JP5352410B2 - Spatial image display device - Google Patents

Spatial image display device Download PDF

Info

Publication number
JP5352410B2
JP5352410B2 JP2009235362A JP2009235362A JP5352410B2 JP 5352410 B2 JP5352410 B2 JP 5352410B2 JP 2009235362 A JP2009235362 A JP 2009235362A JP 2009235362 A JP2009235362 A JP 2009235362A JP 5352410 B2 JP5352410 B2 JP 5352410B2
Authority
JP
Japan
Prior art keywords
imaging element
reflection
plane
symmetric
symmetric imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009235362A
Other languages
Japanese (ja)
Other versions
JP2011081309A (en
Inventor
広和 橋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP2009235362A priority Critical patent/JP5352410B2/en
Publication of JP2011081309A publication Critical patent/JP2011081309A/en
Application granted granted Critical
Publication of JP5352410B2 publication Critical patent/JP5352410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、空間中に映像を表示する空間映像表示装置に関する。   The present invention relates to a spatial video display device that displays video in a space.

特許文献1には反射型面対称結像素子を用いてその素子の一方側に置かれた被投影物である物体の像を素子の反対側の面対称となる位置に結像させるシステムが示されている。このシステムで用いられている反射型面対称結像素子は、所定の基盤を厚み方向に貫通させた複数の穴を備え、各穴の内壁に直交する2つの鏡面要素から構成される単位光学素子を形成したものであって、その穴を通じて基盤の一方の面方向から他方の面方向へ光が透過する際に、2つの鏡面要素でそれぞれ1回ずつ反射させるものである。被投影物から発せられた光は反射型面対称結像素子の単位光学素子を通過する際に2つの鏡面要素の一方で反射した後、鏡面で反射して反射光となり、その反射光が更に単位光学素子の2つの鏡面要素の他方で反射して、被投影物を仮想鏡に映した位置に結像することになる。   Patent Document 1 discloses a system that uses a reflective surface-symmetric imaging element to form an image of an object, which is a projection object, placed on one side of the element at a position that is plane-symmetrical on the opposite side of the element. Has been. The reflection-type plane-symmetric imaging element used in this system includes a plurality of holes that penetrate a predetermined base in the thickness direction, and is a unit optical element that is composed of two mirror surface elements orthogonal to the inner wall of each hole When the light is transmitted through the hole from one surface direction of the base to the other surface direction, the light is reflected once by each of the two mirror surface elements. The light emitted from the projection is reflected by one of the two mirror elements when passing through the unit optical element of the reflective surface-symmetric imaging element, and then reflected by the mirror surface to become reflected light. The light is reflected by the other of the two specular elements of the unit optical element, and the projection object is imaged at a position reflected on the virtual mirror.

図1に示すように、反射型面対称結像素子1は平板状であり、物体2は反射型面対称結像素子1の一方の面側に配置され、反射型面対称結像素子1には物体2からの光が斜めに入射するようにされている。反射型面対称結像素子1の他方の面側に観察者の目Eが位置し、反射型面対称結像素子1について物体2と面対称となる空間位置に実像3、すなわち空間映像が形成される。   As shown in FIG. 1, the reflection-type plane-symmetric imaging element 1 has a flat plate shape, and the object 2 is disposed on one surface side of the reflection-type plane-symmetric imaging element 1. The light from the object 2 is incident obliquely. The observer's eye E is positioned on the other surface side of the reflective surface-symmetric imaging element 1, and a real image 3, that is, a spatial image is formed at a spatial position that is plane-symmetric with the object 2 with respect to the reflective surface-symmetric imaging element 1. Is done.

特開2008−158114号公報JP 2008-158114 A

しかしながら、上記の従来技術において、図1に示すように、物体2に立体構造物が用いられる場合には、得られる空間映像はその凹凸が物体2の立体構造物とは反転してしまうという問題点があった。   However, in the above-described conventional technology, as shown in FIG. 1, when a three-dimensional structure is used for the object 2, the problem is that the obtained spatial image has its unevenness reversed from the three-dimensional structure of the object 2. There was a point.

本発明が解決しようとする課題には、上記の問題点が一例として挙げられ、物体の3次元形状を維持したまま空間に結像することを可能にした空間映像表示装置を提供することが本発明の目的である。   The problems to be solved by the present invention include the above-mentioned problems as an example. To provide a spatial image display device that can form an image in a space while maintaining the three-dimensional shape of the object. It is an object of the invention.

本発明の一態様の空間映像表示装置は、直交する第1及び第2光反射面を有する微小ミラーユニットがマトリクス状に配列された平板状の構造体からなり、入射光を前記第1及び第2光反射面により2回反射する第1及び第2の反射型面対称結像素子を備えた空間映像表示装置であって、前記第1の反射型面対称結像素子は物体からの入射光を前記第1及び第2光反射面により2回反射して前記第1の反射型面対称結像素子について前記物体と面対称となるように前記物体の第1の実像を結像させ、前記第2の反射型面対称結像素子は前記第1の実像からの入射光を前記第1及び第2光反射面により2回反射して前記第2の反射型面対称結像素子について前記第1の実像と面対称となるように前記物体の第2の実像を結像させることを特徴としている。 The spatial image display device according to an aspect of the present invention includes a flat structure in which micromirror units having first and second light reflecting surfaces that are orthogonal to each other are arranged in a matrix, and incident light is incident on the first and first light beams. A spatial image display device including first and second reflection-type plane-symmetric imaging elements that are reflected twice by a two-light reflecting surface, wherein the first reflection-type plane-symmetric imaging element is incident light from an object. Is reflected twice by the first and second light reflecting surfaces to form a first real image of the object so as to be plane-symmetric with the object with respect to the first reflective surface-symmetric imaging element, The second reflection-type plane-symmetric imaging element reflects incident light from the first real image twice by the first and second light-reflection surfaces, and the second reflection-type plane-symmetric imaging element Forming a second real image of the object so as to be plane-symmetric with one real image; To have.

本発明の一態様の空間映像表示装置によれば、物体からの入射光を第1の反射型面対称結像素子の第1及び第2光反射面により2回反射して第1の反射型面対称結像素子について物体と面対称となるように第1の実像を結像させ、第1の実像からの入射光を第2の反射型面対称結像素子の第1及び第2光反射面により2回反射して第2の反射型面対称結像素子について第1の実像と面対称となるように第2の実像を結像させることが行われる。これにより、第2の実像は、第1の実像の凹凸を反転した像となるので、物体と同じ凹凸を持った空中映像として表示されることになる。 According to the spatial image display device of one aspect of the present invention, the incident light from the object is reflected twice by the first and second light reflecting surfaces of the first reflective surface-symmetric imaging element, and the first reflective type. A first real image is formed on the plane-symmetric imaging element so as to be plane-symmetric with the object, and incident light from the first real image is reflected by the first and second light-reflecting plane-symmetric imaging elements. The second real image is formed so that the second reflection type plane-symmetric imaging element is plane-symmetric with the first real image after being reflected twice by the surface. As a result, the second real image becomes an image obtained by inverting the unevenness of the first real image, and is thus displayed as an aerial image having the same unevenness as the object.

また、従来は実際に見せたい立体像に対して、凹凸の反転した物体を製作する必要があったが、本発明を利用することで、凹凸の情報が復元表示されるので、物体製作のイメージングが極めて容易に行えるようになるばかりか、実際に空間映像に変換したい物体そのものを設置することも可能にする。   In addition, in the past, it was necessary to produce an object with an inverted concave / convex for a stereoscopic image that was actually desired to be displayed. This makes it possible to set the object itself that is actually desired to be converted into a spatial image.

従来の空間映像表示装置の光学系を示す図である。It is a figure which shows the optical system of the conventional spatial image display apparatus. 本発明の空間映像表示装置の光学系を示す図である。It is a figure which shows the optical system of the spatial image display apparatus of this invention. 図2の装置中の反射型面対称結像素子を示す図である。It is a figure which shows the reflection type plane-symmetric image formation element in the apparatus of FIG. 図3の反射型面対称結像素子を構成する直方体材を示す図である。It is a figure which shows the rectangular parallelepiped material which comprises the reflection type plane-symmetric image formation element of FIG. 図3の反射型面対称結像素子を形成する2つのシート部の組み合わせを示す図である。It is a figure which shows the combination of two sheet | seat parts which form the reflection type plane-symmetric image formation element of FIG. 図3の反射型面対称結像素子における表示光の2回反射を示す図である。It is a figure which shows reflection of the display light twice in the reflection type plane-symmetric image formation element of FIG. 本発明の他の実施例として空間映像表示装置の光学系を示す図である。It is a figure which shows the optical system of the spatial image display apparatus as another Example of this invention. 本発明の他の実施例として空間映像表示装置の光学系を示す図である。It is a figure which shows the optical system of the spatial image display apparatus as another Example of this invention. 本発明の他の実施例として空間映像表示装置の光学系を示す図である。It is a figure which shows the optical system of the spatial image display apparatus as another Example of this invention. ハーフミラーを備える場合の観察者の同一視線上の実像及び背景を示す図である。It is a figure which shows the real image and background on the same eyes | visual_axis of an observer at the time of providing a half mirror. 本発明の空間映像表示装置の外観例を示す図である。It is a figure which shows the example of an external appearance of the spatial video display apparatus of this invention. 図11の装置の内部構成を示す図である。It is a figure which shows the internal structure of the apparatus of FIG.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図2は本発明の空間映像表示装置の光学系を示している。この空間映像表示装置は、2つの反射型面対称結像素子11,12を備えている。反射型面対称結像素子11,12は平板状であり、その平板面が互いにほぼ垂直となるように配置されている。反射型面対称結像素子11の一方の面側に立体構造物の物体13が配置される。物体13からの光は反射型面対称結像素子11の一方の面から入射し、反射型面対称結像素子11内の2つの光反射面の一方で反射し、更に他方の反射面で反射して反射型面対称結像素子11の他方の面から出力される。反射型面対称結像素子11の他方の面側、すなわち物体13と面対称となる空間位置に物体13の実像13Aが結像される。   FIG. 2 shows an optical system of the spatial image display device of the present invention. This spatial image display device includes two reflection-type plane-symmetric imaging elements 11 and 12. The reflection-type plane-symmetric imaging elements 11 and 12 have a flat plate shape and are arranged so that the flat plate surfaces are substantially perpendicular to each other. An object 13 of a three-dimensional structure is disposed on one surface side of the reflective surface-symmetric imaging element 11. Light from the object 13 is incident from one surface of the reflective surface-symmetric imaging element 11, reflected by one of the two light reflecting surfaces in the reflective surface-symmetric imaging element 11, and further reflected by the other reflective surface. And output from the other surface of the reflective surface-symmetric imaging element 11. A real image 13 </ b> A of the object 13 is formed on the other surface side of the reflective surface-symmetric imaging element 11, that is, at a spatial position that is plane-symmetric with the object 13.

実像13Aは反射型面対称結像素子12の一方の面側に位置している。反射型面対称結像素子12の他方の面側に観察者の目Eが位置される。実像13Aからの光は反射型面対称結像素子12の一方の面から入射し、反射型面対称結像素子12内の2つの光反射面の一方で反射し、更に他方の反射面で反射して反射型面対称結像素子12の他方の面から出力される。反射型面対称結像素子12の他方の面側、すなわち実像13Aと面対称となる空間位置に実像13Bが結像される。   The real image 13A is located on one surface side of the reflective surface-symmetric imaging element 12. An observer's eye E is positioned on the other surface side of the reflective surface-symmetric imaging element 12. The light from the real image 13A is incident from one surface of the reflective surface-symmetric imaging element 12, reflected by one of the two light reflecting surfaces in the reflective surface-symmetric imaging element 12, and further reflected by the other reflective surface. And output from the other surface of the reflective surface-symmetric imaging element 12. The real image 13B is formed on the other surface side of the reflective surface-symmetric imaging element 12, that is, at a spatial position that is plane-symmetric with the real image 13A.

図2に矢印で示したよう、物体13から反射型面対称結像素子11に至る光直線と、反射型面対称結像素子11から実像13Aに至る光直線とが反射型面対称結像素子11のほぼ中央で交わり、その2つの光直線がなす角度を2等分する角度位置に反射型面対称結像素子11は配置されている。   As shown by the arrows in FIG. 2, the light straight line from the object 13 to the reflective plane-symmetric imaging element 11 and the light straight line from the reflective plane-symmetric imaging element 11 to the real image 13A are reflected. The reflection-type plane-symmetric imaging element 11 is arranged at an angular position that intersects approximately at the center of the line 11 and bisects the angle formed by the two light straight lines.

同様に、実像13Aから反射型面対称結像素子12に至る光直線と、反射型面対称結像素子12から実像13Bに至る光直線とが反射型面対称結像素子12のほぼ中央で交わり、その2つの光直線がなす角度を2等分する角度位置に反射型面対称結像素子12は配置されている。   Similarly, an optical straight line from the real image 13A to the reflective plane-symmetric imaging element 12 and an optical straight line from the reflective plane-symmetric imaging element 12 to the real image 13B intersect at substantially the center of the reflective plane-symmetric imaging element 12. The reflection-type plane-symmetric imaging element 12 is disposed at an angular position that bisects the angle formed by the two light straight lines.

反射型面対称結像素子11の2回の反射によって形成される実像13Aは物体13の凹凸が逆になる。反射型面対称結像素子12の2回の反射によって形成される実像13Bは実像13Aの凹凸が逆になる。従って、観察者は物体13と同じ凹凸で実像13Bを観察することができる。   The real image 13 </ b> A formed by two reflections of the reflective plane-symmetric imaging element 11 has the unevenness of the object 13 reversed. The real image 13B formed by the two reflections of the reflective plane-symmetric imaging element 12 has the concavities and convexities of the real image 13A reversed. Therefore, the observer can observe the real image 13 </ b> B with the same unevenness as the object 13.

反射型面対称結像素子11,12は図3に示すように形成されている。図3の反射型面対称結像素子は符号19で示されている。反射型面対称結像素子19は各々が同数の棒状の直方体材20を並列に密着させることにより形成された2つのシート部(第1集合体及び第2集合体)21,22を有する。図2における反射型面対称結像素子11,12各々の両端部A,Bは図3の反射型面対称結像素子19の対向角A,Bに対応している。   The reflection-type plane-symmetric imaging elements 11 and 12 are formed as shown in FIG. The reflective surface-symmetric imaging element of FIG. The reflection-type plane-symmetric imaging element 19 has two sheet portions (first aggregate and second aggregate) 21 and 22 formed by bringing the same number of rod-shaped rectangular parallelepiped materials 20 into close contact in parallel. Both end portions A and B of the reflection type plane symmetric imaging elements 11 and 12 in FIG. 2 correspond to the opposing angles A and B of the reflection type plane symmetric imaging element 19 in FIG.

直方体材20は、長手部材であり、長手方向に垂直な方向、すなわち短手方向の四角形の断面の一辺が数百μmないし数cm前後の透明なアクリルに代表されるプラスチック又はガラスの棒からなる。長さは投影する画像の大きさによって変化するが、数十mm 〜数m程度である。また、長手方向に伸長した4面のうちの3面は光の透過又は反射に使用する面であるから、滑らかな状態にされている。直方体材20はシート部21,22各々で100本〜20000本程度用いられる。   The rectangular parallelepiped material 20 is a long member, and is made of a plastic or glass rod typified by transparent acrylic having a side of a rectangular cross section in a direction perpendicular to the longitudinal direction, that is, a short side, of several hundred μm to several cm. . The length varies depending on the size of the projected image, but is about several tens mm to several m. In addition, three of the four surfaces extending in the longitudinal direction are surfaces used for light transmission or reflection, and thus are in a smooth state. About 100 to 20000 rectangular parallelepiped materials 20 are used for each of the sheet portions 21 and 22.

図4に示すように、直方体材20の長手方向に伸長した1面には光反射膜23が形成される。光反射膜23はアルミや銀の蒸着或いはスパッタなどによって形成される。   As shown in FIG. 4, a light reflecting film 23 is formed on one surface of the rectangular parallelepiped material 20 extending in the longitudinal direction. The light reflecting film 23 is formed by vapor deposition or sputtering of aluminum or silver.

このような複数の直方体材20について、1つの直方体材20の光吸収膜面23を形成した面とは反対側の面24と別の直方体材20の光反射膜面を密着させてシート部21,22が形成される。シート部21,22は、図5に示すように、直方体材20の並列方向が交差するようにいずれか一方を90度回転させた状態で貼り合わせられ、それによって反射型面対称結像素子19が形成される。シート部21の各直方体材20とシート部22の各直方体材20とが交差する部分が微小ミラーユニット(単位光学素子)を構成し、各微小ミラーユニットのシート部21の光反射膜面が第1集合体の第1光反射面であり、シート部22の光反射膜面が第2集合体の第2光反射面である。   For such a plurality of rectangular parallelepiped materials 20, the sheet portion 21 is brought into close contact with the surface 24 opposite to the surface on which the light absorbing film surface 23 of one rectangular parallelepiped material 20 is formed and the light reflecting film surface of another rectangular parallelepiped material 20. , 22 are formed. As shown in FIG. 5, the sheet portions 21 and 22 are bonded together in a state in which one of the rectangular parallelepiped materials 20 is rotated by 90 degrees so that the parallel directions of the rectangular parallelepiped materials 20 intersect with each other. Is formed. A portion where each rectangular parallelepiped material 20 of the sheet portion 21 and each rectangular parallelepiped material 20 of the sheet portion 22 intersect constitutes a minute mirror unit (unit optical element), and the light reflecting film surface of the sheet portion 21 of each minute mirror unit is the first. It is the first light reflecting surface of one aggregate, and the light reflecting film surface of the sheet portion 22 is the second light reflecting surface of the second aggregate.

なお、光反射膜面を形成した面とは反対側の面24には、錫、銀、クロム、アルミ等の金属膜を形成し、各直方体材20同士を半田付け、ロウ付け等の接合技術を用いて平面接合するための下地層を形成しても良い。   In addition, a metal film such as tin, silver, chromium, and aluminum is formed on the surface 24 opposite to the surface on which the light reflecting film surface is formed, and the respective rectangular parallelepiped materials 20 are soldered together, and a joining technique such as brazing. An underlayer for planar bonding may be formed using

或いは、光反射膜面を形成した面とは反対側の面24には、反射型面対称結像素子として不用な素子内の迷光を低減することを目的とした光を吸収する膜を形成しても良い。この場合、シート部21,22を形成する際に、1つの直方体材20の光反射膜面を形成した面とは反対側の面24と別の直方体材20の光反射膜面23を密着させるので、光反射膜面を形成した面とは反対側の面24に形成する膜は光反射膜23の上に積層して形成しておいても良い。   Alternatively, on the surface 24 opposite to the surface on which the light reflecting film surface is formed, a film that absorbs light for the purpose of reducing stray light in an element unnecessary as a reflection type plane-symmetric imaging element is formed. May be. In this case, when the sheet portions 21 and 22 are formed, the surface 24 opposite to the surface on which the light reflecting film surface of one rectangular parallelepiped material 20 is formed and the light reflecting film surface 23 of another rectangular parallelepiped material 20 are brought into close contact with each other. Therefore, the film formed on the surface 24 opposite to the surface on which the light reflecting film surface is formed may be laminated on the light reflecting film 23.

かかる構成の反射型面対称結像素子19においては、図6に示すように、入射光は矢印Y1の方向でシート部22の光反射膜面23に反射し、その反射光は矢印Y2の方向でシート部21の光反射膜面23に反射し、その反射光は矢印Y3の方向で観察者に向けて進み、このように2回反射させて鏡映像を作り出すことが行われる。   In the reflection-type plane-symmetric imaging element 19 having such a configuration, as shown in FIG. 6, incident light is reflected on the light reflecting film surface 23 of the sheet portion 22 in the direction of arrow Y1, and the reflected light is in the direction of arrow Y2. Thus, the light is reflected on the light reflecting film surface 23 of the sheet portion 21, and the reflected light travels toward the observer in the direction of the arrow Y3, and is thus reflected twice to create a mirror image.

反射型面対称結像素子19の法線に対する観察方向の角度をθ、シート部21,22各々に形成された平行ミラー(光反射膜面)の間隔(=直方体材20の短手方向の幅)をW、シート部21,22各々を構成する直方体材20の光学屈折率をnとすると、1シート部当たりの厚み(すなわち直方体材20の長手方向の長さ)をDとすると、厚みDは、



の如く表すことができる。Xは反射型面対称結像素子19の中での法線に対する光線軸の傾き角である。
The angle of the observation direction with respect to the normal line of the reflective surface-symmetric imaging element 19 is θ, and the interval between the parallel mirrors (light reflecting film surfaces) formed on the sheet portions 21 and 22 (= width in the short direction of the rectangular parallelepiped material 20). ) Is W, and when the optical refractive index of the rectangular parallelepiped material 20 constituting each of the sheet portions 21 and 22 is n, the thickness D per sheet portion (that is, the length in the longitudinal direction of the rectangular parallelepiped material 20) is D. Is



It can be expressed as follows. X is the tilt angle of the ray axis with respect to the normal line in the reflective surface-symmetric imaging element 19.

図7は本発明の他の実施例として空間映像表示装置の光学系を示している。この空間映像表示装置においては、2つの平板状の反射型面対称結像素子11,12がほぼ平行に配置されている。このように反射型面対称結像素子11,12を平行に配置した場合においても図2の実施例の場合と同様に、反射型面対称結像素子11は物体13と面対称となる空間位置に実像13Aを結像させ、反射型面対称結像素子12は実像13Aと面対称となる空間位置に実像13Bを結像させる。よって、観察者は物体13と同じ凹凸で実像13Bを観察することができる。   FIG. 7 shows an optical system of a spatial image display device as another embodiment of the present invention. In this spatial image display device, two flat reflection-type plane-symmetric imaging elements 11 and 12 are arranged substantially in parallel. In this way, even when the reflection type plane symmetric imaging elements 11 and 12 are arranged in parallel, the reflection type plane symmetric imaging element 11 is spatially symmetric with the object 13 in the same manner as in the embodiment of FIG. The reflective image symmetric imaging element 12 forms a real image 13B at a spatial position that is plane-symmetric with the real image 13A. Therefore, the observer can observe the real image 13 </ b> B with the same unevenness as the object 13.

物体13から反射型面対称結像素子11に至る光直線と、反射型面対称結像素子11から実像13Aに至る光直線とが反射型面対称結像素子11のほぼ中央で交わり、その2つの光直線がなす角度を2等分する角度位置に反射型面対称結像素子11は配置されている。   An optical straight line from the object 13 to the reflective plane-symmetric imaging element 11 and an optical straight line from the reflective plane-symmetric imaging element 11 to the real image 13A intersect at approximately the center of the reflective plane-symmetric imaging element 11, part 2 The reflection-type plane-symmetric imaging element 11 is disposed at an angular position that bisects the angle formed by the two light straight lines.

同様に、実像13Aから反射型面対称結像素子12に至る光直線と、反射型面対称結像素子12から実像13Bに至る光直線とが反射型面対称結像素子12のほぼ中央で交わり、その2つの光直線がなす角度を2等分する角度位置に反射型面対称結像素子12は配置されている。   Similarly, an optical straight line from the real image 13A to the reflective plane-symmetric imaging element 12 and an optical straight line from the reflective plane-symmetric imaging element 12 to the real image 13B intersect at substantially the center of the reflective plane-symmetric imaging element 12. The reflection-type plane-symmetric imaging element 12 is disposed at an angular position that bisects the angle formed by the two light straight lines.

図8は更に本発明の他の実施例として空間映像表示装置の光学系を示している。この空間映像表示装置においては、反射型面対称結像素子11,12に加えてハーフミラー15が備えられている。反射型面対称結像素子11,12は図2に示したようにその平板面が互いにほぼ垂直となるように配置されている。ハーフミラー15は反射型面対称結像素子12からの出力光の一部を通過させ、その残りを反射する。その反射光と透過光とは光強度はハーフミラーの反射率によって設定するが、一般的には3:7や1:1の関係である。ハーフミラー15の透過光により実像13Bが形成されると共に反射光により実像の反射像として実像13Cが形成される。実像13Bと実像13Cとはハーフミラー15について互いに対称となる位置に形成される。観察者は図8に示す目Eの位置から実像13Cを物体13と同じ凹凸で観察すると同時にハーフミラー15を介してその先の風景(背景)を観察することができる。   FIG. 8 shows an optical system of a spatial image display device as still another embodiment of the present invention. In this spatial image display device, a half mirror 15 is provided in addition to the reflection-type plane-symmetric imaging elements 11 and 12. As shown in FIG. 2, the reflection-type plane-symmetric imaging elements 11 and 12 are arranged so that their flat surfaces are substantially perpendicular to each other. The half mirror 15 passes a part of the output light from the reflective plane-symmetric imaging element 12 and reflects the rest. The light intensity of the reflected light and transmitted light is set by the reflectance of the half mirror, but generally has a relationship of 3: 7 or 1: 1. A real image 13B is formed by the transmitted light of the half mirror 15, and a real image 13C is formed as a reflected image of the real image by the reflected light. The real image 13B and the real image 13C are formed at positions that are symmetric with respect to the half mirror 15. The observer can observe the real image 13C from the position of the eye E shown in FIG. 8 with the same unevenness as the object 13 and at the same time the scenery (background) ahead through the half mirror 15.

また、図7に示したように反射型面対称結像素子11,12がほぼ平行に配置された装置においても図9に示すようにハーフミラー15を同様に備えることができる。この場合においてもハーフミラー15の反射光により実像13Cが形成されハーフミラー15を介しての背景と同一視線上に観察することができる。   Further, as shown in FIG. 9, a half mirror 15 can be similarly provided in an apparatus in which the reflection-type plane-symmetric imaging elements 11 and 12 are arranged substantially in parallel as shown in FIG. Even in this case, the real image 13C is formed by the reflected light of the half mirror 15, and can be observed on the same line of sight as the background through the half mirror 15.

図8及び図9のようにハーフミラー15を備える場合には例えば、図10に示すように観察者の目Eからは実像13Cと、ハーフミラー15を介した背景16とを同一視線上に視認することができる。   When the half mirror 15 is provided as shown in FIGS. 8 and 9, for example, as shown in FIG. 10, the real image 13 </ b> C and the background 16 through the half mirror 15 are viewed on the same line of sight from the eyes E of the observer. can do.

図11は本発明による空間映像表示装置の外観例を示し、図12はその装置の前後方向における内部断面を示している。この空間映像表示装置は反射型面対称結像素子11,12が平行に配置された装置であり、図11及び図12に示すように、ハウジング31は観察者側の光学系収納部31aと、光学系収納部31aの後部に連結した物体収納部31bとからなる。光学系収納部31aは上面に傾斜部32を有する箱形をしている。傾斜部32は底面に対してほぼ45度の角度にされている。傾斜部32の中央に反射型面対称結像素子12が露出して取り付けられている。光学系収納部31a内に反射型面対称結像素子11がほぼ45度の斜めにして取り付けられており、反射型面対称結像素子11と反射型面対称結像素子12とが互いに平行にされている。物体収納部31bは光学系収納部31aの下部に連通した空間を有し、そこには立体構造物の物体13が置き台34上に載置されている。また、物体収納部31b内には照明装置35が備えられている。照明装置35は例えば、LEDからなり、置き台34上の物体13を照らすために備えられている。   FIG. 11 shows an example of the appearance of a spatial video display device according to the present invention, and FIG. 12 shows an internal cross section of the device in the front-rear direction. This spatial image display apparatus is an apparatus in which reflection-type plane-symmetric imaging elements 11 and 12 are arranged in parallel. As shown in FIGS. 11 and 12, the housing 31 includes an optical system storage unit 31a on the observer side, An object storage unit 31b connected to the rear part of the optical system storage unit 31a. The optical system storage part 31a has a box shape having an inclined part 32 on the upper surface. The inclined portion 32 is at an angle of approximately 45 degrees with respect to the bottom surface. The reflective plane-symmetric imaging element 12 is exposed and attached to the center of the inclined portion 32. The reflection-type plane-symmetric imaging element 11 is mounted at an angle of approximately 45 degrees in the optical system housing 31a, and the reflection-type plane-symmetric imaging element 11 and the reflection-type plane-symmetric imaging element 12 are parallel to each other. Has been. The object storage unit 31b has a space communicating with the lower part of the optical system storage unit 31a, and an object 13 of a three-dimensional structure is mounted on the table 34. In addition, a lighting device 35 is provided in the object storage unit 31b. The illumination device 35 is made of, for example, an LED, and is provided for illuminating the object 13 on the cradle 34.

このような構成により、物体13についての実像13A,13Bが生じるので、観察者は反射型面対称結像素子12の前方の図12に示す観察方向から実像13Bを物体13と同じ凹凸で観察することになる。なお、光学系収納部31aの少なくとも傾斜部32の表面は黒色を含む暗色にされており、観察者に実像が視認し易くされている。   With such a configuration, the real images 13A and 13B about the object 13 are generated, so that the observer observes the real image 13B with the same unevenness as the object 13 from the observation direction shown in FIG. It will be. Note that at least the surface of the inclined portion 32 of the optical system storage portion 31a is dark, including black, so that the viewer can easily see the real image.

なお、上記した各実施例において、反射型面対称結像素子11,12としては図3に示したシート部21,22からなる反射型面対称結像素子19に限らず、特許文献1に示された構成のものを用いても良い。   In each of the embodiments described above, the reflection-type plane-symmetric imaging elements 11 and 12 are not limited to the reflection-type plane-symmetric imaging element 19 including the sheet portions 21 and 22 shown in FIG. You may use the thing of the structure comprised.

11,12,19 反射型面対称結像素子
13 物体
13A〜13C 実像
15 ハーフミラー
21,22 シート部
31 ハウジング
11, 12, 19 Reflective plane-symmetric imaging element 13 Objects 13A to 13C Real image 15 Half mirrors 21, 22 Sheet portion 31 Housing

Claims (6)

直交する第1及び第2光反射面を有する微小ミラーユニットがマトリクス状に配列された平板状の構造体からなり、入射光を前記第1及び第2光反射面により2回反射する第1及び第2の反射型面対称結像素子を備えた空間映像表示装置であって、
前記第1の反射型面対称結像素子は物体からの入射光を前記第1及び第2光反射面により2回反射して前記第1の反射型面対称結像素子について前記物体と面対称となるように前記物体の第1の実像を結像させ、
前記第2の反射型面対称結像素子は前記第1の実像からの入射光を前記第1及び第2光反射面により2回反射して前記第2の反射型面対称結像素子について前記第1の実像と面対称となるように前記物体の第2の実像を結像させ
前記第1の反射型面対称結像素子及び前記第2の反射型面対称結像素子の各々は、1つの光反射面を有する複数の長手部材をその光反射面が同一方向側となるように平行に配列した第1集合体及び第2集合体を、その光反射面が交差するように重ね合わせて構成されてなり、前記第1集合体の光反射面が前記微小ミラーユニットの前記第1光反射面を構成しかつ前記第2集合体の光反射面が前記微小ミラーユニットの前記第2光反射面を構成することを特徴とする空間映像表示装置。
The first and second reflection units are formed of a plate-like structure in which micromirror units having orthogonal first and second light reflecting surfaces are arranged in a matrix, and the incident light is reflected twice by the first and second light reflecting surfaces. A spatial image display device comprising a second reflective plane-symmetric imaging element,
The first reflective plane-symmetric imaging element reflects incident light from an object twice by the first and second light reflecting surfaces, and the first reflective plane-symmetric imaging element is plane-symmetric with the object. Forming a first real image of the object so that
The second reflection-type plane-symmetric imaging element reflects the incident light from the first real image twice by the first and second light-reflection surfaces, and the second reflection-type plane-symmetric imaging element Forming a second real image of the object so as to be plane-symmetric with the first real image ;
Each of the first reflection-type plane-symmetric imaging element and the second reflection-type plane-symmetric imaging element has a plurality of longitudinal members having one light reflection surface so that the light reflection surfaces are on the same direction side. The first aggregate and the second aggregate arranged in parallel to each other are overlapped so that their light reflection surfaces intersect, and the light reflection surface of the first aggregate is the first mirror of the micromirror unit. A spatial image display device comprising a light reflecting surface and a light reflecting surface of the second aggregate constituting the second light reflecting surface of the minute mirror unit .
前記第1及び第2の反射型面対称結像素子は互いにほぼ垂直又は平行に配置されることを特徴とする請求項1記載の空間映像表示装置。 2. The spatial image display device according to claim 1, wherein the first and second reflection type plane-symmetric imaging elements are arranged substantially perpendicularly or parallel to each other. 前記第2の反射型面対称結像素子の反射光を反射して自身について前記第2の実像と面対称となるように前記物体の第3の実像を結像させるハーフミラーを有することを特徴とする請求項1又は2記載の空間映像表示装置。 A half mirror that reflects the reflected light of the second reflective surface-symmetric imaging element and forms a third real image of the object so as to be plane-symmetric with the second real image about itself; The spatial image display device according to claim 1 or 2 . 前記物体を照明する照明装置を有することを特徴とする請求項1乃至3のいずれか1項に記載の空間映像表示装置。 The spatial image display device according to claim 1, further comprising an illumination device that illuminates the object. 前記第1の反射型面対称結像素子を内部に固定し、前記第2の反射型面対称結像素子を外部に露出して固定するハウジングを有し、
前記ハウジングの前記第2の反射型面対称結像素子の露出部分の面は暗色にされていることを特徴とする請求項1乃至4のいずれか1項に記載の空間映像表示装置。
A housing for fixing the first reflection type plane-symmetric imaging element inside, and exposing and fixing the second reflection type plane-symmetric imaging element to the outside;
5. The spatial image display device according to claim 1 , wherein a surface of the exposed portion of the second reflective surface-symmetric imaging element of the housing is darkened. 6.
前記物体は立体物であることを特徴とする請求項1乃至5のいずれか1項に記載の空間映像表示装置。 The spatial image display device according to claim 1 , wherein the object is a three-dimensional object.
JP2009235362A 2009-10-09 2009-10-09 Spatial image display device Active JP5352410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235362A JP5352410B2 (en) 2009-10-09 2009-10-09 Spatial image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235362A JP5352410B2 (en) 2009-10-09 2009-10-09 Spatial image display device

Publications (2)

Publication Number Publication Date
JP2011081309A JP2011081309A (en) 2011-04-21
JP5352410B2 true JP5352410B2 (en) 2013-11-27

Family

ID=44075396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235362A Active JP5352410B2 (en) 2009-10-09 2009-10-09 Spatial image display device

Country Status (1)

Country Link
JP (1) JP5352410B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081300A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Method for manufacturing reflection type plane-symmetric imaging element
JP5085631B2 (en) * 2009-10-21 2012-11-28 株式会社アスカネット Optical imaging apparatus and optical imaging method using the same
JP5283042B2 (en) * 2009-12-28 2013-09-04 独立行政法人情報通信研究機構 Display system
WO2013061619A1 (en) 2011-10-24 2013-05-02 株式会社アスカネット Optical image forming device
JP5904437B2 (en) * 2011-11-22 2016-04-13 パイオニア株式会社 Spatial image display device
WO2013129063A1 (en) 2012-02-28 2013-09-06 株式会社アスカネット Three-dimensional image forming system and method therefor
JP2012128456A (en) * 2012-03-22 2012-07-05 Pioneer Electronic Corp Method of manufacturing reflective plane-symmetric imaging element
JP5318242B2 (en) * 2012-03-22 2013-10-16 パイオニア株式会社 Method for manufacturing a reflection-type plane-symmetric imaging element
JP5893503B2 (en) * 2012-05-14 2016-03-23 シャープ株式会社 Display device and display method
CN104520747A (en) * 2012-08-03 2015-04-15 夏普株式会社 Reflective type imaging element and optical system, and method of manufacturing reflective type imaging element
JP2016142802A (en) * 2015-01-30 2016-08-08 コニカミノルタ株式会社 Aerial image display device
WO2017175671A1 (en) * 2016-04-07 2017-10-12 コニカミノルタ株式会社 Imaging element
JP6632762B2 (en) * 2017-04-11 2020-01-22 株式会社アスカネット Stereoscopic image forming means and microscope apparatus using the same
JP7240242B2 (en) 2019-04-26 2023-03-15 Tianma Japan株式会社 Display device
JP6847291B1 (en) * 2020-06-12 2021-03-24 株式会社アスカネット Stereoscopic image display device
CN112946914B (en) * 2021-02-23 2024-04-02 荆门市探梦科技有限公司 Transmission type geometric holographic screen with opening angle and its application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123473A1 (en) * 2007-03-30 2008-10-16 National Institute Of Information And Communications Technology Transmission optical system
JP4865088B2 (en) * 2008-04-22 2012-02-01 株式会社アスカネット Optical imaging method
WO2009136578A1 (en) * 2008-05-09 2009-11-12 パイオニア株式会社 Spatial image display apparatus

Also Published As

Publication number Publication date
JP2011081309A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5352410B2 (en) Spatial image display device
JP7128541B2 (en) Display device
JP5252584B2 (en) Transmission optical system
JP5441059B2 (en) Multi-viewpoint aerial image display device
JP5498853B2 (en) Display device
KR102231367B1 (en) Systems used for airborne imaging
JP4900618B2 (en) Imaging element, display device
JP5177483B2 (en) Real mirror imaging optical system
US20180284470A1 (en) Display device, and display method for aerial image
JP5063494B2 (en) Display device
WO2010131622A1 (en) Display device
JP2009075483A (en) Volume scanning type three-dimensional aerial video display
JP5365957B2 (en) Display device
JP2011118402A (en) Display device
JP5904437B2 (en) Spatial image display device
JP5614745B2 (en) Display device using two-surface corner reflector array optical element
JP2019533829A (en) Floating imaging system
WO2018154849A1 (en) Spatial video output device
JP2012008301A (en) Volume-scanning type 3d image display device
CN103033972A (en) Display device
JP2009229905A (en) Three-dimensional aerial image display
JP5565845B2 (en) Volume scanning type 3D aerial image display
JP2012163702A (en) Parallax type three-dimensional aerial video display device
JP4967409B2 (en) Display device
JP2001511915A (en) Airborne image display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5352410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250