal width is 6 mm, and the heat generation is 127 mm long × 85 mm wide. Created multiple bodies. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was removed from the outer bag, and the roof stiffness of the heating element storage body was measured. The roof stiffness was 60 mN / mm. The exothermic body was attached to the underwear, and the exothermic test was conducted, but soon after the start of the test, the exothermic body became warm, flexible before and after use, and the warm time lasted for 8 hours or more. The excess water exothermic composition was an exothermic composition with excellent moldability.

(実施例10)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量 部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)0.9重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は25であり、立ち上がり昇温速度は7℃/5分以上であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が450g/(m・day)であった。
6個の貫通孔を有する厚さ1.5mmの型を用いて、該含余剰水発熱組成物を型通し成形をした発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、
区分発熱部が長さ77mm×幅15mmで、区分け部が、長さ77mm×幅5mmであり、周辺部のシール幅が8mmで、厚み1mm×長さ131mm×幅93mmの剛軟発熱体を複数個、作製した。 また、該含余剰水発熱組成物は型成形性が優れた発熱組成物であった。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。
該発熱体の最小剛軟度は46mmであり、最小剛軟度変化は0であった。発熱前はもとより、発熱後においても、少なくとも可撓性、柔軟性を維持した。これにより、本発明の区分発熱部発熱体の可撓性、柔軟性が如何に優れているかがわかる。発熱体の収納体のループスティフネスは98mN/cmであり、発熱体の含余剰水発熱組成物の全重量は18gであった。
(Example 10)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 9 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare a surplus water exothermic composition. The excess water value of the excess water exothermic composition was 25, and the rising temperature rising rate was 7 ° C./5 minutes or more. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The air permeability of the covering material was 450 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 1.5 mm thick mold having six through holes, the exothermic composition molded body obtained by molding the excess water exothermic composition through a mold was laminated on the polyethylene film surface of the substrate, and polyethylene Covering the covering material so that the film surfaces are superposed on each other, heat-sealing the peripheral portion of the heat-generating composition molded body, cutting, and separating the six divided heat-generating parts as heat-seal areas as intervals, Provided at intervals,
The segmented heat generating part is 77 mm long x 15 mm wide, the segmented part is 77 mm long x 5 mm wide, the peripheral seal width is 8 mm, and a plurality of rigid soft heating elements with a thickness of 1 mm x length of 131 mm x width of 93 mm Each was made. The excess water exothermic composition was an exothermic composition with excellent moldability. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties.
The minimum bending resistance of the heating element was 46 mm, and the minimum bending resistance change was zero. At least flexibility and flexibility were maintained not only before the heat generation but also after the heat generation. Thereby, it can be seen how excellent the flexibility and flexibility of the heating element according to the present invention are. The loop stiffness of the heating element storage body was 98 mN / cm, and the total weight of the excess water heating composition of the heating element was 18 g.

(比較例3)
収納体のループスティフネスを1000mN/cmにした以外は実施例10と同様にして複数個の発熱体を作成した。
(Comparative Example 3)
A plurality of heating elements were prepared in the same manner as in Example 10 except that the loop stiffness of the storage body was set to 1000 mN / cm.

(比較例4)
含水発熱組成物の全重量を54gにした以外は、比較例2と同様にして複数個の発熱体を作成した。
(Comparative Example 4)
A plurality of heating elements were prepared in the same manner as in Comparative Example 2 except that the total weight of the hydrous exothermic composition was 54 g.

実施例10、比較例3、比較例4の発熱体に対し、最小剛軟度及び使用評価をおこなった。使用評価の方法は、発熱体の使用感に関して、10人のパネラーによるモニターテストを行って評価した。結果4に示した結果が得られた。

使用感評価
良 :柔軟性があり、ごわごわ感がなく、身体に沿わせたときにスムースに身体に沿い、元に戻ろうとする反発性がなく、手に握ったときに柔らかく感じられ、手触りが柔らかく使用感良好である。
不良:柔軟性がなく、ごわごわ感があり、身体に沿わせたときに元に戻ろうとする反発性があり、手に握ったときに硬く感じられ、手触りが硬く使用感が悪い。
For the heating elements of Example 10, Comparative Example 3, and Comparative Example 4, the minimum bending resistance and use evaluation were performed. The usage evaluation method evaluated the feeling of use of the heating element by performing a monitor test with 10 panelists. The result shown in Result 4 was obtained.

Usability evaluation Good: Flexible, not stiff, smooth along the body, no resilience to return, feels soft when touched, and feels soft Soft and comfortable to use.
Defective: Inflexible, stiff, repulsive when trying to follow the body, feels firm when gripped by hand, feels hard and uncomfortable to use.

(結果4)

例 :発熱組成物 :ループ : 最小剛軟度 : 使用評価 全重量 スティフネス
(g) (mN/cm) (mm)

実施例10: 18 : 98 : 48 : 良
比較例3 : 18 : 1000 : 測定不能 : 不良
比較例4 : 54 : 1000 : 68 : 不良

このように、撓み性を規定する最小剛軟度のみで規定された発熱体及び反発性と撓み性を規定するループスティフネスで規定された発熱体を比較することにより、
1)実施例10のようにループスティフネスが低い収納体を使用した発熱体は、高撓み性や低反発性の肌触りの良い柔軟性があり、被加温体にスムースに沿う沿い性があり、発熱体として実用上の柔軟性がある。
2)一方、比較例3、比較例4のように最小剛軟度だけで規定した発熱体は、 発熱組成物の全重量により見かけの撓み性は低く押さえることができるが、収納体の反発性、沿い性、及び、発熱体の反発性、沿い性が規定できず、身体に沿わせたときに元に戻ろうとする反発性があり区分け部も柔軟性がなく、発熱体として実用上の柔軟性はない。
3)複数の区分発熱部を有する発熱体の実用上の柔軟性は、最小剛軟度では規定できず、ループスティフネスによる規定が不可欠である。
以上のように、本発明の発熱体は、被加温体に沿わせたときに反発性がなく、装着感や肌触りが良好な、実用的な柔軟性を有している。
(Result 4)

Example: Exothermic composition: Loop: Minimum bending resistance: Evaluation of use Total weight Stiffness
(G) (mN / cm) (mm)

Example 10: 18: 98: 48: Good Comparative Example 3: 18: 1000: Unmeasurable: Defect Comparative Example 4: 54: 1000: 68: Defect

Thus, by comparing the heating element defined only by the minimum bending resistance that defines the flexibility and the heating element defined by the loop stiffness that defines the resilience and the flexibility,
1) A heating element using a storage body having a low loop stiffness as in Example 10 has good flexibility such as high flexibility and low resilience, and the warmed body has smoothness along the smoothness, There is practical flexibility as a heating element.
2) On the other hand, the heating element defined by only the minimum bending resistance as in Comparative Example 3 and Comparative Example 4 can keep the apparent flexibility low due to the total weight of the heating composition, but the resilience of the storage body , Alongside, and resilience of the heating element, the alongness cannot be specified, there is a resilience to return to the original when it is along the body, the section is not flexible, practically flexible as a heating element There is no sex.
3) Practical flexibility of a heating element having a plurality of section heating portions cannot be defined by the minimum bending resistance, and it is indispensable to define by loop stiffness.
As described above, the heating element of the present invention has practical flexibility such that there is no resilience when placed along a body to be heated, and the feeling of wearing and feel is good.

(実施例11)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)3.0重量部、吸水性ポリマー(粒径300μm以下)1.1重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。含余剰水発熱組成物の余剰水値は30であり、立ち上がり昇温速度は5℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が600g/(m・day)であった。
6個の貫通孔を有する厚さ1.2mmの型を用いた型通し成形をした発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ82mm×幅15mm、区分け部が長さ82mm×幅6mmの発熱部を有する、周辺部のシール幅が6mmで、長さ127mm×幅94mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。該発熱体の収納体のループスティフネスは98mN/cmであった。また、該発熱体を外袋より取り出し、粘着剤層にて、衣服に固定し発熱試験をしたが、該発熱体は、区分け部より折れ曲がり、衣服に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 11)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 3.0 parts by weight, water-absorbing polymer (particle size 300 μm or less) 1 part by weight, 0.5 part by weight of slaked lime, 0.7 part by weight of sodium sulfite and 11% saline were mixed to prepare an excess water exothermic composition. The surplus water value of the surplus water-containing exothermic composition was 30, and the rising temperature rising rate was 5 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the coating material was 600 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
A heat-generating composition molded body obtained by die-molding using a 1.2 mm-thick mold having six through-holes is laminated on the polyethylene film surface of the substrate so that the polyethylene film surfaces overlap each other. The covering material is covered, the peripheral portion of the heat-generating composition molded body is heat-sealed, cut, and the six divided heat generating portions are provided at intervals with the divided portions being heat-sealing regions as intervals. A plurality of heating elements each having a heat generating portion having a length of 82 mm × width of 15 mm and a dividing portion having a length of 82 mm × width of 6 mm, a peripheral width of 6 mm, and a length of 127 mm × width of 94 mm were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties. The loop stiffness of the heating element storage body was 98 mN / cm. Also, the heating element was taken out from the outer bag, fixed to clothes with an adhesive layer, and subjected to a heat test, but the heating element was bent from the section and fixed tightly along the clothes, and immediately became warm. Warm time lasted more than 6 hours. The heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例12)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)7.0重量部、木粉(粒径150μm以下)3.0重量部、吸水性ポリマー(粒径300μm以下)1.0重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は10であり、立ち上がり昇温速度は2℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が450g/(m・day)であった。
6個の貫通孔を有する厚さ2.5mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ82mm×幅15mm、区分け部が長さ82mm×幅6mmの発熱部を有する、周辺部のシール幅が6mmで、長さ127mm×幅94mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。該発熱体の収納体のループスティフネスは98mN/cmであり、少なくとも一つの区分け部の、25℃における最大引張強度が155g/mmであり、破断伸びが98%であった。また、該発熱体を外袋より取り出し、粘着剤層にて、衣服に固定し発熱試験をしたが、該発熱体は、区分け部より折れ曲がり、衣服に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 12)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 7.0 parts by weight, wood powder (particle size 150 μm or less) 3.0 parts by weight, water-absorbing polymer (particle size 300 μm or less) 0 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water exothermic composition. The surplus water value of the surplus water-containing exothermic composition was 10, and the rising temperature rising rate was 2 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The air permeability of the covering material was 450 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 2.5 mm thick mold having six through-holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, and a polyethylene film Cover the covering materials so that the surfaces overlap each other, heat-seal and cut the peripheral edge of the exothermic composition molded body, and set the six segment heat-generating parts as heat-seal areas as intervals. A heating element having a heating part of 82 mm × width of 15 mm, a heating part of 82 mm × width of 6 mm, and a sealing width of 6 mm in the peripheral part, 127 mm × 94 mm in width. Several were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties. The heating element storage body had a loop stiffness of 98 mN / cm, the maximum tensile strength at 25 ° C. of at least one section was 155 g / mm, and the elongation at break was 98%. Also, the heating element was taken out from the outer bag, fixed to clothes with an adhesive layer, and subjected to a heat test, but the heating element was bent from the section and fixed tightly along the clothes, and immediately became warm. Warm time lasted more than 6 hours. The heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例13)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)7.0重量部、木粉(粒径150μm以下)3.0重量部、吸水性ポリマー(粒径300μm以下)0.8重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は10であり、立ち上がり昇温速度は2℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が450g/(m・day)であった。
8個の貫通孔を有する厚さ1.2mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、8個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ82mm×幅12mm、区分け部が長さ82mm×幅6mmの発熱部を有する、周辺部のシール幅が6mmで、長さ152mm×幅94mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。
該発熱体の収納体のループスティフネスは98mN/cmであり、少なくとも一つの区分け部の、25℃における最大引張強度が155g/mmであり、破断伸びが98%であった。また、該発熱体を外袋より取り出し、粘着剤層にて、衣服に固定し発熱試験をしたが、該発熱体は、区分け部より折れ曲がり、衣服に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 13)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 7.0 parts by weight, wood powder (particle size 150 μm or less) 3.0 parts by weight, water-absorbing polymer (particle size 300 μm or less) 8 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare a surplus water heating composition. The surplus water value of the surplus water-containing exothermic composition was 10, and the rising temperature rising rate was 2 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The air permeability of the covering material was 450 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 1.2 mm-thick mold having eight through holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, and a polyethylene film Cover the covering material so that the surfaces overlap each other, heat-seal and cut the peripheral edge of the heat-generating composition molded body, and the interval between the eight divided heat-generating parts as heat-seal areas A heating element having a heating part of 82 mm in length x 12 mm in width and a heating part of 82 mm in length x 6 mm in width, a sealing width of 6 mm in the peripheral part, and 152 mm in length x 94 mm in width. Several were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties.
The heating element storage body had a loop stiffness of 98 mN / cm, the maximum tensile strength at 25 ° C. of at least one section was 155 g / mm, and the elongation at break was 98%. Also, the heating element was taken out from the outer bag, fixed to clothes with an adhesive layer, and subjected to a heat test, but the heating element was bent from the section and fixed tightly along the clothes, and immediately became warm. Warm time lasted more than 6 hours. The heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例14)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.5重量部、吸水性ポリマー(粒径300μm以下)0.5重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は20であり、立ち上がり昇温速度は6℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が290g/(m・day)であった。
6個の貫通孔を有する厚さ1.5mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ82mm×幅15mm、区分け部が長さ82mm×幅6mmの発熱部を有する、周辺部のシール幅が6mmで、長さ127mm×幅94mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。
該発熱体の収納体のループスティフネスは49mN/cmであり、一つの区分け部のループスティフネスは88mN/cmであった。
また、該発熱体を外袋より取り出し、粘着剤層にて、衣服に固定し発熱試験をしたが、該発熱体は、区分け部より折れ曲がり、衣服に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 14)
100 parts by weight of iron powder (particle size 300 μm or less), 5.5 parts by weight of activated carbon (particle size 300 μm or less), 2.5 parts by weight of wood powder (particle size 150 μm or less), water-absorbing polymer (particle size 300 μm or less) 5 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water heating composition. The surplus water value of the surplus water-containing exothermic composition was 20, and the rising temperature rising rate was 6 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the covering material was 290 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 1.5 mm thick mold having six through holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, and a polyethylene film Cover the covering materials so that the surfaces overlap each other, heat-seal and cut the peripheral edge of the exothermic composition molded body, and set the six segment heat-generating parts as heat-seal areas as intervals. A heating element having a heating part of 82 mm × width of 15 mm, a heating part of 82 mm × width of 6 mm, and a sealing width of 6 mm in the peripheral part, 127 mm × 94 mm in width. Several were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties.
The loop stiffness of the heating element storage body was 49 mN / cm, and the loop stiffness of one section was 88 mN / cm.
Also, the heating element was taken out from the outer bag, fixed to clothes with an adhesive layer, and subjected to a heat test, but the heating element was bent from the section and fixed tightly along the clothes, and immediately became warm. Warm time lasted more than 6 hours. The heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例15)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)7.0重量部、木粉(粒径150μm以下)3.0重量部、吸水性ポリマー(粒径300μm以下)0.8重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は、25であり、立ち上り昇温速度は、6℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が300g/(m・day)であった。
6個の貫通孔を有する厚さ1.0mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ82mm×幅15mm、区分け部が長さ82mm×幅6mmの発熱部を有する、周辺部のシール幅が6mmで、長さ127mm×幅94mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。該発熱体の収納体のループスティフネスは350mN/cmであった。また、該発熱体を外袋より取り出し、粘着剤層にて、腰に固定し発熱試験をしたが、該発熱体は、区分け部より折れ曲がり、腰に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 15)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 7.0 parts by weight, wood powder (particle size 150 μm or less) 3.0 parts by weight, water-absorbing polymer (particle size 300 μm or less) 8 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare a surplus water heating composition. The surplus water value of the surplus water-containing exothermic composition was 25, and the rising temperature rising rate was 6 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the covering material was 300 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 1.0 mm thick mold having six through-holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, and the polyethylene film Cover the covering materials so that the surfaces overlap each other, heat-seal and cut the peripheral edge of the exothermic composition molded body, and set the six segment heat-generating parts as heat-seal areas as intervals. A heating element having a heating part of 82 mm × width of 15 mm, a heating part of 82 mm × width of 6 mm, and a sealing width of 6 mm in the peripheral part, 127 mm × 94 mm in width. Several were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties. The loop stiffness of the heating element storage body was 350 mN / cm. Also, the heating element was taken out from the outer bag and fixed to the waist with an adhesive layer, and a heat test was carried out, but the heating element was bent from the section and was fixed tightly along the waist, and immediately became warm. Warm time lasted more than 6 hours. The heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例16)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.3重量部、吸水性ポリマー(粒径300μm以下)0.5重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は、20であり、立ち上り昇温速度は、6℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が300g/(m・day)であった。
6個の貫通孔を有する厚さ1.5mmの型を用いた型通し成形をした発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ82mm×幅15mm、区分け部が長さ82mm×幅6mmの発熱部を有する、周辺部のシール幅が6mmで、長さ127mm×幅94mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。該発熱体の収納体のループスティフネスは95mN/cmであり、一つの区分け部のループスティフネスは156mN/cmであった。
また、発熱体を外袋より取り出し、粘着剤層にて、衣服に固定し発熱試験をしたが、該発熱体は、区分け部より折れ曲がり、衣服に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 16)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.3 parts by weight, water-absorbing polymer (particle size 300 μm or less) 5 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water heating composition. The surplus water value of the surplus water-containing exothermic composition was 20, and the rising temperature rising rate was 6 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the covering material was 300 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
A heat-generating composition molded body obtained by die-casting using a 1.5 mm thick mold having six through holes is laminated on the polyethylene film surface of the substrate so that the polyethylene film surfaces overlap each other. The covering material is covered, the peripheral portion of the heat-generating composition molded body is heat-sealed, cut, and the six divided heat generating portions are provided at intervals with the divided portions being heat-sealing regions as intervals. A plurality of heating elements each having a heat generating portion having a length of 82 mm × width of 15 mm and a dividing portion having a length of 82 mm × width of 6 mm, a peripheral width of 6 mm, and a length of 127 mm × width of 94 mm were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties. The heating element storage body had a loop stiffness of 95 mN / cm, and one section had a loop stiffness of 156 mN / cm.
In addition, the heating element was taken out from the outer bag and fixed to the clothes with the adhesive layer, and the heat generation test was performed, but the heating element was bent from the section, fixed tightly along the clothes, and immediately warmed. Warm time lasted over 6 hours. The heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例17)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)3.0重量部、吸水性ポリマー(粒径300μm以下)1.0重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は、30であり、立ち上り昇温速度は、6℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が600g/(m・day)であった。
6個の貫通孔を有する厚さ2.0mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、更に、通気面側にメルトブロー法により、SIS系の通気性粘着剤層を設け、更に、セパレータ覆い、カットし、6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ82mm×幅15mm、区分け部が長さ82mm×幅6mmの発熱部を有する、周辺部のシール幅が6mmで、長さ127mm×幅94mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、該発熱体の区分発熱部と区分け部からなる発熱部とその周辺のシール領域を残して切りとり、該発熱組成物を除いた収納体のループスティフネスを測定し、80mN/cmを得た。また、最小剛軟度が48mmで、最小剛軟度変化は0であった。また、該発熱体を外袋より取り出し、通気性粘着剤層面が下着の内側に向かうようにして、下着の内側に固定し発熱試験をしたが、該発熱体は、区分け部より折れ曲がり、下着と共に身体に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 17)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 3.0 parts by weight, water-absorbing polymer (particle size 300 μm or less) 0 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water exothermic composition. The surplus water value of the surplus water-containing exothermic composition was 30, and the rising temperature rising rate was 6 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the coating material was 600 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 2.0 mm thick mold having six through holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, and a polyethylene film Cover the covering material so that the surfaces overlap each other, heat seal the peripheral edge of the heat-generating composition molded body, and further provide a SIS-based air-permeable adhesive layer on the air-permeable surface side by a melt blow method, The separator is covered and cut, and the six segment heat generating parts are provided at intervals, with the segmented part being a heat seal area as an interval. A plurality of heating elements having a heat generating part with a width of 6 mm, a peripheral part with a seal width of 6 mm, and a length of 127 mm × width of 94 mm were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. 24 hours later, the heating element is taken out from the outer bag, and the heating element including the divided heating part and the dividing part of the heating element and the surrounding seal area are cut out, and the loop stiffness of the storage body excluding the heating composition is removed. Was measured to obtain 80 mN / cm. Moreover, the minimum bending resistance was 48 mm, and the minimum bending resistance change was zero. Also, the heating element was taken out from the outer bag and fixed to the inside of the underwear with the breathable pressure-sensitive adhesive layer faced to the inside of the underwear, and a heat generation test was conducted. It was fixed tightly along the body, quickly warmed, and warmed up for more than 6 hours. The heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例18)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)7.0量部、木粉(粒径150μm以下)3.0重量部、吸水性ポリマー(粒径300μm以下)1.0重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は、15であり、立ち上り昇温速度は、6℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が300g/(m・day)であった。
10個の貫通孔を有する厚さ0.5mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、10個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ60mm×幅10mm、区分け部が長さ60mm×幅8mmの発熱部を有する、周辺部のシール幅が10mmで、長さ188mm×幅80mmのアイマスク形の発熱体を複数個、作成した。更に、中心部に手切れ可能な中抜きされた不織布からなる耳掛け部の両端部を該目温発熱体の長手方向の両端部に接着剤を介して取り付け、アイマスク形の目温発熱体を複数個、作製した。また、該含余剰水発熱組成物は型成形性が優れた発熱組成物であった。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、実施例16と同様にして、該収納体のループスティフネスを測定し、120mN/cmを得た。また、該発熱体を外袋より取り出し、通気性面を目に向けて、目を覆うように、耳掛け部で、目に固定し発熱試験をした。該発熱体は、区分け部より折れ曲がり、目に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。
該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。尚、該発熱体の収納体のループスティフネスは98mN/cmであった。該収納体として区分発熱部と区分け部からなる発熱部領域を採用した。
(Example 18)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 7.0 parts by weight, wood powder (particle size 150 μm or less) 3.0 parts by weight, water-absorbing polymer (particle size 300 μm or less) 0 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water exothermic composition. The surplus water value of the surplus water-containing exothermic composition was 15, and the rising temperature rising rate was 6 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the covering material was 300 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 0.5 mm thick mold having 10 through-holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, and the polyethylene film Cover the covering material so that the surfaces overlap each other, heat seal the peripheral edge of the exothermic composition molded body, cut it, and set the 10 divided heat generating parts as the heat sealed area as the interval. An eye mask having a heating part of 60 mm long × 10 mm wide, a heating part of 60 mm long × 8 mm wide, and a peripheral seal width of 10 mm, length of 188 mm × 80 mm wide A plurality of shaped heating elements were made. Further, both ends of an ear hook made of a non-woven fabric that can be cut off at the center are attached to both ends in the longitudinal direction of the eye heating element through an adhesive, and an eye mask type eye heating element Several were produced. The excess water exothermic composition was an exothermic composition with excellent moldability. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag, and the loop stiffness of the container was measured in the same manner as in Example 16 to obtain 120 mN / cm. Further, the heating element was taken out from the outer bag, the breathable surface was turned to the eyes, and it was fixed to the eyes with the ear hooks so as to cover the eyes. The heating element was bent from the section, fixed tightly along the eyes, became warm immediately, and the warm time lasted for more than 6 hours.
The heating element was a heating element having excellent heat generation performance and excellent flexibility. The loop stiffness of the heating element storage body was 98 mN / cm. As the storage body, a heat generating portion area composed of a divided heat generating portion and a dividing portion was adopted.

(実施例19)
実施例18と同様の発熱体の全通気面上に、3個の2mmφの穿孔を等間隔で設けたエアスルー不織布(風合い)/ポリエチレン製多孔質フィルムの2層積層体からなる局所通気材を、各区分け部に該3個の穿孔が配置されるように被せ、粘着剤からなる粘着層(固定部)を介して該発熱体の周辺部に固定し、目側に透湿度が5000g/(m・day)を超えるスパンボンド不織布(強度)/メルトブローン不織布(通気)/サーマルボンド不織布(風合い)の3層積層体からなる風合い材を設けた以外は、実施例18と同様にして目温発熱体を複数個、作製した。さらに、この発熱体を非通気性の外袋に密封し、室温で24時間放置した。その後、該発熱体を外袋より取り出し、通気性面を目に向けて、目を覆うように、耳掛け部で、目に固定し発熱試験をした。該発熱体は、区分け部より折れ曲がり、目に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該目温発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。
(Example 19)
A local ventilation material composed of a two-layer laminate of air-through nonwoven fabric (texture) / polyethylene porous film in which three 2 mmφ perforations are provided at equal intervals on the entire ventilation surface of the heating element similar to Example 18. It covers so that the three perforations are arranged in each section, and is fixed to the peripheral part of the heating element through an adhesive layer (fixing part) made of an adhesive, and the moisture permeability is 5000 g / (m on the eye side. Heat generation at eye temperature in the same manner as in Example 18 except that a feel material composed of a three-layer laminate of spunbond nonwoven fabric (strength) / melt blown nonwoven fabric (breathable) / thermal bond nonwoven fabric (texture) exceeding 2 · day) was provided. Several bodies were made. Further, this heating element was sealed in a non-breathable outer bag and left at room temperature for 24 hours. Thereafter, the heating element was taken out of the outer bag, and the breathable surface was turned to the eyes, and the eyes were fixed to the eyes so as to cover the eyes. The heating element was bent from the section, fixed tightly along the eyes, became warm immediately, and the warm time lasted for more than 6 hours. The eye temperature heating element was a heating element having excellent heat generation performance and excellent flexibility.

(実施例20)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.4重量部、吸水性ポリマー(粒径300μm以下)1.2重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は、25であり、立ち上り昇温速度は、6℃/5分であった。、該余剰水値は中村理科工業株式社製濾紙No.2(円形)を使用して規定した。ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。該被覆材の通気性はリッシー法による透湿度が290g/(m・day)であった。
2個の貫通孔を有する厚さ1.2mmの型を用いた型通し成形をした発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せに成るように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、発熱体の周辺部のシール幅が8mmで、2個の区分発熱部を有し、区分け部が長さ30mm×幅22mm、区分発熱部が長さ30mm×幅15mmの発熱部を上部に有する、シール幅が8mmで、長さ116mm×幅95mmのマスク形の顔温発熱体の一種である鼻温発熱体を作製した。更に通気面に非通気性のポリエチレンフィルムである局所通気材を粘着剤を介して設け、各区分け部の両端部からのみ通気するようにし、さらに該発熱体の長手方向の両端部に中心にゴムを有するひもからなる耳掛け部を設け、マスク形の鼻温発熱体を複数個、作成した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、非通気性面を鼻に向けて、上部発熱部を鼻周辺に位置するように、耳掛け部で、顔に固定し発熱試験をした。該発熱体は、区分け部より折れ曲がり、鼻に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が30分以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有している発熱体であった。尚、該発熱体の収納体のループスティフネスは98mN/cmであった。該収納体として区分発熱部と区分け部からなる発熱部領域を採用した。
(Example 20)
Iron powder (particle size 300 μm or less) 100 parts by weight, activated carbon (particle size 300 μm or less) 5.5 parts by weight, wood powder (particle size 150 μm or less) 2.4 parts by weight, water-absorbing polymer (particle size 300 μm or less) 2 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite and 11% saline were mixed to prepare an excess water-containing exothermic composition. The surplus water value of the surplus water-containing exothermic composition was 25, and the rising temperature rising rate was 6 ° C./5 minutes. The surplus water value is obtained by filter paper No. 1 manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define. A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the coating material was 290 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
The exothermic composition molded body that was molded through a mold having a thickness of 1.2 mm having two through holes was laminated on the polyethylene film surface of the substrate so that the polyethylene film surfaces overlap each other. Cover the covering material, heat seal the peripheral edge of the exothermic composition molded body, cut it, the seal width of the peripheral part of the heating element is 8 mm, and there are two segmented heat generating parts, and the segmented part is long A nasal temperature fever that is a kind of mask-shaped face temperature heating element having a heating part of 30 mm × width 22 mm, a section heating part 30 mm long × 15 mm wide at the top, a seal width of 8 mm, length 116 mm × width 95 mm The body was made. Further, a local ventilation material, which is a non-breathable polyethylene film, is provided on the ventilation surface via an adhesive so that air can be ventilated only from both ends of each section. Further, rubber is provided at both ends in the longitudinal direction of the heating element. A plurality of mask-shaped nasal heating elements were prepared. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was removed from the outer bag, and the exothermic surface was fixed to the face with an ear hook so that the non-breathable surface was directed to the nose and the upper heating part was positioned around the nose, and a heat test was conducted. The heating element was bent from the section, was fixed tightly along the nose, became warm immediately, and the warm time lasted for more than 30 minutes. The heating element was a heating element having excellent heat generation performance and excellent flexibility. The loop stiffness of the heating element storage body was 98 mN / cm. As the storage body, a heat generating portion area composed of a divided heat generating portion and a dividing portion was adopted.

(実施例21)
鉄粉(粒径300μm以下)100重量部、活性炭(粒径300μm以下)5.5重量部、木粉(粒径150μm以下)2.5重量部、吸水性ポリマー(粒径300μm以下)0.5重量部、消石灰0.5重量部、亜硫酸ナトリウム0.7重量部、11%食塩水を混合し、含余剰水発熱組成物を作成した。該含余剰水発熱組成物の余剰水値は20であり、立ち上がり昇温速度は6℃/5分であった。該余剰水値は中村理科工業(株)製濾紙No.2(円形)を使用して規定した。
ポリプロピレン不織布とポリエチレン製多孔質フィルムとの積層体を、通気性の被覆材に、ポリエチレンフィルムの片面にセパレータ付き粘着剤層を、もう一方の片面にエチレン−酢酸ビニルコポリマーフィルムを設けた積層体を非通気性の基材に使用した。被覆材の通気性はリッシー法による透湿度が290g/(m2・day)であった。
6個の貫通孔を有する厚さ2.0mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、6個の貫通孔を有する厚さ2.0mmの型を用いて、該含余剰水発熱組成物を型通し成形した発熱組成物成形体を該基材のポリエチレンフィルム面上に積層し、ポリエチレンフィルム面が互いに重ね合せになるように該被覆材を被せ、発熱組成物成形体の周縁部をヒートシールし、カットし、
6個の区分発熱部がヒートシール領域である区分け部を間隔として、間隔を置いて設けられ、区分発熱部が長さ77mm×幅15mm、区分け部が長さ77mm×幅5mmの発熱部を有する、周辺部のシール幅が8mmで、長さ131mm×幅93mmの発熱体を複数個、作製した。該発熱体を非通気性の外袋に密封し、室温で24時間放置した。24時間後、該発熱体を外袋より取り出し、物性を測定した。該発熱体の収納体のループスティフネスは98mN/cmであった。最小剛軟度は、48であり、最小剛軟度変化は0であった。また、該発熱体を外袋より取り出し、粘着層にて、腰に固定し発熱試験をしたが、腰に沿ってぴったりと固定され、すぐに温かくなり、温かい時間が6時間以上続いた。該発熱体は優れた発熱性能と優れた柔軟性を有し、使用感が良く、実用性のある発熱体であった。
(Example 21)
100 parts by weight of iron powder (particle size 300 μm or less), 5.5 parts by weight of activated carbon (particle size 300 μm or less), 2.5 parts by weight of wood powder (particle size 150 μm or less), water-absorbing polymer (particle size 300 μm or less) 5 parts by weight, 0.5 parts by weight of slaked lime, 0.7 parts by weight of sodium sulfite, and 11% saline were mixed to prepare an excess water heating composition. The surplus water value of the surplus water-containing exothermic composition was 20, and the rising temperature rising rate was 6 ° C./5 minutes. The surplus water value is obtained by filter paper No. manufactured by Nakamura Science Co., Ltd. 2 (circular) was used to define.
A laminate comprising a polypropylene nonwoven fabric and a polyethylene porous film, a breathable coating material, a polyethylene film with a pressure-sensitive adhesive layer with a separator on one side, and an ethylene-vinyl acetate copolymer film on the other side. Used for non-breathable substrate. The breathability of the covering material was 290 g / (m 2 · day) in terms of moisture permeability by the Lissy method.
Using a 2.0 mm thick mold having six through holes, the exothermic composition molded body obtained by molding the surplus water exothermic composition through the mold was laminated on the polyethylene film surface of the substrate, and a polyethylene film Cover the covering material so that the surfaces overlap each other, heat seal the peripheral edge of the exothermic composition molded body, cut it, and use a 2.0 mm thick mold having six through holes, The exothermic composition molded body obtained by molding the excess water exothermic composition through a mold is laminated on the polyethylene film surface of the base material, and the covering material is covered so that the polyethylene film surfaces overlap each other. Heat-sealing and cutting the periphery of the body,
Six section heat generating portions are provided at intervals with a section portion that is a heat seal area as an interval, the section heat generating portion has a heat generating portion of length 77 mm × width 15 mm, and the section portion is length 77 mm × width 5 mm. A plurality of heating elements having a peripheral seal width of 8 mm and a length of 131 mm and a width of 93 mm were produced. The heating element was sealed in a non-breathable outer bag and allowed to stand at room temperature for 24 hours. After 24 hours, the heating element was taken out from the outer bag and measured for physical properties. The loop stiffness of the heating element storage body was 98 mN / cm. The minimum bending resistance was 48, and the minimum bending resistance change was zero. Further, the heating element was taken out from the outer bag and fixed to the waist with the adhesive layer, and the heat generation test was carried out, but it was fixed tightly along the waist and became warm immediately, and the warm time continued for 6 hours or more. The heating element had excellent heat generation performance and excellent flexibility, had a good feeling in use, and was a practical heating element.

(比較例5) 収納体のループスティフネスを1000mN/cmにした以外は、実施例21と同様の発熱体を複数個、作成した。該発熱体を外袋より取り出し、粘着層にて、腰に固定し発熱試験をしたが、すぐに温かくなり、温かい時間が6時間以上続いたが、該発熱体は、腰に沿わず、柔軟性はなく、使用感が悪く、実用性のない発熱体であった。尚、最小剛軟度は測定不能であった。 (Comparative example 5) Except having made the loop stiffness of the storage body into 1000 mN / cm, the several heat generating body similar to Example 21 was created. The heating element was taken out from the outer bag, fixed to the waist with the adhesive layer, and a heat test was conducted. However, the heating element immediately became warm and the warm time lasted for 6 hours or more. However, the heating element did not follow the waist and was flexible. The heating element was not practical, had a poor feeling in use, and was impractical. The minimum bending resistance was not measurable.

基準線を設けた濾紙を示す平面図である。It is a top view which shows the filter paper which provided the reference line. 測定装置を示す断面図である。It is sectional drawing which shows a measuring apparatus. 操作を示す断面図である。It is sectional drawing which shows operation. 測定を示す断面図である。It is sectional drawing which shows a measurement. 余剰水値を算出する濾紙を示す平面図である。It is a top view which shows the filter paper which calculates a surplus water value. (a) 矩形発熱体の一例を示す平面図である。 (b) 同A−Aの断面図である。(A) It is a top view which shows an example of a rectangular heating element. (B) It is sectional drawing of the same AA. (a) 温灸発熱体の一例を示す平面図である。 (b) 同B−Bの断面図である。 (c) 温灸発熱体の他の一例を示す断面図である。(A) It is a top view which shows an example of a hot spring heating element. (B) It is sectional drawing of the same BB. (C) It is sectional drawing which shows another example of a hot-spring heating element. (a) 足温発熱体の一例を示す平面図である。 (b) 同C−Cの断面図である。 (c) 足温発熱体の他の一例を示す平面図である。(A) It is a top view which shows an example of a foot temperature heating element. (B) It is sectional drawing of CC. (C) It is a top view which shows another example of a foot temperature heating element. (a) 剛軟発熱体の一例を示す平面図である。 (b) 剛軟発熱体の他の一例を示す平面図である。(A) It is a top view which shows an example of a rigid soft heating element. (B) It is a top view which shows another example of a rigid soft heating element. (a)ストライプ発熱体の一例を示す平面図である。 (b)同D−Dの断面図である。 (c)ストライプ発熱体の他の一例を示す断面図である。 (d)ストライプ発熱体の他の一例を示す断面図である。(A) It is a top view which shows an example of a stripe heat generating body. (B) It is sectional drawing of the DD. (C) It is sectional drawing which shows another example of a stripe heat generating body. (D) It is sectional drawing which shows another example of a stripe heat generating body. (a)切り離し自在発熱体の一例を示す平面図である。 (b)小発熱体の一例を示す平面図である。 (c)切り離し自在発熱体の他一例を示す平面図である。 (d)小発熱体の他の一例を示す平面図である。(A) It is a top view which shows an example of a separable heating element. (B) It is a top view which shows an example of a small heat generating body. (C) It is a top view which shows another example of the separable heating element. (D) It is a top view which shows another example of a small heat generating body. (a)伸縮発熱体の一例を示す平面図である。 (b)同E−Eの断面図である。(A) It is a top view which shows an example of an expansion-contraction heating element. (B) It is sectional drawing of the same EE. (a)伸縮発熱体の他の一例を示す平面図である。 (b)伸縮発熱体の他の一例を示す平面図である。(A) It is a top view which shows another example of an expansion-contraction heating element. (B) It is a top view which shows another example of an expansion-contraction heating element. バンド発熱体の一例を示す平面図である。It is a top view which shows an example of a band heat generating body. (a)トンネル通気発熱体の一例を示す平面図である。 (b)同F−Fの断面図である。(A) It is a top view which shows an example of a tunnel ventilation heat generating body. (B) It is sectional drawing of the FF. (a)トンネル通気発熱体の空間部の近傍の一例を示す部分拡大断面図である。 (b)トンネル通気発熱体の空間部の近傍の他の一例を示す部分拡大断面図である。(A) It is a partial expanded sectional view which shows an example of the vicinity of the space part of a tunnel ventilation heat generating body. (B) It is a partial expanded sectional view which shows another example of the vicinity of the space part of a tunnel ventilation | gas_flowing heat generating body. (a)薬剤発熱体の一例を示す平面図である。 (b)同G−Gの断面図である。 (c)薬剤発熱体の他の一例を示す平面図である。 (d)薬剤発熱体の他の一例を示す断面図である。(A) It is a top view which shows an example of a chemical | medical agent heating element. (B) It is sectional drawing of the same GG. (C) It is a top view which shows another example of a chemical | medical agent heating element. (D) It is sectional drawing which shows another example of a chemical | medical agent heating element. (a)薬剤発熱体の他の一例を示す平面図である。 (b)同H−Hの断面図である。(A) It is a top view which shows another example of a chemical | medical agent heating element. (B) It is sectional drawing of HH. (a)切り離し自在薬剤発熱体の一例を示す平面図である。 (b)同I−Iの断面図である。 (c)小薬剤発熱体の一例を示す断面図である。(A) It is a top view which shows an example of the separable medicine heating element. (B) It is sectional drawing of the II. (c) It is sectional drawing which shows an example of a small medicine heat generating body. (a)目温発熱体の一例を示す平面図である。 (b)同J−Jの断面図である。 (c)目温発熱体の他の一例を示す平面図である。 (d)目温発熱体の他の一例を示す断面図である。 (e)顔温発熱体の一例を示す平面図である。 (f)顔温発熱体の他の一例を示す斜視図である。 (g)鼻温発熱体の一例を示す平面図である。 (h)顔温発熱体及び鼻温発熱体用のトンネル通気発熱体の他の一例を示す平面図である。(A) It is a top view which shows an example of a eye temperature heat generating body. (B) It is sectional drawing of the same JJ. (C) It is a top view which shows another example of a eye temperature heat generating body. (D) It is sectional drawing which shows another example of eye temperature heat generating body. (E) It is a top view which shows an example of a face temperature heating element. (F) It is a perspective view which shows another example of a face temperature heating element. (G) It is a top view which shows an example of a nasal temperature heating element. (H) It is a top view which shows another example of the tunnel ventilation heating element for face temperature heating elements and a nasal temperature heating element. (a)折り畳まれる前の剛軟発熱体の他の一例を示す平面図である。 (b)外袋付き外仮着折り畳み発熱体の一例を示す平面図である。 (c)同K−Kの断面図である。 (d)外袋付き外仮着折り畳み発熱体の他の一例を示す平面図である。(A) It is a top view which shows another example of the rigid soft heating element before being folded. (B) It is a top view which shows an example of the outer temporary attachment folding heating element with an outer bag. (C) It is sectional drawing of the same KK. (D) It is a top view which shows another example of the outer temporary attachment folding heat generating body with an outer bag. 剛軟発熱体の柔軟性を示す断面図である。It is sectional drawing which shows the softness | flexibility of a rigid soft heating element. 単一発熱部発熱体の非柔軟性を示す断面図である。It is sectional drawing which shows the non-flexibility of a single heat generating part heat generating body. (a)間欠的な切り込みの一種である互い違い切り込みの一例を示す平面図である。 (b)間欠的な切り込みの一種であるミシン目の一例を示す平面図である。 (c)間欠的な切り込みの一種であるミシン目の他の一例を示す平面図である。(A) It is a top view which shows an example of the alternate cut which is a kind of intermittent cut. (B) It is a top view which shows an example of the perforation which is a kind of intermittent cut. (C) It is a top view which shows another example of the perforation which is a kind of intermittent cut. (a)〜(d)型成形性を示す断面図である。It is sectional drawing which shows (a)-(d) type moldability. (a)〜(d)非型成形性を示す断面図である。It is sectional drawing which shows (a)-(d) non-molding property.

符号の説明Explanation of symbols

1 濾紙
2 基準線
3 測定板 (円柱状貫通孔を有する測定板)
4 円柱状貫通孔
5 円柱状貫通孔の直径
6 円柱状貫通孔の高さ
7 円柱状貫通孔の径円
8 支持板
9 充填板
10 押さえ板
11 非吸水性プラスチックフィルム(ポリエチレンフィルム等)
12 浸透跡
13 浸透距離
14 発熱組成物
15 余剰水値測定装置
17 単一発熱部発熱体
17A 矩形発熱体
18 温灸発熱体
19 足温発熱体
20 区分発熱部発熱体
21 剛軟発熱体
22 ストライプ発熱体
23 切り離し自在発熱体
23A 小発熱体
24 伸縮発熱体
25 バンド発熱体
26 トンネル通気発熱体
27 薬剤発熱体
27A 切り離し自在薬剤発熱体
27B 小薬剤発熱体
28 外袋付き外仮着折り畳み発熱体
29 含余剰水発熱組成物
30 発熱組成物成形体
31 発熱部
32 区分発熱部
33 区分け部
34 シール部
35 被覆材
36 基材
37 芯材
38 滑り止め材
39 粘着剤層
40 通気性粘着剤層
41 空間部
42 面ファスナー
43 セパレータ
44 間欠的な切り込み
45 切り込み部
46 繋ぎ部
47 ミシン目
48 互い違い切り込み
49 ノッチ(Vノッチ、Uノッチ、Iノッチ等)
50 固定部(接着層、粘着層、ヒートシール層等)
51 局所通気材
52 空間部
53 通気孔
54 通気遮断シート
55 取っ手(つまみ部)
56 バンド(支持体、包材)
57 外袋
58 外仮着層
59 シール部
60 折り畳まれた発熱体
61 支持台
62 区分発熱部の側面通気部
63 区分発熱部の頂上部
64 型成形性測定装置
65 磁石
66 目温発熱体
67 目側
68 風合い材
69 顔温発熱体
69A 鼻温発熱体
70 マスク
71 発熱体(発熱部)収納部
72 発熱部(発熱体)保持部
73 耳掛け部
74 穴
75 耳掛けひも、耳掛けゴム
1 filter paper 2 reference line 3 measuring plate (measuring plate having a cylindrical through hole)
4 Cylindrical through-hole 5 Diameter of cylindrical through-hole 6 Height of cylindrical through-hole 7 Diameter circle of cylindrical through-hole 8 Support plate 9 Filling plate 10 Holding plate 11 Non-water-absorbing plastic film (polyethylene film, etc.)
DESCRIPTION OF SYMBOLS 12 Penetration trace 13 Penetration distance 14 Exothermic composition 15 Excess water value measuring device 17 Single heating part heating element 17A Rectangular heating element 18 Warm heating element 19 Foot temperature heating element 20 Division heating part heating element 21 Rigid soft heating element 22 Stripe heating Body 23 Separable heating element 23A Small heating element 24 Stretch heating element 25 Band heating element 26 Tunnel ventilation heating element 27 Drug heating element 27A Separable medicine heating element 27B Small drug heating element 28 Outer temporary fitting folding heating element with outer bag 29 Including Excess water exothermic composition 30 Exothermic composition molded body 31 Exothermic part 32 Sectional exothermic part 33 Sorting part 34 Sealing part 35 Covering material 36 Base material 37 Core material 38 Anti-slip material 39 Adhesive layer 40 Breathable adhesive layer 41 Space part 42 Surface Fastener 43 Separator 44 Intermittent Cut 45 Cut Part 46 Joint 47 Perforation 48 Alternate cuts 49 Notches (V notch, U notch, I notch, etc.)
50 fixed parts (adhesive layer, adhesive layer, heat seal layer, etc.)
51 Local ventilation material 52 Space part 53 Vent hole 54 Ventilation blocking sheet 55 Handle (knob part)
56 Band (support, packaging material)
57 Outer bag 58 Outer temporary attachment layer 59 Sealing part 60 Folded heating element 61 Support base 62 Side ventilation part of section heating part 63 Top part of section heating part 64 Mold formability measuring device 65 Magnet 66 Eye heating element
67 Eye side
68 Textured material
69 Face temperature heating element
69A nasal heating element
70 mask
71 Heating element (heating part) storage part
72 Heating part (heating element) holding part
73 Ear hook
74 holes
75 Ear straps, ear rubber

Claims (3)

貫通孔を有する余剰水値測定装置と浸透材により、製造後の発熱組成物の経時的に減少する水分量において、発熱組成物の測定時の全水分量を明らかにすることなく、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、該発熱組成物の余剰水量を測定時の全水分量に対する指標として示す現在の発熱組成物の余剰水値を規定する方法であって、
前記浸透材が、濾水時間120秒/100m1以下の濾材であり、前記濾材に底打ちされた、前記余剰水値測定装置の測定板の貫通孔内に前記発熱組成物を充填し、その5分後の前記測定板の貫通孔内の前記発熱組成物の水又は水溶液の前記濾材への浸透距離を測定し、
余剰水値=[浸透距離(mm)/貫通孔(発熱組成物)の高さ(mm)]×100
により、
その浸透距離を前記貫通孔内に充填した発熱組成物の測定時の全水分量に比例する貫通孔の高さで除し、更に100をかけて得られる値を発熱組成物中の測定時の全水分量に対する余剰水量を示す現在の発熱組成物の余剰水値とすることを特徴とする発熱組成物の余剰水値の規定方法。
Excess water value measuring device having a through-hole and a penetrating material allow the exothermic composition to be measured without revealing the total amount of water when measuring the exothermic composition in the amount of moisture that decreases with time in the exothermic composition after production. Measuring the surplus water as an index value of the current surplus water amount, and defining the surplus water value of the current exothermic composition indicating the surplus water amount of the exothermic composition as an index for the total water content at the time of measurement ,
The permeation material is a filtration material having a filtration time of 120 seconds / 100 ml or less, and the exothermic composition is filled in the through hole of the measurement plate of the surplus water value measuring device bottomed on the filtration material. Measure the penetration distance to the filter medium of water or an aqueous solution of the exothermic composition in the through hole of the measurement plate after minutes,
Excess water value = [penetration distance (mm) / height of through-hole (exothermic composition) (mm)] × 100
By
Divide the permeation distance by the height of the through hole proportional to the total water content at the time of measurement of the exothermic composition filled in the through hole, and multiply by 100 to obtain the value obtained at the time of measurement in the exothermic composition. A method for defining a surplus water value of an exothermic composition, characterized in that the surplus water value of the current exothermic composition indicating the amount of surplus water relative to the total water content .
円柱状貫通孔を有する余剰水値測定装置と浸透材により、製造後の発熱組成物の経時的に減少する水分量において、発熱組成物の測定時の全水分量を明らかにすることなく、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、該発熱組成物の余剰水量を測定時の全水分量に対する指標として示す現在の発熱組成物の余剰水値を規定する方法であって、
前記余剰水値測定装置を非吸水性の素材からなる支持板、測定板、充填板、プラスチックフィルム、押さえ板から構成し、前記浸透材が濾水時間120秒/100m1以下の濾紙であり、前記発熱組成物を用いて、中心点から放射状に45゜間隔で8本の基準線が書かれた、濾水時間120 秒/100m1以下の濾紙を、支持板上に置き、前記濾紙の中心に、円柱状貫通孔を持つ長さ150 mm×幅100 mmの表面が平滑な測定板を置き、その円柱状貫通孔付近に前記発熱組成物を置き、充填板を測定板上に沿って動かし、前記発熱組成物を充填し、さらに、測定中に前記発熱組成物が発熱反応を起こさないように、円柱状貫通孔を覆うように非吸水性のプラスチックフィルムを置き、更に、その上に、押さえ板を置き、5分間保後、該濾紙を取り出し、放射状に書かれた基準線に沿って、水又は水溶液の浸透距離を測定板の円柱状貫通孔の径円から浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を前記円柱状貫通孔内に充填した前記発熱組成物の測定時の全水分量に比例する円柱状貫通孔の高さ(mm)でわり、更に100をかけた値を発熱組成物中の測定時の全水分量に対する余剰水量を示す現在の発熱組成物の余剰水値とすることを特徴とする請求項1に記載の発熱組成物の余剰水値の規定方法。
Excess water value measuring device with a cylindrical through-hole and penetrating material can generate heat without revealing the total water content when measuring the exothermic composition in the exothermic composition after production. It is a method of measuring the surplus water value of the present exothermic composition by measuring the surplus water of the composition as an index value of the current surplus water amount and indicating the surplus water amount of the exothermic composition as an index with respect to the total water content at the time of measurement. And
A support plate made of the excess water level measuring device from the non-water-absorbing material, the measurement plate, the filling plate, plastic film, composed of a pressing plate, wherein the osmotic material is drainage time of 120 seconds / 100M1 following filter paper, said Using the exothermic composition, a filter paper with eight reference lines radially written at 45 ° intervals from the center point and having a drainage time of 120 seconds / 100 ml or less is placed on a support plate, and the filter paper is placed at the center of the filter paper. surface length 0.99 mm × width 100 mm with a cylindrical through hole Place the smooth measurement plate, place the cylindrical through-holes near to the heat-generating composition, moving along a filling plate on measuring plate, wherein the exothermic composition is filled, further wherein as the exothermic composition does not cause an exothermic reaction during the measurement, place the non-water-absorbing plastic film so as to cover a cylindrical through-hole, further thereon, the pressing plate It was placed, after the hold 5 minutes, Take out the filter paper, along the radial reference line, read the penetration distance of water or aqueous solution from the diameter circle of the cylindrical through hole of the measuring plate to the penetration tip in mm units, and read each of the 8 A value (mm) obtained by arithmetically averaging the permeation distance (m1, m2, m3, m4, m5, m6, m7, m8) is proportional to the total water content at the time of measurement of the exothermic composition filled in the cylindrical through hole. The value obtained by dividing the height of the cylindrical through hole (mm) and multiplying by 100 is the surplus water value of the current exothermic composition indicating the surplus water amount with respect to the total water amount at the time of measurement in the exothermic composition. The method for defining the excess water value of the exothermic composition according to claim 1.
円柱状貫通孔を有する余剰水値測定装置と浸透材により、製造後の発熱組成物の経時的に減少する水分量において、発熱組成物の測定時の全水分量を明らかにすることなく、発熱組成物の余剰水を現在の余剰水量の指標値として測定し、該発熱組成物の余剰水量を測定時の全水分量に対する指標として示す現在の発熱組成物の余剰水値を規定する方法であって、
前記余剰水値測定装置を非吸水性の素材からなる支持板、測定板、充填板、プラスチックフィルム、押さえ板から構成し、前記浸透材がJIS P3801「2種」濾紙であり、 前記発熱組成物を用いて、中心点から放射状に45゜間隔で8本の基準線が書かれた、前記JIS P3801「2種」濾紙を、支持板上に置き、前記濾紙の中心に、直径29mm×高さ20mmの円柱状貫通孔をつ長さ150mm×幅100mmの表面が平滑な測定板を置き、その円柱状貫通孔付近に前記発熱組成物を置き、充填板を測定板上に沿って動かし、前記発熱組成物を充填し、さらに、測定中に前記発熱組成物が発熱反応を起こさないように、円柱状貫通孔を覆うように非吸水性のプラスチックフィルムを置き、更に、その上に、押さえ板を置き、5分間保持後、該濾紙を取り出し、放射状に書かれた基準線に沿って、水又は水溶液の浸透距離を測定板の円柱状貫通孔の径円から浸透先端までの距離をmm単位で読み取り、読み取った8個の各浸透距離(m1、m2、m3、m4、m5、m6、m7、m8)を算術平均した値(mm)を前記円柱状貫通孔内に充填した前記発熱組成物の測定時の全水分量に比例する円柱状貫通孔の高さ(mm)でわり、更に100をかけた値を発熱組成物中の測定時の全水分量に対する余剰水量を示す現在の発熱組成物の余剰水値とすることを特徴とする請求項1に記載の発熱組成物の余剰水値の規定方法。
Excess water value measuring device with a cylindrical through-hole and penetrating material can generate heat without revealing the total water content when measuring the exothermic composition in the exothermic composition after production. It is a method of measuring the surplus water value of the present exothermic composition by measuring the surplus water of the composition as an index value of the current surplus water amount and indicating the surplus water amount of the exothermic composition as an index with respect to the total water content at the time of measurement. And
The surplus water value measuring device is composed of a support plate, a measurement plate, a filling plate, a plastic film, and a pressing plate made of a non-water-absorbing material, and the permeation material is JIS P3801 “Type 2” filter paper, The JIS P3801 “Type 2” filter paper on which eight reference lines are written at 45 ° intervals radially from the center point is placed on a support plate, and the diameter of 29 mm × height at the center of the filter paper a cylindrical through hole of 20mm Place the smooth measurement plate surface of the lifting one length 150 mm × width 100 mm, place the cylindrical through-holes near to the heat-generating composition, moving along a filling plate on measuring plate, filling the heat-generating composition, further, the so exothermic composition does not cause an exothermic reaction during the measurement, place the non-water-absorbing plastic film so as to cover a cylindrical through-hole, further thereon, pressing Place the board, 5 minutes After holding the filter paper, remove the filter paper, read the penetration distance of water or aqueous solution along the reference line written radially, and read the distance from the diameter circle of the cylindrical through hole of the measurement plate to the penetration tip in mm units. When measuring the exothermic composition in which the columnar through-holes were filled with values (mm) obtained by arithmetically averaging the eight permeation distances (m1, m2, m3, m4, m5, m6, m7, m8) . The surplus water of the present exothermic composition, which indicates the surplus water amount relative to the total water amount at the time of measurement in the exothermic composition, divided by the height of the cylindrical through hole (mm) proportional to the total moisture amount and further multiplied by 100 The method for defining the excess water value of the exothermic composition according to claim 1, wherein the value is a value.
JP2008138476A 2007-07-12 2008-05-27 Method for defining excess water value of exothermic composition Expired - Fee Related JP5354488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138476A JP5354488B2 (en) 2007-07-12 2008-05-27 Method for defining excess water value of exothermic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007183670 2007-07-12
JP2007183670 2007-07-12
JP2008138476A JP5354488B2 (en) 2007-07-12 2008-05-27 Method for defining excess water value of exothermic composition

Publications (3)

Publication Number Publication Date
JP2009034481A JP2009034481A (en) 2009-02-19
JP2009034481A5 JP2009034481A5 (en) 2010-07-22
JP5354488B2 true JP5354488B2 (en) 2013-11-27

Family

ID=40436958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138476A Expired - Fee Related JP5354488B2 (en) 2007-07-12 2008-05-27 Method for defining excess water value of exothermic composition

Country Status (1)

Country Link
JP (1) JP5354488B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107714B2 (en) * 2018-03-24 2022-07-27 株式会社日吉 Slurry property measuring device and slurry property measuring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208978A (en) * 2002-12-27 2004-07-29 Mycoal Products Corp Heating composition and heating body
CN100384394C (en) * 2003-06-04 2008-04-30 旭化成纤维株式会社 Simplified warm-keeping body and warm-keeping cloth
WO2006006665A1 (en) * 2004-07-14 2006-01-19 Mycoal Products Corporation Exothermic composition and heating element
JP2007185396A (en) * 2006-01-13 2007-07-26 Mycoal Products Corp Method for producing exothermic body, method for folding exothermic body, and manufacturing installation

Also Published As

Publication number Publication date
JP2009034481A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP4527724B2 (en) Heating element and packaging material for mold forming heating element
JP4490971B2 (en) Heating element
JPWO2006006662A1 (en) Heating element
JPWO2006006654A1 (en) Heat cloth and manufacturing method thereof
JPWO2006006655A1 (en) Heat generating pad and method of using the same
JPWO2006006664A1 (en) Flexible heating element
JP5692560B2 (en) Manufacturing method of heating element and heating element
JPWO2006006652A1 (en) Heating element
JPWO2006006653A1 (en) Micro heater and manufacturing method thereof
WO2004098470A1 (en) Warming tool
JP6997545B2 (en) Steam heating equipment and how to use it
JPWO2006006648A1 (en) Exothermic composition, heating element and method for producing the heating element
JPWO2006006647A1 (en) Active iron powder and heating element
JPWO2006006665A1 (en) Exothermic composition and heating element
WO2006006657A1 (en) Thermal wrap around joint
JP5348583B2 (en) Heating element and method for manufacturing the heating element
JPWO2006006645A1 (en) Method for producing exothermic mixture, exothermic mixture, exothermic composition, and exothermic body
JP5305261B2 (en) Heating element manufacturing method and heating element manufacturing apparatus
JP2005328852A (en) Warmer
JP5354488B2 (en) Method for defining excess water value of exothermic composition
WO2007081010A1 (en) Heating element corrugated on both sides
JPWO2006006649A1 (en) Wet exothermic composition compressed body, heating element, and method for producing wettable exothermic composition compressed body
JP2007186626A (en) Moldable surplus water-containing exothermic composition, exothermic element and method for producing the same
JP2011200301A (en) Exothermic body
JP2011201060A (en) Method for manufacturing corrugated heating element and corrugated heating element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5354488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees