JP5352865B2 - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP5352865B2
JP5352865B2 JP2010027728A JP2010027728A JP5352865B2 JP 5352865 B2 JP5352865 B2 JP 5352865B2 JP 2010027728 A JP2010027728 A JP 2010027728A JP 2010027728 A JP2010027728 A JP 2010027728A JP 5352865 B2 JP5352865 B2 JP 5352865B2
Authority
JP
Japan
Prior art keywords
substrate
movable electrode
acceleration
fixed electrode
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010027728A
Other languages
Japanese (ja)
Other versions
JP2011163967A (en
Inventor
恭彦 伊藤
隆志 徳永
善明 平田
伸顕 紺野
利幸 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010027728A priority Critical patent/JP5352865B2/en
Publication of JP2011163967A publication Critical patent/JP2011163967A/en
Application granted granted Critical
Publication of JP5352865B2 publication Critical patent/JP5352865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensor capable of detecting a wide range of acceleration without contact with any component members in a region of large impressed acceleration. <P>SOLUTION: The acceleration sensor 100 includes a substrate 1, a displacement member 3 supported on a surface of the substrate 1 movably in a thickness direction of the substrate 1 to the substrate 1 to have a movable electrode 7, and a fixed electrode 6 arranged so as to face to the movable electrode 7 to generate electrostatic force in between with the movable electrodes 7, wherein a facing area between the movable electrode 7 and the fixed electrode 6 is constant even if the displacement member 3 displaces to the thickness direction of the substrate 1 in a region of small acceleration while the facing area between the movable electrode 7 and the fixed electrode 6 is composed to vary when the displace member 3 displaces to the thickness direction of substrate 1 in a region of large acceleration. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、加速度センサに関し、特に、静電容量型の加速度センサに関するものである。   The present invention relates to an acceleration sensor, and more particularly to a capacitance type acceleration sensor.

従来、加速度印加に伴う電極間の静電容量変化により加速度を検出する方式の加速度センサが知られている。この静電容量型の加速度センサにおいて、広い範囲の加速度を検出するための加速度センサが提案されている。   2. Description of the Related Art Conventionally, there is known an acceleration sensor that detects acceleration based on a capacitance change between electrodes accompanying acceleration application. In this capacitance type acceleration sensor, an acceleration sensor for detecting a wide range of acceleration has been proposed.

たとえば、特開2004−286554号公報(特許文献1)には1つのセンサで広い加速度範囲を検出するための加速度センサが提案されている。この公報の加速度センサは、可動電極に接続され、加速度に応じて変位する複数の梁を有している。複数の梁のバネ定数はそれぞれ異なっている。バネ定数の異なる複数の梁として、長さの異なる3つの梁が形成されている。これら3つの梁はそれぞれ2枚構造で構成され、内部に間隔を有している。   For example, JP 2004-286554 A (Patent Document 1) proposes an acceleration sensor for detecting a wide acceleration range with one sensor. The acceleration sensor of this publication has a plurality of beams that are connected to the movable electrode and are displaced according to the acceleration. The spring constants of the beams are different. Three beams having different lengths are formed as a plurality of beams having different spring constants. Each of these three beams is constituted by a two-sheet structure and has an interval inside.

この加速度センサでは加速度に応じて最も長い梁から変位する。低G(低い加速度)が印加された場合には最も長い梁が変位し、内部の間隔まで変位すると2枚の梁が接触するので、最も長い梁はそれ以上変位しない。低Gより加速度が高くなると2番目に長い梁が変位し、さらに加速度が高くなると最も短い梁が変位する。このように長さが異なる3つの梁がそれぞれ変位することにより、固定電極と可動電極との間の距離が低Gから高G(高い加速度)までの範囲で追従して変化する。これにより、小さなサイズで広範囲の加速度を検出できるとの記載が上記公報にはある。   This acceleration sensor is displaced from the longest beam according to the acceleration. When a low G (low acceleration) is applied, the longest beam is displaced, and when it is displaced to the internal distance, the two beams are in contact with each other, so that the longest beam is not displaced further. When the acceleration is higher than the low G, the second longest beam is displaced, and when the acceleration is further increased, the shortest beam is displaced. As the three beams having different lengths are displaced in this way, the distance between the fixed electrode and the movable electrode changes following a range from low G to high G (high acceleration). This publication states that a wide range of acceleration can be detected with a small size.

特開2004−286554号公報JP 2004-286554 A

上記公報の加速度センサでは、広い範囲の加速度を検出するために、低Gより加速度が高くなると最も長い梁から梁の接触が生じる。梁が接触した場合、衝撃による破損および梁同士の吸着に起因する機能不良および性能不良が発生するという問題がある。   In the acceleration sensor of the above publication, in order to detect a wide range of acceleration, when the acceleration is higher than low G, the beam contacts from the longest beam. When the beams come into contact with each other, there is a problem that a malfunction due to an impact and a malfunction due to adsorption between the beams occur.

本発明は、上記課題を鑑みてなされたものであり、その目的は、印加される加速度が大きい域で構成部材を接触させずに広い範囲の加速度を検出できる加速度センサを提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an acceleration sensor capable of detecting a wide range of acceleration without contacting a component member in a region where the applied acceleration is large.

本発明の加速度センサは、基板と、基板に対して基板の厚み方向に変位可能に基板の表面に支持され、かつ可動電極を有する変位部材と、可動電極と対向するよう配置され、かつ可動電極との間に静電力を発生させるための固定電極とを備え、加速度が小さい域では、変位部材が基板の厚み方向に変位しても可動電極と固定電極との対向面積が一定であり、かつ加速度が大きい域で変位部材が基板の厚み方向に変位すると可動電極と固定電極との対向面積が変化するよう構成されている。可動電極は、互いに分離された複数の可動電極部を含み、固定電極は、互いに分離された複数の固定電極部を含み、複数の可動電極部および複数の固定電極部は、互いに対向するように配置された可動電極部と固定電極部との組を複数個有し、加速度が小さい域では、変位部材が基板の厚み方向に変位しても複数個の組の可動電極部と固定電極部との対向面積の合計が一定であり、かつ加速度が大きい域で変位部材が基板の厚み方向に変位すると複数個の組の可動電極部と固定電極部との対向面積の合計が変化するよう構成されている。複数個の組は、加速度が小さい域において、可動電極部が基板の厚み方向に変位することによって可動電極部と固定電極部との対向面積が大きくなる組と、可動電極部と固定電極部との対向面積が小さくなる組とを有している。 The acceleration sensor of the present invention is disposed on the substrate, the displacement member supported on the surface of the substrate so as to be displaceable in the thickness direction of the substrate and having a movable electrode, the movable electrode, and the movable electrode. And a fixed electrode for generating an electrostatic force between the movable electrode and the fixed electrode in a region where the acceleration is small, even if the displacement member is displaced in the thickness direction of the substrate, When the displacement member is displaced in the thickness direction of the substrate in a region where acceleration is large, the facing area between the movable electrode and the fixed electrode is changed. The movable electrode includes a plurality of movable electrode portions separated from each other, the fixed electrode includes a plurality of fixed electrode portions separated from each other, and the plurality of movable electrode portions and the plurality of fixed electrode portions are opposed to each other. There are a plurality of pairs of movable electrode portions and fixed electrode portions arranged, and in a region where acceleration is small, even if the displacement member is displaced in the thickness direction of the substrate, a plurality of pairs of movable electrode portions and fixed electrode portions When the displacement member is displaced in the thickness direction of the substrate in a region where the acceleration is constant and the acceleration is large, the total of the opposing areas of the plurality of sets of movable electrode portions and fixed electrode portions changes. ing. The plurality of sets include a set in which the opposed area between the movable electrode portion and the fixed electrode portion is increased by the displacement of the movable electrode portion in the thickness direction of the substrate in a region where the acceleration is small, and the movable electrode portion and the fixed electrode portion. And the set having a smaller opposing area.

本発明の加速度センサによれば、加速度が小さい域では、変位部材が基板の厚み方向に変位しても可動電極と固定電極との対向面積が一定であり、かつ加速度が大きい域で変位部材が基板の厚み方向に変位すると可動電極と固定電極との対向面積が変化するため、固定電極と可動電極との対向面積の変化による静電容量の変化に応じて発生する静電力によって、印加される加速度が大きい域で構成部材を接触させずに広い範囲の加速度を検出できる。   According to the acceleration sensor of the present invention, in the region where the acceleration is small, even if the displacement member is displaced in the thickness direction of the substrate, the facing area between the movable electrode and the fixed electrode is constant, and the displacement member is in the region where the acceleration is large. When the substrate is displaced in the thickness direction, the facing area between the movable electrode and the fixed electrode changes, so that the electrostatic force generated according to the change in capacitance due to the change in the facing area between the fixed electrode and the movable electrode is applied. A wide range of accelerations can be detected without contacting the components in a region where the acceleration is large.

本発明の実施の形態1における加速度センサの概略平面図である。It is a schematic plan view of the acceleration sensor in Embodiment 1 of this invention. 図1のII−II線に沿う概略断面図である。It is a schematic sectional drawing in alignment with the II-II line of FIG. 図1のIII−III線に沿う概略断面図である。It is a schematic sectional drawing in alignment with the III-III line of FIG. 図1のIV−IV線に沿う概略断面図である。It is a schematic sectional drawing which follows the IV-IV line of FIG. 本発明の実施の形態1における加速度センサの概略平面図であって、等電位の構成部材を同一のハッチングで示す概略平面図である。It is a schematic plan view of the acceleration sensor in Embodiment 1 of this invention, Comprising: It is a schematic plan view which shows the equipotential structural member by the same hatching. 図5のVI−VI線に沿う概略断面図である。It is a schematic sectional drawing in alignment with the VI-VI line of FIG. 本発明の実施の形態1における加速度センサの製造方法の第1工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 1st process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第2工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 2nd process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第3工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 3rd process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第4工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 4th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第5工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 5th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第6工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 6th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第7工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 7th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第8工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 8th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第9工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 9th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第10工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 10th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサの製造方法の第11工程を示す概略断面図であって、(A)、(B)および(C)の断面位置は、それぞれ図2、図3および図4の断面位置に対応する。It is a schematic sectional drawing which shows the 11th process of the manufacturing method of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position of (A), (B) and (C) is FIG.2, FIG.3 and FIG. 4 corresponding to the cross-sectional position. 本発明の実施の形態1における加速度センサに加速度が印加された状態を示す概略断面図であって、その断面位置は図3に対応する。It is a schematic sectional drawing which shows the state in which the acceleration was applied to the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position respond | corresponds to FIG. 本発明の実施の形態1における加速度センサの固定電極と可動電極との配置を示す概略図である。It is the schematic which shows arrangement | positioning with the fixed electrode of the acceleration sensor in Embodiment 1 of this invention, and a movable electrode. 本発明の実施の形態1における加速度センサの固定電極と可動電極との相対的な位置関係を示す概略断面図であって、基板方向に可動電極が固定電極を超えて移動した状態(A)、基板方向に可動電極が固定電極を超えない範囲で移動した状態(B)、可動電極が移動しない状態(C)、基板と反対方向に可動電極が固定電極を超えない範囲で移動した状態(D)、基板と反対方向に可動電極が固定電極を超えて移動した状態(E)を示す概略断面図である。It is a schematic sectional drawing which shows the relative positional relationship of the stationary electrode and movable electrode of the acceleration sensor in Embodiment 1 of this invention, Comprising: The state (A) which the movable electrode moved beyond the stationary electrode in the board | substrate direction, A state in which the movable electrode moves in a range not exceeding the fixed electrode in the substrate direction (B), a state in which the movable electrode does not move (C), and a state in which the movable electrode moves in a range not exceeding the fixed electrode in the direction opposite to the substrate (D ) Is a schematic cross-sectional view showing a state (E) in which the movable electrode moves beyond the fixed electrode in the direction opposite to the substrate. 本発明の実施の形態1における加速度センサの典型的な平行平板モデルで考えた場合の可動電極の変位に対する静電容量の傾向を示す図である。It is a figure which shows the tendency of the electrostatic capacitance with respect to the displacement of a movable electrode at the time of considering with the typical parallel plate model of the acceleration sensor in Embodiment 1 of this invention. 本発明の実施の形態1における加速度センサの典型的な平行平板モデルで考えた場合の可動電極の変位に対する静電容量の変位微分および生じる静電力の傾向を示す図である。It is a figure which shows the tendency of the displacement differential of the electrostatic capacitance with respect to the displacement of a movable electrode at the time of considering with the typical parallel plate model of the acceleration sensor in Embodiment 1 of this invention, and the produced electrostatic force. 本発明の実施の形態1における加速度センサの平板端部での電界分布の影響を考慮した場合の可動電極の変位に対する静電容量の傾向を示す図である。It is a figure which shows the tendency of the electrostatic capacitance with respect to the displacement of a movable electrode at the time of considering the influence of the electric field distribution in the flat plate edge part of the acceleration sensor in Embodiment 1 of this invention. 本発明の実施の形態1における加速度センサの平板端部での電界分布の影響を考慮した場合の可動電極の変位に対する静電容量の変位微分および生じる静電力の傾向を示す図である。It is a figure which shows the tendency of the electrostatic capacity displacement differentiation with respect to the displacement of a movable electrode when the influence of the electric field distribution in the flat plate edge part of the acceleration sensor in Embodiment 1 of this invention is considered, and the electrostatic force which arises. 本発明の実施の形態1における加速度センサの印加加速度と慣性質量体の変位との関係を示す図である。It is a figure which shows the relationship between the applied acceleration of the acceleration sensor in Embodiment 1 of this invention, and the displacement of an inertial mass body. 本発明の実施の形態1における加速度センサの変形例1の概略平面図である。It is a schematic plan view of Modification 1 of the acceleration sensor according to Embodiment 1 of the present invention. 本発明の実施の形態1における加速度センサの変形例2の概略断面図であって、その断面位置は図4の断面位置に対応する。It is a schematic sectional drawing of the modification 2 of the acceleration sensor in Embodiment 1 of this invention, Comprising: The cross-sectional position respond | corresponds to the cross-sectional position of FIG. 本発明の実施の形態1における加速度センサの変形例3の概略平面図である。It is a schematic plan view of Modification 3 of the acceleration sensor according to Embodiment 1 of the present invention. 図28のXXIX−XXIX線に沿う概略断面図である。It is a schematic sectional drawing which follows the XXIX-XXIX line | wire of FIG. 本発明の実施の形態2における加速度センサの概略断面図であって、その断面位置は、図1のIV−IV線に沿う断面に対応する。It is a schematic sectional drawing of the acceleration sensor in Embodiment 2 of this invention, Comprising: The cross-sectional position respond | corresponds to the cross section which follows the IV-IV line of FIG. 本発明の実施の形態2における加速度センサの固定電極部と可動電極部との配置を示す概略図である。It is the schematic which shows arrangement | positioning with the fixed electrode part and movable electrode part of the acceleration sensor in Embodiment 2 of this invention. 本発明の実施の形態2における加速度センサの固定電極部と可動電極部との相対的な位置関係を示す概略断面図であって、可動電極部と固定電極部との対向面積の合計が変化するまで可動電極が基板方向に移動した状態(A)、可動電極部と固定電極部との対向面積の合計が一定の範囲で可動電極部が基板方向に移動した状態(B)、可動電極部が移動しない状態(C)、可動電極部と固定電極部との対向面積の合計が一定の範囲で可動電極部が基板と反対方向に移動した状態(D)、可動電極部と固定電極部との対向面積の合計が変化するまで可動電極が基板と反対方向に移動した状態(E)を示す概略断面図である。It is a schematic sectional drawing which shows the relative positional relationship of the fixed electrode part and movable electrode part of the acceleration sensor in Embodiment 2 of this invention, Comprising: The sum total of the opposing area of a movable electrode part and a fixed electrode part changes The movable electrode is moved in the direction of the substrate (A), the movable electrode portion is moved in the direction of the substrate within a certain range of the total area of the movable electrode portion and the fixed electrode portion (B), the movable electrode portion is A state in which the movable electrode portion does not move (C), a state in which the movable electrode portion moves in the direction opposite to the substrate within a certain range of the total facing area of the movable electrode portion and the fixed electrode portion (D), It is a schematic sectional drawing which shows the state (E) which the movable electrode moved to the opposite direction to the board | substrate until the sum total of the opposing area changed. 本発明の実施の形態3における加速度センサの概略平面図である。It is a schematic plan view of the acceleration sensor in Embodiment 3 of this invention. 図33のXXXIV−XXXIV線に沿う概略断面図である。It is a schematic sectional drawing which follows the XXXIV-XXXIV line | wire of FIG. 図33のXXXV−XXXV線に沿う概略断面図である。It is a schematic sectional drawing which follows the XXXV-XXXV line | wire of FIG. 本発明の実施の形態3における加速度センサに加速度が印加された状態を示す概略断面図であって、その断面位置は図35に対応する。It is a schematic sectional drawing which shows the state by which the acceleration was applied to the acceleration sensor in Embodiment 3 of this invention, Comprising: The cross-sectional position respond | corresponds to FIG. 本発明の実施の形態3における加速度センサの概略断面図であって、検出電極がねじれ軸線を挟んで左右に配置された構成を示す概略断面図であり、その断面位置は図35に対応する。It is a schematic sectional drawing of the acceleration sensor in Embodiment 3 of this invention, Comprising: It is a schematic sectional drawing which shows the structure by which the detection electrode is arrange | positioned on either side across the twist axis, The cross-sectional position respond | corresponds to FIG. 本発明の実施の形態4における加速度センサの概略平面図である。It is a schematic plan view of the acceleration sensor in Embodiment 4 of this invention. 図38のXXXIX−XXXIX線に沿う概略断面図である。FIG. 39 is a schematic cross-sectional view taken along line XXXIX-XXXIX in FIG. 38. 図38のXL−XL線に沿う概略断面図である。It is a schematic sectional drawing which follows the XL-XL line | wire of FIG. 本発明の実施の形態4における加速度センサに加速度が印加された状態を示す概略断面図であって、その断面位置は図39に対応する。It is a schematic sectional drawing which shows the state in which the acceleration was applied to the acceleration sensor in Embodiment 4 of this invention, Comprising: The cross-sectional position respond | corresponds to FIG. 本発明の実施の形態4における加速度センサの固定電極と可動電極との相対的な位置関係を示す概略断面図であって、検出フレーム部が回転移動した際、検出フレーム部の一方側および他方側の可動電極が移動した状態を上下に示す概略断面図であり、検出フレーム部が一方側に回転移動することにより可動電極と固定電極との対向面積が変化するまで可動電極が移動した状態(A)、検出フレーム部が一方側に回転移動することにより可動電極と固定電極との対向面積が一定の範囲で可動電極が移動した状態(B)、可動電極が移動しない状態(C)、検出フレーム部が他方側に回転移動することにより可動電極と固定電極との対向面積が一定の範囲で可動電極が移動した状態(D)、検出フレーム部が他方側に回転移動することにより可動電極と固定電極との対向面積が変化するまで可動電極が移動した状態(E)を示す概略断面図である。It is a schematic sectional drawing which shows the relative positional relationship of the stationary electrode and movable electrode of the acceleration sensor in Embodiment 4 of this invention, Comprising: When a detection frame part rotates, one side and the other side of a detection frame part FIG. 6 is a schematic cross-sectional view showing the state in which the movable electrode is moved up and down, and the state in which the movable electrode is moved until the opposing area of the movable electrode and the fixed electrode is changed by the rotational movement of the detection frame portion to one side (A ), A state in which the movable electrode moves within a certain range of the opposed area between the movable electrode and the fixed electrode due to the rotational movement of the detection frame portion to one side (B), a state in which the movable electrode does not move (C), a detection frame When the movable electrode is moved within a certain range of the area where the movable electrode and the fixed electrode face each other by rotating the part to the other side (D), it is possible by rotating the detection frame part to the other side. To the opposite area of the electrode and the fixed electrode changes is a schematic sectional view showing a state in which the movable electrode is moved (E). 本発明の実施の形態4における加速度センサの概略断面図であって、検出電極がねじれ軸線を挟んで左右に配置された構成を示す概略断面図であり、その断面位置は図39に対応する。It is a schematic sectional drawing of the acceleration sensor in Embodiment 4 of this invention, Comprising: It is a schematic sectional drawing which shows the structure by which the detection electrode is arrange | positioned on either side across the twist axis, The sectional position respond | corresponds to FIG. 本発明の実施の形態5における加速度センサの概略平面図である。It is a schematic plan view of the acceleration sensor in Embodiment 5 of this invention. 図44のXLV−XLV線に沿う概略断面図である。It is a schematic sectional drawing in alignment with the XLV-XLV line | wire of FIG. 図44のXLVI−XLVI線に沿う概略断面図である。FIG. 45 is a schematic sectional view taken along line XLVI-XLVI in FIG. 44. 本発明の実施の形態5のおける加速度センサの慣性質量体が電圧印加電極により移動された状態を示す概略断面図であって、その断面位置は図45に対応する。FIG. 46 is a schematic cross-sectional view showing a state where the inertial mass body of the acceleration sensor according to Embodiment 5 of the present invention is moved by the voltage application electrode, and the cross-sectional position thereof corresponds to FIG. 45. 本発明の実施の形態6における加速度センサの概略断面図であって、その断面位置は、図38のXL−XL線に沿う断面に対応する。It is a schematic sectional drawing of the acceleration sensor in Embodiment 6 of this invention, Comprising: The cross-sectional position respond | corresponds to the cross section which follows the XL-XL line | wire of FIG. 本発明の実施の形態6における加速度センサの固定電極部と可動電極部との相対的な位置関係を示す概略断面図であって、検出フレーム部が回転移動した際、検出フレーム部の一方側および他方側の可動電極部が移動した状態を上下に示す概略断面図であり、検出フレーム部が一方側に回転移動することにより可動電極部と固定電極部との対向面積が大きく変化するまで可動電極部が移動した状態(A)、検出フレーム部が一方側に回転移動することにより可動電極部と固定電極部との対向面積が小さく変化するまで可動電極部が移動した状態(B)、可動電極部が移動しない状態(C)、検出フレーム部が他方側に回転移動することにより可動電極部と固定電極部との対向面積が小さく変化するまで可動電極部が移動した状態(D)、検出フレーム部が他方側に回転移動することにより可動電極部と固定電極部との対向面積が大きく変化するまで可動電極部が移動した状態(E)を示す概略断面図である。It is a schematic sectional drawing which shows the relative positional relationship of the fixed electrode part of the acceleration sensor in Embodiment 6 of this invention, and a movable electrode part, Comprising: When a detection frame part rotates, one side of a detection frame part and It is a schematic sectional view which shows the state where the movable electrode part of the other side moved up and down, and the movable electrode until the opposed area of the movable electrode part and the fixed electrode part changes greatly by the rotational movement of the detection frame part to one side The movable electrode portion is moved (A), the movable electrode portion is moved until the opposing area of the movable electrode portion and the fixed electrode portion is changed by rotating the detection frame portion to one side (B), the movable electrode The state in which the movable electrode part does not move (C), the state in which the movable electrode part has moved until the opposing area between the movable electrode part and the fixed electrode part is changed by the rotational movement of the detection frame part to the other side (D), detection Frame part is a schematic sectional view showing a state in which the movable electrode portion is moved to the opposing area between the fixed electrode portion movable electrode portion is greatly changed (E) by rotating movement to the other side.

以下、本発明の実施の形態について図に基づいて説明する。
(実施の形態1)
最初に本発明の実施の形態1の加速度センサの構成について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
First, the configuration of the acceleration sensor according to the first embodiment of the present invention will be described.

図1および図2には、説明の便宜のため、紙面に対して垂直方向の検出軸DAが導入されている。検出軸DAの方向は、本実施の形態の加速度センサが対象とする加速度の方向と一致する。以下、図1および図2に対応する図についても同様とする。   In FIG. 1 and FIG. 2, a detection axis DA perpendicular to the paper surface is introduced for convenience of explanation. The direction of the detection axis DA coincides with the direction of acceleration targeted by the acceleration sensor of the present embodiment. The same applies to the drawings corresponding to FIGS. 1 and 2 below.

図1を参照して、本実施の形態の加速度センサ100は、基板1と、固定部材2と、変位部材3と、アンカー部材5と、固定電極6と、検出電極8と、絶縁体9とを主に有している。   Referring to FIG. 1, acceleration sensor 100 of the present embodiment includes substrate 1, fixed member 2, displacement member 3, anchor member 5, fixed electrode 6, detection electrode 8, and insulator 9. It has mainly.

図1〜図4を参照して、基板1に固定部材2とアンカー部材5とが支持されている。基板1と固定部材2およびアンカー部材5との間には絶縁体9が介在している。   1 to 4, a fixing member 2 and an anchor member 5 are supported on the substrate 1. An insulator 9 is interposed between the substrate 1, the fixing member 2 and the anchor member 5.

変位部材3は、基板1に対して基板1の厚み方向に変位可能に基板1の表面に支持されている。変位部材3は、梁部材4と、可動電極7と、慣性質量体31とを有している。変位部材3は、梁部材4によりアンカー部材5に支持されている。梁部材4は、アンカー部材5を介して基板1の表面に支持されている。梁部材4は、複数のばね部材を有している。平面視において一方向の慣性質量体31の一方端部および他方端部には、梁部材4の複数のばね部材によってアンカー部材5と慣性質量体31とがそれぞれ接続されている。   The displacement member 3 is supported on the surface of the substrate 1 so as to be displaceable in the thickness direction of the substrate 1 with respect to the substrate 1. The displacement member 3 includes a beam member 4, a movable electrode 7, and an inertia mass body 31. The displacement member 3 is supported by the anchor member 5 by the beam member 4. The beam member 4 is supported on the surface of the substrate 1 via the anchor member 5. The beam member 4 has a plurality of spring members. The anchor member 5 and the inertial mass body 31 are connected to one end and the other end of the inertial mass body 31 in one direction in plan view by a plurality of spring members of the beam member 4, respectively.

なお、平面視において一方向の慣性質量体31の一方端部および他方端部とアンカー部材5とを接続する梁部材4のばね部材の個数は、複数に限定されず、単数であってもよい。また、梁部材4の配置位置や形状は、慣性質量体31を基板1の厚み方向に移動可能に構成されていればよい。   In addition, the number of the spring members of the beam member 4 that connects the one end portion and the other end portion of the inertia mass body 31 in one direction and the anchor member 5 in a plan view is not limited to a plurality, and may be a single number. . Moreover, the arrangement position and shape of the beam member 4 should just be comprised so that the inertia mass body 31 can be moved to the thickness direction of the board | substrate 1. FIG.

慣性質量体31は基板1に対して基板1の厚み方向に変位可能に梁部材4に支持されている。慣性質量体31は可動電極7を有している。複数の可動電極7が平面視において上記の一方向と交差する他方向の慣性質量体31の一方端部および他方端部には、それぞれ複数の可動電極7が設けられている。複数の可動電極7は平面視において櫛歯形状に配置されていてもよい。   The inertia mass body 31 is supported by the beam member 4 so as to be displaceable in the thickness direction of the substrate 1 with respect to the substrate 1. The inertia mass body 31 has a movable electrode 7. The plurality of movable electrodes 7 are respectively provided at one end and the other end of the inertial mass body 31 in the other direction where the plurality of movable electrodes 7 intersect the one direction in plan view. The plurality of movable electrodes 7 may be arranged in a comb shape in plan view.

固定部材2は、平面視において慣性質量体31の外側に配置されている。固定部材2には複数の固定電極6が設けられている。複数の固定電極6は平面視において櫛歯形状に配置されていてもよい。固定電極6は、可動電極7と対向するよう配置されている。固定電極6は、可動電極7との間に静電力を発生させるために構成されている。固定電極6と可動電極7とは、互いの櫛歯形状が組み合うように配置されていてもよい。固定電極6と可動電極7とは、近接して等間隔に配置されていてもよい。可動電極7と固定電極6とは、基板1の表面に沿う方向に対向するよう配置されていてもよい。   The fixing member 2 is disposed outside the inertia mass body 31 in plan view. The fixed member 2 is provided with a plurality of fixed electrodes 6. The plurality of fixed electrodes 6 may be arranged in a comb shape in a plan view. The fixed electrode 6 is disposed so as to face the movable electrode 7. The fixed electrode 6 is configured to generate an electrostatic force between the fixed electrode 6 and the movable electrode 7. The fixed electrode 6 and the movable electrode 7 may be arranged so that their comb teeth shapes are combined. The fixed electrode 6 and the movable electrode 7 may be arranged close to each other at equal intervals. The movable electrode 7 and the fixed electrode 6 may be arranged to face each other in the direction along the surface of the substrate 1.

固定電極6および可動電極7は、加速度が小さい域では、変位部材3が基板1の厚み方向に変位しても可動電極7と固定電極6との対向面積が一定であり、かつ加速度が大きい域で変位部材3が基板1の厚み方向に変位すると可動電極7と固定電極6との対向面積が変化するよう構成されている。対向面積は、図2に示すように、断面視において固定電極6と可動電極7とが互いに重なる面積である。   The fixed electrode 6 and the movable electrode 7 are regions in which the facing area between the movable electrode 7 and the fixed electrode 6 is constant and the acceleration is large even when the displacement member 3 is displaced in the thickness direction of the substrate 1 in a region where the acceleration is small. When the displacement member 3 is displaced in the thickness direction of the substrate 1, the facing area between the movable electrode 7 and the fixed electrode 6 is changed. As shown in FIG. 2, the facing area is an area where the fixed electrode 6 and the movable electrode 7 overlap each other in a cross-sectional view.

可動電極7の基板1の厚み方向の寸法Hmと固定電極6の基板1の厚み方向の寸法Hbとが異なる大きさに構成されている。固定電極6の基板1の厚み方向の寸法Hbが可動電極7の基板1の厚み方向の寸法Hmより大きくなっていてもよい。可動電極7の基板1の厚み方向の寸法Hmと固定電極6の基板1の厚み方向の寸法Hbとの差をΔHとする。よってΔH=(Hb−Hm)となる。固定電極6および可動電極7は、固定電極6の基板1側の端面と可動電極7の基板1側の端面との高さの差および固定電極6の基板1と反対側の端面と可動電極7の基板1の反対側の端面との高さの差がそれぞれΔH/2となるよう構成されていることが好ましい。   The dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1 is different from the dimension Hb of the fixed electrode 6 in the thickness direction of the substrate 1. The dimension Hb of the fixed electrode 6 in the thickness direction of the substrate 1 may be larger than the dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1. The difference between the dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1 and the dimension Hb of the fixed electrode 6 in the thickness direction of the substrate 1 is ΔH. Therefore, ΔH = (Hb−Hm). The fixed electrode 6 and the movable electrode 7 include a height difference between an end surface of the fixed electrode 6 on the substrate 1 side and an end surface of the movable electrode 7 on the substrate 1 side, and an end surface of the fixed electrode 6 opposite to the substrate 1 and the movable electrode 7. It is preferable that the height difference from the opposite end surface of the substrate 1 is ΔH / 2.

検出電極8は、変位部材3と対向するよう基板1の表面上に形成されている。基板1と検出電極8との間には絶縁体9が介在している。検出電極8は、変位部材3と静電容量Cdを構成している。変位部材3および検出電極8は、変位部材3の移動によって静電容量Cdが変化するよう構成されている。加速度センサ100は、この静電容量Cdの変化より加速度を検出するよう構成されている。   The detection electrode 8 is formed on the surface of the substrate 1 so as to face the displacement member 3. An insulator 9 is interposed between the substrate 1 and the detection electrode 8. The detection electrode 8 constitutes the displacement member 3 and the capacitance Cd. The displacement member 3 and the detection electrode 8 are configured such that the capacitance Cd changes as the displacement member 3 moves. The acceleration sensor 100 is configured to detect acceleration based on the change in the capacitance Cd.

なお、固定電極6の基板1側の端面と可動電極7の基板1側の端面との高さの差と、固定電極6の基板1と反対側の端面と可動電極7の基板1の反対側の端面との高さの差とは、静電容量Ciの変位微分に差異が生じればよいため、異なっていてもよい。また、印加加速度に対する検出信号の変化率が変わる加速度の大きさを印加される加速度の両方向で同じにすることにより、印加される加速度が両方向で正確に検出される。そのため、固定電極6の基板1側の端面と可動電極7の基板1側の端面との高さの差と、固定電極6の基板1と反対側の端面と可動電極7の基板1の反対側の端面との高さの差とを等しくすることが好ましい。   The difference in height between the end surface of the fixed electrode 6 on the substrate 1 side and the end surface of the movable electrode 7 on the substrate 1 side, the end surface of the fixed electrode 6 on the opposite side of the substrate 1 and the opposite side of the movable electrode 7 on the substrate 1 side. The difference in height with respect to the end face may be different because a difference in displacement differential of the capacitance Ci only has to be generated. Further, by making the magnitude of the acceleration at which the change rate of the detection signal with respect to the applied acceleration changes the same in both directions of the applied acceleration, the applied acceleration is accurately detected in both directions. Therefore, the height difference between the end surface of the fixed electrode 6 on the substrate 1 side and the end surface of the movable electrode 7 on the substrate 1 side, the end surface of the fixed electrode 6 opposite to the substrate 1, and the opposite side of the movable electrode 7 on the substrate 1. It is preferable to make the difference in height from the end face of the same.

基板1としては、シリコン基板を用いることができる。また、固定部材2、梁部材4、アンカー部材5、固定電極6、可動電極7、検出電極8、慣性質量体31としては、導電性ポリシリコン(多結晶シリコン)膜を用いることができる。この導電性ポリシリコン膜は低応力であり、かつ応力分布がないことが望ましい。絶縁体9としては、窒化シリコン膜や酸化シリコン膜を用いることができる。   As the substrate 1, a silicon substrate can be used. Further, as the fixed member 2, the beam member 4, the anchor member 5, the fixed electrode 6, the movable electrode 7, the detection electrode 8, and the inertia mass body 31, a conductive polysilicon (polycrystalline silicon) film can be used. This conductive polysilicon film preferably has low stress and no stress distribution. As the insulator 9, a silicon nitride film or a silicon oxide film can be used.

なお、加速度センサ100は、固定部材2とアンカー部材5とへ電圧の印加、および変位部材3と検出電極8との間の静電容量Cdの電圧などへの信号変換のために、外部ICなどと電気的に接続されている。加速度センサ100と外部ICなどとは、固定部材2、アンカー部材5、検出電極8に接続された図示しないボンディングワイヤや基板1上の図示しない配線パターンなどで接続が可能である。   The acceleration sensor 100 is applied to an external IC or the like for applying a voltage to the fixed member 2 and the anchor member 5 and converting a signal into a voltage of the electrostatic capacitance Cd between the displacement member 3 and the detection electrode 8. And are electrically connected. The acceleration sensor 100 and the external IC can be connected by a bonding wire (not shown) connected to the fixing member 2, the anchor member 5 and the detection electrode 8, a wiring pattern (not shown) on the substrate 1, or the like.

図5および図6を参照して、本実施の形態の加速度センサの構成部材間の電気的な接続について説明する。固定部材2と、固定電極6とは、等電位になるよう電気的に接続されている。梁部材4と、アンカー部材5、可動電極7と、慣性質量体31とは、等電位になるよう電気的に接続されている。基板1および検出電極8は、それぞれ上記のいずれの構成部材とも電気的に接続されていない。   With reference to FIG. 5 and FIG. 6, the electrical connection between the structural members of the acceleration sensor of the present embodiment will be described. The fixed member 2 and the fixed electrode 6 are electrically connected so as to be equipotential. The beam member 4, the anchor member 5, the movable electrode 7, and the inertia mass body 31 are electrically connected so as to be equipotential. The substrate 1 and the detection electrode 8 are not electrically connected to any of the above constituent members.

次に、本実施の形態の加速度センサの製造方法について説明する。
上記の本実施の形態の加速度センサ100の構造は、たとえば、シリコン基板上に成膜、パターニング、エッチング、平坦化といったプロセスを繰り返し行う、いわゆる半導体微細加工技術、MEMSデバイス技術によって製造可能である。固定電極6の高さと可動電極7の高さが異なる構造については、3段階の成膜、パターニング、エッチングにより製造可能である。
Next, a method for manufacturing the acceleration sensor according to the present embodiment will be described.
The structure of the acceleration sensor 100 of the present embodiment described above can be manufactured by, for example, a so-called semiconductor microfabrication technology or MEMS device technology in which processes such as film formation, patterning, etching, and planarization are repeatedly performed on a silicon substrate. A structure in which the height of the fixed electrode 6 and the height of the movable electrode 7 are different can be manufactured by three stages of film formation, patterning, and etching.

図7〜図17を参照して、それぞれ、(A)の断面位置は図2の断面位置に対応し、(B)の断面位置は図3の断面位置に対応し、(C)の断面位置は図4の断面位置に対応する。   7 to 17, the cross-sectional position in (A) corresponds to the cross-sectional position in FIG. 2, the cross-sectional position in (B) corresponds to the cross-sectional position in FIG. 3, and the cross-sectional position in (C). Corresponds to the cross-sectional position of FIG.

図7(A)〜(C)を参照して、基板1にLPCVD(Low Pressure Chemical Vapor Deposition)法により、絶縁膜101が成膜される。基板1としては、たとえばシリコン基板が適している。絶縁膜101としては、たとえば窒化シリコン膜または酸化シリコン膜などが適している。この絶縁膜101は、図2〜図4に示される絶縁体9に対応する。   With reference to FIGS. 7A to 7C, an insulating film 101 is formed on the substrate 1 by LPCVD (Low Pressure Chemical Vapor Deposition). For example, a silicon substrate is suitable as the substrate 1. As the insulating film 101, for example, a silicon nitride film or a silicon oxide film is suitable. This insulating film 101 corresponds to the insulator 9 shown in FIGS.

図8(A)〜(C)を参照して、絶縁膜101上に導電性ポリシリコン膜102が成膜される。成膜された導電性ポリシリコン膜102が選択的に除去される。この選択的に除去された導電性ポリシリコン膜102が図2〜図4に示される検出電極8に対応する。   With reference to FIGS. 8A to 8C, a conductive polysilicon film 102 is formed on the insulating film 101. The formed conductive polysilicon film 102 is selectively removed. The selectively removed conductive polysilicon film 102 corresponds to the detection electrode 8 shown in FIGS.

図9(A)〜(C)を参照して、PSG(Phosphosilicate Glass)膜103が成膜される。図10(A)〜(C)を参照して、PSG膜103がパターニングおよびエッチングされる。このエッチングされたPSG膜103が図2〜図4に示される慣性質量体31と検出電極8との間の空間に対応する。   Referring to FIGS. 9A to 9C, a PSG (Phosphosilicate Glass) film 103 is formed. Referring to FIGS. 10A to 10C, PSG film 103 is patterned and etched. The etched PSG film 103 corresponds to the space between the inertial mass body 31 and the detection electrode 8 shown in FIGS.

図11(A)〜(C)を参照して、導電性ポリシリコン膜102が成膜される。図12(A)〜(C)を参照して、導電性ポリシリコン膜102がCMP(Chemical Mechanical Polishing)処理により平坦化される。この平坦化された導電性ポリシリコン膜102の一部が図2〜図4に示される梁部材4に対応する。   Referring to FIGS. 11A to 11C, a conductive polysilicon film 102 is formed. Referring to FIGS. 12A to 12C, the conductive polysilicon film 102 is planarized by CMP (Chemical Mechanical Polishing) processing. A part of the planarized conductive polysilicon film 102 corresponds to the beam member 4 shown in FIGS.

図13(A)〜(C)を参照して、導電性ポリシリコン膜102がパターニング、およびエッチングされる。図14(A)〜(C)を参照して、PSG膜103が成膜される。その後、PSG膜13がエッチングにより平坦化される。   Referring to FIGS. 13A to 13C, conductive polysilicon film 102 is patterned and etched. Referring to FIGS. 14A to 14C, a PSG film 103 is formed. Thereafter, the PSG film 13 is planarized by etching.

図15(A)〜(C)を参照して、導電性ポリシリコン膜102が成膜される。その後、導電性ポリシリコン膜102がパターニングおよびエッチングされる。このエッチングされた導電性ポリシリコン膜102が図2〜図4に示される可動電極7に対応する。続いて、PSG膜103が成膜される。その後、PSG膜がエッチングにより平坦化される。   Referring to FIGS. 15A to 15C, a conductive polysilicon film 102 is formed. Thereafter, the conductive polysilicon film 102 is patterned and etched. The etched conductive polysilicon film 102 corresponds to the movable electrode 7 shown in FIGS. Subsequently, a PSG film 103 is formed. Thereafter, the PSG film is planarized by etching.

図16(A)〜(C)を参照して、導電性ポリシリコン膜102が成膜される。その後、導電性ポリシリコン膜102がパターニングおよびエッチングされる。このエッチングされた導電性ポリシリコン膜102が図2〜図4に示される固定部材2、慣性質量体31、アンカー部材5および固定電極6に対応する。続いて、PSG膜103が成膜される。その後、PSG膜がエッチングにより平坦化される。   With reference to FIGS. 16A to 16C, a conductive polysilicon film 102 is formed. Thereafter, the conductive polysilicon film 102 is patterned and etched. The etched conductive polysilicon film 102 corresponds to the fixing member 2, the inertia mass body 31, the anchor member 5, and the fixed electrode 6 shown in FIGS. 2 to 4. Subsequently, a PSG film 103 is formed. Thereafter, the PSG film is planarized by etching.

図17(A)〜(C)を参照して、PSG膜103がエッチングにより除去される。これにより、図2〜図4に示される本実施の形態の加速度センサ100が製造される。   Referring to FIGS. 17A to 17C, the PSG film 103 is removed by etching. Thereby, the acceleration sensor 100 of this Embodiment shown by FIGS. 2-4 is manufactured.

次に、本実施の形態の加速度センサの動作について説明する。
本実施の形態の加速度センサでは、たとえば固定部材2とアンカー部材5との間に一定の直流電圧が印加されることにより、印加される加速度が大きい域すなわち変位部材3の変位が大きい域で、固定電極6と可動電極7との電位差による静電力に起因する復元力が得られる。これにより、等価的に梁部材4の復元力を増加すなわち剛性を高めることにより、印加される加速度の検出範囲を広げることができる。以下、詳細に説明する。
Next, the operation of the acceleration sensor according to the present embodiment will be described.
In the acceleration sensor of the present embodiment, for example, when a constant DC voltage is applied between the fixed member 2 and the anchor member 5, the applied acceleration is large, that is, the displacement of the displacement member 3 is large. A restoring force resulting from an electrostatic force due to a potential difference between the fixed electrode 6 and the movable electrode 7 is obtained. Thereby, the detection range of the applied acceleration can be expanded by increasing the restoring force of the beam member 4 equivalently, that is, increasing the rigidity. Details will be described below.

まず、変位部材3と検出電極8とによって加速度が検出される動作について説明する。図18を参照して、本実施の形態の加速度センサ100に対して検出軸DA方向の加速度AZが印加されると、梁部材4が変形し、加速度AZによって慣性質量体31に働く力と梁部材4のばね部材の復元力とがつりあう位置に慣性質量体31が変位する。   First, an operation in which acceleration is detected by the displacement member 3 and the detection electrode 8 will be described. Referring to FIG. 18, when acceleration AZ in the direction of detection axis DA is applied to acceleration sensor 100 of the present embodiment, beam member 4 is deformed, and the force and beam acting on inertial mass body 31 due to acceleration AZ. The inertia mass body 31 is displaced to a position where the restoring force of the spring member of the member 4 is balanced.

一般にばね部材の復元力と変位とは互いに比例するため、慣性質量体31の変位は印加された加速度AZに比例する。慣性質量体31の変位は、慣性質量体31と検出電極8との間の距離の変化による慣性質量体31と検出電極8との間に生ずる静電容量Cdの変化として検出される。この静電容量Cdの変化から印加された加速度AZが検出される。   In general, since the restoring force and displacement of the spring member are proportional to each other, the displacement of the inertial mass body 31 is proportional to the applied acceleration AZ. The displacement of the inertial mass body 31 is detected as a change in the capacitance Cd generated between the inertial mass body 31 and the detection electrode 8 due to a change in the distance between the inertial mass body 31 and the detection electrode 8. The applied acceleration AZ is detected from the change in the capacitance Cd.

続いて、固定電極6と可動電極7との電位差による静電力が変位部材3の変位に影響する動作について説明する。   Next, an operation in which the electrostatic force due to the potential difference between the fixed electrode 6 and the movable electrode 7 affects the displacement of the displacement member 3 will be described.

図19を参照して、寸法Hmの可動電極7が2枚の寸法Hbの固定電極6に挟まれている。2枚の固定電極6の寸法Hbは可動電極7の寸法Hmより大きい。固定電極6と可動電極7とは一定の距離GAをあけて配置されている。   Referring to FIG. 19, a movable electrode 7 having a dimension Hm is sandwiched between two fixed electrodes 6 having a dimension Hb. The dimension Hb of the two fixed electrodes 6 is larger than the dimension Hm of the movable electrode 7. The fixed electrode 6 and the movable electrode 7 are arranged at a certain distance GA.

固定電極6は、図1に示すように固定部材2を介して基板1に接続されているため、位置が固定されている。可動電極7は、図1に示すように慣性質量体31、梁部材4を介してアンカー部材5に接続されているため、基板1の厚み方向(検出軸DA方向)に変位が可能である。また、たとえば固定部材2とアンカー部材5との間に一定の直流電圧が印加されることにより、2枚の固定電極6と可動電極7との間に電位差が生じている。   Since the fixed electrode 6 is connected to the substrate 1 through the fixing member 2 as shown in FIG. 1, the position is fixed. Since the movable electrode 7 is connected to the anchor member 5 via the inertia mass body 31 and the beam member 4 as shown in FIG. 1, it can be displaced in the thickness direction of the substrate 1 (detection axis DA direction). Further, for example, a constant DC voltage is applied between the fixed member 2 and the anchor member 5, thereby generating a potential difference between the two fixed electrodes 6 and the movable electrode 7.

図20(A)〜(E)を参照して、一般に固定電極6と可動電極7との間に生ずる静電容量Ciは、典型的な平行平板モデルで考えれば、(対向面積/距離)に比例する。固定電極6と可動電極7との距離GAは一定であるため、静電容量Ciは、固定電極6と可動電極7との対向面積に比例する。なお、固定電極6と可動電極7の長さは等しい長さに構成されている。このため、固定電極6と可動電極7との対向面積は、可動電極7の基板1の厚み方向の寸法Hmに比例する。   Referring to FIGS. 20A to 20E, the capacitance Ci generally generated between the fixed electrode 6 and the movable electrode 7 is (opposing area / distance) when considered in a typical parallel plate model. Proportional. Since the distance GA between the fixed electrode 6 and the movable electrode 7 is constant, the capacitance Ci is proportional to the facing area between the fixed electrode 6 and the movable electrode 7. The fixed electrode 6 and the movable electrode 7 are configured to have the same length. For this reason, the opposing area of the fixed electrode 6 and the movable electrode 7 is proportional to the dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1.

そのため、図20(B)〜(D)に示すように可動電極7の変位Zが−ΔH/2≦Z≦+ΔH/2の域(加速度が小さい域)では、可動電極7が変位しても固定電極6と可動電極7との対向面積は一定であり変化しないため、可動電極7の変位Zに対する静電容量Ciは変化しない。なお、変位Zは、図中中心線から下側を負とし、上側を正としている。   Therefore, as shown in FIGS. 20B to 20D, when the displacement Z of the movable electrode 7 is in a range of −ΔH / 2 ≦ Z ≦ + ΔH / 2 (a region where acceleration is small), even if the movable electrode 7 is displaced. Since the opposed area of the fixed electrode 6 and the movable electrode 7 is constant and does not change, the capacitance Ci with respect to the displacement Z of the movable electrode 7 does not change. The displacement Z is negative on the lower side and positive on the upper side from the center line in the figure.

図20(A)および(E)に示すように可動電極7の変位Zの絶対値がΔH/2を超える域(加速度が大きい域)では、可動電極7が変位すると固定電極6と可動電極7との対向面積が変化するため、静電容量Ciが変化する。一般に、変位に対して静電容量Ciが変化する系では、変位に対する静電容量Ciの変化、すなわち静電容量Ciの変位微分(∂Ci/∂Z)および電位差の2乗に比例する静電力Feleが発生する。なお、発生する静電力Feleは、平板配置の対称性から、基板厚み方向の成分のみを持っている。   As shown in FIGS. 20A and 20E, in a region where the absolute value of the displacement Z of the movable electrode 7 exceeds ΔH / 2 (a region where acceleration is large), if the movable electrode 7 is displaced, the fixed electrode 6 and the movable electrode 7 are displaced. The capacitance Ci changes. In general, in a system in which the capacitance Ci changes with displacement, the electrostatic force proportional to the change of the capacitance Ci with respect to the displacement, that is, the displacement differential (∂Ci / ∂Z) of the capacitance Ci and the square of the potential difference. Fele is generated. The generated electrostatic force Fele has only a component in the substrate thickness direction due to the symmetry of the flat plate arrangement.

図20(A)に示すように変位ZがZ<−ΔH/2の域では、(∂Ci/∂Z)>0である。図20(B)〜(D)に示すように変位Zが−ΔH/2≦Z≦+ΔH/2の域では、(∂Ci/∂Z)=0である。図20(E)に示すように変位ZがZ>+ΔH/2の域では静電容量の変位微分(∂Ci/∂Z)<0である。よって、図20(A)および(E)に示すように変位Zの絶対値がΔH/2を超える域では、可動電極7の変位Zの絶対値を小さくする方向に静電力が生ずる。   As shown in FIG. 20A, in the region where the displacement Z is Z <−ΔH / 2, (< Ci / ∂Z)> 0. As shown in FIGS. 20B to 20D, (∂Ci / ∂Z) = 0 in the region where the displacement Z is −ΔH / 2 ≦ Z ≦ + ΔH / 2. As shown in FIG. 20E, the capacitance displacement differential (微分 Ci / ZZ) <0 in the region where the displacement Z is Z> + ΔH / 2. Therefore, as shown in FIGS. 20A and 20E, in the region where the absolute value of the displacement Z exceeds ΔH / 2, an electrostatic force is generated in the direction of decreasing the absolute value of the displacement Z of the movable electrode 7.

図21を参照して、典型的な平行平板モデルで考えた場合、可動電極7の変位Zに対する静電容量Ciは、変位Zの絶対値がΔH/2を超える域では減少し、変位Zが−ΔH/2≦Z≦+ΔH/2の域では一定となる傾向を示している。   Referring to FIG. 21, when a typical parallel plate model is considered, the capacitance Ci with respect to the displacement Z of the movable electrode 7 decreases in the region where the absolute value of the displacement Z exceeds ΔH / 2, and the displacement Z It shows a tendency to be constant in the range of −ΔH / 2 ≦ Z ≦ + ΔH / 2.

図22を参照して、典型的な平行平板モデルで考えた場合、可動電極7の変位Zに対する静電容量の変位微分(∂Ci/∂Z)および生じる静電力Feleは、変位Zの絶対値がΔH/2を超える域では、静電容量の変位微分(∂Ci/∂Z)および生じる静電力Feleの絶対値が増加し、変位Zが−ΔH/2≦Z≦+ΔH/2の域では一定となる傾向を示している。   Referring to FIG. 22, when considered with a typical parallel plate model, the capacitance displacement derivative (∂Ci / ∂Z) and the resulting electrostatic force Fele with respect to the displacement Z of the movable electrode 7 are the absolute values of the displacement Z. In the region where ΔH / 2 exceeds ΔH / 2, the capacitance displacement derivative (変 位 Ci / ∂Z) and the absolute value of the generated electrostatic force Fele increase, and in the region where the displacement Z is −ΔH / 2 ≦ Z ≦ + ΔH / 2. It shows a tendency to be constant.

一般に、実際の有限の高さを持つ平板においては、2枚の平板間に生ずる静電容量Ciは、平板端部での電界分布の影響により、変位に対して緩やかに変化する。そのため、静電容量の変位微分(∂Ci/∂Z)および発生する静電力Feleは、変位Zが−ΔH/2、+ΔH/2付近で連続的に変化する。これにより、変位Zの絶対値が大きい域で、静電力Feleは、絶対値が徐々に増加する。   In general, in a flat plate having an actual finite height, the capacitance Ci generated between the two flat plates changes gradually with respect to the displacement due to the influence of the electric field distribution at the end of the flat plate. Therefore, the displacement differential (∂Ci / ∂Z) of the electrostatic capacitance and the generated electrostatic force Fele continuously change when the displacement Z is in the vicinity of -ΔH / 2 and + ΔH / 2. Thereby, in the region where the absolute value of the displacement Z is large, the absolute value of the electrostatic force Fele gradually increases.

図23を参照して、平板端部での電界分布の影響を考慮した場合、可動電極7の変位Zに対する静電容量Ciは、変位Zの絶対値がΔH/2を超える域では、電極端部の電界分布の影響により徐々に傾きを大きくして減少していき、変位Zが−ΔH/2≦Z≦+ΔH/2の域では一定となる傾向を示している。   Referring to FIG. 23, when the influence of the electric field distribution at the end of the flat plate is taken into consideration, the capacitance Ci with respect to the displacement Z of the movable electrode 7 is in the region where the absolute value of the displacement Z exceeds ΔH / 2. The gradient gradually increases and decreases due to the influence of the electric field distribution of the portion, and the displacement Z tends to be constant in the range of −ΔH / 2 ≦ Z ≦ + ΔH / 2.

図24を参照して、平板端部での電界分布の影響を考慮した場合、可動電極7の変位Zに対する静電容量の変位微分(∂Ci/∂Z)および生じる静電力Feleは、変位Zの絶対値がΔH/2を超える域では、静電容量の変位微分(∂Ci/∂Z)および生じる静電力Feleの絶対値が徐々に増加し、変位Zが−ΔH/2≦Z≦+ΔH/2の域では一定となる傾向を示している。   Referring to FIG. 24, when the influence of the electric field distribution at the end of the flat plate is considered, the displacement differential (∂Ci / ∂Z) of the capacitance with respect to the displacement Z of the movable electrode 7 and the generated electrostatic force Fele are expressed as follows. In the region where the absolute value of ΔH / 2 exceeds ΔH / 2, the displacement derivative of capacitance (iCi / ∂Z) and the absolute value of the generated electrostatic force Fele gradually increase, and the displacement Z becomes −ΔH / 2 ≦ Z ≦ + ΔH. It shows a tendency to be constant in the region of / 2.

発生する静電力Feleは、静電容量の変位微分(∂Ci/∂Z)、すなわち静電容量Ciの変化に応じて発生する。図23に示すように静電容量Ciは変位Zの絶対値がΔH/2よりも大きい域で電極端部の電界分布の影響により徐々に傾きを大きくして減少していくので、静電容量の変位微分(∂Ci/∂Z)は、変位Zの絶対値がΔH/2よりも大きい域で、絶対値が徐々に大きくなる。静電力Feleは静電容量Ciの変化に比例するので、静電力Feleは、変位Zの絶対値がΔH/2よりも大きい域で、絶対値が徐々に大きくなる。   The generated electrostatic force Fele is generated in accordance with the displacement differential (変 位 Ci / ∂Z) of the capacitance, that is, the change in the capacitance Ci. As shown in FIG. 23, the electrostatic capacity Ci decreases in a region where the absolute value of the displacement Z is larger than ΔH / 2 due to the influence of the electric field distribution at the end of the electrode. In the displacement differential (Ci / ∂Z), the absolute value of the displacement Z gradually increases in a region where the absolute value of the displacement Z is larger than ΔH / 2. Since the electrostatic force Fele is proportional to the change in the capacitance Ci, the absolute value of the electrostatic force Fele gradually increases in a region where the absolute value of the displacement Z is larger than ΔH / 2.

以上に説明したように、変位部材3の変位Zの絶対値がΔH/2を超える域で、固定電極6と可動電極7との間の電位差に起因する静電力Feleの絶対値が徐々に増加する。これにより、静電力Feleに起因する復元力が増加する。   As described above, in the region where the absolute value of the displacement Z of the displacement member 3 exceeds ΔH / 2, the absolute value of the electrostatic force Fele due to the potential difference between the fixed electrode 6 and the movable electrode 7 gradually increases. To do. Thereby, the restoring force resulting from electrostatic force Fele increases.

図25を参照して、変位部材3の変位Zの絶対値がΔH/2を超える域、すなわち印加加速度Gによる変位部材3の変位が大きい域で、静電力Feleに起因する復元力が梁部材4のばね部材による復元力に加わる。これにより、等価的に梁部材4の復元力が増加、すなわち剛性が高くなるため、変位部材3の変位が大きい域で、変位部材3の変位Zが−ΔH/2≦Z≦+ΔH/2の域、すなわち印加加速度Gによる変位部材3の変位が小さい域と比較して、変位部材3の変位の変化率が小さくなる。   Referring to FIG. 25, in a region where the absolute value of displacement Z of displacement member 3 exceeds ΔH / 2, that is, a region where displacement of displacement member 3 due to applied acceleration G is large, the restoring force caused by electrostatic force Fele is a beam member. 4 is added to the restoring force by the spring member. As a result, the restoring force of the beam member 4 is equivalently increased, that is, the rigidity is increased. Therefore, in a region where the displacement of the displacement member 3 is large, the displacement Z of the displacement member 3 is −ΔH / 2 ≦ Z ≦ + ΔH / 2. Compared to a region, that is, a region where the displacement of the displacement member 3 due to the applied acceleration G is small, the change rate of the displacement of the displacement member 3 is small.

したがって、本実施の形態の加速度センサ100では、たとえば固定電極6と可動電極7との間に一定の直流電圧を印加しない場合と比較して、印加加速度Gによる変位部材3の変位が大きい域で、変位部材3が同じ変位(図25中Zmax)になるまでに、より大きな加速度を印加することができる。   Therefore, in the acceleration sensor 100 of the present embodiment, for example, in a region where the displacement of the displacement member 3 due to the applied acceleration G is large compared to a case where a constant DC voltage is not applied between the fixed electrode 6 and the movable electrode 7. A larger acceleration can be applied until the displacement member 3 reaches the same displacement (Zmax in FIG. 25).

つまり、図25に示すように、変位Zmaxの場合の印加加速度Gについて、固定電極6と可動電極7との間に一定の直流電圧を印加しない場合の印加加速度Gmaxに対して、本実施の形態の加速度センサ100では、印加加速度Gmaxより大きな加速度である印加加速度Gmax newとなる。よって、本実施の形態の加速度センサ100では、印加加速度Gが大きい域で変位部材3の可動電極7に静電力Feleが作用することによって広い範囲の加速度を検出することができる。   That is, as shown in FIG. 25, the applied acceleration G in the case of the displacement Zmax is compared with the applied acceleration Gmax in the case where a constant DC voltage is not applied between the fixed electrode 6 and the movable electrode 7. In the acceleration sensor 100, the applied acceleration Gmax new, which is larger than the applied acceleration Gmax, is obtained. Therefore, in the acceleration sensor 100 of the present embodiment, a wide range of acceleration can be detected by the electrostatic force Fele acting on the movable electrode 7 of the displacement member 3 in a region where the applied acceleration G is large.

なお、上記のように静電力Feleは固定電極6と可動電極7との間の電位差の2乗に比例するため、たとえば固定部材2とアンカー部材5との間に印加する電圧によって、検出可能な加速度の範囲を変化させることができる。つまり、印加する電圧を大きくすることにより加速度の検出範囲を大きくすることができる。   Since the electrostatic force Fele is proportional to the square of the potential difference between the fixed electrode 6 and the movable electrode 7 as described above, it can be detected by, for example, a voltage applied between the fixed member 2 and the anchor member 5. The range of acceleration can be changed. That is, the acceleration detection range can be increased by increasing the applied voltage.

また、固定部材2とアンカー部材5との間に一定の直流電圧が印加されているが、固定電極6と可動電極7との間に電位差が与えられていればよく、固定部材2とアンカー部材5との間に交流電圧が印加されていてもよい。この場合、印加される交流電圧の周波数は、共振による破損などを防ぐため、本実施の形態の加速度センサ100の機械的な共振周波数よりも高い周波数とすることが望ましい。   In addition, a constant DC voltage is applied between the fixed member 2 and the anchor member 5, but it is sufficient that a potential difference is applied between the fixed electrode 6 and the movable electrode 7. An AC voltage may be applied between the first and second terminals. In this case, it is desirable that the frequency of the applied AC voltage be higher than the mechanical resonance frequency of the acceleration sensor 100 of the present embodiment in order to prevent damage due to resonance.

次に、本実施の形態の加速度センサの作用効果について説明する。
本実施の形態の加速度センサ100によれば、加速度が小さい域では、変位部材3が基板1の厚み方向に変位しても可動電極7と固定電極6との対向面積が一定であり、かつ加速度が大きい域で変位部材3が基板1の厚み方向に変位すると可動電極7と固定電極6との対向面積が変化する。このため、可動電極7と固定電極6との対向面積の変化による静電容量Ciの変化に応じて発生する静電力Feleを加速度が小さい域で一定にし、加速度が大きい域で大きくすることができる。
Next, the function and effect of the acceleration sensor according to the present embodiment will be described.
According to the acceleration sensor 100 of the present embodiment, in a region where the acceleration is small, even if the displacement member 3 is displaced in the thickness direction of the substrate 1, the facing area between the movable electrode 7 and the fixed electrode 6 is constant, and the acceleration When the displacement member 3 is displaced in the thickness direction of the substrate 1 in a large area, the facing area of the movable electrode 7 and the fixed electrode 6 changes. For this reason, the electrostatic force Fele generated according to the change of the electrostatic capacity Ci due to the change of the facing area between the movable electrode 7 and the fixed electrode 6 can be made constant in a region where the acceleration is small, and can be increased in a region where the acceleration is large. .

これにより、加速度が大きい域で等価的に梁部材4の復元力が増加するため、加速度の印加による変位部材3の変位が大きい域で、変位部材3の変位が小さい域と比較して、変位部材3の変位の変化率が小さくなる。よって、広い範囲の加速度を検出することができる。   Thereby, since the restoring force of the beam member 4 is equivalently increased in a region where acceleration is large, the displacement of the displacement member 3 due to application of acceleration is larger in the region than in the region where the displacement of the displacement member 3 is small. The change rate of the displacement of the member 3 becomes small. Therefore, a wide range of accelerations can be detected.

また、固定電極6と可動電極7との対向面積の変化による静電容量Ciの変化に応じて発生する静電力Feleによって、加速度の印加による変位部材3の変位が大きい域で、加速度センサ100の構成部材が互いに接触することを抑制できる。これにより、構成部材の接触による構成部材の破損および吸着に起因する機能不良および性能不良を抑制できる。   Further, in the region where the displacement of the displacement member 3 due to the application of acceleration is large due to the electrostatic force Fele generated according to the change of the electrostatic capacity Ci due to the change of the facing area between the fixed electrode 6 and the movable electrode 7, the acceleration sensor 100 It can suppress that a structural member contacts mutually. Thereby, the malfunction and performance defect resulting from the failure | damage and adsorption | suction of a structural member by the contact of a structural member can be suppressed.

また、固定電極6と可動電極7との基板1の厚み方向の上面および下面の高さの差がそれぞれ等しくなるよう構成されていることが好ましい。これにより、加速度検出方向の両方向への加速度を正確に検出することができる。   Further, it is preferable that the height difference between the upper surface and the lower surface in the thickness direction of the substrate 1 between the fixed electrode 6 and the movable electrode 7 is equal. Thereby, the acceleration in both directions of the acceleration detection direction can be accurately detected.

本実施の形態の加速度センサ100によれば、可動電極7の基板1の厚み方向の寸法と固定電極6の基板1の厚み方向の寸法とが異なる大きさに構成されていてもよい。このため、加速度の印加による変位部材3の変位が大きい域で、可動電極7が可動電極7の基板1の厚み方向の寸法Hmと固定電極6の基板1の厚み方向の寸法Hbとの差よりも大きく移動した場合に、固定電極6と可動電極7との対向面積の変化による静電容量Ciの変化に応じて発生する静電力Feleが増加する。   According to the acceleration sensor 100 of the present embodiment, the dimension of the movable electrode 7 in the thickness direction of the substrate 1 may be different from the dimension of the fixed electrode 6 in the thickness direction of the substrate 1. Therefore, in a region where the displacement of the displacement member 3 due to application of acceleration is large, the movable electrode 7 is based on the difference between the dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1 and the dimension Hb of the fixed electrode 6 in the thickness direction of the substrate 1. In the case of a large movement, the electrostatic force Fele generated according to the change in the capacitance Ci due to the change in the facing area between the fixed electrode 6 and the movable electrode 7 increases.

よって、加速度が大きい域で変位部材3の変位の変化率を小さくすることにより、印加される加速度が大きい域で構成部材を接触させずに広い範囲の加速度を検出することができる。   Therefore, by reducing the rate of change of the displacement of the displacement member 3 in a region where the acceleration is large, it is possible to detect a wide range of accelerations without contacting the constituent members in a region where the applied acceleration is large.

本実施の形態の加速度センサ100によれば、可動電極7と固定電極6とは基板1の表面に沿う方向に対向するよう配置されていてもよい。このため、基板1の厚み方向に加速度が印加された場合、可動電極7と固定電極6とは加速度が印加される方向と交差する方向に対向するよう配置されている。これにより、印加される加速度が大きい域でも可動電極7が固定電極6に接触することが抑制される。   According to the acceleration sensor 100 of the present embodiment, the movable electrode 7 and the fixed electrode 6 may be arranged to face each other in the direction along the surface of the substrate 1. For this reason, when acceleration is applied in the thickness direction of the substrate 1, the movable electrode 7 and the fixed electrode 6 are disposed so as to face each other in a direction crossing the direction in which the acceleration is applied. Thereby, it is suppressed that the movable electrode 7 contacts the fixed electrode 6 even in the region where the applied acceleration is large.

本実施の形態の加速度センサ100によれば、変位部材3と対向するように基板1の表面上に配置され、かつ変位部材と静電容量を構成する検出電極8をさらに備えている。このため、基板1の厚み方向に加速度が印加された場合、検出電極8は変位部材3と静電容量Cdを加速度検出方向に構成する。これにより、加速度をより正確に検出することができる。   The acceleration sensor 100 according to the present embodiment further includes the detection electrode 8 that is disposed on the surface of the substrate 1 so as to face the displacement member 3 and constitutes a capacitance with the displacement member. For this reason, when acceleration is applied in the thickness direction of the substrate 1, the detection electrode 8 configures the displacement member 3 and the capacitance Cd in the acceleration detection direction. Thereby, acceleration can be detected more accurately.

なお、本実施の形態の変形例1として、梁部材4が片持ち梁として慣性質量体31の一方端部に配置されていてもよい。   As a first modification of the present embodiment, the beam member 4 may be disposed at one end of the inertia mass body 31 as a cantilever.

図26を参照して、梁部材4が片持ち梁として慣性質量体31の一方端部に配置されている。これにより、梁部材4が慣性質量体31の一方端部および他方端部に配置されている場合と比較して、加速度センサ100のサイズを小さくすることができる。また、製造コストを含めた生産性を向上することができる。   Referring to FIG. 26, the beam member 4 is disposed at one end of the inertial mass body 31 as a cantilever beam. Thereby, compared with the case where the beam member 4 is arrange | positioned at the one end part and other end part of the inertial mass body 31, the size of the acceleration sensor 100 can be made small. In addition, productivity including manufacturing cost can be improved.

また、本実施の形態の変形例2として、可動電極7の基板1の厚み方向の寸法Hmが固定電極6の基板1の厚み方向の寸法Hbより大きくてもよい。   As a second modification of the present embodiment, the dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1 may be larger than the dimension Hb of the fixed electrode 6 in the thickness direction of the substrate 1.

図27を参照して、可動電極7の基板1の厚み方向の寸法Hmが固定電極6の基板1の厚み方向の寸法Hbより大きい。上記では、固定電極6の基板1の厚み方向の寸法Hbが可動電極7の基板1の厚み方向の寸法Hmより大きい場合について説明したが、可動電極7の基板1の厚み方向の寸法Hmが固定電極6の基板1の厚み方向の寸法Hbより大きくても、上記と同様に印加される加速度が大きい域で構成部材を接触させずに広い範囲の加速度を検出することができる。   Referring to FIG. 27, the dimension Hm of movable substrate 7 in the thickness direction of substrate 1 is larger than dimension Hb of fixed electrode 6 in the thickness direction of substrate 1. In the above description, the case where the dimension Hb of the fixed electrode 6 in the thickness direction of the substrate 1 is larger than the dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1 is described. Even if the electrode 6 is larger than the dimension Hb of the substrate 1 in the thickness direction, it is possible to detect a wide range of acceleration without contacting the constituent members in a region where the applied acceleration is large as described above.

また、本実施の形態の変形例3として、固定電極6と可動電極7とが櫛歯形状に構成されずに、固定部材2と変位部材3とを近接させることにより、固定部材2と変位部材3とに固定電極6と可動電極7との機能を併せ持たせていてもよい。   Further, as a third modification of the present embodiment, the fixed electrode 6 and the movable member 7 are not configured in a comb-teeth shape, and the fixed member 2 and the displacement member 3 are brought close to each other, whereby the fixed member 2 and the displacement member 3 are arranged. 3 may have the functions of the fixed electrode 6 and the movable electrode 7 together.

図28および図29を参照して、平面視における一方向において慣性質量体31が固定部材2の内側の近傍まで形成されている。これにより、固定部材2と慣性質量体31とが近接されている。この固定部材2と慣性質量体31との近接部分により静電容量Ciが構成されている。上記と異なり固定部材2と慣性質量体31とは単独では設けられていない。   Referring to FIGS. 28 and 29, inertial mass body 31 is formed up to the vicinity of the inside of fixing member 2 in one direction in plan view. Thereby, the fixing member 2 and the inertial mass body 31 are brought close to each other. Capacitance Ci is constituted by a proximity portion between the fixing member 2 and the inertial mass body 31. Unlike the above, the fixing member 2 and the inertia mass body 31 are not provided independently.

上記では、加速度センサ100は、固定電極6と可動電極7とを櫛歯形状とすることで対向面積を大きくして、変位部材3の変位が大きい域での静電容量Ciの変位微分(∂Ci/∂Z)をより大きくすることにより発生する静電力の絶対値が効率よく大きくなるよう構成されている。しかし、変位部材3の変位が小さい域で、静電力Feleを生じる電極同士の対向面積が変化せずに、変位部材3の変位が大きい域で、静電力Feleを生じる電極同士の対向面積が変化すればよい。   In the above description, the acceleration sensor 100 increases the opposing area by making the fixed electrode 6 and the movable electrode 7 comb-shaped, and the displacement differential (∂) in the region where the displacement of the displacement member 3 is large. The absolute value of the electrostatic force generated by increasing Ci / ∂Z) is increased efficiently. However, the facing area between the electrodes that generate the electrostatic force Fele does not change in the region where the displacement of the displacement member 3 is small, and the facing area between the electrodes that generate the electrostatic force Fele changes in the region where the displacement of the displacement member 3 is large. do it.

したがって、固定電極6の機能を固定部材2に併せ持たせ、可動電極7の機能を変位部材3に併せ持たせることにより、固定部材2と変位部材3との対向面積の変化によって、変位部材3の変位が大きい域で、静電力Feleを増加させることができる。よって、上記と同様に広い範囲の加速度を検出することができる。   Accordingly, by providing the fixed member 2 with the function of the fixed electrode 6 and also having the function of the movable electrode 7 with the displacement member 3, the displacement member 3 is changed by the change in the facing area between the fixed member 2 and the displacement member 3. The electrostatic force Fele can be increased in a region where the displacement of is large. Therefore, a wide range of acceleration can be detected in the same manner as described above.

(実施の形態2)
本発明の実施の形態2の加速度センサは、実施の形態1の加速度センサと比較して、可動電極および固定電極の構成が主に異なっている。
(Embodiment 2)
The acceleration sensor according to the second embodiment of the present invention is mainly different from the acceleration sensor according to the first embodiment in the configuration of the movable electrode and the fixed electrode.

図30を参照して、本実施の形態の加速度センサ100では、可動電極7は、互いに分離された複数の可動電極部71を有している。固定電極6は、互いに分離された複数の固定電極部61を有している。複数の可動電極部71および複数の固定電極部61は、互いに対向するように配置された可動電極部71と固定電極部61との組Pを複数個有している。   Referring to FIG. 30, in the acceleration sensor 100 of the present embodiment, the movable electrode 7 has a plurality of movable electrode portions 71 separated from each other. The fixed electrode 6 has a plurality of fixed electrode portions 61 separated from each other. The plurality of movable electrode portions 71 and the plurality of fixed electrode portions 61 have a plurality of sets P of the movable electrode portions 71 and the fixed electrode portions 61 disposed so as to face each other.

なお、組Pは、図30に示されるように2つの固定電極部61と1つの可動電極部71からなっていてもよく、また1つの固定電極部61と1つの可動電極部71とからなっていてもよい。   The set P may be composed of two fixed electrode portions 61 and one movable electrode portion 71 as shown in FIG. 30, and is composed of one fixed electrode portion 61 and one movable electrode portion 71. It may be.

組Pにおける固定電極部61と可動電極部71とは基板1の表面からの高さが異なるように構成されている。組Pにおける固定電極部61および可動電極部71は、固定電極部61の基板1とは反対側の端面と、可動電極部71の基板1とは反対側の端面との間に基板1対する高さの差ΔPが生じるよう構成されている。なお、組Pにおける固定電極部61および可動電極部71は、固定電極部61の基板1側の端面と、可動電極部71の基板1側の端面との間にも同じく高さの差ΔPが生じるよう構成されている。   The fixed electrode portion 61 and the movable electrode portion 71 in the set P are configured to have different heights from the surface of the substrate 1. The fixed electrode portion 61 and the movable electrode portion 71 in the set P are high with respect to the substrate 1 between the end surface of the fixed electrode portion 61 opposite to the substrate 1 and the end surface of the movable electrode portion 71 opposite to the substrate 1. A difference ΔP is generated. The fixed electrode portion 61 and the movable electrode portion 71 in the set P also have a height difference ΔP between the end surface of the fixed electrode portion 61 on the substrate 1 side and the end surface of the movable electrode portion 71 on the substrate 1 side. It is configured to occur.

互いに隣り合う組Pの固定電極部61および可動電極部71の基板1の表面からの高さは、一方の組Pの固定電極部61の高さが他方の組Pの可動電極部71の高さと同一であり、一方の組Pの可動電極部71の高さが一方の組Pの固定電極部61の高さと同一であってもよい。   The height of the fixed electrode portion 61 and the movable electrode portion 71 of the set P adjacent to each other from the surface of the substrate 1 is such that the height of the fixed electrode portion 61 of one set P is the height of the movable electrode portion 71 of the other set P. The height of the movable electrode portion 71 of one set P may be the same as the height of the fixed electrode portion 61 of one set P.

複数の可動電極部71および複数の固定電極部61は、加速度が小さい域では、変位部材3が基板1の厚み方向に変位しても複数個の組Pの可動電極部71と固定電極部61との対向面積の合計が一定であり、かつ加速度が大きい域で変位部材3が基板1の厚み方向に変位すると複数個の組Pの可動電極部71と固定電極部61との対向面積の合計が変化するよう構成されている。   The plurality of movable electrode portions 71 and the plurality of fixed electrode portions 61 have a plurality of sets P of movable electrode portions 71 and fixed electrode portions 61 in a region where acceleration is small even if the displacement member 3 is displaced in the thickness direction of the substrate 1. When the displacement member 3 is displaced in the thickness direction of the substrate 1 in a region where the total acceleration area is constant and acceleration is large, the total area where the movable electrode portions 71 and the fixed electrode portions 61 of the plurality of sets P face each other. Is configured to change.

図31を参照して、複数個の組Pでは、それぞれ寸法Hmの可動電極部71が2枚の寸法Hbの固定電極部61に挟まれている。以下では、2つの組Pを一例として説明するが、組Pは複数個であればよい。複数の固定電極部61の基板1の厚み方向の寸法Hbおよび複数の可動電極部71の基板1の厚み方向の寸法Hmは、同一の大きさに構成されている。   Referring to FIG. 31, in a plurality of sets P, a movable electrode portion 71 having a dimension Hm is sandwiched between two fixed electrode portions 61 having a dimension Hb. Hereinafter, two sets P will be described as an example, but a plurality of sets P may be used. The dimension Hb in the thickness direction of the substrate 1 of the plurality of fixed electrode portions 61 and the dimension Hm in the thickness direction of the substrate 1 of the plurality of movable electrode portions 71 are configured to be the same size.

組Pには、固定電極部61に対して可動電極部71が基板1に向かって突出するよう配置されている組P(凹部)と、固定電極部61に対して可動電極部71が基板1と反対側に向かって突出するよう配置されている組P(凸部)とがある。第1の組P1は、基板1に対して可動電極部71が固定電極部61より下に位置するよう構成されている。第2の組P2は、基板1に対して可動電極部71が固定電極部61より上に位置するよう構成されている。   In the set P, the movable electrode portion 71 is disposed so that the movable electrode portion 71 protrudes toward the substrate 1 with respect to the fixed electrode portion 61, and the movable electrode portion 71 is disposed on the substrate 1 with respect to the fixed electrode portion 61. And a set P (convex portion) arranged so as to protrude toward the opposite side. The first set P <b> 1 is configured such that the movable electrode portion 71 is positioned below the fixed electrode portion 61 with respect to the substrate 1. The second set P <b> 2 is configured such that the movable electrode portion 71 is positioned above the fixed electrode portion 61 with respect to the substrate 1.

なお、本実施の形態のこれ以外の構成は、上述した実施の形態1の構成と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。また、本実施の形態は、上述した実施の形態1と同様の製造方法で製造可能であるためその説明を繰り返さない。   In addition, since the structure of this embodiment other than this is the same as that of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated. In addition, since the present embodiment can be manufactured by the same manufacturing method as that of the first embodiment, the description thereof will not be repeated.

続いて、固定電極部61と可動電極部71との電位差による静電力が変位部材3の変位に影響する動作について説明する。   Next, an operation in which the electrostatic force due to the potential difference between the fixed electrode portion 61 and the movable electrode portion 71 affects the displacement of the displacement member 3 will be described.

図31に示すように、1つの固定電極部61と1つの可動電極部71とが対向している長さを対向長さHxとする。1つの組では、P1つの可動電極部71を2つの固定電極部61で挟んでいるため、1つの組Pにおける固定電極部61と可動電極部71との対向する長さは2Hxとなる。なお、固定電極部61と可動電極部71の長さは等しい長さに構成されている。このため、固定電極部61と可動電極部71との対向面積は2Hxに比例する。   As shown in FIG. 31, a length in which one fixed electrode portion 61 and one movable electrode portion 71 are opposed to each other is defined as a facing length Hx. In one set, since one P movable electrode portion 71 is sandwiched between two fixed electrode portions 61, the opposing length of the fixed electrode portion 61 and the movable electrode portion 71 in one set P is 2Hx. In addition, the length of the fixed electrode part 61 and the movable electrode part 71 is comprised by the equal length. For this reason, the opposing area of the fixed electrode part 61 and the movable electrode part 71 is proportional to 2Hx.

図32(B)〜(D)を参照して、複数個の組Pは、可動電極部71の変位Zが−ΔP≦Z≦+ΔPの域(加速度が小さい域)において、可動電極部71が基板1の厚み方向に変位することによって可動電極部71と固定電極部61との対向面積が大きくなる組PLと、可動電極部71と固定電極部61との対向面積が小さくなる組PSとを有している。   Referring to FIGS. 32 (B) to (D), in the plurality of sets P, the movable electrode portion 71 has a displacement Z of −ΔP ≦ Z ≦ + ΔP (region where acceleration is small). A set PL in which the facing area between the movable electrode portion 71 and the fixed electrode portion 61 is increased by displacement in the thickness direction of the substrate 1 and a set PS in which the facing area between the movable electrode portion 71 and the fixed electrode portion 61 is reduced. Have.

可動電極部71の変位Zが−ΔP≦Z≦+ΔPの域(加速度が小さい域)では、組PLで固定電極部61と可動電極部71との対向面積が大きくなっても組PSでは固定電極部61と可動電極部71との対向面積が小さくなる。このため、可動電極部71の変位Zが−ΔP≦Z≦+ΔPの域(加速度が小さい域)では、可動電極部71が変位しても組PLと組PSからなる組Pにおいて固定電極部61と可動電極部71との対向面積の合計が一定であり変化しない。そのため、可動電極7の変位Zに対する静電容量Ciは変化しない。   When the displacement Z of the movable electrode portion 71 is in the range of −ΔP ≦ Z ≦ + ΔP (the region where acceleration is small), the fixed electrode is not used in the set PS even if the opposing area between the fixed electrode portion 61 and the movable electrode portion 71 is increased in the set PL. The facing area between the portion 61 and the movable electrode portion 71 is reduced. For this reason, when the displacement Z of the movable electrode portion 71 is in the range of −ΔP ≦ Z ≦ + ΔP (the region where the acceleration is small), the fixed electrode portion 61 in the set P including the set PL and the set PS even if the movable electrode portion 71 is displaced. And the total facing area of the movable electrode portion 71 is constant and does not change. Therefore, the capacitance Ci with respect to the displacement Z of the movable electrode 7 does not change.

図32(A)および(E)を参照して、可動電極部71の変位Zの絶対値がΔPを超える域(加速度が大きい域)では、可動電極部71が変位すると複数個の組Pにおいて可動電極部71と固定電極部61との対向面積の合計が変化するため、静電容量Ciが変化する。このため、静電容量Ciの変位微分(∂Ci/∂Z)および電位差の2乗に比例する静電力Feleが発生する。   32A and 32E, in a region where the absolute value of displacement Z of movable electrode portion 71 exceeds ΔP (a region where acceleration is large), when movable electrode portion 71 is displaced, a plurality of sets P are obtained. Since the sum of the opposing areas of the movable electrode portion 71 and the fixed electrode portion 61 changes, the capacitance Ci changes. For this reason, an electrostatic force Fele proportional to the displacement differential (∂Ci / ∂Z) of the capacitance Ci and the square of the potential difference is generated.

次に、本実施の形態の加速度センサの作用効果について説明する。
本実施の形態の加速度センサ100によれば、複数の可動電極部71および複数の固定電極部61は、互いに対向するように配置された可動電極部71と固定電極部61との組Pを複数個有している。そして、加速度が小さい域では、変位部材3が基板1の厚み方向に変位しても複数個の組Pの可動電極部71と固定電極部61との対向面積の合計が一定であり、かつ加速度が大きい域で変位部材3が基板1の厚み方向に変位すると複数個の組Pの可動電極部71と固定電極部61との対向面積の合計が変化する。
Next, the function and effect of the acceleration sensor according to the present embodiment will be described.
According to the acceleration sensor 100 of the present embodiment, the plurality of movable electrode portions 71 and the plurality of fixed electrode portions 61 include a plurality of sets P of movable electrode portions 71 and fixed electrode portions 61 arranged so as to face each other. I have one. In a region where the acceleration is small, even if the displacement member 3 is displaced in the thickness direction of the substrate 1, the total of the facing areas of the movable electrode portions 71 and the fixed electrode portions 61 of the plurality of sets P is constant, and the acceleration When the displacement member 3 is displaced in the thickness direction of the substrate 1 in a large area, the total of the opposing areas of the plurality of sets P of movable electrode portions 71 and fixed electrode portions 61 changes.

このため、複数個の組Pの可動電極部71と固定電極部61との対向面積の合計の変化による静電容量Ciの変化に応じて発生する静電力Feleを加速度が小さい域で一定にし、加速度が大きい域で大きくすることができる。これにより、印加される加速度が大きい域で構成部材を接触させずに広い範囲の加速度を検出できる。   For this reason, the electrostatic force Fele generated according to the change of the electrostatic capacitance Ci due to the change of the total facing area of the movable electrode portion 71 and the fixed electrode portion 61 of the plurality of sets P is made constant in a region where the acceleration is small, It can be increased in a region where acceleration is large. As a result, it is possible to detect a wide range of acceleration without contacting the constituent members in a region where the applied acceleration is large.

本実施の形態の加速度センサ100によれば、複数個の組Pは、加速度が小さい域において、可動電極部71が基板1の厚み方向に変位することによって可動電極部71と固定電極部61との対向面積が大きくなる組PLと、可動電極部71と固定電極部61との対向面積が小さくなる組PSとを有している。   According to the acceleration sensor 100 of the present embodiment, the plurality of sets P includes the movable electrode portion 71, the fixed electrode portion 61, and the movable electrode portion 71 that are displaced in the thickness direction of the substrate 1 in a region where acceleration is small. A set PL in which the opposed area of the movable electrode portion 71 and the fixed electrode portion 61 are reduced.

このため、加速度が小さい域において可動電極部71が基板1の厚み方向に変位しても、複数個の組Pの可動電極部71と固定電極部61との対向面積の合計の変化による静電容量Ciの変化に応じて発生する静電力Feleを加速度が小さい域で一定にすることができる。   For this reason, even if the movable electrode portion 71 is displaced in the thickness direction of the substrate 1 in a region where the acceleration is small, the electrostatic force due to the change in the total facing area of the movable electrode portions 71 and the fixed electrode portions 61 of the plurality of sets P The electrostatic force Fele generated according to the change of the capacitance Ci can be made constant in a region where the acceleration is small.

本実施の形態の加速度センサ100によれば、可動電極部71と固定電極部61との基板1の厚み方向の寸法が同一であり、複数個の組Pは、基板1に対して可動電極部71が固定電極部61より下に位置するよう構成された第1の組P1と、基板1に対して可動電極部71が固定電極部61より上に位置するよう構成された第2の組P2とを有している。   According to the acceleration sensor 100 of the present embodiment, the movable electrode portion 71 and the fixed electrode portion 61 have the same dimension in the thickness direction of the substrate 1, and the plurality of sets P are movable electrode portions relative to the substrate 1. A first set P1 configured such that 71 is positioned below the fixed electrode portion 61 and a second set P2 configured such that the movable electrode portion 71 is positioned above the fixed electrode portion 61 with respect to the substrate 1. And have.

このため、第1の組P1および第2の組P2において可動電極部71と固定電極部61との対向面積の合計の変化による静電容量Ciの変化に応じて発生する静電力Feleを加速度が小さい域で一定にし、加速度が大きい域で大きくすることができる。   For this reason, in the first set P1 and the second set P2, the acceleration causes the electrostatic force Fele generated according to the change in the capacitance Ci due to the change in the total facing area of the movable electrode portion 71 and the fixed electrode portion 61. It can be made constant in a small area and large in a large acceleration area.

なお、上記では、第1の組P1と第2の組P2とが同じ個数の場合について説明したが、第1の組P1と第2の組P2とは個数が異なっていてもよい。第1の組P1と第2の組みP2との個数が異なる場合には、可動電極部71の変位Zが−ΔP≦Z≦+ΔPの域で、第1の組P1での静電容量Ciの変化と第2の組P2での静電容量Ciの変化とが等しくならないため、静電力Feleが発生する。しかし、可動電極部71の変位Zの絶対値がΔPを超える域では格段に大きい静電力Feleが生じる。加速度が小さい域と比較して加速度が大きい域で静電力Feleを格段に大きくすることができるため、第1の組P1と第2の組P2とは個数が異なっていても広範囲の加速度を検出できる。   In the above description, the case where the first set P1 and the second set P2 have the same number has been described. However, the first set P1 and the second set P2 may have different numbers. When the number of the first set P1 and the second set P2 is different, the displacement Z of the movable electrode portion 71 is in the range of −ΔP ≦ Z ≦ + ΔP, and the capacitance Ci of the first set P1 is Since the change and the change in the capacitance Ci in the second set P2 are not equal, the electrostatic force Fele is generated. However, a remarkably large electrostatic force Fele occurs in the region where the absolute value of the displacement Z of the movable electrode portion 71 exceeds ΔP. Since the electrostatic force Fele can be significantly increased in a region where acceleration is large compared to a region where acceleration is small, a wide range of acceleration can be detected even if the number of the first group P1 and the second group P2 is different. it can.

(本実施の形態3)
本発明の実施の形態3の加速度センサは、実施の形態1の加速度センサと比較して、変位部材の構成が主に異なっている。
(Embodiment 3)
The acceleration sensor according to the third embodiment of the present invention is mainly different from the acceleration sensor according to the first embodiment in the configuration of the displacement member.

図33〜35を参照して、本実施の形態の加速度センサ100の変位部材3は、可動電極7と、慣性質量体31と、検出フレーム部32と、ねじれ梁33と、リンク梁34とを有している。   33 to 35, the displacement member 3 of the acceleration sensor 100 of the present embodiment includes the movable electrode 7, the inertia mass body 31, the detection frame portion 32, the torsion beam 33, and the link beam 34. Have.

ねじれ梁33は、アンカー部材5を介して基板1に支持されている。ねじれ梁33は、ねじれ軸線Tを中心としてねじれるよう構成されている。検出フレーム部32は、ねじれ軸線Tを中心に回転可能なようにねじれ梁33に支持されている。リンク梁34は、平面視においてねじれ軸線Tからずれた仮想線L上の位置において検出フレーム部32に支持されている。   The torsion beam 33 is supported by the substrate 1 via the anchor member 5. The torsion beam 33 is configured to be twisted about the torsion axis T. The detection frame portion 32 is supported by the torsion beam 33 so as to be rotatable about the torsion axis T. The link beam 34 is supported by the detection frame portion 32 at a position on an imaginary line L that is shifted from the twist axis T in a plan view.

リンク梁34は、ねじれ梁33のねじれ軸線Tをねじれ軸線Tと交差しかつ検出フレーム部32の一方端部側に向かう方向にオフセットeだけ平行移動した仮想線L上の位置において検出フレーム部32と繋がっている。すなわち、オフセットeの絶対値はねじれ軸線Tと仮想線Lとの間の寸法である。   The link beam 34 crosses the torsion axis T of the torsion beam 33 with the torsion axis T and moves parallel to the one end side of the detection frame unit 32 by an offset e at the position on the imaginary line L. It is connected with. That is, the absolute value of the offset e is a dimension between the twist axis T and the imaginary line L.

慣性質量体31は、基板1に対して基板1の厚み方向に変位可能にリンク梁34に支持されている。慣性質量体31は、可動電極7を有している。リンク梁34と慣性質量体31との接続部の変位とリンク梁34と検出フレーム部32との接続部の変位は同一になるよう構成されている。検出フレーム部32と対向する基板1上には、検出電極8が形成されている。図34に示されるように、検出電極8は、アンカー部材5に対して一方側に形成されている。   The inertia mass body 31 is supported by the link beam 34 so as to be displaceable in the thickness direction of the substrate 1 with respect to the substrate 1. The inertia mass body 31 has a movable electrode 7. The displacement of the connection portion between the link beam 34 and the inertia mass body 31 and the displacement of the connection portion between the link beam 34 and the detection frame portion 32 are configured to be the same. A detection electrode 8 is formed on the substrate 1 facing the detection frame portion 32. As shown in FIG. 34, the detection electrode 8 is formed on one side with respect to the anchor member 5.

なお、本実施の形態のこれ以外の構成は、上述した実施の形態1の構成と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。また、本実施の形態は、上述した実施の形態1と同様の製造方法で製造可能であるためその説明を繰り返さない。   In addition, since the structure of this embodiment other than this is the same as that of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated. In addition, since the present embodiment can be manufactured by the same manufacturing method as that of the first embodiment, the description thereof will not be repeated.

次に、本実施の形態の加速度センサの動作について説明する。
図36を参照して、本実施の形態の加速度センサ100に対して検出軸DA方向の加速度AZが印加されると、ねじれ梁33が変形し、加速度AZによってねじれ梁33を除く変位部材3に働く力とねじれ梁33の復元力とがつりあう位置に慣性質量体31が変位する。慣性質量体31は、加速度AZの方向と反対方向に変位する。
Next, the operation of the acceleration sensor according to the present embodiment will be described.
Referring to FIG. 36, when acceleration AZ in the detection axis DA direction is applied to acceleration sensor 100 of the present embodiment, torsion beam 33 is deformed, and displacement member 3 excluding torsion beam 33 is displaced by acceleration AZ. The inertial mass body 31 is displaced to a position where the working force and the restoring force of the torsion beam 33 are balanced. The inertial mass body 31 is displaced in the direction opposite to the direction of the acceleration AZ.

図34および図36を参照して、慣性質量体31と連結されているリンク梁34も、慣性質量体31と一体となって加速度AZと反対方向に変位する。加速度AZに対するリンク梁34の変位により、検出フレーム部32は、リンク梁34の仮想線Lの部分で加速度AZと反対方向への力を受ける。この仮想線Lは、ねじれ梁33のねじれ軸線Tからオフセットeだけ平行移動された位置にあるため、検出フレーム部32にはトルクが作用する。この結果、検出フレーム部32が回転変位する。   Referring to FIGS. 34 and 36, link beam 34 connected to inertial mass body 31 is also integrated with inertial mass body 31 and displaced in the direction opposite to acceleration AZ. Due to the displacement of the link beam 34 with respect to the acceleration AZ, the detection frame unit 32 receives a force in the direction of the imaginary line L of the link beam 34 in the direction opposite to the acceleration AZ. Since this imaginary line L is at a position translated from the torsion axis T of the torsion beam 33 by an offset e, torque acts on the detection frame portion 32. As a result, the detection frame part 32 is rotationally displaced.

すなわち、検出フレーム部32の上面が加速度センサ100の一方端部側(図36の左側)を向くように、検出フレーム部32が図中矢印R方向に回転変位する。検出フレーム部32の回転変位によって検出フレーム部32と検出電極8との距離が小さくなるため、検出フレーム部32と検出電極8とにより構成される静電容量Cdが増大する。この静電容量Cdの変化から加速度AZが検出される。   That is, the detection frame portion 32 is rotationally displaced in the direction of arrow R in the figure so that the upper surface of the detection frame portion 32 faces one end side (left side in FIG. 36) of the acceleration sensor 100. Since the distance between the detection frame unit 32 and the detection electrode 8 is reduced by the rotational displacement of the detection frame unit 32, the capacitance Cd formed by the detection frame unit 32 and the detection electrode 8 increases. The acceleration AZ is detected from the change in the capacitance Cd.

なお、固定電極6と可動電極7との電位差による静電力が変位部材3の変位に影響する動作については、上述した実施の形態1と同様であるためその説明を繰り返さない。   Note that the operation in which the electrostatic force due to the potential difference between the fixed electrode 6 and the movable electrode 7 affects the displacement of the displacement member 3 is the same as in the first embodiment described above, and therefore the description thereof will not be repeated.

また、上記では、図34に示されるように検出電極8がアンカー部材5に対して一方側に形成されていたが、検出電極8はアンカー部材5に対して両側に形成されていてもよい。図37を参照して、アンカー部材5を挟むように検出フレーム部32と対向する基板1上に検出電極8Lと検出電極8Rとが形成されている。   In the above description, the detection electrode 8 is formed on one side of the anchor member 5 as shown in FIG. 34, but the detection electrode 8 may be formed on both sides of the anchor member 5. Referring to FIG. 37, detection electrode 8L and detection electrode 8R are formed on substrate 1 facing detection frame portion 32 so as to sandwich anchor member 5 therebetween.

このため、検出電極8Lと検出フレーム部32とにより構成される静電容量CdLと検出電極8Rと検出フレーム部32とにより構成される静電容量CdRとの差分から静電容量変化を検出することができる。加速度センサ100に対して検出軸DA方向の加速度AZが印加されると、検出フレーム部32はねじれ梁33のねじれ軸Tを中心に回転する。   Therefore, a change in capacitance is detected from the difference between the capacitance CdL constituted by the detection electrode 8L and the detection frame portion 32 and the capacitance CdR constituted by the detection electrode 8R and the detection frame portion 32. Can do. When the acceleration AZ in the direction of the detection axis DA is applied to the acceleration sensor 100, the detection frame portion 32 rotates around the torsion axis T of the torsion beam 33.

そのため、静電容量CdLと静電容量CdRとは一方が大きくなり、他方が小さくなる。つまり、静電容量CdLおよび静電容量CdRの変化は互いに符号を異にするので、印加された加速度AZに対する感度を高くすることができる。   For this reason, one of the electrostatic capacitance CdL and the electrostatic capacitance CdR becomes larger and the other becomes smaller. That is, since the changes in the capacitance CdL and the capacitance CdR have different signs, the sensitivity to the applied acceleration AZ can be increased.

また、本実施の形態の固定電極6および可動電極7は、実施の形態2の固定電極6および可動電極7の構成を採用してもよい。   Further, the fixed electrode 6 and the movable electrode 7 of the present embodiment may adopt the configurations of the fixed electrode 6 and the movable electrode 7 of the second embodiment.

次に、本実施の形態の加速度センサの作用効果について説明する。
本実施の形態の加速度センサ100によれば、変位部材3は、基板1に支持され、かつねじれ軸線Tを中心としてねじれるねじれ梁33と、ねじれ軸線Tを中心に回転可能なようにねじれ梁33に支持された検出フレーム部32と、平面視においてねじれ軸線Tからずれた仮想線L上の位置において検出フレーム部32に支持されたリンク梁34と、基板1に対して基板1の厚み方向に変位可能にリンク梁34に支持され、かつ可動電極7を有する慣性質量体31とを含んでいる。
Next, the function and effect of the acceleration sensor according to the present embodiment will be described.
According to the acceleration sensor 100 of the present embodiment, the displacement member 3 is supported by the substrate 1 and twisted with the torsion beam 33 twisted about the torsion axis T, and the torsion beam 33 so as to be rotatable about the torsion axis T. A detection frame portion 32 supported by the detection frame portion 32, a link beam 34 supported by the detection frame portion 32 at a position on a virtual line L shifted from the twist axis T in plan view, and a thickness direction of the substrate 1 with respect to the substrate 1. And an inertial mass body 31 supported by the link beam 34 so as to be displaceable and having the movable electrode 7.

これにより、加速度に対する慣性質量体31の変位を大きくすることができるため、可動電極7の変位を大きくすることができる。そのため、広い範囲の加速度を検出することができる。   Thereby, since the displacement of the inertial mass body 31 with respect to acceleration can be increased, the displacement of the movable electrode 7 can be increased. Therefore, a wide range of accelerations can be detected.

(実施の形態4)
本発明の実施の形態4の加速度センサは、実施の形態1の加速度センサと比較して、変位部材の構成が主に異なっている。
(Embodiment 4)
The acceleration sensor according to the fourth embodiment of the present invention is mainly different from the acceleration sensor according to the first embodiment in the configuration of the displacement member.

図38〜図40を参照して、本実施の形態の加速度センサ100の変位部材3は、可動電極7と、慣性質量体31と、検出フレーム部32と、ねじれ梁33と、リンク梁34とを有している。   38 to 40, the displacement member 3 of the acceleration sensor 100 according to the present embodiment includes a movable electrode 7, an inertial mass body 31, a detection frame portion 32, a torsion beam 33, a link beam 34, and the like. have.

ねじれ梁33は、アンカー部材5を介して基板1に支持されている。ねじれ梁33は、ねじれ軸線Tを中心としてねじれるよう構成されている。検出フレーム部32は、ねじれ軸線Tを中心に回転可能なようにねじれ梁33に支持されている。検出フレーム部32は、可動電極7を有している。リンク梁34は、平面視においてねじれ軸線Tからずれた仮想線L上の位置において検出フレーム部32に支持されている。   The torsion beam 33 is supported by the substrate 1 via the anchor member 5. The torsion beam 33 is configured to be twisted about the torsion axis T. The detection frame portion 32 is supported by the torsion beam 33 so as to be rotatable about the torsion axis T. The detection frame part 32 has the movable electrode 7. The link beam 34 is supported by the detection frame portion 32 at a position on an imaginary line L that is shifted from the twist axis T in a plan view.

リンク梁34は、ねじれ梁33のねじれ軸線Tをねじれ軸線Tと交差しかつ検出フレーム部32の一方端部側に向かう方向にオフセットeだけ平行移動した仮想線L上の位置において検出フレーム部32と繋がっている。すなわち、オフセットeの絶対値はねじれ軸線Tと仮想線Lとの間の寸法である。   The link beam 34 crosses the torsion axis T of the torsion beam 33 with the torsion axis T and moves parallel to the one end side of the detection frame unit 32 by an offset e at the position on the imaginary line L. It is connected with. That is, the absolute value of the offset e is a dimension between the twist axis T and the imaginary line L.

慣性質量体31は、基板1に対して基板1の厚み方向に変位可能にリンク梁34に支持されている。リンク梁34と慣性質量体31との接続部の変位とリンク梁34と検出フレーム部32との接続部の変位は同一になるよう構成されている。慣性質量体31は固定部材2および検出フレーム部32を取り囲むように構成されている。検出フレーム部32と対向する基板1上には、検出電極8が形成されている。図39に示されるように、検出電極8は、アンカー部材5に対して一方側に形成されている。   The inertia mass body 31 is supported by the link beam 34 so as to be displaceable in the thickness direction of the substrate 1 with respect to the substrate 1. The displacement of the connection portion between the link beam 34 and the inertia mass body 31 and the displacement of the connection portion between the link beam 34 and the detection frame portion 32 are configured to be the same. The inertia mass body 31 is configured to surround the fixing member 2 and the detection frame portion 32. A detection electrode 8 is formed on the substrate 1 facing the detection frame portion 32. As shown in FIG. 39, the detection electrode 8 is formed on one side with respect to the anchor member 5.

なお、本実施の形態のこれ以外の構成は、上述した実施の形態1の構成と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。また、本実施の形態は、上述した実施の形態1と同様の製造方法で製造可能であるためその説明を繰り返さない。   In addition, since the structure of this embodiment other than this is the same as that of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated. In addition, since the present embodiment can be manufactured by the same manufacturing method as that of the first embodiment, the description thereof will not be repeated.

次に、本実施の形態の加速度センサの動作について説明する。
図41を参照して、本実施の形態の加速度センサ100に対して検出軸DA方向の加速度AZが印加されると、ねじれ梁33が変形し、加速度AZによってねじれ梁33を除く変位部材3に働く力とねじれ梁33の復元力とがつりあう位置に慣性質量体31が変位する。慣性質量体31は、加速度AZの方向と反対方向に変位する。
Next, the operation of the acceleration sensor according to the present embodiment will be described.
Referring to FIG. 41, when acceleration AZ in the direction of detection axis DA is applied to acceleration sensor 100 of the present embodiment, torsion beam 33 is deformed and applied to displacement member 3 excluding torsion beam 33 by acceleration AZ. The inertial mass body 31 is displaced to a position where the working force and the restoring force of the torsion beam 33 are balanced. The inertial mass body 31 is displaced in the direction opposite to the direction of the acceleration AZ.

慣性質量体31と連結されているリンク梁34も、慣性質量体31と一体となって加速度AZと反対方向に変位する。加速度AZに対するリンク梁34の変位により、検出フレーム部32は、リンク梁34の仮想線Lの部分で加速度AZと反対方向への力を受ける。この結果、検出フレーム部32が回転変位する。   The link beam 34 connected to the inertial mass body 31 is also integrated with the inertial mass body 31 and displaced in the direction opposite to the acceleration AZ. Due to the displacement of the link beam 34 with respect to the acceleration AZ, the detection frame unit 32 receives a force in the direction of the imaginary line L of the link beam 34 in the direction opposite to the acceleration AZ. As a result, the detection frame part 32 is rotationally displaced.

すなわち、検出フレーム部32の上面が加速度センサ100の一方端部側(図41の左側)を向くように、検出フレーム部32が図中矢印R方向に回転変位する。検出フレーム部32の回転変位によって検出フレーム部32と検出電極8との距離が小さくなるため、検出フレーム部32と検出電極8とにより構成される静電容量Cdが増大する。この静電容量Cdの変化から加速度AZが検出される。また、検出フレーム部32の回転変位に伴って可動電極7が回転変位する。   That is, the detection frame portion 32 is rotationally displaced in the direction of the arrow R in the figure so that the upper surface of the detection frame portion 32 faces one end side (left side in FIG. 41) of the acceleration sensor 100. Since the distance between the detection frame unit 32 and the detection electrode 8 is reduced by the rotational displacement of the detection frame unit 32, the capacitance Cd formed by the detection frame unit 32 and the detection electrode 8 increases. The acceleration AZ is detected from the change in the capacitance Cd. Further, the movable electrode 7 is rotationally displaced with the rotational displacement of the detection frame portion 32.

続いて、固定電極6と可動電極7との電位差による静電力が変位部材3の変位に影響する動作について説明する。   Next, an operation in which the electrostatic force due to the potential difference between the fixed electrode 6 and the movable electrode 7 affects the displacement of the displacement member 3 will be described.

検出フレーム部32の一方端側と他方端側で可動電極7と固定電極6とは対向しているため、固定電極6と可動電極7との対向面積は、可動電極7の基板1の厚み方向の寸法2Hmに比例する。   Since the movable electrode 7 and the fixed electrode 6 are opposed to each other at one end side and the other end side of the detection frame portion 32, the facing area between the fixed electrode 6 and the movable electrode 7 is the thickness direction of the substrate 1 of the movable electrode 7. Is proportional to the dimension 2Hm.

図42(A)〜(E)を参照して、各図の上段は検出フレーム部32の一方側の固定電極6と可動電極7との配置を示し、各図の下段は検出フレーム部32の他方側の固定電極6と可動電極7との配置を示している。検出フレーム部32の回転変位に伴って可動電極7が回転変位するため、検出フレーム部32の一方側の可動電極7と他方側の可動電極7とは逆方向に変位する。可動電極7の基板1の厚み方向の寸法Hmと固定電極6の基板1の厚み方向の寸法Hbとの差をΔHとする。固定電極6および可動電極7は、固定電極6の基板1側の端面と可動電極7の基板1側の端面との高さの差および固定電極6の基板1と反対側の端面と可動電極7の基板1の反対側の端面との高さの差はそれぞれΔH/2とする。   42A to 42E, the upper part of each figure shows the arrangement of the fixed electrode 6 and the movable electrode 7 on one side of the detection frame part 32, and the lower part of each figure shows the detection frame part 32. The arrangement of the fixed electrode 6 and the movable electrode 7 on the other side is shown. Since the movable electrode 7 is rotationally displaced along with the rotational displacement of the detection frame portion 32, the movable electrode 7 on one side and the movable electrode 7 on the other side of the detection frame portion 32 are displaced in the opposite directions. The difference between the dimension Hm of the movable electrode 7 in the thickness direction of the substrate 1 and the dimension Hb of the fixed electrode 6 in the thickness direction of the substrate 1 is ΔH. The fixed electrode 6 and the movable electrode 7 include a height difference between an end surface of the fixed electrode 6 on the substrate 1 side and an end surface of the movable electrode 7 on the substrate 1 side, and an end surface of the fixed electrode 6 opposite to the substrate 1 and the movable electrode 7. The difference in height from the opposite end surface of the substrate 1 is ΔH / 2.

図42(B)〜(D)を参照して、検出フレーム部32の一方側の可動電極7の変位Zrが−ΔH/2≦Zr≦+ΔH/2の域(加速度が小さい域)では、検出フレーム部32の一方側および他方側の可動電極7が変位しても固定電極6と可動電極7との対向面積は一定であり変化しないため、可動電極7の変位Zrに対する静電容量Ciは変化しない。図42(A)および(E)を参照して、検出フレーム部32の一方側の可動電極7の変位Zrの絶対値がΔH/2を超える域(加速度が大きい域)では、可動電極7が変位すると固定電極6と可動電極7との対向面積が変化するため、静電容量Ciが変化する。このため、静電容量Ciの変位微分(∂Ci/∂Zr)および電位差の2乗に比例する静電力Feleが発生する。   Referring to FIGS. 42B to 42D, detection is performed when the displacement Zr of the movable electrode 7 on one side of the detection frame portion 32 is in a range of −ΔH / 2 ≦ Zr ≦ + ΔH / 2 (a region where acceleration is small). Even if the movable electrode 7 on one side and the other side of the frame portion 32 is displaced, the facing area between the fixed electrode 6 and the movable electrode 7 is constant and does not change, so the capacitance Ci with respect to the displacement Zr of the movable electrode 7 changes. do not do. Referring to FIGS. 42A and 42E, in a region where the absolute value of displacement Zr of movable electrode 7 on one side of detection frame portion 32 exceeds ΔH / 2 (region where acceleration is large), movable electrode 7 is When displaced, the opposing area between the fixed electrode 6 and the movable electrode 7 changes, and the capacitance Ci changes. For this reason, an electrostatic force Fele is generated that is proportional to the displacement differential (∂Ci / ∂Zr) of the capacitance Ci and the square of the potential difference.

また、上記では、図39に示されるように検出電極8がアンカー部材5に対して一方側に形成されていたが、検出電極8はアンカー部材5に対して両側に形成されていてもよい。図43を参照して、アンカー部材5を挟むように検出フレーム部32と対向する基板1上に検出電極8Lと検出電極8Rとが形成されている。   In the above description, the detection electrode 8 is formed on one side with respect to the anchor member 5 as shown in FIG. 39, but the detection electrode 8 may be formed on both sides with respect to the anchor member 5. Referring to FIG. 43, detection electrode 8L and detection electrode 8R are formed on substrate 1 facing detection frame portion 32 so as to sandwich anchor member 5 therebetween.

このため、検出電極8Lと検出フレーム部32とにより構成される静電容量CdLと検出電極8Rと検出フレーム部32とにより構成される静電容量CdRとの差分から静電容量変化を検出することができる。加速度センサ100に対して検出軸DA方向の加速度AZが印加されると、検出フレーム部32はねじれ梁33のねじれ軸Tを中心に回転する。   Therefore, a change in capacitance is detected from the difference between the capacitance CdL constituted by the detection electrode 8L and the detection frame portion 32 and the capacitance CdR constituted by the detection electrode 8R and the detection frame portion 32. Can do. When the acceleration AZ in the direction of the detection axis DA is applied to the acceleration sensor 100, the detection frame portion 32 rotates around the torsion axis T of the torsion beam 33.

そのため、静電容量CdLと静電容量CdRとは一方が大きくなり、他方が小さくなる。つまり、静電容量CdLおよび静電容量CdRの変化は互いに符号を異にするので、印加された加速度AZに対する感度を高くすることができる。   For this reason, one of the electrostatic capacitance CdL and the electrostatic capacitance CdR becomes larger and the other becomes smaller. That is, since the changes in the capacitance CdL and the capacitance CdR have different signs, the sensitivity to the applied acceleration AZ can be increased.

また、本実施の形態の固定電極6および可動電極7は、実施の形態2の固定電極6および可動電極7の構成を採用してもよい。   Further, the fixed electrode 6 and the movable electrode 7 of the present embodiment may adopt the configurations of the fixed electrode 6 and the movable electrode 7 of the second embodiment.

次に、本実施の形態の加速度センサの作用効果について説明する。
本実施の形態の加速度センサ100によれば、変位部材3は、基板1に支持され、かつねじれ軸線Tを中心としてねじれるねじれ梁33と、ねじれ軸線Tを中心に回転可能なようにねじれ梁33に支持され、かつ可動電極7を有する検出フレーム部32と、平面視においてねじれ軸線Tからずれた仮想線L上の位置において検出フレーム部32に支持されたリンク梁34と、基板1に対して基板1の厚み方向に変位可能にリンク梁34に支持された慣性質量体31とを含んでいる。
Next, the function and effect of the acceleration sensor according to the present embodiment will be described.
According to the acceleration sensor 100 of the present embodiment, the displacement member 3 is supported by the substrate 1 and twisted with the torsion beam 33 twisted about the torsion axis T, and the torsion beam 33 so as to be rotatable about the torsion axis T. The detection frame portion 32 supported by the detection frame portion 32 and having the movable electrode 7; the link beam 34 supported by the detection frame portion 32 at a position on the virtual line L shifted from the twist axis T in plan view; And an inertial mass body 31 supported by a link beam 34 so as to be displaceable in the thickness direction of the substrate 1.

これにより、加速度に対する慣性質量体31の変位を大きくすることができるため、可動電極7の変位を大きくすることができる。また、慣性質量体31を大きくすることができる。そのため、広い範囲の加速度を検出することができる。   Thereby, since the displacement of the inertial mass body 31 with respect to acceleration can be increased, the displacement of the movable electrode 7 can be increased. Moreover, the inertia mass body 31 can be enlarged. Therefore, a wide range of accelerations can be detected.

(実施の形態5)
本発明の実施の形態5の加速度センサは、実施の形態1の加速度センサと比較して、慣性質量体を基板に対して移動させるための電圧印加電極をさらに備えている点で主に異なっている。
(Embodiment 5)
The acceleration sensor according to the fifth embodiment of the present invention is mainly different from the acceleration sensor according to the first embodiment in that it further includes a voltage application electrode for moving the inertial mass body with respect to the substrate. Yes.

図44〜図46を参照して、慣性質量体31と対向するよう基板1の上に絶縁体9を介して電圧印加電極10が形成されている。電圧印加電極10は、変位部材3を基板1に対して基板1の厚み方向に移動させるために電圧を印加されるよう構成されている。固定電極6および可動電極7は、基板1の厚み方向の上面の高さが同一になるよう構成されている。つまり、可動電極7の基板1とは反対側の端面および固定電極6の基板1とは反対側の端面の基板1に対する高さが同一の高さになるよう構成されている。   44 to 46, the voltage applying electrode 10 is formed on the substrate 1 via the insulator 9 so as to face the inertial mass body 31. The voltage application electrode 10 is configured to be applied with a voltage in order to move the displacement member 3 in the thickness direction of the substrate 1 with respect to the substrate 1. The fixed electrode 6 and the movable electrode 7 are configured such that the height of the upper surface in the thickness direction of the substrate 1 is the same. That is, the end surface of the movable electrode 7 opposite to the substrate 1 and the end surface of the fixed electrode 6 opposite to the substrate 1 are configured to have the same height with respect to the substrate 1.

なお、本実施の形態のこれ以外の構成は、上述した実施の形態1の構成と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。   In addition, since the structure of this embodiment other than this is the same as that of Embodiment 1 mentioned above, the same code | symbol is attached | subjected about the same element and the description is not repeated.

図47を参照して、電圧印加電極10と変位部材3との間に電圧が印加されることによって電圧印加電極10と変位部材3との間に静電容量Cvに起因する静電力が発生する。この静電力によって、加速度が印加されていない状態において固定電極6と可動電極7との上面および下面の高さの差がそれぞれΔH/2になるよう可動電極7が移動される。   Referring to FIG. 47, when a voltage is applied between voltage application electrode 10 and displacement member 3, an electrostatic force due to capacitance Cv is generated between voltage application electrode 10 and displacement member 3. . With this electrostatic force, the movable electrode 7 is moved so that the difference in height between the upper surface and the lower surface of the fixed electrode 6 and the movable electrode 7 becomes ΔH / 2 in a state where no acceleration is applied.

本実施の形態の加速度センサ100によれば、変位部材3を基板1に対して基板1の厚み方向に移動させるために電圧を印加される電圧印加電極10をさらに備えているため、固定電極6および可動電極7の基板1の厚み方向の上面の高さが同一に形成されている場合でも、電圧印加電極10と変位部材3との間に静電容量Cvに起因する静電力を生じさせることで、加速度が印加されていない状態において固定電極6と可動電極7との上面および下面の高さの差を生じさせることができる。これにより、印加される加速度の両方向において、正確に加速度を検出できる。   According to the acceleration sensor 100 of the present embodiment, since the displacement member 3 is further provided with the voltage application electrode 10 to which a voltage is applied in order to move the displacement member 3 in the thickness direction of the substrate 1, the fixed electrode 6. Even when the upper surface of the movable electrode 7 in the thickness direction of the substrate 1 is formed to have the same height, an electrostatic force caused by the capacitance Cv is generated between the voltage application electrode 10 and the displacement member 3. Thus, a difference in height between the upper surface and the lower surface of the fixed electrode 6 and the movable electrode 7 can be generated in a state where no acceleration is applied. Thereby, the acceleration can be accurately detected in both directions of the applied acceleration.

固定電極6および可動電極7の基板1の厚み方向の上面の高さを同一に形成することができるため、固定電極6および可動電極7の基板1の厚み方向の上面の高さが異なる場合と比較して、製造工程において、成膜、パターニングおよびエッチングの回数を1回減らすことができるので、製造工程を簡易にすることができる。また、製造コストを含めた生産性を向上することができる。   Since the heights of the upper surfaces of the fixed electrode 6 and the movable electrode 7 in the thickness direction of the substrate 1 can be formed to be the same, the heights of the upper surfaces of the fixed electrode 6 and the movable electrode 7 in the thickness direction of the substrate 1 are different. In comparison, since the number of film formation, patterning and etching can be reduced by one in the manufacturing process, the manufacturing process can be simplified. In addition, productivity including manufacturing cost can be improved.

(実施の形態6)
本発明の実施の形態6の加速度センサは、実施の形態4の加速度センサと比較して、固定電極および可動電極の構成が主に異なっている。
(Embodiment 6)
The acceleration sensor according to the sixth embodiment of the present invention is mainly different from the acceleration sensor according to the fourth embodiment in the configuration of the fixed electrode and the movable electrode.

図48を参照して、本実施の形態の加速度センサ100では、可動電極7は、互いに分離された複数の可動電極部71を含んでいる。固定電極6は、互いに分離された複数の固定電極部61を含んでいる。複数の可動電極部71および複数の固定電極部61は、互いに対向するように配置された可動電極部71と固定電極部61との組Pを少なくとも2個有している。なお、組Pは、2つの固定電極部61と1つの可動電極部71からなっていてもよく、また1つの固定電極部61と1つの可動電極部71とからなっていてもよい。   Referring to FIG. 48, in acceleration sensor 100 of the present embodiment, movable electrode 7 includes a plurality of movable electrode portions 71 separated from each other. The fixed electrode 6 includes a plurality of fixed electrode portions 61 separated from each other. The plurality of movable electrode portions 71 and the plurality of fixed electrode portions 61 have at least two sets P of the movable electrode portions 71 and the fixed electrode portions 61 arranged so as to face each other. The set P may be composed of two fixed electrode portions 61 and one movable electrode portion 71, or may be composed of one fixed electrode portion 61 and one movable electrode portion 71.

複数の可動電極部71および複数の固定電極部61は、複数の可動電極部71の全ての基板1とは反対側の端面および複数の固定電極部61の全ての基板1とは反対側の端面の基板1に対する高さが同一の高さになるよう構成されている。また、複数の可動電極部71および複数の固定電極部61は、複数の可動電極部71の全ての基板1側の端面および複数の固定電極部61の全ての基板1側の端面の基板1に対する高さが同一の高さになるよう構成されていてもよい。   The plurality of movable electrode portions 71 and the plurality of fixed electrode portions 61 are end surfaces opposite to all the substrates 1 of the plurality of movable electrode portions 71 and end surfaces opposite to all the substrates 1 of the plurality of fixed electrode portions 61. Are configured to have the same height with respect to the substrate 1. In addition, the plurality of movable electrode portions 71 and the plurality of fixed electrode portions 61 are connected to the substrate 1 on the end surfaces of all of the plurality of movable electrode portions 71 on the substrate 1 side and on the end surfaces of all of the plurality of fixed electrode portions 61 on the substrate 1 side. You may be comprised so that height may become the same height.

複数個の組Pは、加速度が小さい域において、変位部材3が基板1の厚み方向に変位すると少なくとも2個の組Pのうち、一方の組Pの可動電極部71と他方の組Pの可動電極部71とが基板1の厚み方向に互いに反対方向に変位することによって、加速度が小さい域において、一方の組Pでは可動電極部71と固定電極部61との対向面積が一定となり、かつ他方の組Pでは可動電極部71と固定電極部61との対向面積が変化するよう構成されている。   In the plurality of sets P, when the displacement member 3 is displaced in the thickness direction of the substrate 1 in a region where the acceleration is small, of the at least two sets P, the movable electrode portion 71 of one set P and the movable set P of the other set P are movable. When the electrode portion 71 is displaced in the direction opposite to the thickness direction of the substrate 1, the opposing area of the movable electrode portion 71 and the fixed electrode portion 61 is constant in one set P and the other in the region where the acceleration is small. In the set P, the facing area between the movable electrode portion 71 and the fixed electrode portion 61 is changed.

本実施の形態の加速度センサ100は、加速度が小さい域では、加速度が大きい域と比較して複数個の組Pの可動電極部71と固定電極部61との間の静電力の合計の変化が小さくなるよう構成されている。   In the acceleration sensor 100 according to the present embodiment, the total change in electrostatic force between the movable electrode portion 71 and the fixed electrode portion 61 of the plurality of sets P is smaller in a region where acceleration is small than in a region where acceleration is large. It is configured to be small.

なお、本実施の形態のこれ以外の構成は、上述した実施の形態4の構成と同様であるため同一の要素については同一の符号を付し、その説明を繰り返さない。また、本実施の形態は、上述した実施の形態1と同様の製造方法で製造可能であるためその説明を繰り返さない。   In addition, since the structure other than this of this Embodiment is the same as that of the structure of Embodiment 4 mentioned above, about the same element, the same code | symbol is attached | subjected and the description is not repeated. In addition, since the present embodiment can be manufactured by the same manufacturing method as that of the first embodiment, the description thereof will not be repeated.

続いて、固定電極6と可動電極7との電位差による静電力が変位部材3の変位に影響する動作について説明する。   Next, an operation in which the electrostatic force due to the potential difference between the fixed electrode 6 and the movable electrode 7 affects the displacement of the displacement member 3 will be described.

図49(A)〜(E)を参照して、各図の上段は検出フレーム部32の一方側の固定電極部61と可動電極部71との配置を示し、各図の下段は検出フレーム部32の他方側の固定電極部61と可動電極部71との配置を示している。検出フレーム部32の回転変位に伴って可動電極部71が回転変位するため、検出フレーム部32の一方側の可動電極部71と他方側の可動電極部71とは逆方向に変位する。固定電極部61および可動電極部71は、固定電極部61の基板1側の端面と、可動電極部71の基板1側の端面との間に基板1対する高さの差ΔPが生じるよう構成されている。   49A to 49E, the upper part of each figure shows the arrangement of the fixed electrode part 61 and the movable electrode part 71 on one side of the detection frame part 32, and the lower part of each figure shows the detection frame part. The arrangement of the fixed electrode portion 61 and the movable electrode portion 71 on the other side of 32 is shown. Since the movable electrode portion 71 is rotationally displaced along with the rotational displacement of the detection frame portion 32, the movable electrode portion 71 on one side and the movable electrode portion 71 on the other side of the detection frame portion 32 are displaced in the opposite directions. The fixed electrode unit 61 and the movable electrode unit 71 are configured such that a height difference ΔP with respect to the substrate 1 is generated between the end surface of the fixed electrode unit 61 on the substrate 1 side and the end surface of the movable electrode unit 71 on the substrate 1 side. ing.

図49(C)に示すように、検出フレーム部32の一方側および他方側の可動電極部71のそれぞれの変位Zrが0のときには、検出フレーム部32の一方側および他方側の固定電極部61と可動電極部71との対向面積は一定であり変化しないため、可動電極7の変位Zrに対する静電容量Ciは変化しない。そのため、静電力は発生しない。   As shown in FIG. 49C, when the displacement Zr of the movable electrode portion 71 on one side and the other side of the detection frame portion 32 is 0, the fixed electrode portion 61 on the one side and the other side of the detection frame portion 32. Since the facing area between the movable electrode portion 71 is constant and does not change, the capacitance Ci with respect to the displacement Zr of the movable electrode 7 does not change. Therefore, no electrostatic force is generated.

図49(B)および(D)に示すように、検出フレーム部32の一方側および他方側の可動電極7のそれぞれの変位Zrが−ΔP≦Zr≦+ΔPの域(加速度が小さい域)では、検出フレーム部32の一方側および他方側の可動電極7が変位しても、一方の組Pでは可動電極部71と固定電極部61との対向面積が一定となり変化しないため、可動電極7の変位Zrに対する静電容量Ciの変化は小さくなる。そのため、加速度が大きい域と比較して複数個の組Pの可動電極部71と固定電極部61との間の静電力の合計の変化が小さくなる。   As shown in FIGS. 49B and 49D, in the region where the displacement Zr of the movable electrode 7 on one side and the other side of the detection frame portion 32 is −ΔP ≦ Zr ≦ + ΔP (region where acceleration is small), Even if the movable electrode 7 on one side and the other side of the detection frame portion 32 is displaced, the opposing area of the movable electrode portion 71 and the fixed electrode portion 61 is constant and does not change in one set P. The change of the electrostatic capacity Ci with respect to Zr becomes small. Therefore, the total change in electrostatic force between the movable electrode portions 71 and the fixed electrode portions 61 of the plurality of sets P is smaller than that in a region where acceleration is large.

図49(A)および(E)に示すように検出フレーム部32の一方側および他方側の可動電極7のそれぞれの変位Zrの絶対値がΔPを超える域(加速度が大きい域)では、可動電極7が変位すると、一方の組Pおよび他方の組Pの両方で固定電極部61と可動電極部71との対向面積が変化するため、可動電極7の変位Zrに対する静電容量Ciが変化する。このため、複数個の組Pの可動電極部71と固定電極部61との間の静電力の合計の変化が大きくなる。   As shown in FIGS. 49A and 49E, in the region where the absolute value of the displacement Zr of the movable electrode 7 on one side and the other side of the detection frame portion 32 exceeds ΔP (region where acceleration is large), the movable electrode When 7 is displaced, the opposing area between the fixed electrode portion 61 and the movable electrode portion 71 is changed in both the one set P and the other set P, so that the capacitance Ci with respect to the displacement Zr of the movable electrode 7 is changed. For this reason, the total change of the electrostatic force between the movable electrode portion 71 and the fixed electrode portion 61 of the plurality of sets P becomes large.

本実施の形態の加速度センサ100によれば、複数の可動電極部71の全ての基板1とは反対側の端面および複数の固定電極部61の全ての基板1とは反対側の端面の基板1に対する高さ、および複数の可動電極部71の全ての基板1側の端面および複数の固定電極部61の全ての基板1側の端面の基板1に対する高さのいずれかが同一の高さになるよう構成されている。このため、固定電極部61および可動電極部71の基板1の厚み方向の端面の高さが異なる場合と比較して、製造工程において、成膜、パターニングおよびエッチングの回数を1回減らすことができるので、製造工程を簡易にすることができる。また、製造コストを含めた生産性を向上することができる。   According to the acceleration sensor 100 of the present embodiment, the end surfaces of the plurality of movable electrode portions 71 opposite to all the substrates 1 and the end surfaces of the plurality of fixed electrode portions 61 opposite to all the substrates 1 are substrates 1. , And the height of all the movable electrode portions 71 on the substrate 1 side and the height of all the fixed electrode portions 61 on the substrate 1 side with respect to the substrate 1 are the same height. It is configured as follows. For this reason, compared with the case where the height of the end surface of the thickness direction of the board | substrate 1 of the fixed electrode part 61 and the movable electrode part 71 differs, the frequency | count of film-forming, patterning, and an etching can be reduced once in a manufacturing process. Therefore, the manufacturing process can be simplified. In addition, productivity including manufacturing cost can be improved.

また、複数個の組Pは、加速度が小さい域において、変位部材3が基板1の厚み方向に変位すると少なくとも2個の組Pのうち、一方の組Pの可動電極部71と他方の組Pの可動電極部71とが基板1の厚み方向に互いに反対方向に変位することによって、加速度が小さい域において、一方の組Pでは可動電極部71と固定電極部61との対向面積が一定となり、かつ他方の組Pでは可動電極部71と固定電極部61との対向面積が変化するよう構成されている。   Further, when the displacement member 3 is displaced in the thickness direction of the substrate 1 in a region where the acceleration is small, the movable electrode portion 71 of one set P and the other set P out of at least two sets P. The movable electrode portion 71 is displaced in the direction opposite to each other in the thickness direction of the substrate 1, so that in one region P, the opposing area of the movable electrode portion 71 and the fixed electrode portion 61 is constant in a region where the acceleration is small. In the other set P, the facing area between the movable electrode portion 71 and the fixed electrode portion 61 is changed.

このため、加速度の小さい域においては、一方の組Pでは可動電極部71と固定電極部61との対向面積が一定となり変化しないため、可動電極7の変位Zrに対する静電容量Ciの変化は小さくなる。そのため、加速度の小さい域においては、加速度が大きい域と比較して複数個の組Pの可動電極部71と固定電極部61との間の静電力の合計の変化が小さくなる。加速度の大きい域においては、一方の組Pおよび他方の組Pの両方で固定電極部61と可動電極部71との対向面積が変化するため、可動電極7の変位Zrに対する静電容量Ciが変化する。このため、複数個の組Pの可動電極部71と固定電極部61との間の静電力の合計の変化が大きくなる。そのため、加速度の大きい域では、加速度の小さい域より剛性が高くなるため、広い範囲の加速度を検出することができる。   For this reason, in the region where acceleration is small, the opposing area of the movable electrode portion 71 and the fixed electrode portion 61 is constant and does not change in one set P, and therefore the change in the capacitance Ci with respect to the displacement Zr of the movable electrode 7 is small. Become. Therefore, in the region where the acceleration is small, the total change in electrostatic force between the movable electrode portions 71 and the fixed electrode portions 61 of the plurality of sets P is small compared to the region where the acceleration is large. In a region where acceleration is large, since the opposing area of the fixed electrode portion 61 and the movable electrode portion 71 changes in both the one set P and the other set P, the capacitance Ci with respect to the displacement Zr of the movable electrode 7 changes. To do. For this reason, the total change of the electrostatic force between the movable electrode portion 71 and the fixed electrode portion 61 of the plurality of sets P becomes large. Therefore, since the rigidity is higher in a region where acceleration is large than in a region where acceleration is small, a wide range of acceleration can be detected.

本実施の形態の加速度センサ100によれば、変位部材3は、基板1に支持され、かつねじれ軸線Tを中心としてねじれるねじれ梁33と、ねじれ軸線Tを中心に回転可能なようにねじれ梁33に支持され、かつ可動電極7を有する検出フレーム部32と、平面視においてねじれ軸線Tからずれた仮想線L上の位置において検出フレーム部32に支持されたリンク梁34と、基板1に対して基板1の厚み方向に変位可能にリンク梁34に支持された慣性質量体31とを含んでいる。   According to the acceleration sensor 100 of the present embodiment, the displacement member 3 is supported by the substrate 1 and twisted with the torsion beam 33 twisted about the torsion axis T, and the torsion beam 33 so as to be rotatable about the torsion axis T. The detection frame portion 32 supported by the detection frame portion 32 and having the movable electrode 7; the link beam 34 supported by the detection frame portion 32 at a position on the virtual line L shifted from the twist axis T in plan view; And an inertial mass body 31 supported by a link beam 34 so as to be displaceable in the thickness direction of the substrate 1.

これにより、加速度に対する慣性質量体31の変位を大きくすることができるため、可動電極7の変位を大きくすることができる。また、慣性質量体31を大きくすることができる。そのため、広い範囲の加速度を検出することができる。   Thereby, since the displacement of the inertial mass body 31 with respect to acceleration can be increased, the displacement of the movable electrode 7 can be increased. Moreover, the inertia mass body 31 can be enlarged. Therefore, a wide range of accelerations can be detected.

上記の各実施の形態は、適時組み合わせることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
The above embodiments can be combined in a timely manner.
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 基板、2 固定部材、3 変位部材、4 梁部材、5 アンカー部材、6 固定電極、7 可動電極、8 検出電極、9 絶縁体、10 電圧印加電極、31 慣性質量体、61 可動電極部、71 固定電極部、100 加速度センサ、L 仮想線、P 組、P1 第1の組、P2 第2の組、T ねじれ軸線。   DESCRIPTION OF SYMBOLS 1 Board | substrate, 2 Fixed member, 3 Displacement member, 4 Beam member, 5 Anchor member, 6 Fixed electrode, 7 Movable electrode, 8 Detection electrode, 9 Insulator, 10 Voltage application electrode, 31 Inertial mass body, 61 Movable electrode part, 71 Fixed electrode part, 100 Accelerometer, L virtual line, P group, P1 first group, P2 second group, T twist axis.

Claims (10)

基板と、
前記基板に対して前記基板の厚み方向に変位可能に前記基板の表面に支持され、かつ可動電極を有する変位部材と、
前記可動電極と対向するよう配置され、かつ前記可動電極との間に静電力を発生させるための固定電極とを備え、
加速度が小さい域では、前記変位部材が前記基板の厚み方向に変位しても前記可動電極と前記固定電極との対向面積が一定であり、かつ
加速度が大きい域で前記変位部材が前記基板の厚み方向に変位すると前記可動電極と前記固定電極との対向面積が変化するよう構成されており、
前記可動電極は、互いに分離された複数の可動電極部を含み、
前記固定電極は、互いに分離された複数の固定電極部を含み、
複数の前記可動電極部および複数の前記固定電極部は、互いに対向するように配置された前記可動電極部と前記固定電極部との組を複数個有し、
加速度が小さい域では、前記変位部材が前記基板の厚み方向に変位しても複数個の前記組の前記可動電極部と前記固定電極部との対向面積の合計が一定であり、かつ
加速度が大きい域で前記変位部材が前記基板の厚み方向に変位すると複数個の前記組の前記可動電極部と前記固定電極部との対向面積の合計が変化するよう構成されており、
複数個の前記組は、加速度が小さい域において、前記可動電極部が前記基板の厚み方向に変位することによって
前記可動電極部と前記固定電極部との対向面積が大きくなる組と、
前記可動電極部と前記固定電極部との対向面積が小さくなる組とを有している、加速度センサ。
A substrate,
A displacement member supported on the surface of the substrate so as to be displaceable in the thickness direction of the substrate with respect to the substrate, and having a movable electrode;
A fixed electrode arranged to face the movable electrode and for generating an electrostatic force between the movable electrode,
In the region where the acceleration is small, even if the displacement member is displaced in the thickness direction of the substrate, the facing area between the movable electrode and the fixed electrode is constant, and in the region where the acceleration is large, the displacement member is the thickness of the substrate. When the displacement in the direction is configured to change the facing area of the movable electrode and the fixed electrode ,
The movable electrode includes a plurality of movable electrode portions separated from each other,
The fixed electrode includes a plurality of fixed electrode portions separated from each other,
The plurality of movable electrode portions and the plurality of fixed electrode portions have a plurality of sets of the movable electrode portions and the fixed electrode portions arranged to face each other,
In a region where the acceleration is small, even if the displacement member is displaced in the thickness direction of the substrate, the total of the opposed areas of the plurality of sets of the movable electrode portion and the fixed electrode portion is constant, and
When the displacement member is displaced in the thickness direction of the substrate in a region where the acceleration is large, the total of the opposing areas of the plurality of the movable electrode portions and the fixed electrode portions is changed.
The plurality of sets are formed by the movable electrode portion being displaced in the thickness direction of the substrate in a region where acceleration is small.
A set in which the facing area of the movable electrode portion and the fixed electrode portion is increased;
Opposing area between said fixed electrode portion and the movable electrode portion and a smaller group, acceleration sensors.
前記可動電極部と前記固定電極部との前記基板の厚み方向の寸法が同一であり、
複数個の前記組は、
前記基板に対して前記可動電極部が前記固定電極部より下に位置するよう構成された第1の組と、
前記基板に対して前記可動電極部が前記固定電極部より上に位置するよう構成された第2の組とを有している、請求項に記載の加速度センサ。
The movable electrode portion and the fixed electrode portion have the same dimension in the thickness direction of the substrate,
The plurality of sets are
A first set configured such that the movable electrode portion is positioned below the fixed electrode portion with respect to the substrate;
Wherein said movable electrode portion with respect to the substrate and a second set that is configured to be positioned above said fixed electrode portion, the acceleration sensor according to claim 1.
前記変位部材は、
前記基板に支持された梁部材と、
前記基板に対して前記基板の厚み方向に変位可能に前記梁部材に支持され、前記可動電極を有する慣性質量体とを含んでいる、請求項1または2に記載の加速度センサ。
The displacement member is
A beam member supported by the substrate;
Supported by the beam member displaceable in the thickness direction of the substrate relative to the substrate, and an inertial mass having a movable electrode, an acceleration sensor according to claim 1 or 2.
前記変位部材は、
前記基板に支持され、かつねじれ軸線を中心としてねじれるねじれ梁と、
前記ねじれ軸線を中心に回転可能なように前記ねじれ梁に支持された検出フレーム部と、
平面視において前記ねじれ軸線からずれた仮想線上の位置において前記検出フレーム部に支持されたリンク梁と、
前記基板に対して前記基板の厚み方向に変位可能に前記リンク梁に支持され、かつ前記可動電極を有する慣性質量体とを含んでいる、請求項1または2に記載の加速度センサ。
The displacement member is
A torsion beam supported by the substrate and twisted about a torsion axis;
A detection frame portion supported by the torsion beam so as to be rotatable about the torsion axis; and
A link beam supported by the detection frame portion at a position on an imaginary line deviated from the twist axis in plan view;
The displaceably the thickness direction of the substrate relative to the substrate is supported by the link beams, and and an inertial mass having a movable electrode, an acceleration sensor according to claim 1 or 2.
前記変位部材は、
前記基板に支持され、かつねじれ軸線を中心としてねじれるねじれ梁と、
前記ねじれ軸線を中心に回転可能なように前記ねじれ梁に支持され、かつ前記可動電極を有する検出フレーム部と、
平面視において前記ねじれ軸線からずれた仮想線上の位置において前記検出フレーム部に支持されたリンク梁と、
前記基板に対して前記基板の厚み方向に変位可能に前記リンク梁に支持された慣性質量体とを含んでいる、請求項1または2に記載の加速度センサ。
The displacement member is
A torsion beam supported by the substrate and twisted about a torsion axis;
A detection frame part supported by the torsion beam so as to be rotatable about the torsion axis and having the movable electrode;
A link beam supported by the detection frame portion at a position on an imaginary line deviated from the twist axis in plan view;
And a displaceably said link supported beam inertial mass body in the thickness direction of the substrate relative to the substrate, the acceleration sensor according to claim 1 or 2.
前記可動電極の前記基板とは反対側の端面および前記固定電極の前記基板とは反対側の端面の前記基板に対する高さが同一の高さになるよう構成されており、
前記変位部材と対向するように前記基板の上に形成され、かつ前記変位部材を前記基板に対して前記基板の厚み方向に移動させるために電圧を印加される電圧印加電極をさらに備えた、請求項1〜のいずれかに記載の加速度センサ。
The movable electrode is configured such that the end surface of the movable electrode opposite to the substrate and the end surface of the fixed electrode opposite to the substrate have the same height with respect to the substrate.
The apparatus further comprises a voltage application electrode formed on the substrate so as to face the displacement member and to which a voltage is applied to move the displacement member relative to the substrate in the thickness direction of the substrate. Item 6. The acceleration sensor according to any one of Items 1 to 5 .
前記可動電極と前記固定電極とは前記基板の前記表面に沿う方向に対向するよう配置されている、請求項1〜のいずれかに記載の加速度センサ。 The acceleration sensor according to any one of said movable electrode and the fixed electrode are arranged to face in a direction along the surface of the substrate, according to claim 1-6. 前記変位部材と対向するよう前記基板の前記表面上に配置され、かつ前記変位部材と静電容量を構成する検出電極をさらに備えた、請求項1〜のいずれかに記載の加速度センサ。 Wherein disposed on said surface of said substrate to the displacement member and the counter, and further comprising a detection electrode constituting the displacement member and the electrostatic capacitance, the acceleration sensor according to any of claims 1-7. 基板と、
前記基板に対して前記基板の厚み方向に変位可能に前記基板の表面に支持され、かつ可動電極を有する変位部材と、
前記可動電極と対向するよう配置され、かつ前記可動電極との間に静電力を発生させるための固定電極とを備え、
前記可動電極は、互いに分離された複数の可動電極部を含み、
前記固定電極は、互いに分離された複数の固定電極部を含み、
複数の前記可動電極部および複数の前記固定電極部は、互いに対向するように配置された前記可動電極部と前記固定電極部との組を少なくとも2個有し、
複数の前記可動電極部の全ての前記基板とは反対側の端面および複数の前記固定電極部の全ての前記基板とは反対側の端面の前記基板に対する高さ、および複数の前記可動電極部の全ての前記基板側の端面および複数の前記固定電極部の全ての前記基板側の端面の前記基板に対する高さのいずれかが同一の高さになるよう構成されており、
複数個の前記組は、加速度が小さい域において、前記変位部材が前記基板の厚み方向に変位すると少なくとも2個の前記組のうち、一方の前記組の前記可動電極部と他方の前記組の前記可動電極部とが前記基板の厚み方向に互いに反対方向に変位することによって、加速度が小さい域において、一方の前記組では前記可動電極部と前記固定電極部との対向面積が一定となり、かつ他方の前記組では前記可動電極部と前記固定電極部との対向面積が変化するよう構成されており、
加速度が小さい域では、加速度が大きい域と比較して複数個の前記組の前記可動電極部と前記固定電極部との間の静電力の合計の変化が小さくなるよう構成されている、加速度センサ。
A substrate,
A displacement member supported on the surface of the substrate so as to be displaceable in the thickness direction of the substrate with respect to the substrate, and having a movable electrode;
A fixed electrode arranged to face the movable electrode and for generating an electrostatic force between the movable electrode,
The movable electrode includes a plurality of movable electrode portions separated from each other,
The fixed electrode includes a plurality of fixed electrode portions separated from each other,
The plurality of movable electrode portions and the plurality of fixed electrode portions have at least two sets of the movable electrode portion and the fixed electrode portion arranged to face each other,
The heights of the end surfaces of the plurality of movable electrode portions opposite to the substrates and the end surfaces of the plurality of fixed electrode portions opposite to the substrates with respect to the substrates, and the plurality of movable electrode portions All of the substrate-side end surfaces and all of the substrate-side end surfaces of the plurality of fixed electrode portions are configured to have the same height with respect to the substrate,
When the displacement member is displaced in the thickness direction of the substrate in a region where the acceleration is small, the plurality of the groups are at least two of the groups, and the movable electrode portion of one of the groups and the other of the groups are When the movable electrode portion is displaced in the opposite direction to the thickness direction of the substrate, the opposing area of the movable electrode portion and the fixed electrode portion is constant in one set and the other in the region where acceleration is small. In the set, the opposed area of the movable electrode portion and the fixed electrode portion is configured to change,
An acceleration sensor configured to reduce a total change in electrostatic force between the plurality of the movable electrode portions and the fixed electrode portions in the plurality of sets in a region where acceleration is small compared to a region where acceleration is large. .
前記変位部材は、
前記基板に支持され、かつねじれ軸線を中心としてねじれるねじれ梁と、
前記ねじれ軸線を中心に回転可能なように前記ねじれ梁に支持され、かつ前記可動電極を有する検出フレーム部と、
平面視において前記ねじれ軸線からずれた仮想線上の位置において前記検出フレーム部に支持されたリンク梁と、
前記基板に対して前記基板の厚み方向に変位可能に前記リンク梁に支持された慣性質量体とを含んでいる、請求項に記載の加速度センサ。
The displacement member is
A torsion beam supported by the substrate and twisted about a torsion axis;
A detection frame part supported by the torsion beam so as to be rotatable about the torsion axis and having the movable electrode;
A link beam supported by the detection frame portion at a position on an imaginary line deviated from the twist axis in plan view;
The acceleration sensor according to claim 9 , further comprising an inertia mass body supported by the link beam so as to be displaceable in the thickness direction of the substrate with respect to the substrate.
JP2010027728A 2010-02-10 2010-02-10 Acceleration sensor Active JP5352865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027728A JP5352865B2 (en) 2010-02-10 2010-02-10 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027728A JP5352865B2 (en) 2010-02-10 2010-02-10 Acceleration sensor

Publications (2)

Publication Number Publication Date
JP2011163967A JP2011163967A (en) 2011-08-25
JP5352865B2 true JP5352865B2 (en) 2013-11-27

Family

ID=44594814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027728A Active JP5352865B2 (en) 2010-02-10 2010-02-10 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP5352865B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090099A (en) * 2015-11-04 2017-05-25 株式会社豊田中央研究所 MEMS sensor
JP7123881B2 (en) 2019-08-28 2022-08-23 株式会社東芝 sensor
JP7134931B2 (en) 2019-08-28 2022-09-12 株式会社東芝 sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029029A1 (en) * 2011-09-14 2015-01-29 Matthew Alan Hopcroft Accelerometers in an area
JP5772873B2 (en) * 2012-06-13 2015-09-02 株式会社デンソー Capacitance type physical quantity sensor
JP6682106B2 (en) * 2015-10-02 2020-04-15 株式会社鷺宮製作所 Vibration generator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340955A (en) * 1992-06-12 1993-12-24 Murata Mfg Co Ltd Acceleration sensor
JP3385699B2 (en) * 1993-02-22 2003-03-10 株式会社デンソー Acceleration sensor
JP3385688B2 (en) * 1993-12-13 2003-03-10 株式会社デンソー Semiconductor yaw rate sensor and method of manufacturing the same
JP3329084B2 (en) * 1994-08-23 2002-09-30 株式会社デンソー Electrostatic servo type acceleration sensor
JPH10335675A (en) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd Semiconductor micromachine
JPH11258092A (en) * 1998-03-13 1999-09-24 Omron Corp Physical quantity measuring device
JP2003014778A (en) * 2001-04-26 2003-01-15 Samsung Electronics Co Ltd Vertical displacement measuring/driving structure and its fabricating method
JP2003117897A (en) * 2001-10-11 2003-04-23 Nippon Telegr & Teleph Corp <Ntt> Micro actuator
DE10235370A1 (en) * 2002-08-02 2004-02-12 Robert Bosch Gmbh Micromechanical component especially an acceleration sensor for motor vehicles, has spring with non linear response for reduced sensitivity at high accelerations
JP4731388B2 (en) * 2006-04-17 2011-07-20 京セラ株式会社 Displacement device and variable capacitor, switch and acceleration sensor using the same
JP5175308B2 (en) * 2008-02-07 2013-04-03 アルプス電気株式会社 Physical quantity sensor
JP2009294019A (en) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp Acceleration sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090099A (en) * 2015-11-04 2017-05-25 株式会社豊田中央研究所 MEMS sensor
JP7123881B2 (en) 2019-08-28 2022-08-23 株式会社東芝 sensor
JP7134931B2 (en) 2019-08-28 2022-09-12 株式会社東芝 sensor

Also Published As

Publication number Publication date
JP2011163967A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5352865B2 (en) Acceleration sensor
US8610222B2 (en) MEMS device with central anchor for stress isolation
US7146856B2 (en) Dynamically balanced capacitive pick-off accelerometer
JP5474946B2 (en) Capacitive sensor with stress relief to compensate package stress
US8746067B2 (en) MEMS tunneling accelerometer
JP3941694B2 (en) Acceleration sensor
US9003886B2 (en) Microelectromechanical systems devices and methods for the fabrication thereof
WO2007096873A2 (en) Accelerometer
US9038466B2 (en) Micromechanical component and manufacturing method for a micromechanical component
CN114026437A (en) Multi-anchor high-frequency accelerometer
EP2329280B1 (en) A capacitive sensor device and a method of sensing accelerations
JP2012163507A (en) Acceleration sensor
JP6070113B2 (en) Acceleration sensor
JP5083635B2 (en) Acceleration sensor
JP5292600B2 (en) Acceleration sensor
US9612254B2 (en) Microelectromechanical systems devices with improved lateral sensitivity
US10544037B2 (en) Integrated semiconductor device and manufacturing method
JP5799942B2 (en) Acceleration sensor
JP5783222B2 (en) Acceleration sensor
WO2009099123A1 (en) Physical quantity sensor and method of manufacturing same
JP2013152111A (en) Acceleration sensor
US20180188028A1 (en) Single-gap shock-stop structure and methods of manufacture for micro-machined mems devices
JP4611005B2 (en) Sensor element
JP2020034290A (en) Sensor, structure, and electric device
US20150123219A1 (en) Electrode system for a micromechanical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5352865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250