JP5350038B2 - Electrical resistivity method - Google Patents

Electrical resistivity method Download PDF

Info

Publication number
JP5350038B2
JP5350038B2 JP2009077261A JP2009077261A JP5350038B2 JP 5350038 B2 JP5350038 B2 JP 5350038B2 JP 2009077261 A JP2009077261 A JP 2009077261A JP 2009077261 A JP2009077261 A JP 2009077261A JP 5350038 B2 JP5350038 B2 JP 5350038B2
Authority
JP
Japan
Prior art keywords
electrodes
hole
borehole
pair
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009077261A
Other languages
Japanese (ja)
Other versions
JP2010230433A (en
Inventor
隆 新屋敷
恵一郎 阪元
誠 松尾
弾 岡本
俊隆 北沢
英明 佐藤
克弘 麻生
猛 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2009077261A priority Critical patent/JP5350038B2/en
Publication of JP2010230433A publication Critical patent/JP2010230433A/en
Application granted granted Critical
Publication of JP5350038B2 publication Critical patent/JP5350038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、ボーリング孔内に配置された孔内電極と孔壁とを導通させることができる作業性及び経済性に優れた電気探査比抵抗法に関する。   The present invention relates to an electrical exploration resistivity method that is excellent in workability and economy that can connect a hole electrode disposed in a boring hole with a hole wall.

電気探査比抵抗法は、地盤に設けられた一対のボーリング孔と、各ボーリング孔内において上下に間隔を隔てて設置された複数の電極と、各ボーリング孔間の地表面において間隔を隔てて設置された複数の電極と、測定装置とを用い、測定装置で任意の一対の電極間に電流を流すとともにその他の一対の電極間の電位を測定する方法であり、この測定結果に基いて地盤の2次元比抵抗分布又は3次元比抵抗分布を得ることができ、2次元比抵抗分布又は3次元比抵抗分布から地盤の性状を推定することが可能となる(例えば、特許文献1等参照)。
上記任意の一対の電極間に電流を流すためには、ボーリング孔内に配置された電極とボーリング孔の孔壁(地盤面)とを通電させる必要がある。上下に間隔を隔てて設けられた複数の電極をボーリング孔内に吊るして設置する場合には、ボーリング孔内に水を入れて電極と孔壁とを通電可能にするようにしているが、ボーリング孔内の水は孔壁を介して地盤に浸透してしまうので、孔壁をセメントで覆うセメンテーション処理をしてからボーリング孔内に水を入れたり、ボーリング孔内への連続注水を行っていた。あるいは、ボーリング孔内に水がなくても通電可能なように孔壁と圧着可能な構造の電極(例えば、特許文献2;3等参照)を用いていた。
The electrical exploration resistivity method uses a pair of boreholes provided in the ground, a plurality of electrodes installed at intervals in the vertical direction within each borehole, and an interval at the ground surface between the boreholes. In this method, a current is passed between an arbitrary pair of electrodes and a potential between the other pair of electrodes is measured by the measuring device using a plurality of electrodes and a measuring device. A two-dimensional resistivity distribution or a three-dimensional resistivity distribution can be obtained, and the properties of the ground can be estimated from the two-dimensional resistivity distribution or the three-dimensional resistivity distribution (see, for example, Patent Document 1).
In order to pass a current between the arbitrary pair of electrodes, it is necessary to energize the electrode disposed in the boring hole and the hole wall (ground surface) of the boring hole. When installing multiple electrodes that are spaced apart from each other in the boring hole, water is put into the boring hole so that the electrode and the wall can be energized. Since the water in the hole penetrates the ground through the hole wall, cementation is performed to cover the hole wall with cement, and then water is poured into the borehole or water is poured continuously into the borehole. It was. Or the electrode (for example, refer patent documents 2; 3 grade | etc.) Of the structure which can be crimped | bonded with a hole wall so that it can energize even if there is no water in a boring hole was used.

特開2005−337746号公報JP 2005-337746 A 特開平10−220182号公報JP-A-10-220182 特開2006−119096号公報JP 2006-119096 A

しかしながら、セメンテーション処理やボーリング孔内への連続注水は作業が煩雑となり作業コストもかかるという問題点があった。また、ボーリング孔の孔壁と圧着可能な構造の電極は高価であるので導入し難いという問題点があった。
本発明は、上記問題点に鑑みてなされたもので、セメンテーション処理やボーリング孔内への連続注水のような煩雑な作業を行ったり、高価な電極を用いることなく、ボーリング孔内に配置された孔内電極と孔壁とを導通させることができる作業性及び経済性に優れた電気探査比抵抗法を提供する。
However, the cementation process and the continuous water injection into the borehole have a problem that the work is complicated and the work cost is high. In addition, there is a problem that it is difficult to introduce an electrode having a structure capable of being crimped to a hole wall of a boring hole because it is expensive.
The present invention has been made in view of the above problems, and is arranged in the borehole without performing a cumbersome operation such as cementation treatment or continuous water injection into the borehole or using an expensive electrode. An electrical exploration resistivity method with excellent workability and economy that can connect a hole electrode and a hole wall.

本発明に係る電気探査比抵抗法は、複数の電極が、地盤に設けられた一対のボーリング孔内において上下に所定間隔を隔てて設置されたとともに一対のボーリング孔間の地表面において所定間隔を隔てて設置された構成、又は、複数の電極が、地盤に設けられた一対のボーリング孔内において上下に所定間隔を隔てて設置された構成、又は、複数の電極が、地盤に設けられた1つのボーリング孔内において上下に所定間隔を隔てて設置されたとともにボーリング孔の周囲の地表面において所定間隔を隔てて設置された構成と、測定装置とを用い、測定装置が任意の一対の電極間に電流を流すとともにその他の一対の電極で測定された電位を測定する電気探査比抵抗法において、管の外径がボーリング孔の孔径よりも大きい金属管を孔壁保持管として用いて当該孔壁保持管の下端側をボーリング孔の上端開口よりボーリング孔の孔内に嵌め込んで当該孔壁保持管の上端側を地上に突出させるとともに、管の内面と外面とに貫通するように設けられた複数の孔を備えた有孔管を孔壁保持管の上端開口より挿入してボーリング孔内に設置し、一端が泡貯留タンクに接続された注入ホースを他端側から有孔管内に入れて当該注入ホースの他端開口を地下水位よりも上方に設置し、泡が孔壁保持管の上端開口より溢れるまで当該注入ホースを介して泡をボーリング孔内に注入した後、当該注入ホースを有孔管内から抜き取り、有孔管内に複数の電極を設置して有孔管内の電極とボーリング孔の孔壁との導通を確保した後に任意の一対の電極間に電流を流したので、セメンテーション処理やボーリング孔内への連続注水のような煩雑な作業を行ったり、高価な電極を用いることなく、作業性及び経済性に優れ、ま、泡によりボーリング中の有孔管内の電極とボーリング孔の孔壁との通電を確保したので、ボーリング孔内に注入された泡により孔内電極と孔壁とが導通し、任意の一対の電極間に電流を流すことができ、作業性及び経済性に優れ、測定信頼性の高い電気探査比抵抗法を実現できる。また、有孔管を用いたので、泡をボーリング孔内の地下水位よりも上方の空間全体に満遍なく行き渡らせることができるので、孔内電極と孔壁とをより確実に導通させることができる。また、取扱いが容易でかつ孔壁を介して地盤に浸透しにくい泡を用いたので、孔内電極と孔壁との導通性を長時間維持できる測定信頼性の高い電気探査比抵抗法を実現できる。 In the electrical exploration resistivity method according to the present invention, a plurality of electrodes are installed at a predetermined interval in the vertical direction in a pair of bore holes provided in the ground, and at a predetermined interval on the ground surface between the pair of bore holes. A configuration in which a plurality of electrodes are installed at a predetermined interval in a pair of boring holes provided in the ground or a plurality of electrodes provided in the ground. A measuring device using a configuration in which two measuring holes are installed at predetermined intervals in one boring hole and at a predetermined interval on the ground surface around the boring hole, and the measuring device is between any pair of electrodes measuring the potential measured by the other pair of electrodes with current flow in the electrical prospecting resistivity method, the hole wall holding tube larger metal pipe than the hole diameter the outer diameter of the borehole tube The lower end side of the hole wall holding tube is fitted into the hole of the boring hole from the upper end opening of the boring hole so that the upper end side of the hole wall holding tube protrudes to the ground, and the inner surface and the outer surface of the tube are A perforated pipe with a plurality of holes provided so as to penetrate is inserted from the upper end opening of the hole wall holding pipe and installed in the borehole, and an injection hose with one end connected to the foam storage tank is connected to the other end side. The other end opening of the injection hose is placed above the groundwater level and is injected into the borehole through the injection hose until the foam overflows from the upper end opening of the hole holding pipe. after, the injection hose withdrawn from the perforated pipe, perforated tube current between any pair of electrodes after securing the conduction between the electrode and the borehole hole wall in a plurality of electrodes installed perforated tube So that the cementation process and the Or perform complicated operations such as a continuous water injection into ring bore, without using an expensive electrode, excellent workability and economy, or the electrode and the boring of the perforated inner tube in the borehole Foam Since energization with the hole wall of the hole is ensured, the in-hole electrode and the hole wall are electrically connected by the bubbles injected into the boring hole, and an electric current can flow between any pair of electrodes. The electrical exploration resistivity method with high reliability and high measurement reliability can be realized. Further, since the perforated pipe is used, the bubbles can be evenly distributed over the entire space above the groundwater level in the borehole, so that the in-hole electrode and the hole wall can be more reliably conducted. In addition, the use of foam that is easy to handle and difficult to penetrate the ground through the hole wall realizes a highly reliable electrical exploration resistivity method that can maintain the electrical connection between the in-hole electrode and the hole wall for a long time. it can.

電気探査比抵抗法の測定方法を示す模式図(実施の形態)。The schematic diagram which shows the measuring method of an electrical exploration specific resistance method (embodiment). (a)はボーリング孔に孔壁保持管を設置した図、(b)はボーリング孔内に有孔管を設置した図(実施の形態)。(A) is the figure which installed the hole wall holding pipe in the boring hole, (b) is the figure which installed the perforated pipe in the boring hole (embodiment). ボーリング孔内に導電性材料を供給した状態を示す図(実施の形態)。The figure which shows the state which supplied the electroconductive material in the boring hole (embodiment). ボーリング孔内に導電性材料を供給した状態を示す斜視図(実施の形態)。The perspective view which shows the state which supplied the electroconductive material in the boring hole (embodiment).

電気探査比抵抗法による測定は、図1に示す電気探査比抵抗測定装置1により実現可能である。電気探査比抵抗測定装置1は、地盤に設けられた一対のボーリング孔2と、一対のボーリング孔2内において上下に所定間隔を隔てて設置された複数の孔内電極3と、一対のボーリング孔2間の地表面Sにおいて所定間隔を隔てて設置された複数の地上電極4と、水よりも流動性の低い導電性材料5と、導電性材料供給装置6と、測定装置7と、測定装置7や導電性材料供給装置6の機械に電源を供給するための図外の安定化電源とを備える。   The measurement by the electric exploration resistivity method can be realized by the electric exploration resistivity measuring apparatus 1 shown in FIG. The electrical exploration resistivity measuring apparatus 1 includes a pair of boring holes 2 provided in the ground, a plurality of in-hole electrodes 3 installed at predetermined intervals in the pair of boring holes 2, and a pair of boring holes. A plurality of ground electrodes 4 installed at predetermined intervals on the ground surface S between the two, a conductive material 5 having a lower fluidity than water, a conductive material supply device 6, a measuring device 7, and a measuring device 7 and a stabilized power supply (not shown) for supplying power to the machine of the conductive material supply device 6.

水よりも流動性の低い導電性材料5としては、泡10を用いる。導電性材料供給装置6は、泡貯留タンク9、ポンプ11、孔壁保持管12、有孔管13、注入ホース14(図3参照)を備える。孔壁保持管12は金属管を用いた。有孔管13は開口率10%の塩化ビニル製の管を用いた。有孔管13は、管の内面と外面とに貫通するように設けられた複数の孔15を備えた管である(図4参照)。測定装置7は、電流を流す一対の電極の組と電位を測定する一対の電極の組との組合せを設定するためのスイッチングボックス、電流計、電圧計などを備える。   As the conductive material 5 having a lower fluidity than water, bubbles 10 are used. The conductive material supply device 6 includes a foam storage tank 9, a pump 11, a hole wall holding pipe 12, a perforated pipe 13, and an injection hose 14 (see FIG. 3). The hole wall holding tube 12 was a metal tube. As the perforated tube 13, a tube made of vinyl chloride having an aperture ratio of 10% was used. The perforated tube 13 is a tube provided with a plurality of holes 15 provided so as to penetrate the inner surface and the outer surface of the tube (see FIG. 4). The measuring device 7 includes a switching box, an ammeter, a voltmeter, and the like for setting a combination of a pair of electrodes for passing a current and a pair of electrodes for measuring a potential.

図2乃至図4、及び、図1を参照し、電気探査比抵抗法による測定方法を実現するための電気探査比抵抗測定装置1の作り方について説明する。図2(a)に示すように、地表面Sから地盤中に向けてボーリング孔2を形成した後、ボーリング孔2の上端開口20よりボーリング孔2の孔内に孔壁保持管12を嵌め込んでボーリング孔2の上端側の孔壁21の崩壊を防止する。例えば、管の外径がボーリング孔2の孔径よりも若干大きい孔壁保持管12を用いて、孔壁保持管12の下端側をボーリング孔2の上端開口20よりボーリング孔2内に嵌め込んで孔壁保持管12の上端側を地上に突出させる。図2(b)に示すように、有孔管13を下端側から孔壁保持管12の上端開口23より挿入して、有孔管13をボーリング孔2内に設置するとともに、有孔管13の上端を孔壁保持管12より上方に突出させる。有孔管13の下端開口24は、ボーリング孔2の孔底25に接触させても良いし(図2(b)参照)、ボーリング孔2内の地下水位Wよりも上方に設置しても良い。   With reference to FIG. 2 thru | or FIG. 4 and FIG. 1, how to make the electric exploration specific resistance measuring apparatus 1 for implement | achieving the measuring method by an electric exploration specific resistance method is demonstrated. As shown in FIG. 2A, after forming the borehole 2 from the ground surface S into the ground, the hole wall holding tube 12 is fitted into the borehole 2 from the upper end opening 20 of the borehole 2. This prevents the hole wall 21 on the upper end side of the boring hole 2 from collapsing. For example, using the hole wall holding tube 12 whose outer diameter is slightly larger than the hole diameter of the bore hole 2, the lower end side of the hole wall holding tube 12 is fitted into the bore hole 2 from the upper end opening 20 of the bore hole 2. The upper end side of the hole wall holding tube 12 is projected to the ground. As shown in FIG. 2 (b), the perforated tube 13 is inserted from the lower end side through the upper end opening 23 of the perforated wall holding tube 12, and the perforated tube 13 is installed in the boring hole 2. The upper end of each is protruded upward from the hole wall holding tube 12. The lower end opening 24 of the perforated pipe 13 may be in contact with the hole bottom 25 of the boring hole 2 (see FIG. 2B), or may be installed above the groundwater level W in the boring hole 2. .

図3に示すように、泡貯留タンク9の泡出口30とポンプ11の吸込口31とを連通ホース32で繋ぎ、ポンプ11の吐出口33に注入ホース14の一端を繋ぐ。そして、注入ホース14を他端側から有孔管13内に入れて注入ホース14の他端開口35を所定の位置に接地する。即ち、注入ホース14の他端開口35は、ボーリング孔2内に泡10を効率的に充填できる位置に設置すれば良い。例えば、注入ホース14の他端開口35を地下水位Wよりも上方に設置し、泡10が有孔管13の孔15を経由してボーリング孔2内に充填されるようにする。泡貯留タンク9内に水と発泡剤とを入れて攪拌装置などで攪拌することにより泡10を作った後、ポンプ11を駆動して泡10を注入ホース14に送る。尚、安定な泡10を作るには、例えば、アニオン系界面活性剤からなる発泡剤を使用すれば良い。注入ホース14を介して注入された泡10は、有孔管13の少なくとも複数の孔15を経由してボーリング孔2内に供給され、ボーリング孔2内の地下水位Wよりも上方の空間全体(以下、ボーリング孔空間内全体Bという)に供給される。泡10の注入は、図4に示すように、泡10が孔壁保持管12の上端開口23より溢れるまで続ける。泡10がボーリング孔空間内全体Bに供給された後は、注入ホース14を有孔管13内から抜き取る。   As shown in FIG. 3, the foam outlet 30 of the foam storage tank 9 and the suction port 31 of the pump 11 are connected by a communication hose 32, and one end of the injection hose 14 is connected to the discharge port 33 of the pump 11. Then, the injection hose 14 is put into the perforated tube 13 from the other end side, and the other end opening 35 of the injection hose 14 is grounded at a predetermined position. That is, the other end opening 35 of the injection hose 14 may be installed at a position where the foam 10 can be efficiently filled into the boring hole 2. For example, the other end opening 35 of the injection hose 14 is installed above the groundwater level W so that the foam 10 is filled into the boring hole 2 via the hole 15 of the perforated pipe 13. After the foam 10 is made by putting water and a foaming agent in the foam storage tank 9 and stirring with a stirring device or the like, the pump 11 is driven to send the foam 10 to the injection hose 14. In order to form the stable foam 10, for example, a foaming agent made of an anionic surfactant may be used. The foam 10 injected through the injection hose 14 is supplied into the borehole 2 through at least the plurality of holes 15 of the perforated pipe 13 and the entire space above the groundwater level W in the borehole 2 ( Hereinafter, it is supplied to the whole boring hole space B). The injection of the foam 10 is continued until the foam 10 overflows from the upper end opening 23 of the hole wall holding tube 12 as shown in FIG. After the foam 10 is supplied to the entire bore B space B, the injection hose 14 is extracted from the perforated tube 13.

図1に示すように、泡10がボーリング孔空間内全体Bに供給された後、有孔管13内に複数の孔内電極3を設置するとともに、一対のボーリング孔2間の地表面Sに複数の地上電極4を設置する。例えば、所定間隔毎に複数の電極が取り付けられたロープや棒のような電極取付体を有孔管13内に挿入することで、複数の孔内電極3がボーリング孔2内において上下に所定間隔を隔てて設置される。一対のボーリング孔2内に、複数の孔内電極3を設置し、一端が複数の孔内電極3に個々に接続された電線の他端をボーリング孔2より引き出しておき、電線の他端を測定装置7に繋ぐ。また、所定間隔毎に複数の電極が取り付けられた上記電極取付体を一対のボーリング孔2間の地表面Sに設置することで、複数の地上電極4が一対のボーリング孔2間の地表面Sに所定間隔を隔てて設置され、一端が複数の地上電極に個々に接続された電線の他端を測定装置7に繋ぐ。以上により、図1に示すような電気探査比抵抗測定装置1が完成する。尚、図1では、図示簡略化のため、複数の電極の電線及び電極取付体を1本の線xで示した。   As shown in FIG. 1, after the foam 10 is supplied to the whole bore B space B, a plurality of in-hole electrodes 3 are installed in the perforated tube 13 and the ground surface S between the pair of bore holes 2 is provided. A plurality of ground electrodes 4 are installed. For example, by inserting an electrode attachment body such as a rope or a rod to which a plurality of electrodes are attached at predetermined intervals into the perforated tube 13, the plurality of in-hole electrodes 3 are vertically spaced within the borehole 2. It is installed with a gap. A plurality of in-hole electrodes 3 are installed in the pair of boring holes 2, and the other ends of the wires individually connected to the plurality of in-hole electrodes 3 are drawn from the boring holes 2, and the other ends of the wires are Connect to measuring device 7. Moreover, the ground surface S between the pair of boring holes 2 is provided by installing the electrode mounting body on which the plurality of electrodes are mounted at predetermined intervals on the ground surface S between the pair of boring holes 2. Are connected at predetermined intervals, and the other ends of the electric wires, one end of which is individually connected to the plurality of ground electrodes, are connected to the measuring device 7. Thus, the electrical exploration resistivity measuring apparatus 1 as shown in FIG. 1 is completed. In FIG. 1, for simplification of illustration, a plurality of electrode wires and electrode attachments are indicated by a single line x.

測定装置7で任意の一対の電極間に電流を流すとともにその他の一対の電極間の電位を測定する。この場合、ボーリング孔2内に注入された泡10により当該電極と孔壁22(地盤面)との導通が確保された後に、ボーリング孔2内に配置された任意の電極に電流を流すので、任意の一対の電極間に電流を確実に流すことができる。そして、測定装置7に設けられたスイッチングボックスにより、電流を流す一対の電極の組と電位を測定する一対の電極の組との組合せを順次変更して測定した電位(比抵抗Ωm)の測定結果に基いて地盤の2次元比抵抗分布又は3次元比抵抗分布を得ることができ、2次元比抵抗分布又は3次元比抵抗分布から地盤の性状を推定することが可能となる。   The measuring device 7 allows a current to flow between any pair of electrodes and measures the potential between the other pair of electrodes. In this case, since the conduction between the electrode and the hole wall 22 (the ground surface) is ensured by the foam 10 injected into the borehole 2, an electric current is passed through an arbitrary electrode arranged in the borehole 2, A current can be reliably passed between any pair of electrodes. Then, the measurement result of the potential (specific resistance Ωm) measured by sequentially changing the combination of the pair of electrodes for passing current and the pair of electrodes for measuring the potential by the switching box provided in the measuring device 7. Therefore, it is possible to obtain a two-dimensional resistivity distribution or a three-dimensional resistivity distribution of the ground, and to estimate the properties of the ground from the two-dimensional resistivity distribution or the three-dimensional resistivity distribution.

本形態によれば、セメンテーション処理やボーリング孔2内への連続注水のような煩雑な作業を行ったり、高価な電極を用いることなく、ボーリング孔2内に注入された泡10により当該電極と孔壁22(地盤面)とが通電するので、任意の一対の電極間に確実に電流を流すことができ、作業性、経済性、測定信頼性に優れた電気探査比抵抗法を実現できる。また、有孔管13を用いたので、泡10をボーリング孔空間内全体Bに満遍なく行き渡らせることができるので、孔内電極3と孔壁22とをより確実に導通させることができる。また、取扱いが容易でかつ孔壁22を介して地盤に浸透しにくい泡10を用いたので、作業性、経済性、測定信頼性に優れ、孔内電極3と孔壁22との導通性を長時間維持できる電気探査比抵抗法を実現できる。   According to this embodiment, without performing complicated work such as cementation treatment or continuous water injection into the borehole 2 or using an expensive electrode, the bubbles 10 injected into the borehole 2 can be connected to the electrode. Since the hole wall 22 (ground surface) is energized, an electric current can be reliably passed between any pair of electrodes, and an electrical exploration resistivity method excellent in workability, economy, and measurement reliability can be realized. Further, since the perforated tube 13 is used, the bubbles 10 can be evenly distributed throughout the entire borehole space B, so that the in-hole electrode 3 and the hole wall 22 can be more reliably conducted. In addition, since the foam 10 that is easy to handle and hardly penetrates the ground through the hole wall 22 is used, the workability, economy, and measurement reliability are excellent, and the conductivity between the in-hole electrode 3 and the hole wall 22 is improved. The electric resistivity method that can be maintained for a long time can be realized.

泡10がボーリング孔空間内全体Bに供給された後も、注入ホース14を有孔管13内に挿入したままとしておき、注入ホース14が挿入された有孔管13内に複数の孔内電極3を設置しても良い。このようにすれば、測定中において泡が少なくなったら即座に泡を追加注入でき、長時間の測定の場合でも信頼性の高い測定を実現できる。   Even after the foam 10 is supplied to the entire bore B space B, the injection hose 14 is kept inserted in the perforated tube 13, and a plurality of in-hole electrodes are inserted in the perforated tube 13 in which the injection hose 14 is inserted. 3 may be installed. In this way, it is possible to immediately inject additional bubbles when the number of bubbles is reduced during measurement, and it is possible to achieve highly reliable measurement even in the case of long-time measurement.

水よりも流動性の低い導電性材料5として、ムースやゲルのような導電性材料5を用いても良い。   As the conductive material 5 having lower fluidity than water, a conductive material 5 such as mousse or gel may be used.

上記形態では、複数の電極が、地盤に設けられた一対のボーリング孔内において上下に所定間隔を隔てて設置されたとともに一対のボーリング孔間の地表面において所定間隔を隔てて設置された構成を例にして説明したが、電極の設置構成としては、複数の電極が、地盤に設けられた一対のボーリング孔内において上下に所定間隔を隔てて設置された構成、又は、複数の電極が、地盤に設けられた1つのボーリング孔内において上下に所定間隔を隔てて設置されたとともに当該ボーリング孔の周囲の地表面において所定間隔を隔てて設置された構成としても良い。   In the above form, a plurality of electrodes are installed at a predetermined interval in the vertical direction in a pair of bore holes provided in the ground and at a predetermined interval on the ground surface between the pair of bore holes. Although described as an example, the electrode installation configuration is a configuration in which a plurality of electrodes are installed at a predetermined interval in the vertical direction within a pair of bore holes provided in the ground, or a plurality of electrodes are provided on the ground. It is good also as a structure installed at predetermined intervals on the ground surface around the said boring hole, while installing in the one boring hole provided in the upper and lower sides at predetermined intervals.

本発明の電気探査比抵抗法は、地盤における水脈、空洞、土密度などを知る判断材料となる2次元比抵抗分布又は3次元比抵抗分布を求めることができる。本発明は、地山に対して横方向や上方向にボーリング孔を形成して2次元比抵抗分布又は3次元比抵抗分布を求めるような場合にも適用可能である。   The electrical exploration resistivity method of the present invention can determine a two-dimensional resistivity distribution or a three-dimensional resistivity distribution as a judgment material for knowing water veins, cavities, soil density, etc. in the ground. The present invention can also be applied to a case where a two-dimensional resistivity distribution or a three-dimensional resistivity distribution is obtained by forming a borehole laterally or upwardly with respect to a natural ground.

2 ボーリング孔、3 孔内電極、4 地上電極、5 導電性材料、7 測定装置、
10 泡、13 有孔管、22 孔壁、W 地下水位、S 地表面。
2 boring hole, 3 hole electrode, 4 ground electrode, 5 conductive material, 7 measuring device,
10 foam, 13 perforated pipe, 22 perforated wall, W groundwater level, S ground surface.

Claims (1)

複数の電極が、地盤に設けられた一対のボーリング孔内において上下に所定間隔を隔てて設置されたとともに一対のボーリング孔間の地表面において所定間隔を隔てて設置された構成、又は、複数の電極が、地盤に設けられた一対のボーリング孔内において上下に所定間隔を隔てて設置された構成、又は、複数の電極が、地盤に設けられた1つのボーリング孔内において上下に所定間隔を隔てて設置されたとともにボーリング孔の周囲の地表面において所定間隔を隔てて設置された構成と、測定装置とを用い、測定装置が任意の一対の電極間に電流を流すとともにその他の一対の電極で測定された電位を測定する電気探査比抵抗法において、
管の外径がボーリング孔の孔径よりも大きい金属管を孔壁保持管として用いて当該孔壁保持管の下端側をボーリング孔の上端開口よりボーリング孔の孔内に嵌め込んで当該孔壁保持管の上端側を地上に突出させるとともに、
管の内面と外面とに貫通するように設けられた複数の孔を備えた有孔管を孔壁保持管の上端開口より挿入してボーリング孔内に設置し、
一端が泡貯留タンクに接続された注入ホースを他端側から有孔管内に入れて当該注入ホースの他端開口を地下水位よりも上方に設置し、泡が孔壁保持管の上端開口より溢れるまで当該注入ホースを介して泡をボーリング孔内に注入した後、当該注入ホースを有孔管内から抜き取り、有孔管内に複数の電極を設置して有孔管内の電極とボーリング孔の孔壁との導通を確保した後に任意の一対の電極間に電流を流したことを特徴とする電気探査比抵抗法
A configuration in which a plurality of electrodes are installed at predetermined intervals in the vertical direction in a pair of boring holes provided in the ground and at a predetermined interval on the ground surface between the pair of boring holes, or a plurality of electrodes A configuration in which the electrodes are vertically arranged in a pair of boring holes provided in the ground with a predetermined interval, or a plurality of electrodes are vertically spaced in a single boring hole provided in the ground The measurement device uses a configuration that is installed at a predetermined interval on the ground surface around the borehole and the measurement device, and the measurement device allows current to flow between any pair of electrodes and the other pair of electrodes. In electrical exploration resistivity method to measure the measured potential,
Using a metal pipe whose outer diameter is larger than the bore diameter of the borehole as a hole wall holding pipe, the lower end side of the hole wall holding pipe is fitted into the borehole hole from the upper end opening of the borehole to hold the hole wall. While projecting the upper end of the tube to the ground,
A perforated pipe having a plurality of holes provided so as to penetrate the inner surface and the outer surface of the pipe is inserted from the upper end opening of the hole wall holding pipe and installed in the borehole,
Put an injection hose, one end of which is connected to the foam storage tank, into the perforated pipe from the other end and install the other end opening of the injection hose above the groundwater level, and the foam overflows from the upper end opening of the hole holding pipe after injecting the foam into the borehole through the injection hose to, of the injection hose withdrawn from the perforated pipe, by installing a plurality of electrodes in the perforated tube of perforated inner tube electrode and the borehole hole wall An electrical exploration resistivity method, characterized in that a current is passed between any pair of electrodes after ensuring electrical continuity with .
JP2009077261A 2009-03-26 2009-03-26 Electrical resistivity method Active JP5350038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077261A JP5350038B2 (en) 2009-03-26 2009-03-26 Electrical resistivity method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077261A JP5350038B2 (en) 2009-03-26 2009-03-26 Electrical resistivity method

Publications (2)

Publication Number Publication Date
JP2010230433A JP2010230433A (en) 2010-10-14
JP5350038B2 true JP5350038B2 (en) 2013-11-27

Family

ID=43046416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077261A Active JP5350038B2 (en) 2009-03-26 2009-03-26 Electrical resistivity method

Country Status (1)

Country Link
JP (1) JP5350038B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559660B2 (en) * 2010-11-01 2014-07-23 国土交通省四国地方整備局長 Measuring method of soil saturation
KR101245840B1 (en) * 2011-02-18 2013-03-21 한국지질자원연구원 Method for detecting structural stability of object area using potential difference and apparatus for the same
JP5933225B2 (en) * 2011-11-11 2016-06-08 株式会社不動テトラ How to inject air into the ground
KR102073331B1 (en) * 2019-08-30 2020-03-02 주식회사 지오그린21 Vertical type electrical resistivity tomography device and installation method thereof
CN113050173B (en) * 2021-03-12 2023-12-12 中国电建集团贵阳勘测设计研究院有限公司 Electric testing method for leakage channel port of slag warehouse
CN113125517B (en) * 2021-04-09 2023-11-28 浙江省水利河口研究院(浙江省海洋规划设计研究院) Device and method for monitoring root infiltrating irrigation by utilizing three-dimensional resistivity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772741B2 (en) * 1987-03-27 1995-08-02 正視 藤井 Ground resistance measurement method
JPH079465B2 (en) * 1991-10-11 1995-02-01 株式会社ダイヤコンサルタント Automatic electrical exploration method
JPH10220182A (en) * 1997-02-07 1998-08-18 Toda Constr Co Ltd Specific resistivity measuring device and tunnel excavating machine using the same device
JP2005337746A (en) * 2004-05-24 2005-12-08 National Institute For Rural Engineering Electric exploration method
JP2006119096A (en) * 2004-10-25 2006-05-11 Central Res Inst Of Electric Power Ind Electrode cable for measuring specific resistance
JP4842001B2 (en) * 2006-04-14 2011-12-21 富士重工業株式会社 Design support device for steering stability
JP5018230B2 (en) * 2007-05-16 2012-09-05 Jfeエンジニアリング株式会社 Anti-corrosion monitoring electrode cap, anti-corrosion monitoring electrode

Also Published As

Publication number Publication date
JP2010230433A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5350038B2 (en) Electrical resistivity method
CA2843625A1 (en) Use of nanotracers for imaging and/or monitoring fluid flow and improved oil recovery
CN108368684A (en) Utilize the basement rock grouting monitoring method of resistivity
JP6211049B2 (en) Grout material detection method
RU2012120701A (en) CONSTRUCTION OF IMAGES OF SPECIFIC MICRO-RESISTANCE AT NUMEROUS DEPTHS OF RESEARCH
KR101367099B1 (en) Excavating screw for auger crane and backhoe having camera for locating buried objects
RU2248019C2 (en) Method of measuring column diameter
RU157109U1 (en) ELECTROLYTIC EARTHING DEVICE
JP6976806B2 (en) Construction management method of ground improvement body
KR101358569B1 (en) Midair ground connection steel bar, wrong using ground resistance that domination injection device and midair ground connection steel bar and ground resistance that domination same time laying form of construction work
KR101150956B1 (en) Grouting method using electric conducting tracer
KR101266909B1 (en) Device for electrical resistivity survey and method of electrical resistivity survey in using the same
Zhou et al. Characterization of the unsaturated zone around a cavity in fractured rocks using electrical resistivity tomography
CN104356293B (en) A kind of grounding resistance-reducing agent prescription for mountain area rock and blasting construction method
JP5718432B1 (en) Stable liquid solidification method
CN206311653U (en) Vertical section of soil voltage detecting system
JP2542333B2 (en) Method and apparatus for detecting improved state of improved column in high-pressure injection stirring method
KR101214592B1 (en) devices for borehole resistivity tomography in the soft ground
CN203480043U (en) Grounding electrode device of high-density electric method instrument
JP2011133301A (en) Method for surveying bottom depth of underground base structure
BR112017021156B1 (en) Process for recovering hydrocarbons and system for heating in situ from a formation containing hydrocarbons
KR101228613B1 (en) Geological survey device for road
CN206804885U (en) A kind of grounding electrode servicing unit for being applied to tilt hardened ground exploration
KR101324102B1 (en) Grounding electrode for electrical resistivity survey
JP2548676B2 (en) Method for confirming the effect of ground improvement work by chemical injection method and equipment used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5350038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250