JP5353220B2 - Method for producing hydrocarbon resin - Google Patents

Method for producing hydrocarbon resin Download PDF

Info

Publication number
JP5353220B2
JP5353220B2 JP2008319446A JP2008319446A JP5353220B2 JP 5353220 B2 JP5353220 B2 JP 5353220B2 JP 2008319446 A JP2008319446 A JP 2008319446A JP 2008319446 A JP2008319446 A JP 2008319446A JP 5353220 B2 JP5353220 B2 JP 5353220B2
Authority
JP
Japan
Prior art keywords
polymerization
hydrocarbon resin
fraction
polymerization reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008319446A
Other languages
Japanese (ja)
Other versions
JP2010143957A (en
Inventor
清 稲原
浩英 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008319446A priority Critical patent/JP5353220B2/en
Publication of JP2010143957A publication Critical patent/JP2010143957A/en
Application granted granted Critical
Publication of JP5353220B2 publication Critical patent/JP5353220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a hydrocarbon resin by increasing a polymerization conversion rate of a cracking oil fraction into the hydrocarbon resin. <P>SOLUTION: The manufacturing method for the hydrocarbon resin comprises a multistep polymerization process comprising at least the following steps (1) and (2): (1) a polymerization step of carrying out a polymerization reaction at a polymerization temperature within the range of 30-60&deg;C by adding a Friedel-Crafts catalyst to a sole fraction (a) having a boiling range of 140-220&deg;C or a mixture of the fraction (a) with a fraction (b) having a boiling range of 15-70&deg;C among cracking oil fractions obtained by pyrolysis of petroleum. Step (2): A polymerization step subsequent to the step (1) of increasing the temperature to a polymerization temperature higher than that in the step (1) and sequentially carrying out a polymerization reaction. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、炭化水素樹脂の製造方法に関するものであり、更に詳細には、重合反応時の炭化水素樹脂への重合転化率が高くなることから生産効率良く炭化水素樹脂を製造する方法に関するものである。   The present invention relates to a method for producing a hydrocarbon resin, and more particularly to a method for producing a hydrocarbon resin with high production efficiency because the polymerization conversion rate to the hydrocarbon resin during the polymerization reaction is high. is there.

石油類の熱分解により得られる分解油留分を原料とした重合物として炭化水素樹脂(石油樹脂と称することもある。)が知られている。このような炭化水素樹脂は、各種粘着付与剤、改質剤、接着剤、塗料、印刷インキ等の用途に使用されている。   A hydrocarbon resin (also referred to as a petroleum resin) is known as a polymer obtained from a cracked oil fraction obtained by thermal decomposition of petroleum. Such hydrocarbon resins are used for various tackifiers, modifiers, adhesives, paints, printing inks and the like.

そして、炭化水素樹脂の製造方法としては、脂肪族系炭化水素樹脂の製造方法(例えば特許文献1,2参照。)、芳香族系炭化水素樹脂の製造方法(例えば特許文献3,4参照。)、脂肪族−芳香族炭化水素樹脂の製造方法(例えば特許文献5参照。)、等の各種炭化水素樹脂の製造方法が提案されている。   And as a manufacturing method of hydrocarbon resin, the manufacturing method of aliphatic hydrocarbon resin (for example, refer patent documents 1 and 2), and the manufacturing method of aromatic hydrocarbon resin (for example refer patent documents 3 and 4). Various methods for producing hydrocarbon resins such as aliphatic-aromatic hydrocarbon resins (see, for example, Patent Document 5) have been proposed.

特開平03−188112号公報JP 03-188112 A 特開平05−140238号公報Japanese Patent Laid-Open No. 05-140238 特開2002−060418号公報JP 2002-060418 A 特開2002−060431号公報JP 2002-060431 A 特開平03−190910号公報Japanese Patent Laid-Open No. 03-190910

しかし、特許文献1〜5に提案された炭化水素樹脂の製造方法は、単に炭化水素樹脂を製造するものであり、生産効率よく炭化水素樹脂を製造することに関してはなんら考慮がなされていないものであった。   However, the hydrocarbon resin production methods proposed in Patent Documents 1 to 5 merely produce hydrocarbon resins, and no consideration is given to producing hydrocarbon resins with high production efficiency. there were.

そこで、本発明は、生産性に優れた炭化水素樹脂の製造方法を提供するものである。   Therefore, the present invention provides a method for producing a hydrocarbon resin excellent in productivity.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、分解油の重合工程を特定条件下の多段重合工程とすることにより、分解油の炭化水素樹脂への重合転化率を高めることが可能となり、その結果、炭化水素樹脂の生産性を高めた製造方法となることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have increased the polymerization conversion rate of cracked oil to hydrocarbon resin by making the cracked oil polymerization process a multistage polymerization process under specific conditions. As a result, it has been found that the production method of the hydrocarbon resin is improved, and the present invention has been completed.

即ち、本発明は、少なくとも下記(1)及び(2)の工程を経た多段重合工程を行う炭化水素樹脂の製造方法に関するものである。
(1)工程;石油類の熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分(a)30〜70重量%と沸点範囲が15〜70℃の留分(b)70〜30重量%との混合物に、フリーデルクラフツ系触媒を添加し30〜60℃の範囲内の重合温度で重合反応を行う重合工程。
(2)工程;(1)工程の後、(1)工程の重合温度よりも高い重合温度に昇温し重合反応を継続して行う重合工程。
That is, this invention relates to the manufacturing method of the hydrocarbon resin which performs the multistage polymerization process which passed the process of the following (1) and (2) at least.
(1) Step: Among the cracked oil fractions obtained by pyrolysis of petroleum, a fraction having a boiling range of 140 to 220 ° C. (a) A fraction having a boiling range of 15 to 70 ° C. and a boiling range of 15 to 70 ° C. (b ) A polymerization step of adding a Friedel-Crafts catalyst to a mixture of 70 to 30% by weight and carrying out a polymerization reaction at a polymerization temperature in the range of 30 to 60 ° C.
(2) Step: A polymerization step in which after the step (1), the temperature is raised to a polymerization temperature higher than the polymerization temperature in the step (1) and the polymerization reaction is continued.

以下、本発明に関し詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の炭化水素樹脂の製造方法は、少なくとも上記(1)及び(2)の工程を経た多段重合工程を行うものである。   The method for producing a hydrocarbon resin of the present invention performs a multi-stage polymerization step through at least the steps (1) and (2).

ここで、(1)工程は、石油類の熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分(a)単独または該留分(a)と沸点範囲が15〜70℃の留分(b)の混合物に、フリーデルクラフツ系触媒、必要に応じて連鎖移動剤を添加し、30〜60℃との範囲内より選択される重合温度で重合反応を行う重合工程である。該留分(a)とは、石油類の熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分であり、C9留分と称されることもある。該留分(a)としては、該範疇に属するものであれば如何なるものも用いることが可能であり、例えばスチレン、α−メチルスチレン、β−メチルスチレン、ビニルトルエン、インデン、ジシクロペンタジエン、エチルベンゼン、トリメチルベンゼン、ナフタレン等が挙げられる。また、該留分(b)とは、石油類の熱分解により得られる分解油留分のうち沸点範囲が15〜70℃の留分であり、C5留分と称されることもある。該留分(b)としては、該範疇に属するものであれば如何なるものも用いることが可能であり、例えばメチルブテン、ペンテン、イソプレン、ピペリレン、シクロペンテン、シクロペンタジエン、ペンタン、シクロペンタン等が挙げられる。   Here, in the step (1), among the cracked oil fractions obtained by pyrolysis of petroleum, the fraction (a) having a boiling range of 140 to 220 ° C. alone or the fraction (a) and the boiling range of 15 to A polymerization step of adding a Friedel-Crafts catalyst and, if necessary, a chain transfer agent to a mixture of the fraction (b) at 70 ° C., and performing a polymerization reaction at a polymerization temperature selected from the range of 30 to 60 ° C. It is. The fraction (a) is a fraction having a boiling range of 140 to 220 ° C. among cracked oil fractions obtained by thermal cracking of petroleum, and is sometimes referred to as a C9 fraction. Any fraction (a) can be used as long as it belongs to the above category, for example, styrene, α-methylstyrene, β-methylstyrene, vinyltoluene, indene, dicyclopentadiene, ethylbenzene. , Trimethylbenzene, naphthalene and the like. The fraction (b) is a fraction having a boiling range of 15 to 70 ° C. among cracked oil fractions obtained by pyrolysis of petroleum, and may be referred to as a C5 fraction. Any fraction (b) can be used as long as it belongs to the above category, and examples thereof include methylbutene, pentene, isoprene, piperylene, cyclopentene, cyclopentadiene, pentane, and cyclopentane.

本発明においては、該留分(a)単独または該留分(a)と該留分(b)との混合物として用いてもよく、該留分(a)と該留分(b)との混合物とする場合の混合割合としては、目的とする炭化水素樹脂の特性に応じて任意に選択することが可能であり、その中でも炭化水素樹脂として求められる軟化点、透明性等の特性が優れたものとなることから、留分(a)30〜70重量%と留分(b)70〜30重量%との割合で混合することが好ましい。   In the present invention, the fraction (a) may be used alone or as a mixture of the fraction (a) and the fraction (b), and the fraction (a) and the fraction (b) The mixing ratio in the case of a mixture can be arbitrarily selected according to the characteristics of the target hydrocarbon resin, and among them, characteristics such as softening point and transparency required for the hydrocarbon resin are excellent. Therefore, it is preferable to mix the fraction (a) at 30 to 70% by weight and the fraction (b) at 70 to 30% by weight.

重合反応を行う際のフリーデルクラフツ触媒としては、一般的に炭化水素樹脂を製造する際に用いられるフリーデルクラフツ触媒を用いることが可能であり、例えば三塩化アルミニウム、三フッ化ホウ素、その誘導体である錯体化合物等を挙げることができ、その添加量としては、目的とする炭化水素樹脂に応じ任意に選択すれば良く、その中でも特に0.05〜5重量%の割合で用いることが好ましい。   As the Friedel-Crafts catalyst for carrying out the polymerization reaction, it is possible to use Friedel-Crafts catalysts generally used for producing hydrocarbon resins, such as aluminum trichloride, boron trifluoride, and derivatives thereof. The addition amount may be arbitrarily selected according to the target hydrocarbon resin, and among them, it is particularly preferable to use it at a ratio of 0.05 to 5% by weight.

また、重合反応を行う際に連鎖移動剤を用いて分子量等の調節を行うことが可能である。連鎖移動剤としては、一般的に炭化水素樹脂を製造する際に用いられる連鎖移動剤を用いることが可能であり、例えばフェノール性水酸基を有する炭化水素化合物、より具体的にはフェノール、アルキルフェノール等を挙げることができ、その添加量としては、目的とする炭化水素樹脂に応じ任意に選択すれば良く、その中でも特に0.5〜5重量%の割合で用いることが好ましい。   Moreover, it is possible to adjust molecular weight etc. using a chain transfer agent when performing a polymerization reaction. As the chain transfer agent, it is possible to use a chain transfer agent that is generally used when producing a hydrocarbon resin. For example, a hydrocarbon compound having a phenolic hydroxyl group, more specifically phenol, alkylphenol, etc. The amount of addition may be arbitrarily selected according to the target hydrocarbon resin, and among them, it is particularly preferable to use at a ratio of 0.5 to 5% by weight.

(1)工程を行う際の重合温度は30〜60℃の範囲内より選択される温度であり、特に生産効率に優れた製造方法となることから30〜44℃の範囲内より選択される重合温度であることが好ましい。ここで、(1)工程の重合温度が30℃未満である場合、重合反応が遅くなり生産効率よく炭化水素樹脂を製造することが困難となる。一方、(1)工程の重合温度が60℃を越える場合、例え続いて(2)工程を実施しても重合転化率を高めることが出来ず、炭化水素樹脂を生産効率よく製造することが困難となる。   (1) The polymerization temperature at the time of performing the step is a temperature selected from the range of 30 to 60 ° C., and the polymerization is selected from the range of 30 to 44 ° C. because it is a manufacturing method particularly excellent in production efficiency. Temperature is preferred. Here, when the polymerization temperature in the step (1) is less than 30 ° C., the polymerization reaction becomes slow, and it becomes difficult to produce a hydrocarbon resin with high production efficiency. On the other hand, when the polymerization temperature in step (1) exceeds 60 ° C., even if step (2) is carried out subsequently, the polymerization conversion rate cannot be increased and it is difficult to produce a hydrocarbon resin with high production efficiency. It becomes.

また、(1)工程を行う際の重合時間としては、目的とする炭化水素樹脂に応じ任意に選択すればよく、その中でも特に生産効率よく炭化水素樹脂を製造することが可能となることから0.5〜3時間の範囲で行うことが好ましい。そして、(1)工程を行う際は、1つの重合反応装置により(1)工程を行っても、別途用意した複数の重合反応装置に順次移送しながら連続的に分割して(1)工程を行ってもよく、その中でも特に生産効率よく炭化水素樹脂の製造を行うことが可能となることから、2器以上の重合反応装置に順次移送しながら重合反応を行う二段階以上の分割重合を行うことが好ましい。   In addition, the polymerization time for performing the step (1) may be arbitrarily selected according to the target hydrocarbon resin, and among them, the hydrocarbon resin can be produced with particularly high production efficiency. It is preferable to carry out in the range of 5 to 3 hours. And when performing (1) process, even if it performs (1) process by one polymerization reaction apparatus, it divides | segments continuously, transferring sequentially to several separately prepared polymerization reaction apparatuses, (1) process Since it is possible to produce a hydrocarbon resin with particularly high production efficiency, two or more stages of divided polymerization are performed in which the polymerization reaction is performed while sequentially transferring to two or more polymerization reactors. It is preferable.

本発明における(2)工程は、(1)工程の後、(1)工程の重合温度よりも高い重合温度に昇温し重合反応を継続して行う重合工程である。本発明においては、(1)工程の後、(2)工程を実施することにより、分解油留分の炭化水素樹脂への重合転化率を高めることが可能となり、その結果、高い生産効率で炭化水素樹脂を製造することが可能となる。   The step (2) in the present invention is a polymerization step in which the polymerization reaction is continued after raising the temperature to a polymerization temperature higher than the polymerization temperature in the step (1) after the step (1). In the present invention, by carrying out the step (2) after the step (1), it is possible to increase the polymerization conversion rate of the cracked oil fraction to the hydrocarbon resin, and as a result, carbonization with high production efficiency. It becomes possible to produce a hydrogen resin.

そして、(2)工程における重合温度は(1)工程の重合温度よりも高い温度であり、その中でも特に生産効率よく炭化水素樹脂を製造することが可能となることから(1)工程の重合温度よりも5℃以上高い重合温度とすることが好ましく、更に(1)工程の重合温度以上でありかつ、45〜75℃の範囲内より選択される温度であることが好ましい。ここで、(2)工程における重合温度が(1)工程の重合温度未満である場合、重合反応が遅くなり生産効率よく炭化水素樹脂を製造することが困難となる。   The polymerization temperature in the step (2) is higher than the polymerization temperature in the step (1), and among them, the hydrocarbon resin can be produced particularly efficiently with high production efficiency. The polymerization temperature is preferably 5 ° C. or higher, more preferably the polymerization temperature of the step (1), or a temperature selected from the range of 45 to 75 ° C. Here, when the polymerization temperature in the step (2) is lower than the polymerization temperature in the step (1), the polymerization reaction becomes slow and it is difficult to produce a hydrocarbon resin with high production efficiency.

また、(2)工程を行う際の重合時間としては、目的とする炭化水素樹脂に応じ任意に選択すればよく、その中でも特に生産効率よく炭化水素樹脂を製造することが可能となることから0.5〜4時間の範囲で行うことが好ましい。そして、(1)工程から(2)工程へ移行する際は、(1)工程を行なったのと同一の重合反応装置により継続して(2)工程を行っても、別途用意した重合反応装置に移送した後(2)工程を行ってもよく、その中でも特に生産効率よく炭化水素樹脂の製造を行うことが可能となることから、別途用意した重合反応装置に移送した後(2)工程を行うことが好ましい。   In addition, the polymerization time for performing the step (2) may be arbitrarily selected according to the target hydrocarbon resin, and among them, the hydrocarbon resin can be produced with particularly high production efficiency. It is preferable to carry out in the range of 5 to 4 hours. Then, when shifting from the step (1) to the step (2), the polymerization reaction apparatus prepared separately even if the step (2) is continued by using the same polymerization reaction apparatus as the step (1). Step (2) may be carried out after being transferred to the reactor. Among them, since it becomes possible to produce a hydrocarbon resin with particularly high production efficiency, the step (2) is carried out after being transferred to a separately prepared polymerization reactor. Preferably it is done.

さらに、本発明の製造方法においては、(1)及び(2)工程を経た後に重合反応を終了する際には、水、アルカリ性水溶液等を加えることによりフリーデルクラフツ触媒を失活させること、水洗を行うこと、等の付加的工程を設けても良い。さらに、重合反応終了後の炭化水素樹脂溶液より、未反応留分、場合よっては含まれている水分等の炭化水素樹脂以外の成分を留去する濃縮工程を設けてもよい。   Further, in the production method of the present invention, when the polymerization reaction is completed after the steps (1) and (2), the Friedel-Crafts catalyst is deactivated by adding water, an alkaline aqueous solution, etc. It is also possible to provide additional steps such as Furthermore, you may provide the concentration process of distilling components other than hydrocarbon resins, such as an unreacted fraction and the moisture contained depending on the case, from the hydrocarbon resin solution after the completion of a polymerization reaction.

また、本発明の炭化水素樹脂の製造方法においては、炭化水素樹脂に安定剤等を添加する工程を設けてもよく、その際は、ヒンダードアミン系安定剤を溶融状態で添加する工程であることが好ましい。   Further, in the method for producing a hydrocarbon resin of the present invention, a step of adding a stabilizer or the like to the hydrocarbon resin may be provided, and in that case, it may be a step of adding a hindered amine stabilizer in a molten state. preferable.

該ヒンダードアミン系安定剤としては、従来公知のピペラジンの2位および6位の炭素に結合しているすべての水素がメチル基で置換された構造を有する化合物が挙げられ、例えばビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ((6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2−4−ジイル)((2,2,6,6−テトラメチル−4−ピペリジル)イミノ)ヘキサメチレン((2,2,6,6−テトラメチル−4−ピペリジル)イミノ))、テトラキス((2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレート、2,2,6,6−テトラメチル−4−ピペリジニルベンゾエート、ビス−(1,2,6,6−ペンタメチル−4−ピペリジニル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、ビス−(N−メチル−2,2,6,6−テトラメチル−4−ピペリジニル)セバケート、1,1’−(1,2−エタンジイル)ビス(3,3,5,5−テトラメチルピペラジノン)、N,N’−ビス(3−アミノプロピル)エチレンジアミン−2−4−ビス(N−ブチル−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ)−6−クロロ−1,3,5−トリアジン縮合物、ポリ((6−N−モルホリル−1,3,5−トリアジン−2−4−ジイル)(2,2,6,6−テトラメチル−4−ピペリジル)イミノ)ヘキサメチレン((2,2,6,6−テトラメチル−4−ピペリジル)イミノ))、N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)ヘキサメチレンジアミンと1,2−ジブロモエタンとの縮合物、(N−(2,2,6,6−テトラメチル−4−ピペリジル)−2−メチル−2−(2,2,6,6−テトラメチル−4−ピペリジル)イミノ)プロピオンアミド等が挙げられ、これらは1種又は2種以上で用いてもよく、その中でも特に貯蔵時の色調変化が少なく保存安定性に優れる炭化水素樹脂が得られることから、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートであることが好ましい。   Examples of the hindered amine stabilizer include compounds having a structure in which all hydrogen bonded to carbons at the 2nd and 6th positions of a conventionally known piperazine is substituted with a methyl group, for example, bis (2,2,2). 6,6-tetramethyl-4-piperidyl) sebacate, dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly ((6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2-4-diyl) ((2,2,6,6-tetramethyl-4-piperidyl) imino) hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)), tetrakis ((2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetra Carbo Sylate, 2,2,6,6-tetramethyl-4-piperidinylbenzoate, bis- (1,2,6,6-pentamethyl-4-piperidinyl) -2- (3,5-di-t-butyl -4-hydroxybenzyl) -2-n-butylmalonate, bis- (N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, 1,1 '-(1,2-ethanediyl ) Bis (3,3,5,5-tetramethylpiperazinone), N, N′-bis (3-aminopropyl) ethylenediamine-2-4-bis (N-butyl- (1,2,2,6) , 6-pentamethyl-4-piperidyl) amino) -6-chloro-1,3,5-triazine condensate, poly ((6-N-morpholyl-1,3,5-triazine-2-4-diyl) ( 2,2,6,6-tetramethyl-4-pi Lysyl) imino) hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)), N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) hexa Condensate of methylenediamine and 1,2-dibromoethane, (N- (2,2,6,6-tetramethyl-4-piperidyl) -2-methyl-2- (2,2,6,6-tetra Methyl-4-piperidyl) imino) propionamide and the like, which may be used alone or in combination of two or more, and among them, a hydrocarbon resin having little change in color tone upon storage and excellent storage stability is obtained. Therefore, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate is preferable.

本発明の炭化水素樹脂の製造方法においては、例えばドロップフォーマー等の造粒機による造粒工程を付加することにより、炭化水素樹脂を造粒物として製造することが可能である。   In the method for producing a hydrocarbon resin of the present invention, for example, a hydrocarbon resin can be produced as a granulated product by adding a granulating step using a granulator such as a drop former.

本発明により、分解油留分の炭化水素樹脂への重合転化率を高め、炭化水素樹脂を効率的に製造することが可能となる。   According to the present invention, it is possible to increase the polymerization conversion rate of the cracked oil fraction to a hydrocarbon resin and efficiently produce the hydrocarbon resin.

次に、本発明を実施例及び比較例によって説明するが、本発明はこれらの例になんら制限されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention, this invention is not restrict | limited to these examples at all.

〜重合反応終了後の炭化水素樹脂の生成量測定〜
炭化水素樹脂の重合反応後の重合反応溶液の比重を測定し、予め作成しておいた分解油留分溶液中の炭化水素樹脂濃度−比重の検量線に該比重をあてはめることにより、炭化水素樹脂の生成量を算出した。なお、この際の分解油留分中の炭化水素樹脂濃度−比重検量線は、一定量の炭化水素樹脂をキシレンに溶解し、浮標を用いて比重測定することにより作成した。
-Measurement of the amount of hydrocarbon resin produced after completion of the polymerization reaction-
By measuring the specific gravity of the polymerization reaction solution after the polymerization reaction of the hydrocarbon resin, and applying the specific gravity to a calibration curve of hydrocarbon resin concentration-specific gravity in the prepared cracked oil fraction solution, the hydrocarbon resin The production amount of was calculated. In addition, the hydrocarbon resin concentration-specific gravity calibration curve in the cracked oil fraction at this time was prepared by dissolving a certain amount of hydrocarbon resin in xylene and measuring the specific gravity using a buoy.

実施例1
石油類の熱分解により得られる分解油留分のうち沸点範囲が15〜70℃の留分250gと、同じ熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分250gとを混合してセパラブルフラスコに入れ、さらにフリーデルクラフツ触媒として三フッ化ホウ素エチルエーテル錯体2.5g、連鎖移動剤としてフェノール2.8gを仕込み、乾燥窒素気流下、35℃で2時間重合反応を行った後、別途用意したセパラブルフラスコに移送し、乾燥窒素気流下、45℃で2時間重合反応を行った。その際、重合反応溶液の一部を取り出し比重を測定することにより、炭化水素樹脂の生成量を算出した。その結果、128gの炭化水素樹脂が生成していることが判った。
Example 1
Of the cracked oil fraction obtained by pyrolysis of petroleum, 250 g of the fraction having a boiling range of 15 to 70 ° C. and 250 g of the fraction of the cracked oil fraction obtained by the same thermal cracking having a boiling range of 140 to 220 ° C. And mixed in a separable flask, further charged with 2.5 g of boron trifluoride ethyl ether complex as a Friedel Crafts catalyst and 2.8 g of phenol as a chain transfer agent, and polymerized at 35 ° C. for 2 hours under a dry nitrogen stream. After the reaction, the reaction mixture was transferred to a separately prepared separable flask and polymerized at 45 ° C. for 2 hours in a dry nitrogen stream. At that time, a part of the polymerization reaction solution was taken out and the specific gravity was measured to calculate the amount of hydrocarbon resin produced. As a result, it was found that 128 g of hydrocarbon resin was produced.

そして、重合反応溶液に1重量%の水酸化ナトリウム水溶液250g、キシレン250gを加え、中和を行い重合反応を停止し、更に水相と油相の分離を行い、油相に水を添加し油相分離を行う洗浄を行った。   Then, 250 g of 1 wt% sodium hydroxide aqueous solution and 250 g of xylene are added to the polymerization reaction solution, neutralization is performed to stop the polymerization reaction, the water phase and the oil phase are separated, and water is added to the oil phase to add oil. Washing for phase separation was performed.

得られた油相に窒素を吹き込みながら210℃に加熱を行い、未反応分解油留分の留去を行い炭化水素樹脂の濃縮を行い、炭化水素樹脂の回収を行った。   Heating was performed at 210 ° C. while blowing nitrogen into the obtained oil phase, the unreacted cracked oil fraction was distilled off, the hydrocarbon resin was concentrated, and the hydrocarbon resin was recovered.

実施例2
石油類の熱分解により得られる分解油留分のうち沸点範囲が15〜70℃の留分250gと、同じ熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分250gとを混合してセパラブルフラスコに入れ、さらにフリーデルクラフツ触媒として三フッ化ホウ素エチルエーテル錯体1.3g、連鎖移動剤としてフェノール1.3gを仕込み、乾燥窒素気流下、30℃で1時間重合反応を行った後、別途用意したセパラブルフラスコに移送し、さらにフリーデルクラフツ触媒として三フッ化ホウ素エチルエーテル錯体1.2g、連鎖移動剤としてフェノール1.5gを仕込み、乾燥窒素気流下、40℃で1時間重合反応を行い、その後、続けて別途用意したセパラブルフラスコに移送し、乾燥窒素気流下、50℃で1時間重合反応を行い。その際、重合反応溶液の一部を取り出し比重を測定することにより、炭化水素樹脂の生成量を算出した。その結果、135gの炭化水素樹脂が生成していることが判った。
Example 2
Of the cracked oil fraction obtained by pyrolysis of petroleum, 250 g of the fraction having a boiling range of 15 to 70 ° C. and 250 g of the fraction of the cracked oil fraction obtained by the same thermal cracking having a boiling range of 140 to 220 ° C. And mixed in a separable flask, and further charged with 1.3 g of boron trifluoride ethyl ether complex as a Friedel Crafts catalyst and 1.3 g of phenol as a chain transfer agent, and polymerized at 30 ° C. for 1 hour in a dry nitrogen stream. After the reaction, it was transferred to a separately prepared separable flask, and further charged with 1.2 g of boron trifluoride ethyl ether complex as a Friedel-Crafts catalyst and 1.5 g of phenol as a chain transfer agent. Polymerization reaction is carried out at 1 ° C. for 1 hour, then transferred to a separately prepared separable flask and polymerized at 50 ° C. for 1 hour in a dry nitrogen stream. It performs a response. At that time, a part of the polymerization reaction solution was taken out and the specific gravity was measured to calculate the amount of hydrocarbon resin produced. As a result, it was found that 135 g of hydrocarbon resin was produced.

そして、重合反応溶液に1重量%の水酸化ナトリウム水溶液250g、キシレン250gを加え、中和を行い重合反応を停止し、更に水相と油相の分離を行い、油相に水を添加し油相分離を行う洗浄を行った。   Then, 250 g of 1 wt% sodium hydroxide aqueous solution and 250 g of xylene are added to the polymerization reaction solution, neutralization is performed to stop the polymerization reaction, the water phase and the oil phase are separated, and water is added to the oil phase to add oil. Washing for phase separation was performed.

得られた油相に窒素を吹き込みながら210℃に加熱を行い、未反応分解油留分の留去を行い炭化水素樹脂の濃縮を行い、炭化水素樹脂の回収を行った。   Heating was performed at 210 ° C. while blowing nitrogen into the obtained oil phase, the unreacted cracked oil fraction was distilled off, the hydrocarbon resin was concentrated, and the hydrocarbon resin was recovered.

比較例1
石油類の熱分解により得られる分解油留分のうち沸点範囲が15〜70℃の留分250gと、同じ熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分250gとを混合してセパラブルフラスコに入れ、さらにフリーデルクラフツ触媒として三フッ化ホウ素エチルエーテル錯体2.5g、連鎖移動剤としてフェノール2.8gを仕込み、乾燥窒素気流下、35℃で4時間重合反応を行った。その際、重合反応溶液の一部を取り出し比重を測定することにより、炭化水素樹脂の生成量を算出した。その結果、107gの炭化水素樹脂が生成していることが判った。
Comparative Example 1
Of the cracked oil fraction obtained by pyrolysis of petroleum, 250 g of the fraction having a boiling range of 15 to 70 ° C. and 250 g of the fraction of the cracked oil fraction obtained by the same thermal cracking having a boiling range of 140 to 220 ° C. And mixed in a separable flask, further charged with 2.5 g of boron trifluoride ethyl ether complex as a Friedel Crafts catalyst and 2.8 g of phenol as a chain transfer agent, and polymerized at 35 ° C. for 4 hours under a dry nitrogen stream. Reaction was performed. At that time, a part of the polymerization reaction solution was taken out and the specific gravity was measured to calculate the amount of hydrocarbon resin produced. As a result, it was found that 107 g of hydrocarbon resin was produced.

そして、重合反応溶液に1重量%の水酸化ナトリウム水溶液250g、キシレン250gを加え、中和を行い重合反応を停止し、更に水相と油相の分離を行い、油相に水を添加し油相分離を行う洗浄を行った。   Then, 250 g of 1 wt% sodium hydroxide aqueous solution and 250 g of xylene are added to the polymerization reaction solution, neutralization is performed to stop the polymerization reaction, the water phase and the oil phase are separated, and water is added to the oil phase to add oil. Washing for phase separation was performed.

得られた油相に窒素を吹き込みながら210℃に加熱を行い、未反応分解油留分の留去を行い炭化水素樹脂の濃縮を行い、炭化水素樹脂の回収を行った。   Heating was performed at 210 ° C. while blowing nitrogen into the obtained oil phase, the unreacted cracked oil fraction was distilled off, the hydrocarbon resin was concentrated, and the hydrocarbon resin was recovered.

比較例2
石油類の熱分解により得られる分解油留分のうち沸点範囲が15〜70℃の留分250gと、同じ熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分250gとを混合してセパラブルフラスコに入れ、さらにフリーデルクラフツ触媒として三フッ化ホウ素エチルエーテル錯体2.5g、連鎖移動剤としてフェノール2.8gを仕込み、乾燥窒素気流下、40℃で3時間重合反応を行った。その際、重合反応溶液の一部を取り出し比重を測定することにより、炭化水素樹脂の生成量を算出した。その結果、114gの炭化水素樹脂が生成していることが判った。
Comparative Example 2
Of the cracked oil fraction obtained by pyrolysis of petroleum, 250 g of the fraction having a boiling range of 15 to 70 ° C. and 250 g of the fraction of the cracked oil fraction obtained by the same thermal cracking having a boiling range of 140 to 220 ° C. And mixed in a separable flask, further charged with 2.5 g of boron trifluoride ethyl ether complex as a Friedel Crafts catalyst and 2.8 g of phenol as a chain transfer agent, and polymerized at 40 ° C. for 3 hours in a dry nitrogen stream. Reaction was performed. At that time, a part of the polymerization reaction solution was taken out and the specific gravity was measured to calculate the amount of hydrocarbon resin produced. As a result, it was found that 114 g of hydrocarbon resin was produced.

そして、重合反応溶液に1重量%の水酸化ナトリウム水溶液250g、キシレン250gを加え、中和を行い重合反応を停止し、更に水相と油相の分離を行い、油相に水を添加し油相分離を行う洗浄を行った。   Then, 250 g of 1 wt% sodium hydroxide aqueous solution and 250 g of xylene are added to the polymerization reaction solution, neutralization is performed to stop the polymerization reaction, the water phase and the oil phase are separated, and water is added to the oil phase to add oil. Washing for phase separation was performed.

得られた油相に窒素を吹き込みながら210℃に加熱を行い、未反応分解油留分の留去を行い炭化水素樹脂の濃縮を行い、炭化水素樹脂の回収を行った。   Heating was performed at 210 ° C. while blowing nitrogen into the obtained oil phase, the unreacted cracked oil fraction was distilled off, the hydrocarbon resin was concentrated, and the hydrocarbon resin was recovered.

Claims (5)

少なくとも下記(1)及び(2)の工程を経た多段重合工程を行うことを特徴とする炭化水素樹脂の製造方法。
(1)工程;石油類の熱分解により得られる分解油留分のうち沸点範囲が140〜220℃の留分(a)30〜70重量%と沸点範囲が15〜70℃の留分(b)70〜30重量%との混合物に、フリーデルクラフツ系触媒を添加し30〜60℃の範囲内の重合温度で重合反応を行う重合工程。
(2)工程;(1)工程の後、(1)工程の重合温度よりも高い重合温度に昇温し重合反応を継続して行う重合工程。
A method for producing a hydrocarbon resin, comprising performing a multistage polymerization step through at least the following steps (1) and (2).
(1) Step: Among the cracked oil fractions obtained by pyrolysis of petroleum, a fraction having a boiling range of 140 to 220 ° C. (a) A fraction having a boiling range of 15 to 70 ° C. and a boiling range of 15 to 70 ° C. (b ) A polymerization step of adding a Friedel-Crafts catalyst to a mixture of 70 to 30% by weight and carrying out a polymerization reaction at a polymerization temperature in the range of 30 to 60 ° C.
(2) Step: A polymerization step in which after the step (1), the temperature is raised to a polymerization temperature higher than the polymerization temperature in the step (1) and the polymerization reaction is continued.
請求項1に記載の炭化水素樹脂の製造方法において、(1)工程の重合温度が30〜44℃の範囲内の重合温度であり、(2)工程の重合温度が(1)工程の重合温度よりも5℃以上高い温度であることを特徴とする炭化水素樹脂の製造方法。 The method for producing a hydrocarbon resin according to claim 1, wherein the polymerization temperature in step (1) is a polymerization temperature in the range of 30 to 44 ° C, and the polymerization temperature in step (2) is the polymerization temperature in step (1). A method for producing a hydrocarbon resin, characterized in that the temperature is higher by 5 ° C. or more. 請求項1又は2に記載の炭化水素樹脂の製造方法において、(1)工程により得られた重合反応液を別途用意した重合反応装置に移送した後に(2)工程を行うことを特徴とする炭化水素樹脂の製造方法。 The method for producing a hydrocarbon resin according to claim 1 or 2, wherein the step (2) is performed after the polymerization reaction liquid obtained in the step (1) is transferred to a separately prepared polymerization reaction apparatus. A method for producing a hydrogen resin. 請求項1〜3のいずれかに記載の炭化水素樹脂の製造方法において、(1)工程を二段階以上に分割して重合反応を行うことを特徴とする炭化水素樹脂の製造方法。 The method for producing a hydrocarbon resin according to any one of claims 1 to 3, wherein the polymerization reaction is performed by dividing the step (1) into two or more stages. 請求項1〜4のいずれかに記載の炭化水素樹脂の製造方法において、フリーデルクラフツ触媒が三フッ化ホウ素及び/又はその誘導体であり、さらに連鎖移動剤を用いることを特徴とする炭化水素樹脂の製造方法。 The method of manufacturing a hydrocarbon resin according to any one of claims 1 to 4, Ri Friedel-Crafts catalyst is boron trifluoride and / or its derivatives der, hydrocarbons further comprises using a chain transfer agent Manufacturing method of resin.
JP2008319446A 2008-12-16 2008-12-16 Method for producing hydrocarbon resin Expired - Fee Related JP5353220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319446A JP5353220B2 (en) 2008-12-16 2008-12-16 Method for producing hydrocarbon resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319446A JP5353220B2 (en) 2008-12-16 2008-12-16 Method for producing hydrocarbon resin

Publications (2)

Publication Number Publication Date
JP2010143957A JP2010143957A (en) 2010-07-01
JP5353220B2 true JP5353220B2 (en) 2013-11-27

Family

ID=42564709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319446A Expired - Fee Related JP5353220B2 (en) 2008-12-16 2008-12-16 Method for producing hydrocarbon resin

Country Status (1)

Country Link
JP (1) JP5353220B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326749B2 (en) * 2013-09-11 2018-05-23 東ソー株式会社 Catalyst for producing petroleum resin and method for producing petroleum resin using the same
CN112646076B (en) * 2020-12-22 2022-11-29 广东新华粤石化集团股份公司 Carbon-nine liquid petroleum resin and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2805927B2 (en) * 1989-12-21 1998-09-30 東ソー株式会社 Manufacturing method of hydrocarbon resin
JP2001048915A (en) * 1999-08-13 2001-02-20 Grand Polymer:Kk Production of propylene-based random copolymer
JP2005336343A (en) * 2004-05-27 2005-12-08 Tosoh Corp Method for manufacturing petroleum resin comprising alicyclic hydrocarbon and aromatic hydrocarbon

Also Published As

Publication number Publication date
JP2010143957A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
WO2017201964A1 (en) Functional copolymer directly prepared from higher hydrocarbons mixture and preparation method therefor
CN105793306B (en) For the functionalized resins of high-performance tire
CN102026950A (en) Ethylenically unsaturated monomers comprising aliphatic and aromatic moieties
WO2015098370A1 (en) Method for producing hydrogenated petroleum resin
JP5353220B2 (en) Method for producing hydrocarbon resin
KR20180127974A (en) Process for producing a copolymer
KR101646311B1 (en) Method for preparing a heat-resistant san resin
TWI273106B (en) Method of manufacturing polydiene-based rubber
RU2011107115A (en) METHOD FOR SYNTHESIS OF FUNCTIONALIZED POLY (1,3-ALKADIENES) AND THEIR APPLICATION IN OBTAINING IMPACT STRONG VINYLOROMATIC POLYMERS
CN102453227A (en) Preparation method for polycyclic aromatic hydrocarbon resin
JP6083196B2 (en) Catalyst for producing petroleum resin and method for producing petroleum resin using the same
JP6179095B2 (en) Catalyst for producing petroleum resin and method for producing petroleum resin using the same
CN106588555B (en) A method of preparing cyclopentadiene and methyl cyclopentadiene
Teng et al. α‐Fe2O3/Attapulgite‐mediated reaction of benzyl chloride: Synthesis of poly (phenylene methylene)
JP6326749B2 (en) Catalyst for producing petroleum resin and method for producing petroleum resin using the same
JP2005194488A (en) New terpene resin
CN106893056B (en) A kind of modified dicyclopentadiene petroleum resin of s-B-S and preparation method
JP2020094181A (en) Production method of resin composition and resin additive
JP2005336343A (en) Method for manufacturing petroleum resin comprising alicyclic hydrocarbon and aromatic hydrocarbon
JP6326734B2 (en) Catalyst for producing petroleum resin and method for producing petroleum resin using the same
JP6194648B2 (en) Catalyst for producing petroleum resin and method for producing petroleum resin using the same
KR20120078625A (en) Continuous process for preparing rubber-modified styrene polymer from conjugated diene
JP2005336345A (en) Method for producing new petroleum resin
Chen et al. Synthesis of poly (vinyl acetate) containing diblock copolymer by DPE method
CN106947023A (en) The preparation method of low temperature flow state styrene indene resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees