JP2006119096A - Electrode cable for measuring specific resistance - Google Patents

Electrode cable for measuring specific resistance Download PDF

Info

Publication number
JP2006119096A
JP2006119096A JP2004310008A JP2004310008A JP2006119096A JP 2006119096 A JP2006119096 A JP 2006119096A JP 2004310008 A JP2004310008 A JP 2004310008A JP 2004310008 A JP2004310008 A JP 2004310008A JP 2006119096 A JP2006119096 A JP 2006119096A
Authority
JP
Japan
Prior art keywords
electrode
cable
boring hole
electrodes
conductive elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004310008A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
浩一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004310008A priority Critical patent/JP2006119096A/en
Publication of JP2006119096A publication Critical patent/JP2006119096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

<P>PROBLEM TO BE SOLVED: To execute a specific resistance tomography method or electric logging even in a bored hole wherein in-hole water is absent. <P>SOLUTION: This electrode cable 1 inserted in the bored hole 2 has: a cable body 3 wherein a large number of conducting wires 6 are bundled; electrodes 4 installed to the cable body 3 at prescribed intervals apart from each other; and a plurality of electroconductive elastic bodies 5 radially spreading in the radial direction of the cable body 3 from the electrodes 4. The number of the bundled conducting wires 6 is equal to the number of the electrodes 4, and the electrode 4 is electrically conducted to the conducting wire 6 different from the other electrode 4. The electroconductive elastic body 5 spreads more largely than a hole diameter of the borehole 2, and contacts with the inner wall face 2a of the bored hole 2 while elastically deformed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、比抵抗測定用の電極ケーブルに関する。さらに詳述すると、本発明は、無水ボーリング孔について比抵抗トモグラフィ法や電気検層を行うのに適した比抵抗測定用の電極ケーブルに関するものである。   The present invention relates to an electrode cable for measuring specific resistance. More specifically, the present invention relates to an electrode cable for measuring specific resistance suitable for performing a specific resistance tomography method and an electric logging on an anhydrous boring hole.

ボーリング孔の掘削影響領域の岩盤特性やその広がり等を把握するための測定手段として、電気検層や比抵抗トモグラフィ法がある。一般的に電気検層や比抵抗トモグラフィ法では地下水の存在するボーリング孔内に比抵抗測定用の電極を挿入し、この電極と地盤との電気的な導通を孔内水を介して確保し、地盤の比抵抗を計測する。   There are electrical logging and resistivity tomography as measurement means for grasping the rock characteristics and the extent of the drilling affected area of the borehole. In general, electrical logging and resistivity tomography methods insert an electrode for resistivity measurement into a borehole where groundwater exists, and ensure electrical continuity between the electrode and the ground via the borehole water. Measure the resistivity of the ground.

例えば、電気検層として特開2002−267764号公報に開示された技術がある。この技術は水平なボーリング孔についての電気検層であり、その電気検層方法を実施する測定装置を図7及び図8に示す。ケーシングロッド101内に先端に電極部102を有する電極ロッド103を延在させておき、ケーシングロッド101に付与された回転推進力によってトンネル切羽前方地盤の所定深さまで水平ボーリング孔104を削孔する。次に、口元キャップ105で水平ボーリング孔104の口元を閉塞して、その孔内を流入地下水で満たすとともに、電極ロッド103のトンネル側端を介してトンネル坑内に設置された電気検層測定装置106に結線された電極部102を、ケーシングロッド101先端からボーリング孔104内に突出させる。これにより電気検層測定装置106に結線された接地電極107との間で地盤の比抵抗を測定し、電極部102位置での電気検層を行う。   For example, there is a technique disclosed in Japanese Patent Laid-Open No. 2002-267664 as an electric logging. This technique is an electric logging for a horizontal borehole, and a measuring apparatus for performing the electric logging method is shown in FIGS. An electrode rod 103 having an electrode portion 102 at its tip is extended in the casing rod 101, and the horizontal boring hole 104 is drilled to a predetermined depth in the ground in front of the tunnel face by the rotational driving force applied to the casing rod 101. Next, the mouth of the horizontal boring hole 104 is closed with the mouth cap 105, the inside of the hole is filled with inflow groundwater, and the electric logging measuring device 106 installed in the tunnel mine via the tunnel side end of the electrode rod 103 is used. The electrode part 102 wired in the above is protruded from the tip of the casing rod 101 into the boring hole 104. Thereby, the specific resistance of the ground is measured between the ground electrode 107 connected to the electrical logging measuring device 106, and electrical logging is performed at the position of the electrode portion 102.

特開2002−267764号公報Japanese Patent Laid-Open No. 2002-267664

しかしながら、上述の電気検層や比抵抗トモグラフィ法では、孔内水を介して地盤と電極との間の導通を確保するので、孔内水の存在しないボーリング孔、例えばトンネル内坑壁から上向きに掘削したボーリング孔や、ボーリング孔の地下水面よりも上部の孔区間等については、孔壁面と電極との導通を確保することができず、比抵抗の測定が困難であった。   However, the electrical logging and resistivity tomography methods described above ensure electrical continuity between the ground and the electrode through the borehole water, so that the borehole where no borehole water exists, for example, upward from the tunnel wall in the tunnel For the borehole drilled in the borehole, the hole section above the groundwater surface of the borehole, etc., it was difficult to ensure the electrical connection between the hole wall surface and the electrode, and it was difficult to measure the specific resistance.

また、図7及び図8に示す測定装置においても、同様の問題があった。即ち、削孔時には水平ボーリング孔104内は地下水で満たされていないものの、比抵抗測定時には口元キャップ105によって流入地下水をせき止めて水平ボーリング孔104内を地下水で満たすようにし、これによって電極部102と孔壁面との導通を確保しているので、ボーリング孔内にある割れ目などから地下水が流出しボーリング孔104内を地下水で満たせない場合、電極部102と孔壁面との導通を確保できず、比抵抗の測定が困難であった。   Further, the measuring apparatus shown in FIGS. 7 and 8 has the same problem. That is, the horizontal boring hole 104 is not filled with groundwater when drilling, but the inflowing groundwater is blocked by the mouth cap 105 when measuring the specific resistance so that the horizontal boring hole 104 is filled with groundwater. Since continuity with the hole wall surface is ensured, if groundwater flows out from a crack or the like in the borehole and the borehole 104 cannot be filled with groundwater, the continuity between the electrode portion 102 and the hole wall surface cannot be ensured. It was difficult to measure resistance.

本発明は、孔内水の存在しないボーリング孔においてもボーリング孔の内壁面と電極との導通を確保することができる比抵抗測定用の電極ケーブルを提供することを目的とする。   An object of the present invention is to provide a specific resistance measurement electrode cable capable of ensuring electrical connection between an inner wall surface of a boring hole and an electrode even in a boring hole in which water in the hole does not exist.

上記目的を達成するために、請求項1記載の比抵抗測定用の電極ケーブルは、ボーリング孔に挿入され、多数の導線を束ねたケーブル本体と、ケーブル本体に所定間隔をあけて取り付けられた電極と、電極からケーブル本体の径方向に放射状に広がる複数の導電性弾性体を備え、導線は少なくとも電極と同じ数だけ束ねられており、電極は他の電極と異なる導線に導通されており、導電性弾性体は弾性変形しながらボーリング孔の内壁面に接触するものである。   In order to achieve the above object, an electrode cable for measuring resistivity according to claim 1 is inserted into a boring hole, and a cable body in which a large number of conducting wires are bundled, and an electrode attached to the cable body at a predetermined interval. And a plurality of conductive elastic bodies extending radially from the electrode in the radial direction of the cable body, the conductive wires are bundled at least in the same number as the electrodes, and the electrodes are electrically connected to different conductive wires from the other electrodes. The elastic elastic body comes into contact with the inner wall surface of the borehole while being elastically deformed.

したがって、電極ケーブルをボーリング孔に挿入すると、導電性弾性体がボーリング孔の内壁面に接触し、電極と内壁面とを導通させる。導電性弾性体は複数設けられており、電極から放射状に、且つ押さえ付けられなければボーリング孔の孔径よりも大きく広がるので、必ずボーリング孔の内壁面と接触する。しかも、導電性弾性体は弾性変形しながらボーリング孔の内壁面に接触するので、内壁面との導通を良好に確保できる。ボーリング孔に電極ケーブルを挿入するには、例えば棒の先端に電極ケーブルの先端を引っ掛け、その棒ごとボーリング孔に挿入する。一方、ボーリング孔から棒と一緒に電極ケーブルを引き抜くことで、電極ケーブルをボーリング孔から回収することができる。導電性弾性体はボーリング孔の内壁面と接触しているが、導電性弾性体は放射状に設けられているので電極の周方向については部分的な接触になり、内壁面との接触面積は小さい。また、導電性弾性体は弾性体であるので、ケーブル本体及び電極の移動に応じて弾性変形する。これらのため、電極ケーブルをボーリング孔に挿入したりボーリング孔内から回収する際の抵抗力は小さい。多数の導線を束ねたケーブル本体には多数の電極が設けられているが、導線と電極は1対1に対応しているので、導線を選択することで測定に使用する電極を選択することができる。   Therefore, when the electrode cable is inserted into the boring hole, the conductive elastic body comes into contact with the inner wall surface of the boring hole, and conducts the electrode and the inner wall surface. A plurality of conductive elastic bodies are provided, radially extending from the electrode and larger than the hole diameter of the borehole unless pressed down, and therefore always contact the inner wall surface of the borehole. Moreover, since the conductive elastic body comes into contact with the inner wall surface of the boring hole while being elastically deformed, good conduction with the inner wall surface can be ensured. In order to insert the electrode cable into the boring hole, for example, the tip of the electrode cable is hooked on the tip of the rod, and the entire rod is inserted into the boring hole. On the other hand, by pulling out the electrode cable together with the rod from the boring hole, the electrode cable can be recovered from the boring hole. The conductive elastic body is in contact with the inner wall surface of the boring hole. However, since the conductive elastic body is provided in a radial manner, the contact with the inner wall surface is small because of partial contact in the circumferential direction of the electrode. . Further, since the conductive elastic body is an elastic body, it is elastically deformed according to the movement of the cable body and the electrode. For these reasons, the resistance force when the electrode cable is inserted into the boring hole or recovered from the boring hole is small. A cable main body in which a large number of conducting wires are bundled is provided with a large number of electrodes. However, since the conducting wires and the electrodes correspond one-to-one, it is possible to select an electrode to be used for measurement by selecting a conducting wire. it can.

また、請求項2記載の比抵抗測定用の電極ケーブルは、導電性弾性体が、電極から放射状に突出する複数の金属製スプリングと、金属製スプリングの少なくとも先端部を覆う金属製糸状部材集合体を有するものである。   The electrode cable for measuring specific resistance according to claim 2, wherein the conductive elastic body has a plurality of metal springs projecting radially from the electrode, and a metal thread-like member assembly covering at least the tip of the metal spring. It is what has.

したがって、電極とボーリング孔の内壁面との導通は、金属製スプリングと金属製糸状部材集合体を介して確保される。導電性弾性体はその先端部でボーリング孔の内壁面と接触するが、金属製スプリングの少なくとも先端部は金属製糸状部材集合体によって覆われているので、ボーリング孔の内壁面との接触面積を大きくすることができる。   Therefore, conduction between the electrode and the inner wall surface of the boring hole is ensured through the metal spring and the metal thread-like member assembly. The conductive elastic body is in contact with the inner wall surface of the boring hole at its tip, but since at least the tip of the metal spring is covered with the metal thread-like member assembly, the contact area with the inner wall surface of the boring hole is reduced. Can be bigger.

さらに、請求項3記載の比抵抗測定用の電極ケーブルは、金属製糸状部材集合体に塩水を染み込ませたものである。したがって、金属製糸状部材集合体とボーリング孔の内壁面との直接接触に加えて、塩水を介しても金属製糸状部材集合体とボーリング孔の内壁面との導通が確保される。塩水は金属製糸状部材集合体内の隙間に保持される。   Furthermore, the electrode cable for measuring specific resistance according to claim 3 is obtained by impregnating a metal thread-like member assembly with salt water. Therefore, in addition to direct contact between the metal thread-like member aggregate and the inner wall surface of the boring hole, conduction between the metal thread-like member aggregate and the inner wall surface of the boring hole is ensured even through salt water. Brine is held in the gap in the metal thread-like member assembly.

請求項1記載の比抵抗測定用の電極ケーブルでは、ボーリング孔に挿入され、多数の導線を束ねたケーブル本体と、ケーブル本体に所定間隔をあけて取り付けられた電極と、電極からケーブル本体の径方向に放射状に広がる複数の導電性弾性体を備え、導線は少なくとも電極と同じ数だけ束ねられており、電極は他の電極と異なる導線に導通されており、導電性弾性体は弾性変形しながらボーリング孔の内壁面に接触するので、ボーリング孔の内壁面と電極との導通を良好に確保することができる。このため、孔内水の存在しないボーリング孔についても電極と内壁面との導通を容易に確保することができ、電気検層や比抵抗トモグラフィ法の実施が可能になる。また、電極ケーブルをボーリング孔に挿入したりボーリング孔内から回収する際の抵抗力が小さいので、電極ケーブルの設置や回収が容易である。また、電極ケーブルを長くしても挿入時や回収時の抵抗力があまり大きくならないので、電極ケーブルを長くすることができて深いボーリング孔にも対応することができる。   The electrode cable for measuring specific resistance according to claim 1, wherein the cable body is inserted into the boring hole and bundled with a large number of conductors, the electrode is attached to the cable body at a predetermined interval, and the diameter of the cable body from the electrode A plurality of conductive elastic bodies that radiate in the direction are provided, and the conductive wires are bundled at least as many as the electrodes, the electrodes are connected to different conductive wires from the other electrodes, and the conductive elastic bodies are elastically deformed Since contact is made with the inner wall surface of the borehole, electrical connection between the inner wall surface of the borehole and the electrode can be ensured satisfactorily. For this reason, electrical connection between the electrode and the inner wall surface can be easily ensured even for a boring hole in which no water in the hole exists, and electric logging and specific resistance tomography can be performed. In addition, since the resistance force when the electrode cable is inserted into the boring hole or recovered from the boring hole is small, it is easy to install and recover the electrode cable. Also, even if the electrode cable is lengthened, the resistance force at the time of insertion or recovery does not become so large, so that the electrode cable can be lengthened and can cope with deep boring holes.

また、請求項2記載の比抵抗測定用の電極ケーブルでは、導電性弾性体が、電極から放射状に突出する複数の金属製スプリングと、金属製スプリングの少なくとも先端部を覆う金属製糸状部材集合体を有しているので、導電性弾性体とボーリング孔の内壁面との接触面積を大きくすることができ、より良好な導通を確保することができる。   Further, in the electrode cable for measuring specific resistance according to claim 2, the conductive elastic body includes a plurality of metal springs projecting radially from the electrode, and a metal thread-like member assembly covering at least the tip of the metal spring. Therefore, the contact area between the conductive elastic body and the inner wall surface of the boring hole can be increased, and better conduction can be ensured.

さらに、請求項3記載の比抵抗測定用の電極ケーブルでは、金属製糸状部材集合体に塩水を染み込ませているので、金属製糸状部材集合体とボーリング孔の内壁面との直接接触に加えて、塩水を介しても金属製糸状部材集合体とボーリング孔の内壁面との導通を確保することができ、より一層良好な導通を確保することができる。   Furthermore, in the electrode cable for measuring the specific resistance according to claim 3, since salt water is infiltrated into the metal thread-like member assembly, in addition to direct contact between the metal thread-like member assembly and the inner wall surface of the borehole. Even through salt water, electrical conduction between the metal thread-like member assembly and the inner wall surface of the boring hole can be secured, and even better electrical conduction can be secured.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1〜図3に、本発明の比抵抗測定用の電極ケーブルの実施形態の一例を示す。比抵抗測定用の電極ケーブル(以下、単に電極ケーブルという)1は、ボーリング孔2に挿入され、多数の導線6を束ねたケーブル本体3と、ケーブル本体3に所定間隔をあけて取り付けられた電極4と、電極4からケーブル本体3の径方向に放射状に広がる複数の導電性弾性体5を備えている。   1 to 3 show an example of an embodiment of an electrode cable for measuring specific resistance according to the present invention. An electrode cable (hereinafter simply referred to as an electrode cable) 1 for measuring a specific resistance is inserted into a boring hole 2 and a cable body 3 in which a large number of conducting wires 6 are bundled, and an electrode attached to the cable body 3 at a predetermined interval. 4 and a plurality of conductive elastic bodies 5 extending radially from the electrode 4 in the radial direction of the cable body 3.

導線6は電極4と同じ数だけ束ねられている。即ち、ケーブル本体3は導線6を電極4と同じ数だけ束ねた多芯ケーブルであり、導線6は他の導線6から絶縁されている。本実施形態では、電極4を例えば25cm間隔で30個設けているので、被覆導線6を30本束ねてケーブル本体3を構成している。ただし、電極4の間隔は25cmに限るものではなく、ボーリング孔2の深さ等に応じて適宜決定すれば良い。また、電極4の個数や導線6の本数は30に限るものではなく、ボーリング孔2の深さ等に応じて適宜決定すれば良い。ただし、比抵抗の測定には、少なくとも電流電極となる2つの電極4と電位電極となる2つの電極4が必要である。   The same number of conductors 6 as the electrodes 4 are bundled. That is, the cable body 3 is a multi-core cable in which the same number of conductive wires 6 as the electrodes 4 are bundled, and the conductive wires 6 are insulated from the other conductive wires 6. In the present embodiment, 30 electrodes 4 are provided, for example, at intervals of 25 cm, so that the cable body 3 is configured by bundling 30 coated conductors 6. However, the distance between the electrodes 4 is not limited to 25 cm, and may be appropriately determined according to the depth of the boring hole 2 or the like. Further, the number of the electrodes 4 and the number of the conductive wires 6 are not limited to 30, and may be appropriately determined according to the depth of the boring hole 2 or the like. However, the measurement of specific resistance requires at least two electrodes 4 serving as current electrodes and two electrodes 4 serving as potential electrodes.

電極4は他の電極4と異なる導線6に導通されている。即ち、導線6と電極4は1対1に対応している。   The electrode 4 is electrically connected to a conductive wire 6 different from the other electrodes 4. That is, the conducting wire 6 and the electrode 4 have a one-to-one correspondence.

導電性弾性体5はボーリング孔2の孔径よりも大きく広がるものであり、弾性変形しながらボーリング孔2の内壁面2aに接触する。例えば、ボーリング孔2の孔径が101mmの場合には、導電性弾性体5は少なくとも160mm以上(図3の寸法d)の大きさに広がることが好ましい。ただし、導電性弾性体5が広がる大きさはこの値に限るものではないことは勿論である。   The conductive elastic body 5 extends larger than the hole diameter of the boring hole 2 and contacts the inner wall surface 2a of the boring hole 2 while being elastically deformed. For example, when the hole diameter of the boring hole 2 is 101 mm, the conductive elastic body 5 preferably spreads at least 160 mm (dimension d in FIG. 3). However, it goes without saying that the size at which the conductive elastic body 5 spreads is not limited to this value.

本実施形態では、各電極4毎にケーブル本体3の径方向に放射状に等間隔で広がる4つの導電性弾性体5、換言すると十字状に配置された4つの導電性弾性体5を有している。ただし、導電性弾性体5の数は4つに限るものではなく、複数あれば良い。例えば、図4に示すように、ケーブル本体3の径方向に放射状に等間隔で広がる3つの導電性弾性体5を有していても良く、あるいは図5に示すように、ケーブル本体3の径方向に放射状に等間隔で広がる2つの導電性弾性体5、換言すると直線状に配置された2つの導電性弾性体5を有していても良く、さらには5つ以上の導電性弾性体5を有していても良い。つまり、各電極4毎に2つ以上の導電性弾性体5を有していれば少なくとも1つの導電性弾性体5をボーリング孔2の内壁面2aに必ず接触させてこれらを導通させることができるが、電極ケーブル1をボーリング孔2に挿入したりボーリング孔2内から回収する際の抵抗力や製造コストは導電性弾性体5の数の増加に応じて増加するので、前記導通の確保と前記抵抗力の大きさ、製造コスト等を考慮して導電性弾性体5の数を決定するのが好ましい。   In the present embodiment, each electrode 4 has four conductive elastic bodies 5 that spread radially at equal intervals in the radial direction of the cable body 3, in other words, four conductive elastic bodies 5 arranged in a cross shape. Yes. However, the number of the conductive elastic bodies 5 is not limited to four, and may be plural. For example, as shown in FIG. 4, you may have the three electroconductive elastic bodies 5 which spread radially at equal intervals in the radial direction of the cable main body 3, or, as shown in FIG. You may have two electroconductive elastic bodies 5 which spread in the direction radially at equal intervals, in other words, you may have two electroconductive elastic bodies 5 arranged in a straight line, and also 5 or more electroconductive elastic bodies 5 You may have. That is, if each electrode 4 has two or more conductive elastic bodies 5, at least one conductive elastic body 5 can be brought into contact with the inner wall surface 2a of the boring hole 2 to make them conductive. However, since the resistance force and the manufacturing cost when the electrode cable 1 is inserted into the boring hole 2 or recovered from the boring hole 2 are increased in accordance with the increase in the number of the conductive elastic bodies 5, It is preferable to determine the number of conductive elastic bodies 5 in consideration of the magnitude of the resistance force, the manufacturing cost, and the like.

導電性弾性体5は、例えば電極4から放射状に突出する複数の金属製スプリング7と、金属製スプリング7の少なくとも先端部を覆う金属製糸状部材集合体8を有している。金属製スプリング7は、例えばコイルスプリングである。ただし、金属製スプリング7はコイルスプリングに限るものではなく、例えばケーブル本体3の軸線方向に撓む板ばね等であっても良い。また、金属製糸状部材集合体8は、例えば糸状のアルミニウムを立体状に編み込んだもので、例えば金属製のたわしの使用が可能である。本実施形態では、金属製スプリング7の付け根近傍まで金属製糸状部材集合体8で覆っている。また、全ての金属製スプリング7を金属製糸状部材集合体8で覆っている。金属製スプリング7を金属製糸状部材集合体8で覆うことで、ボーリング孔2の内壁面2aとの接触面積を大きくすることができ、接触抵抗を低減させることができてより良好な導通を確保することができる。   The conductive elastic body 5 includes, for example, a plurality of metal springs 7 that project radially from the electrode 4 and a metal thread-like member assembly 8 that covers at least the tip of the metal spring 7. The metal spring 7 is, for example, a coil spring. However, the metal spring 7 is not limited to a coil spring, and may be, for example, a leaf spring that bends in the axial direction of the cable body 3. The metal thread-like member assembly 8 is made of, for example, three-dimensionally knitted thread-like aluminum, and for example, a metal scrubber can be used. In the present embodiment, the metal thread-like member assembly 8 covers the vicinity of the base of the metal spring 7. Further, all metal springs 7 are covered with a metal thread-like member assembly 8. By covering the metal spring 7 with the metal thread-like member assembly 8, the contact area with the inner wall surface 2a of the boring hole 2 can be increased, and the contact resistance can be reduced to ensure better conduction. can do.

また、金属製糸状部材集合体8には塩水が染み込ませてある。このため、金属製糸状部材集合体8とボーリング孔2の内壁面2aとの直接接触に加えて、塩水を介しても金属製糸状部材集合体8とボーリング孔2の内壁面2aとの導通を確保することができ、接触抵抗をより一層低減させることができてより一層良好な導通を確保することができる。金属製糸状部材集合体8は内部の隙間に塩水を保持することができ、良好な導通を長時間にわたって維持することができる。   The metal thread-like member assembly 8 is soaked with salt water. For this reason, in addition to direct contact between the metal thread-like member assembly 8 and the inner wall surface 2a of the boring hole 2, conduction between the metal thread-like member assembly 8 and the inner wall surface 2a of the boring hole 2 can be achieved even through salt water. It can be ensured, contact resistance can be further reduced, and even better conduction can be ensured. The metal thread-like member assembly 8 can hold salt water in the internal gap, and can maintain good conduction for a long time.

電極ケーブル1は、ボーリング孔2に挿入して使用される。電極ケーブル1をボーリング孔2に挿入するには、例えば棒9を使用する。棒9は、例えば塩ビパイプである。棒9の先端に電極ケーブル1の先端を引っ掛け、その棒9ごとボーリング孔2に挿入する。ボーリング孔2に挿入する前の状態では、導電性弾性体5はボーリング孔2の孔径よりも広がっているが、導電性弾性体5は弾性変形するので、電極ケーブル1をボーリング孔2に挿入することができる。ボーリング孔2内では導電性弾性体5は広がり、必ず内壁面2aと接触する。しかも、導電性弾性体5はその弾性力で強くボーリング孔2の内壁面2aに接触するので、内壁面2aとの導通を良好に確保できる。このため、例えばボーリング孔の地下水面より上部の孔区間や、トンネル内坑壁から上向きに掘削したボーリング孔等の孔内水の存在しないボーリング孔2においても電極4とボーリング孔2の内壁面2aとの導通を確実且つ容易に確保することができ、電気検層や比抵抗トモグラフィ法の実施が可能になる。   The electrode cable 1 is used by being inserted into the boring hole 2. In order to insert the electrode cable 1 into the boring hole 2, for example, a rod 9 is used. The rod 9 is, for example, a PVC pipe. The tip of the electrode cable 1 is hooked on the tip of the rod 9 and the rod 9 is inserted into the boring hole 2. In a state before being inserted into the boring hole 2, the conductive elastic body 5 is wider than the hole diameter of the boring hole 2, but since the conductive elastic body 5 is elastically deformed, the electrode cable 1 is inserted into the boring hole 2. be able to. The conductive elastic body 5 spreads in the boring hole 2 and always comes into contact with the inner wall surface 2a. Moreover, since the conductive elastic body 5 is strongly in contact with the inner wall surface 2a of the boring hole 2 by its elastic force, it is possible to ensure good conduction with the inner wall surface 2a. For this reason, the electrode 4 and the inner wall surface 2a of the borehole 2 are also present in the bore section 2 above the groundwater surface of the borehole, or in the borehole 2 where there is no borehole water such as a borehole drilled upward from the tunnel borehole wall. Can be reliably and easily ensured, and electrical logging and specific resistance tomography can be performed.

なお、孔内水の存在しないボーリング孔2について、そのボーリング孔2内に水を強制的に入れて電極4と内壁面2aとの導通を確保することも考えられるが、この場合には地盤の自然な状態を破壊することになり、自然状態における正しい測定結果を得ることが困難になる。本発明では、孔内水の存在しないボーリング孔2に対してそのままの状態で比抵抗を測定することができ、自然状態における正しい測定結果を得ることができる。   In addition, about the boring hole 2 in which the water in a hole does not exist, it is also considered that water is forced into the boring hole 2 to ensure electrical connection between the electrode 4 and the inner wall surface 2a. The natural state will be destroyed, making it difficult to obtain a correct measurement result in the natural state. In the present invention, the specific resistance can be measured as it is with respect to the boring hole 2 in which no water in the hole exists, and a correct measurement result in a natural state can be obtained.

電極ケーブル1をボーリング孔2の所定深さまで挿入することで、例えば30個の電極4を25cm間隔で配置してボーリング孔2の内壁面2aに導通させることができる。   By inserting the electrode cable 1 to a predetermined depth of the boring hole 2, for example, 30 electrodes 4 can be arranged at intervals of 25 cm and conducted to the inner wall surface 2 a of the boring hole 2.

一方、ボーリング孔2から棒9と一緒に電極ケーブル1を引き抜くことで、電極ケーブル1をボーリング孔2から回収することができる。   On the other hand, the electrode cable 1 can be recovered from the boring hole 2 by pulling out the electrode cable 1 together with the rod 9 from the boring hole 2.

導電性弾性体5はボーリング孔2の内壁面2aと接触しているが、導電性弾性体5は放射状に設けられており、電極4の周方向については部分的な接触となるので、内壁面2aとの接触面積は小さい。また、導電性弾性体5は弾性体であるので、ケーブル本体3及び電極4の移動に応じて弾性変形する。これらのため、電極ケーブル1をボーリング孔2に挿入したりボーリング孔2内から回収する際の抵抗力は小さく、電極ケーブル1の挿入や回収が容易である。また、電極ケーブル1を長くしても挿入時や回収時の抵抗力はあまり大きくならないので、電極ケーブル1を長くすることができ、深いボーリング孔2にも対応することができる。   Although the conductive elastic body 5 is in contact with the inner wall surface 2a of the boring hole 2, the conductive elastic body 5 is provided in a radial manner and is in partial contact with respect to the circumferential direction of the electrode 4. The contact area with 2a is small. Further, since the conductive elastic body 5 is an elastic body, it is elastically deformed according to the movement of the cable body 3 and the electrode 4. Therefore, the resistance force when the electrode cable 1 is inserted into the boring hole 2 or recovered from the boring hole 2 is small, and the electrode cable 1 can be easily inserted and recovered. Moreover, even if the electrode cable 1 is lengthened, the resistance force at the time of insertion or recovery does not increase so much, so that the electrode cable 1 can be lengthened and the deep boring hole 2 can be dealt with.

電極ケーブル1の基端には、図示しない比抵抗測定装置が接続される。比抵抗測定装置は例えば30個の接続端子を有しており、ケーブル本体3の導線6は1本ずつ別々の接続端子に接続されている。比抵抗測定装置は接続端子の選択によって測定に使用する電極4を選択する。即ち、比抵抗測定装置はコンピュータ制御により電流を流す2つの接続端子と電位を測定する2つの接続端子を選択し、これらの組合せを順次切り換えて比抵抗の測定を行う。   A specific resistance measuring device (not shown) is connected to the proximal end of the electrode cable 1. The specific resistance measuring apparatus has, for example, 30 connection terminals, and the conductive wires 6 of the cable body 3 are connected to separate connection terminals one by one. The specific resistance measuring device selects the electrode 4 to be used for measurement by selecting the connection terminal. That is, the specific resistance measuring device selects two connection terminals for supplying current and two connection terminals for measuring potential under computer control, and measures the specific resistance by sequentially switching these combinations.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の説明では、導電性弾性体5を金属製スプリング7と金属製糸状部材集合体8で構成していたが、金属製スプリング7によってボーリング孔2の内壁面2aとの間の導通を確保できる場合には、金属製糸状部材集合体8を省略しても良い。金属製糸状部材集合体8を省略した導電性弾性体5の例を図6に示す。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above description, the conductive elastic body 5 is composed of the metal spring 7 and the metal thread-like member assembly 8, but the metal spring 7 allows conduction between the inner wall surface 2 a of the boring hole 2. If it can be secured, the metal thread-like member assembly 8 may be omitted. An example of the conductive elastic body 5 in which the metal thread-like member assembly 8 is omitted is shown in FIG.

また、上述の説明では、全ての金属製スプリング7を金属製糸状部材集合体8で覆っていたが、全ての金属製スプリング7を金属製糸状部材集合体8で覆う必要はなく、金属製糸状部材集合体8で覆った金属製スプリング7と金属製糸状部材集合体8で覆っていない金属製スプリング7を混在させても良い。一部の金属製スプリング7について金属製糸状部材集合体8の被覆を省略することで、導電性弾性体5とボーリング孔2の内壁面2aとの導電を確保しつつ、金属製糸状部材集合体8の使用量を減らして製造コストを削減することができる。   Further, in the above description, all the metal springs 7 are covered with the metal thread-like member aggregate 8, but it is not necessary to cover all the metal springs 7 with the metal thread-like member aggregate 8, and the metal thread-like shape is not necessary. The metal spring 7 covered with the member assembly 8 and the metal spring 7 not covered with the metal thread-like member assembly 8 may be mixed. By omitting the coating of the metal thread-like member aggregate 8 on some of the metal springs 7, the metal thread-like member aggregate is secured while ensuring the conductivity between the conductive elastic body 5 and the inner wall surface 2 a of the boring hole 2. 8 can be used to reduce the manufacturing cost.

また、上述の説明では、金属製スプリング7の付け根近傍まで金属製糸状部材集合体8で覆っていたが、金属製スプリング7の先端部のみを金属製糸状部材集合体8で覆うようにしても良い。この場合にも、導電性弾性体5とボーリング孔2の内壁面2aとの導電を確保しつつ、金属製糸状部材集合体8の使用量を減らして製造コストを削減することができる。   In the above description, the metal thread-like member assembly 8 covers the vicinity of the base of the metal spring 7. However, only the tip of the metal spring 7 may be covered with the metal thread-like member assembly 8. good. Also in this case, the manufacturing cost can be reduced by reducing the amount of the metal thread-like member assembly 8 used while ensuring the conductivity between the conductive elastic body 5 and the inner wall surface 2a of the boring hole 2.

本発明の比抵抗測定用の電極ケーブルの実施形態の一例を示し、ボーリング孔に挿入した状態の側面図である。It is a side view of the state which showed an example of embodiment of the electrode cable for specific resistance measurement of this invention, and was inserted in the boring hole. 本発明の比抵抗測定用の電極ケーブルの実施形態の一例を示し、ボーリング孔に挿入する前の状態の側面図である。It is a side view of the state before showing an example of embodiment of the electrode cable for specific resistance measurement of this invention, and inserting in a boring hole. 図2のIII−III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. 導電性弾性体の第1の変形例を示し、図3に対応する断面図である。FIG. 5 is a cross-sectional view illustrating a first modification of the conductive elastic body and corresponding to FIG. 3. 導電性弾性体の第2の変形例を示し、図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 which shows the 2nd modification of an electroconductive elastic body. 導電性弾性体の第3の変形例を示し、図3に対応する断面図である。FIG. 10 is a cross-sectional view corresponding to FIG. 3, showing a third modification of the conductive elastic body. 従来の電気検層を実施する測定装置の断面図である。It is sectional drawing of the measuring apparatus which implements the conventional electric logging. 従来の電気検層を実施する測定装置のケーシングロッドの部分的な断面図である。It is a fragmentary sectional view of the casing rod of the measuring device which performs the conventional electric logging.

符号の説明Explanation of symbols

1 電極ケーブル
2 ボーリング孔
2a ボーリング孔の内壁面
3 ケーブル本体
4 電極
5 導電性弾性体
6 導線
7 金属製スプリング
8 金属製糸状部材集合体
DESCRIPTION OF SYMBOLS 1 Electrode cable 2 Boring hole 2a Inner wall surface 3 of boring hole 4 Cable main body 4 Electrode 5 Conductive elastic body 6 Conductor 7 Metal spring 8 Metal thread-like member aggregate

Claims (3)

ボーリング孔に挿入され、多数の導線を束ねたケーブル本体と、前記ケーブル本体に所定間隔をあけて取り付けられた電極と、前記電極から前記ケーブル本体の径方向に放射状に広がる複数の導電性弾性体を備え、前記導線は少なくとも前記電極と同じ数だけ束ねられており、前記電極は他の電極と異なる導線に導通されており、前記導電性弾性体は弾性変形しながら前記ボーリング孔の内壁面に接触することを特徴とする比抵抗測定用の電極ケーブル。   A cable body inserted into the boring hole and bundled with a large number of conductors; an electrode attached to the cable body at a predetermined interval; and a plurality of conductive elastic bodies extending radially from the electrode in a radial direction of the cable body The conductive wires are bundled at least as many as the electrodes, the electrodes are connected to different conductive wires from the other electrodes, and the conductive elastic body is elastically deformed on the inner wall surface of the boring hole. An electrode cable for measuring specific resistance characterized by contact. 前記導電性弾性体は、前記電極から放射状に突出する複数の金属製スプリングと、前記金属製スプリングの少なくとも先端部を覆う金属製糸状部材集合体を有することを特徴とする請求項1記載の比抵抗測定用の電極ケーブル。   2. The ratio according to claim 1, wherein the conductive elastic body includes a plurality of metal springs projecting radially from the electrode and a metal thread-like member assembly covering at least a tip portion of the metal spring. Electrode cable for resistance measurement. 前記金属製糸状部材集合体に塩水を染み込ませたことを特徴とする請求項2記載の比抵抗測定用の電極ケーブル。   3. The electrode cable for measuring resistivity according to claim 2, wherein the metal thread-like member aggregate is impregnated with salt water.
JP2004310008A 2004-10-25 2004-10-25 Electrode cable for measuring specific resistance Pending JP2006119096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310008A JP2006119096A (en) 2004-10-25 2004-10-25 Electrode cable for measuring specific resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310008A JP2006119096A (en) 2004-10-25 2004-10-25 Electrode cable for measuring specific resistance

Publications (1)

Publication Number Publication Date
JP2006119096A true JP2006119096A (en) 2006-05-11

Family

ID=36537106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310008A Pending JP2006119096A (en) 2004-10-25 2004-10-25 Electrode cable for measuring specific resistance

Country Status (1)

Country Link
JP (1) JP2006119096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230433A (en) * 2009-03-26 2010-10-14 Japan Water Agency Electric exploration resistivity method
KR101214592B1 (en) 2010-04-01 2012-12-24 한국해양대학교 산학협력단 devices for borehole resistivity tomography in the soft ground
JP2018185150A (en) * 2017-04-24 2018-11-22 戸田建設株式会社 Geological exploration device for pit face front
CN110206533A (en) * 2019-06-06 2019-09-06 山东科技大学 Single lane, across inclined hole resistivity CT imaging device and floor undulation water dynamic monitoring method
KR102073331B1 (en) * 2019-08-30 2020-03-02 주식회사 지오그린21 Vertical type electrical resistivity tomography device and installation method thereof
CN115341889A (en) * 2022-05-20 2022-11-15 中国石油天然气集团有限公司 Underground discharging operation system with externally-coated bearing cable electrode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759306U (en) * 1980-09-26 1982-04-08
JPS6344158A (en) * 1986-08-12 1988-02-25 Toyo Seikan Kaisha Ltd Method and apparatus for measuring metal exposure at resin covered section of metal container or structural member thereof
JPH02141651A (en) * 1988-11-22 1990-05-31 Mitsui Petrochem Ind Ltd Inspection of state of inner surface coating of metal pipe and apparatus therefor
JP3007801U (en) * 1994-05-17 1995-02-28 佐野 猛 Construction effect detection device for ground improvement work
JPH09257715A (en) * 1996-03-26 1997-10-03 Cosmo Oil Co Ltd Inspection apparatus for lining layer on inner surface of piping
JPH10220182A (en) * 1997-02-07 1998-08-18 Toda Constr Co Ltd Specific resistivity measuring device and tunnel excavating machine using the same device
JP2000046776A (en) * 1998-07-28 2000-02-18 Daiwa Can Co Ltd Method and apparatus for detecting fault of inner surface film of metal container
JP2002267764A (en) * 2001-03-13 2002-09-18 Shimizu Corp Electric logging method for tunnel horizontal boring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759306U (en) * 1980-09-26 1982-04-08
JPS6344158A (en) * 1986-08-12 1988-02-25 Toyo Seikan Kaisha Ltd Method and apparatus for measuring metal exposure at resin covered section of metal container or structural member thereof
JPH02141651A (en) * 1988-11-22 1990-05-31 Mitsui Petrochem Ind Ltd Inspection of state of inner surface coating of metal pipe and apparatus therefor
JP3007801U (en) * 1994-05-17 1995-02-28 佐野 猛 Construction effect detection device for ground improvement work
JPH09257715A (en) * 1996-03-26 1997-10-03 Cosmo Oil Co Ltd Inspection apparatus for lining layer on inner surface of piping
JPH10220182A (en) * 1997-02-07 1998-08-18 Toda Constr Co Ltd Specific resistivity measuring device and tunnel excavating machine using the same device
JP2000046776A (en) * 1998-07-28 2000-02-18 Daiwa Can Co Ltd Method and apparatus for detecting fault of inner surface film of metal container
JP2002267764A (en) * 2001-03-13 2002-09-18 Shimizu Corp Electric logging method for tunnel horizontal boring

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230433A (en) * 2009-03-26 2010-10-14 Japan Water Agency Electric exploration resistivity method
KR101214592B1 (en) 2010-04-01 2012-12-24 한국해양대학교 산학협력단 devices for borehole resistivity tomography in the soft ground
JP2018185150A (en) * 2017-04-24 2018-11-22 戸田建設株式会社 Geological exploration device for pit face front
CN110206533A (en) * 2019-06-06 2019-09-06 山东科技大学 Single lane, across inclined hole resistivity CT imaging device and floor undulation water dynamic monitoring method
CN110206533B (en) * 2019-06-06 2023-08-29 山东科技大学 Single-lane and cross-inclined-hole resistivity CT imaging device and working face bottom plate water dynamic monitoring method
KR102073331B1 (en) * 2019-08-30 2020-03-02 주식회사 지오그린21 Vertical type electrical resistivity tomography device and installation method thereof
CN115341889A (en) * 2022-05-20 2022-11-15 中国石油天然气集团有限公司 Underground discharging operation system with externally-coated bearing cable electrode
CN115341889B (en) * 2022-05-20 2023-03-24 中国石油天然气集团有限公司 Underground discharging operation system with externally-coated bearing cable electrode

Similar Documents

Publication Publication Date Title
RU2015121727A (en) SYSTEM OF DETERMINATION OF LAND EXCITATION FOR APPLICATION OF PGD
RU2698357C2 (en) Well completion with single-wire direction system
GB2489294A (en) Method and apparatus for making resistivity measurements in a wellbore
RU2502093C1 (en) Building of images of specific microresistance at multiple depths of research
JP2006119096A (en) Electrode cable for measuring specific resistance
US7388381B1 (en) High resolution geoelectrical probe
CN103726831A (en) Pole plate electrode system for logging instrument
JP2007518906A (en) Drill column for deep well and drill pipe and bush for the drill column
JP2008186748A (en) Grounding structure and grounding method for concrete structure in ground
WO2020085916A1 (en) Method of extending a borehole of a relief well, bottomhole assembly, drill string, and other apparatus
RU2009113673A (en) METHOD AND DEVICE FOR FORMING IMAGES ACCORDING TO THE DATA OF THE RESISTANCE METHOD IN WELLS FILLED WITH A LOW CONDUCTIVITY FLUID
KR101477460B1 (en) Grounding apparatus
US10385683B1 (en) Deepset receiver for drilling application
CN203097871U (en) Pole plate electrode system for logging instrument and pole plate assembly for logging instrument
CA2785768C (en) Logging tool employing a monopole current injection electrode for microresistivity imaging
CN110361783B (en) Roof deformation monitoring method
JP4716888B2 (en) Grounding rod and method for making the same
JP2020067276A (en) Electrical measurement stake and electrical measurement unit
JP2009158313A (en) Grounding device and its grounding construction method
JP5642487B2 (en) Grounding rod
CN202736579U (en) Special steel pipe cable
KR20030042607A (en) Resistivity survey method and device
KR101214592B1 (en) devices for borehole resistivity tomography in the soft ground
JP4383288B2 (en) Grounding device construction method
JP2012048957A (en) Grounding method using grounding rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100811