JP5349391B2 - Fine hole electric discharge machine and fine hole electric discharge machining method - Google Patents

Fine hole electric discharge machine and fine hole electric discharge machining method Download PDF

Info

Publication number
JP5349391B2
JP5349391B2 JP2010078527A JP2010078527A JP5349391B2 JP 5349391 B2 JP5349391 B2 JP 5349391B2 JP 2010078527 A JP2010078527 A JP 2010078527A JP 2010078527 A JP2010078527 A JP 2010078527A JP 5349391 B2 JP5349391 B2 JP 5349391B2
Authority
JP
Japan
Prior art keywords
machining
electric discharge
state
short
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010078527A
Other languages
Japanese (ja)
Other versions
JP2011206896A (en
Inventor
正裕 岡根
孝幸 中川
智 鈴木
清仁 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010078527A priority Critical patent/JP5349391B2/en
Publication of JP2011206896A publication Critical patent/JP2011206896A/en
Application granted granted Critical
Publication of JP5349391B2 publication Critical patent/JP5349391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、細穴放電加工機及び細穴放電加工方法に関する。   The present invention relates to a fine hole electric discharge machine and a fine hole electric discharge machining method.

従来、細穴放電加工では、被加工物(ワーク)に僅かに穴が開いた状態(この状態を「抜け際」と定義する)では、加工が不安定になるという問題がある。具体的には、抜け際ではパイプ電極から噴出させている加工液がワークから抜けてしまうことによって、電極−ワーク間に滞留したスラッジを排出できなくなり、そのスラッジによって短絡が引き起こされるため、短絡が頻発する。短絡が発生すると、短絡回避動作として「短絡バック(電極の後退)」を行うために加工が進行しにくくなる。   Conventionally, in the small hole electric discharge machining, there is a problem that the machining becomes unstable when a hole is slightly opened in the workpiece (workpiece) (this state is defined as “at the time of slipping”). Specifically, at the time of removal, the machining fluid ejected from the pipe electrode escapes from the workpiece, so that sludge staying between the electrode and workpiece cannot be discharged, and the sludge causes a short circuit. Frequently occurs. When a short circuit occurs, processing is difficult to proceed because “short circuit back (retraction of electrode)” is performed as a short circuit avoiding operation.

また、細穴放電加工による穴加工では、中空形状のワークの上層のみに穿孔したい場合や、既に横穴が存在するワークに、横穴を通り越さないように縦穴を加工する場合などには、穴加工が完了した(貫通した)ことを正確に検出する必要がある。   In addition, in drilling by small hole electric discharge machining, if you want to drill only in the upper layer of a hollow workpiece or if you want to drill a vertical hole in a workpiece that already has a horizontal hole so that it does not pass through the horizontal hole, It is necessary to accurately detect that machining has been completed (penetrated).

放電加工での穴加工において、穴の貫通を検出する技術としては、特許文献1に開示される発明がある。特許文献1に開示される発明は、電極が下降中で、下降位置更新を検出する手段と、電極とワーク間電圧をサンプリング測定し、デジタル化して最大電圧を得る手段と、サンプリングおよびデジタル数値化する手段を制御する手段と、第一の既定回数分の最大電圧を第一の最大電圧値とし、第一の最大電圧値より低い最大電圧が次のサンプリングで得られれば、その電圧を第二の最大電圧値とし、第一の最大電圧値と第二の最大電圧値を比較する手段と、電極が下降中でその最下位置を更新しており、第一の最大電圧値が第二の最大電圧値より既定電圧値以上高くなる事象が第二の既定回数以上連続して発生すれば、放電により生成した穴が貫通したと判定する手段により貫通検出を実現していた。   As a technique for detecting penetration of a hole in hole machining in electric discharge machining, there is an invention disclosed in Patent Document 1. The invention disclosed in Patent Document 1 includes means for detecting an update of the lowered position while the electrode is descending, means for sampling and measuring the voltage between the electrode and the workpiece, digitizing to obtain a maximum voltage, sampling and digitizing If the maximum voltage lower than the first maximum voltage value is obtained by the next sampling, the voltage for the first predetermined number of times is set as the first maximum voltage value. Means for comparing the first maximum voltage value with the second maximum voltage value, the electrode is being lowered and its lowest position is updated, and the first maximum voltage value is If an event that is higher than the maximum voltage value by a predetermined voltage value or more occurs continuously for the second predetermined number of times or more, the penetration detection is realized by means for determining that the hole generated by the discharge has penetrated.

特開2005−144651号公報JP-A-2005-144651

しかしながら、上記従来の技術によれば、穴の貫通は検出できるものの、抜け際を検出することはできない。したがって、穴加工時の抜け際で加工が不安定になるという問題を解決することはできない。   However, according to the above-described conventional technique, although penetration of a hole can be detected, it is not possible to detect when the hole is removed. Therefore, it is impossible to solve the problem that the machining becomes unstable when the hole is removed.

本発明は、上記に鑑みてなされたものであって、穴加工時の抜け際及び穴の貫通を検出可能で、抜け際でも安定した加工を行うことができる細穴放電加工機及び細穴放電加工方法を得ることを目的とする。   The present invention has been made in view of the above, and a fine hole electric discharge machine and a fine hole electric discharge machine that are capable of detecting a breakage during hole drilling and a penetration of a hole and that can perform stable machining even during the breakage. The purpose is to obtain a processing method.

上述した課題を解決し、目的を達成するために、本発明は、先端から加工液を噴射するパイプ状の電極と、電極とワークとの間に加工パルスを含むパルス電圧を印加するパルス発生手段とを有し、電極とワークとの間に介在する加工液中で加工パルスによる放電を休止時間を挟んで間歇的に発生させてワークに対して放電加工を施す細穴放電加工機であって、電極とワークとの間での短絡の発生を検出する短絡発生検出手段と、短絡の発生頻度を検出する短絡発生頻度検出手段と、短絡発生頻度検出手段の検出結果に基づいて、放電加工による加工中の穴が非貫通の通常状態であるか、部分的に貫通した抜け際状態であるか、完全に貫通した貫通状態であるかを判断する加工状態判定手段とを有することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a pipe-like electrode for injecting a machining fluid from the tip, and a pulse generating means for applying a pulse voltage including a machining pulse between the electrode and the workpiece. A fine hole electric discharge machine for performing electric discharge machining on a workpiece by intermittently generating electric discharge by a machining pulse in a machining liquid interposed between an electrode and the workpiece with a pause time in between. Based on the detection results of the short-circuit occurrence detecting means for detecting the occurrence of a short-circuit between the electrode and the workpiece, the short-circuit occurrence frequency detecting means for detecting the occurrence frequency of the short-circuit, and the short-circuit occurrence frequency detecting means. And a machining state determining means for judging whether the hole being machined is in a non-penetrating normal state, a partially penetrating state, or a completely penetrating state. .

本発明によれば、穴加工時の抜け際及び穴の貫通を検出可能で、抜け際でも安定した加工を行うことができるという効果を奏する。   According to the present invention, it is possible to detect when a hole is pulled out and through the hole, and it is possible to perform stable machining even when the hole is dropped.

図1は、本発明にかかる細穴放電加工機の実施の形態1の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first embodiment of a fine hole electric discharge machine according to the present invention. 図2は、実施の形態1にかかる細穴放電加工機の細穴加工の動作の流れを示す図である。FIG. 2 is a diagram illustrating an operation flow of the fine hole machining of the fine hole electric discharge machine according to the first embodiment. 図3は、電極−ワーク間に印加されるパルス電圧の波形の一例を示す図である。FIG. 3 is a diagram illustrating an example of a waveform of a pulse voltage applied between the electrode and the workpiece. 図4は、細穴放電加工中の電極及びワークの状態並びに加工液の流れを示す図である。FIG. 4 is a diagram showing the state of the electrode and the workpiece and the flow of the machining liquid during the fine hole electric discharge machining. 図5は、抜け際で休止時間を延長する場合の加工時間と短絡頻度、非短絡頻度との関係を示す図である。FIG. 5 is a diagram showing the relationship between the machining time, the short-circuit frequency, and the non-short-circuit frequency when the pause time is extended at the time of disconnection. 図6は、抜け際で休止時間を延長しない場合の加工時間と短絡頻度、非短絡頻度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the machining time, the short-circuit frequency, and the non-short-circuit frequency when the pause time is not extended at the time of disconnection. 図7は、抜け際での加工条件と加工時間との関係を示す図である。FIG. 7 is a diagram showing the relationship between the machining conditions and the machining time at the time of removal. 図8は、実施の形態2にかかる細穴放電加工機の細穴加工の動作の流れを示す図である。FIG. 8 is a diagram showing a flow of operations of the fine hole machining of the fine hole electric discharge machine according to the second embodiment. 図9は、実施の形態3にかかる細穴放電加工機の細穴加工の動作の流れを示す図である。FIG. 9 is a diagram illustrating a flow of an operation of fine hole machining of the fine hole electric discharge machine according to the third embodiment.

以下に、本発明にかかる細穴放電加工機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a small hole electric discharge machine according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかる細穴放電加工機の実施の形態1の構成を示す図である。本実施の形態にかかる細穴放電加工機1は、電極2、加工制御部4、パルス発生条件設定部5、パルス発生装置6、短絡検出部7、短絡頻度検出部8、及び加工送り指令部9を有する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a first embodiment of a fine hole electric discharge machine according to the present invention. A thin hole electric discharge machine 1 according to the present embodiment includes an electrode 2, a machining control unit 4, a pulse generation condition setting unit 5, a pulse generator 6, a short circuit detection unit 7, a short circuit frequency detection unit 8, and a machining feed command unit. 9

パルス発生条件設定部5は、電極2とワーク3との間に印加する群パルス(加工パルス)の電圧値、チェックパルスの電圧値、休止時間などの条件を設定する。なお、通常状態と抜け際状態とで、群パルスの電圧値及びチェックパルスの電圧値は共通であるが、休止時間は相違する。パルス発生装置6は、加工制御部4から通知される加工状態に応じて、パルス条件設定部5によって設定された条件で電極2及びワーク3にパルス電圧を印加する。短絡検出部7は、チェックパルスが電極2−ワーク3間に印加された際に、電極2−ワーク3間で実際に生じた電圧を測定し、所定の閾値と比較することによって電極2−ワーク3間で正常に放電が行われたか、短絡していたかを判断し、短絡検出結果を短絡頻度検出部8へ出力する。例えば、短絡検出部7は、チェックパルスの印加時に電極2−ワーク3間で測定された電圧が閾値以下である場合を短絡として検出し、短絡検出を短絡頻度検出部8へ通知する。具体例を挙げると、チェックパルスとして50Vの電圧を印加した場合に、電極2−ワーク3間で実際に測定された電圧が10V以下である場合に短絡として検出する。短絡頻度検出部8は、所定のサンプリング期間中の短絡の検出割合を加工制御部4へ出力する。例えば、サンプリング期間中に電極2−ワーク3間にチェックパルスが100回印加され、15回の短絡が検出されたのであれば、短絡頻度として15%を加工制御部4へ出力する。加工制御部4は、細穴放電加工機1による細穴放電加工を制御する機能部であり、短絡頻度と所定の閾値との比較結果に基づいて、加工状態を変更する。すなわち、加工制御部4は、短絡頻度検出部8の検出結果に基づいて、放電加工による加工中の穴が非貫通の通常状態であるか、部分的に貫通した抜け際状態であるか、完全に貫通した貫通状態であるかを判断する加工状態判定手段として動作する。加工制御部4は、加工状態情報記憶部41を備えている。加工状態情報記憶部41は、加工状態が通常状態であるか、抜け際状態であるか、貫通状態であるかを示す加工状態情報を記憶する。加工状態情報は、短絡頻度検出部8から入力される短絡頻度情報に基づいて更新され、パルス発生装置6及び加工送り指令部9へ出力される。例えば、加工制御部4は、通常状態の時に第1の閾値以上を示す短絡頻度情報が短絡頻度検出部8から入力された場合に、加工状態を通常状態から抜け際状態へ変更する。また、抜け際状態の時に第2の閾値以下を示す短絡頻度情報が入力された場合には、加工状態を貫通状態に変化させる。加工送り指令部9は、加工制御部4から通知される加工状態情報に応じた速度で電極2を移動させる。ここで、第1の閾値には、通常状態で取りうる短絡発生頻度の上限側に余裕度を持たせた(所定値を加えた)値が予め設定される。一例として、通常状態での短絡発生頻度は30%程度であるため、上限側に約20%の余裕度を持たせた「50%」が第1の閾値として設定される。また、第2の閾値には、抜け際状態で取りうる短絡発生頻度の下限側に余裕度を持たせた(所定値を減じた)値が予め設定される。一例として、抜け際状態での短絡発生頻度が15%程度であるため、下限側に約5%の余裕度を持たせた「10%」が第2の閾値として設定される。   The pulse generation condition setting unit 5 sets conditions such as a voltage value of a group pulse (machining pulse) applied between the electrode 2 and the workpiece 3, a voltage value of a check pulse, and a pause time. Note that the voltage value of the group pulse and the voltage value of the check pulse are the same in the normal state and the disconnected state, but the pause time is different. The pulse generator 6 applies a pulse voltage to the electrode 2 and the workpiece 3 under the conditions set by the pulse condition setting unit 5 according to the machining state notified from the machining control unit 4. When the check pulse is applied between the electrode 2 and the work 3, the short-circuit detection unit 7 measures the voltage actually generated between the electrode 2 and the work 3, and compares it with a predetermined threshold value to thereby compare the electrode 2 with the work. It is determined whether the discharge is normally performed between the three or whether the short circuit is short-circuited, and the short-circuit detection result is output to the short-circuit frequency detection unit 8. For example, the short circuit detection unit 7 detects a case where the voltage measured between the electrode 2 and the workpiece 3 when the check pulse is applied is equal to or less than a threshold value as a short circuit, and notifies the short circuit frequency detection unit 8 of the short circuit detection. As a specific example, when a voltage of 50 V is applied as a check pulse, a short circuit is detected when the voltage actually measured between the electrode 2 and the workpiece 3 is 10 V or less. The short-circuit frequency detection unit 8 outputs a short-circuit detection ratio during a predetermined sampling period to the processing control unit 4. For example, if the check pulse is applied 100 times between the electrode 2 and the workpiece 3 during the sampling period and 15 short-circuits are detected, 15% is output to the machining control unit 4 as the short-circuit frequency. The machining control unit 4 is a functional unit that controls the fine hole electric discharge machining by the fine hole electric discharge machine 1, and changes the machining state based on the comparison result between the short circuit frequency and a predetermined threshold value. That is, based on the detection result of the short-circuit frequency detection unit 8, the machining control unit 4 determines whether the hole being machined by electrical discharge machining is in a normal state that is not penetrated, or is in a state of being partially penetrated. It operates as a machining state determining means for determining whether or not the penetrating state has penetrated through. The machining control unit 4 includes a machining state information storage unit 41. The machining state information storage unit 41 stores machining state information indicating whether the machining state is a normal state, a near-run state, or a penetration state. The machining state information is updated based on the short circuit frequency information input from the short circuit frequency detection unit 8 and is output to the pulse generator 6 and the machining feed command unit 9. For example, the machining control unit 4 changes the machining state from the normal state to the exited state when short-circuit frequency information indicating a first threshold value or more is input from the short-circuit frequency detection unit 8 in the normal state. Further, when short-circuit frequency information indicating the second threshold value or less is input in the disconnected state, the machining state is changed to the penetrating state. The machining feed command unit 9 moves the electrode 2 at a speed corresponding to the machining state information notified from the machining control unit 4. Here, the first threshold value is set in advance with a margin (added a predetermined value) having a margin on the upper limit side of the short-circuit occurrence frequency that can be taken in the normal state. As an example, since the occurrence frequency of a short circuit in the normal state is about 30%, “50%” having a margin of about 20% on the upper limit side is set as the first threshold value. The second threshold value is set in advance with a margin (subtracting a predetermined value) having a margin on the lower limit side of the short-circuit occurrence frequency that can be taken in the disconnected state. As an example, since the occurrence frequency of a short circuit in the disconnected state is about 15%, “10%” having a margin of about 5% on the lower limit side is set as the second threshold value.

電極2はパイプ状であり、加工中には先端から加工液を噴出できるようになっている。   The electrode 2 is in the form of a pipe so that the machining liquid can be ejected from the tip during machining.

図2は、細穴放電加工機1の細穴加工の動作の流れの一例を示す図である。加工制御部4は、加工動作を開始すると、パルス発生装置6及び加工送り指令部9に、通常状態を通知する。加工送り指令部9は通常状態の加工送り速度で電極2を移動させ、パルス発生装置6は、通常状態でのパルス電圧を電極2−ワーク3間に印加する(ステップS101)。図3は、電極2−ワーク3間に印加されるパルス電圧の波形の一例を示す図である。図3に示すように、電極2−ワーク3間に印加されるパルスは、短絡検出用のチェックパルスを含んでいる。このため、電極2−ワーク3間には、実際の加工に用いられる群パルスに先立って、チェックパルスが印加される。   FIG. 2 is a diagram illustrating an example of a flow of operations for fine hole machining of the fine hole electric discharge machine 1. When the machining control unit 4 starts the machining operation, the machining control unit 4 notifies the pulse generator 6 and the machining feed command unit 9 of the normal state. The machining feed command unit 9 moves the electrode 2 at the machining feed rate in the normal state, and the pulse generator 6 applies the pulse voltage in the normal state between the electrode 2 and the workpiece 3 (step S101). FIG. 3 is a diagram illustrating an example of a waveform of a pulse voltage applied between the electrode 2 and the workpiece 3. As shown in FIG. 3, the pulse applied between the electrode 2 and the work 3 includes a check pulse for short circuit detection. For this reason, a check pulse is applied between the electrode 2 and the workpiece 3 prior to the group pulse used for actual machining.

短絡検出部7は、チェックパルス印加時に電極2−ワーク3間に実際に生じた電圧に基づいて、短絡の発生を検出する。検出結果は、短絡検出部7から短絡頻度検出部8へ出力される。短絡頻度検出部8は、予め設定されたサンプリング期間中のチェックパルスの総数と、短絡検出回数とに基づいて、短絡頻度を検出する(ステップS102)。短絡頻度検出部8は、検出した短絡頻度を加工制御部4へ出力する。   The short circuit detector 7 detects the occurrence of a short circuit based on the voltage actually generated between the electrode 2 and the workpiece 3 when the check pulse is applied. The detection result is output from the short circuit detection unit 7 to the short circuit frequency detection unit 8. The short circuit frequency detection unit 8 detects the short circuit frequency based on the preset total number of check pulses during the sampling period and the number of short circuit detections (step S102). The short circuit frequency detection unit 8 outputs the detected short circuit frequency to the machining control unit 4.

加工制御部4は、短絡頻度検出部8から短絡頻度が入力されると、短絡頻度がある第1の閾値(この例では50%とする)以上であるか否かを判断する(ステップS103)。短絡頻度が50%以上であるならば(ステップS103/Yes)、加工制御部4は、加工状態を通常状態から抜け際状態へと変更し、これをパルス発生装置6及び加工送り指令部9へ通知する。さらに、加工状態情報記憶部41に記憶させている加工状態情報を更新する(ステップS104)。その後、加工送り指令部9は抜け際状態の加工送り速度で電極2を移動させ、パルス発生装置6は、抜け際状態でのパルス電圧を電極2−ワーク3間に印加する(ステップS101)。なお、抜け際状態で電極2−ワーク3間に印加するパルスは、通常状態でのパルスと比較して休止時間が延長したものとなっている。すなわち、抜け際状態では、通常状態よりも休止時間が延長されたパルス電圧による加工(休止時間延長加工)を行う。   When the short circuit frequency is input from the short circuit frequency detection unit 8, the processing control unit 4 determines whether or not the short circuit frequency is equal to or higher than a first threshold value (50% in this example) (step S103). . If the short-circuit frequency is 50% or more (step S103 / Yes), the machining control unit 4 changes the machining state from the normal state to the exited state, and sends this to the pulse generator 6 and the machining feed command unit 9. Notice. Further, the machining state information stored in the machining state information storage unit 41 is updated (step S104). Thereafter, the machining feed command unit 9 moves the electrode 2 at the machining feed rate in the disconnected state, and the pulse generator 6 applies the pulse voltage in the disconnected state between the electrode 2 and the workpiece 3 (step S101). Note that the pulse applied between the electrode 2 and the workpiece 3 in the disconnected state has an extended pause time compared to the pulse in the normal state. That is, in the near-run state, processing by a pulse voltage (pause time extension processing) in which the pause time is extended as compared with the normal state is performed.

図4は、細穴放電加工中の電極2及びワーク3の状態並びに加工液の流れを示す図である。図中の矢印は加工液の流れを表している。図4(a)は通常状態を示しており、パイプ状の電極2の先端から噴射された加工液によって、ワーク3の穴からスラッジ15が排出されるため、短絡の発生頻度は低い。図4(b)は、抜け際状態を示しており、パイプ状の電極2の先端から噴射された加工液は、ワーク3に僅かに開いた穴から流れ出てしまい、穴内部のスラッジ15が排出されにくくなる。   FIG. 4 is a diagram showing the state of the electrode 2 and the workpiece 3 during the fine hole electric discharge machining, and the flow of the machining liquid. The arrows in the figure represent the flow of the machining fluid. FIG. 4A shows a normal state, and the sludge 15 is discharged from the hole of the workpiece 3 by the machining liquid sprayed from the tip of the pipe-like electrode 2, so that the occurrence frequency of the short circuit is low. FIG. 4 (b) shows the state when it is pulled out, and the machining fluid sprayed from the tip of the pipe-like electrode 2 flows out from a hole slightly opened in the workpiece 3, and the sludge 15 inside the hole is discharged. It becomes difficult to be done.

上記のように、抜け際状態ではパルス発生装置6が電極2−ワーク3間に印加するパルスは、通常状態と比較して休止時間が延長されているため、スラッジ15を排出するための時間を確保するとともに、単位時間当たりに生成されるスラッジ15を減少させることができる。これにより、抜け際状態での加工を安定させることができる。   As described above, since the pulse applied by the pulse generator 6 between the electrode 2 and the workpiece 3 in the near-end state has an extended pause time as compared with the normal state, the time for discharging the sludge 15 is increased. In addition to ensuring, the sludge 15 generated per unit time can be reduced. Thereby, the process in the state at the time of removal can be stabilized.

一方、短絡頻度検出部8から入力された短絡頻度が第1の閾値未満である場合は(ステップS103/No)、加工制御部4は加工状態が抜け際状態であるか否かを確認する(ステップS105)。   On the other hand, when the short-circuit frequency input from the short-circuit frequency detection unit 8 is less than the first threshold value (step S103 / No), the processing control unit 4 confirms whether or not the processing state is in a close state (step S103 / No). Step S105).

加工状態が抜け際状態である場合には(ステップS105/Yes)、加工制御部4は、短絡頻度検出部8から入力された短絡頻度が抜け際の判断に用いた第1の閾値よりも小さい別の第2の閾値(この例では10%とする)以下であるか否かを判断する(ステップS106)。短絡頻度が第2の閾値以下であるならば(ステップS106/Yes)、加工制御部4は加工状態を抜け際状態から貫通状態へと変更し、パルス発生装置6及び加工送り指令部9へ通知する(ステップS107)。これを受けてパルス発生装置6及び加工送り指令部9は、パルスの発生及び電極2の送りを停止し、加工を終了する(ステップS108)。一方、短絡頻度が第2の閾値を越える場合には(ステップS106/No)、ステップS101に戻り、抜け際状態での加工を継続する。   If the machining state is a missing state (step S105 / Yes), the machining control unit 4 has the short-circuit frequency input from the short-circuit frequency detecting unit 8 smaller than the first threshold value used for the judgment at the time of missing. It is determined whether or not it is equal to or less than another second threshold value (10% in this example) (step S106). If the short-circuit frequency is less than or equal to the second threshold (step S106 / Yes), the machining control unit 4 changes the machining state from the exited state to the penetrating state and notifies the pulse generator 6 and the machining feed command unit 9. (Step S107). In response to this, the pulse generator 6 and the machining feed command unit 9 stop generating the pulse and feeding the electrode 2 and finish the machining (step S108). On the other hand, when the short circuit frequency exceeds the second threshold value (step S106 / No), the process returns to step S101, and the processing in the disconnected state is continued.

図5、図6は、加工時間と短絡頻度、非短絡頻度との関係を示す図である。縦軸は頻度(%)、横軸は加工時間(秒)である。図5は、抜け際で休止時間を延長する場合の加工時間と短絡頻度、非短絡頻度との関係を示しており、図6は、抜け際で休止時間を延長しない場合の加工時間と短絡頻度、非短絡頻度との関係を示している。加工状態によらずに休止時間が一定である場合、抜け際では短絡が頻発している。これに対し、抜け際で休止時間を延長する場合は、抜け際での短絡の発生が少なくなっており、加工が安定している。   5 and 6 are diagrams showing the relationship between the machining time, the short circuit frequency, and the non-short circuit frequency. The vertical axis represents frequency (%), and the horizontal axis represents machining time (seconds). FIG. 5 shows the relationship between the machining time and the short-circuit frequency and the non-short-circuit frequency when the pause time is extended at the time of removal, and FIG. 6 shows the machining time and the short-circuit frequency when the pause time is not extended at the time of removal. The relationship with the non-short-circuit frequency is shown. When the resting time is constant regardless of the processing state, short-circuits frequently occur at the time of removal. On the other hand, when the pause time is extended at the time of disconnection, the occurrence of a short circuit at the time of disconnection is reduced, and the machining is stable.

図7は抜け際での加工条件と加工時間との関係を示す図である。抜け際で休止時間を延長しない場合は、平均すると加工開始から45.8秒で抜け際状態となり、抜け際からから53秒で貫通し、全体としては98.8秒の加工時間を要している。これに対し、抜け際で休止時間を延長した場合は、平均すると加工開始から47秒で抜け際状態となり、抜け際から11.2秒で貫通し、全体として58.2秒の加工時間を要している。このように、抜け際での短絡の発生を抑えることで、短絡バックを行う回数を減少させ、加工完了までの所要時間を短縮できる。また、加工完了までに消費するエネルギーを低減できる。   FIG. 7 is a diagram showing the relationship between the machining conditions and the machining time at the time of removal. If the pause time is not extended at the time of removal, on average, it will be in the state of removal at 45.8 seconds from the start of machining, it will penetrate through 53 seconds from the time of removal, and the overall machining time of 98.8 seconds is required. Yes. On the other hand, if the pause time is extended at the time of removal, on average, it will be in the state of removal at 47 seconds from the start of machining, and will penetrate through 11.2 seconds from the time of removal, requiring a machining time of 58.2 seconds as a whole. doing. Thus, by suppressing the occurrence of a short circuit at the time of disconnection, the number of short-circuit backs can be reduced, and the time required to complete the processing can be shortened. Moreover, the energy consumed by the completion of processing can be reduced.

このように、本実施の形態にかかる細穴放電加工機は、穴加工時に抜け際及び貫通の検出が可能であるとともに、貫通までの加工時間を短縮することができる。しかも、短絡頻度が上昇した際に、パルスの休止時間を延ばし、その状態において短絡頻度が減少した場合に貫通と判断するため、確実に貫通を検出できる。   As described above, the fine hole electric discharge machine according to the present embodiment can detect the breakage and penetration when drilling, and can shorten the machining time until penetration. In addition, when the short-circuit frequency increases, the pulse pause time is extended, and when the short-circuit frequency decreases in that state, it is determined that the through-hole is detected, so that the penetration can be detected with certainty.

実施の形態2.
本発明にかかる細穴放電加工機の実施の形態2の構成は、実施の形態1と同様である。図8は、本実施の形態にかかる細穴放電加工機の細穴加工の動作の流れの一例を示す図である。実施の形態1とほぼ同様の動作であるが、本実施の形態では短絡頻度が第1の閾値(この例では50%とする)以上の状態や第2の閾値(この例では10%とする)以下の状態が予め設定された時間継続した場合に、抜け際や貫通と判断し、加工状態を切り替える。例えば、通常状態のときに0.2秒以上継続して短絡頻度が50%以上となったら抜け際と判断し、抜け際状態のときに0.5秒以上継続して短絡頻度が10%以下となったら貫通と判断する。短絡頻度は、所定のサンプリング期間ごとに検出するため、図8に示す例では短絡頻度の継続時間が閾値以上となったことは、カウンタのカウント値に基づいて検出している。
Embodiment 2. FIG.
The configuration of the second embodiment of the fine hole electric discharge machine according to the present invention is the same as that of the first embodiment. FIG. 8 is a diagram showing an example of the flow of operations for fine hole machining of the fine hole electric discharge machine according to the present embodiment. The operation is almost the same as in the first embodiment, but in this embodiment, the short-circuit frequency is equal to or higher than the first threshold value (50% in this example) and the second threshold value (10% in this example). ) When the following state continues for a preset time, it is determined that it has come off or penetrated, and the machining state is switched. For example, if the short-circuit frequency continues for 0.2 seconds or more in the normal state and becomes 50% or more, it is judged that the short-circuit has occurred. If it becomes, it will be judged as penetration. Since the short-circuit frequency is detected every predetermined sampling period, it is detected based on the count value of the counter that the duration of the short-circuit frequency is equal to or greater than the threshold in the example shown in FIG.

本実施の形態においては、短絡頻度が第1の閾値以上の状態や第2の閾値以下の状態が予め設定した時間継続しなければ抜け際や貫通とみなさないため、抜け際や貫通の誤検出を低減できる。この他については実施の形態1と同様であるため、重複する説明は割愛する。   In this embodiment, if the short-circuit frequency is not less than the first threshold value or not more than the second threshold value does not continue for a preset time, it will not be considered as a breakout or penetration, so a false detection of a breakout or penetration will occur. Can be reduced. Since other aspects are the same as those in the first embodiment, a duplicate description is omitted.

実施の形態3.
本発明にかかる細穴放電加工機の実施の形態3の構成は、実施の形態1と同様である。図9は、本実施の形態にかかる細穴放電加工機の細穴加工の動作の流れの一例を示す図である。実施の形態1とほぼ同様の動作であるが、本実施の形態においては、加工制御部は、抜け際状態において第1の閾値(この例では50%とする)以上の短絡頻度を検出した場合には、加工状態を抜け際状態から通常状態に変更する。
Embodiment 3 FIG.
The configuration of the third embodiment of the fine hole electric discharge machine according to the present invention is the same as that of the first embodiment. FIG. 9 is a diagram illustrating an example of a flow of operations for fine hole machining of the fine hole electric discharge machine according to the present embodiment. Although the operation is almost the same as in the first embodiment, in the present embodiment, the machining control unit detects a short-circuit frequency equal to or higher than the first threshold value (50% in this example) in the disconnected state. In this case, the machining state is changed from the close state to the normal state.

抜け際状態でないにも係わらずパルスの休止時間を延ばすと、加工に十分なパルスが供給されないため加工が不安定となって短絡頻度は減少しない。よって、パルスの休止時間を延ばしたにも係わらず短絡頻度が減少しない場合には、パルスの休止時間を元に戻すことで、加工に十分なパルスを供給し、抜け際状態となるまでの時間が長期化することを防ぐことが可能となる。   If the pause time of the pulse is extended even though it is not in the state of being pulled out, sufficient pulses are not supplied for processing, so that processing becomes unstable and the short-circuit frequency does not decrease. Therefore, if the frequency of short-circuiting does not decrease in spite of extending the pulse pause time, it is possible to supply sufficient pulses for processing by returning the pulse pause time to the original state, and the time until it becomes in the state of coming off. Can be prevented from prolonging.

なお、抜け際状態へ移行後、短絡頻度が閾値以上の状態が一定期間持続した場合に通常状態へ戻すように動作させることも可能である。さらに、通常状態から抜け際状態への移行を判断する際に用いる第1の閾値とは異なる閾値に基づいて、抜け際状態から通常状態へ復帰するか否かを判断しても良い。   In addition, it is also possible to operate so as to return to the normal state when the state where the short-circuit frequency is equal to or higher than the threshold value continues for a certain period after the transition to the disconnected state. Further, based on a threshold value different from the first threshold value used when determining the transition from the normal state to the exit state, it may be determined whether to return from the exit state to the normal state.

この他については実施の形態1と同様であるため、重複する説明は割愛する。   Since other aspects are the same as those in the first embodiment, a duplicate description is omitted.

上記の各実施の形態は、本発明の実施の一例であり、本発明はこれに限定されることはない。例えば、上記各実施の形態においては、加工制御部が加工状態を通常状態から抜け際状態へ変化させる判断に用いる第1の閾値が所定の値(50%)である場合を例としたが、一定期間の短絡頻度の平均値よりも所定値大きくなった場合(例えば10以上大きくなった場合)に加工状態を通常状態から抜け際状態に変化させてもよい。   Each of the above embodiments is an example of the present invention, and the present invention is not limited to this. For example, in each of the above embodiments, the case where the first threshold value used for the determination that the processing control unit changes the processing state from the normal state to the exited state is a predetermined value (50%). When the predetermined value becomes larger than the average value of the short-circuit frequency for a certain period (for example, when it becomes larger by 10 or more), the machining state may be changed from the normal state to the close state.

以上のように、本発明にかかる細穴放電加工機は、抜け際状態での加工を安定して行える点で有用であり、特に、中空形状のワークの上層のみの穿孔や、既に存在する横穴を通り越さないように縦穴を加工するのに適している。   As described above, the fine hole electric discharge machine according to the present invention is useful in that it can stably perform the processing in the state of being pulled out, and in particular, drilling only the upper layer of a hollow workpiece or an already existing horizontal hole. Suitable for machining vertical holes so as not to pass through.

1 細穴放電加工機
2 電極
3 ワーク
4 加工制御部
5 パルス発生条件設定部
6 パルス発生装置
7 短絡検出部
8 短絡頻度検出部
9 加工送り指令部
41 加工状態情報記憶部
DESCRIPTION OF SYMBOLS 1 Thin hole electric discharge machine 2 Electrode 3 Workpiece 4 Process control part 5 Pulse generation condition setting part 6 Pulse generator 7 Short circuit detection part 8 Short circuit frequency detection part 9 Process feed command part 41 Process state information storage part

Claims (8)

先端から加工液を噴射するパイプ状の電極と、前記電極とワークとの間に加工パルスを含むパルス電圧を休止時間を挟んで間欠的に印加するパルス発生手段とを有し、前記電極と前記ワークとの間に介在する前記加工液中で前記加工パルスによる放電を発生させて前記ワークに対して放電加工を施す細穴放電加工機であって、
前記電極と前記ワークとの間での短絡の発生を検出する短絡発生検出手段と、
前記短絡の発生頻度を検出する短絡発生頻度検出手段と、
前記短絡発生頻度検出手段の検出結果に基づいて、前記放電加工による加工中の穴が非貫通の通常状態であるか、部分的に貫通した抜け際状態であるか、完全に貫通した貫通状態であるかを判断する加工状態判定手段とを有することを特徴とする細穴放電加工機。
A pipe-like electrode for injecting a machining fluid from the tip, and pulse generating means for intermittently applying a pulse voltage including a machining pulse between the electrode and the workpiece with a pause time between the electrode and the workpiece A fine hole electric discharge machine that performs electric discharge machining on the workpiece by generating electric discharge due to the machining pulse in the machining liquid interposed between the workpiece,
Short-circuit occurrence detection means for detecting the occurrence of a short-circuit between the electrode and the workpiece;
A short-circuit occurrence frequency detecting means for detecting the occurrence frequency of the short-circuit,
Based on the detection result of the short-circuit occurrence frequency detection means, the hole being machined by the electric discharge machining is in a non-penetrating normal state, in a partially penetrating state, or in a completely penetrating state. A fine hole electric discharge machine comprising machining state determination means for determining whether or not there is.
前記加工状態判定手段は、
前記通常状態での加工中の短絡発生頻度が第1の閾値以上である場合に前記通常状態から抜け際状態へ遷移したと判断し、
前記抜け際状態での加工中の前記短絡発生頻度が前記第1の閾値よりも小さい第2の閾値以下である場合に、前記抜け際状態から前記貫通状態に遷移したと判断することを特徴とする請求項1記載の細穴放電加工機。
The machining state determination means includes
If the occurrence of short circuit during processing in the normal state is greater than or equal to the first threshold, it is determined that the normal state has transitioned to the exit state,
When the short-circuit occurrence frequency during processing in the disconnected state is equal to or less than a second threshold value that is smaller than the first threshold value, it is determined that the transition from the disconnected state to the penetrating state is made. The fine hole electric discharge machine according to claim 1.
前記加工状態判定手段は、
前記通常状態での加工中の前記短絡発生頻度が前記第1の閾値以上となった状態が予め設定された時間以上継続した場合に、前記通常状態から前記抜け際状態へ遷移したと判断し、
前記抜け際状態での加工中の前記短絡発生頻度が前記第2の閾値以下となった状態が予め設定された時間以上継続した場合に、前記抜け際状態から前記貫通状態へ遷移したと判断することを特徴とする請求項1記載の細穴放電加工機。
The machining state determination means includes
When the state in which the short-circuit occurrence frequency during the processing in the normal state is equal to or higher than the first threshold is continued for a preset time or more, it is determined that the transition from the normal state to the exit state is performed,
When the state in which the frequency of occurrence of the short circuit during the processing in the disconnected state is equal to or less than the second threshold continues for a preset time or more, it is determined that the state has shifted from the disconnected state to the penetrating state. The narrow hole electric discharge machine according to claim 1.
前記加工状態判定手段が前記通常状態から前記抜け際状態へ遷移したと判断した際に、前記放電加工の加工条件を、前記休止時間を前記通常状態よりも延長した休止時間延長加工条件に変更する加工条件変更手段を有することを特徴とする請求項2又は3記載の細穴放電加工機。   When the machining state determination means determines that the transition from the normal state to the exiting state is made, the machining condition for the electric discharge machining is changed to a pause time extended machining condition in which the pause time is extended from the normal state. 4. The small hole electric discharge machine according to claim 2, further comprising machining condition changing means. 前記加工状態判定手段は、前記放電加工の加工条件を前記休止時間延長加工条件へ変更後に前記短絡発生頻度が低下しない場合は、前記通常状態であると判断し、前記加工条件変更手段は、前記放電加工の加工条件を前記休止時間延長加工条件から前記通常加工の加工条件へ変更することを特徴とする請求項4記載の細穴放電加工機。   The machining state determination means determines that the normal condition is present when the short-circuit occurrence frequency does not decrease after the machining condition of the electric discharge machining is changed to the downtime extended machining condition, and the machining condition change means 5. The small hole electric discharge machine according to claim 4, wherein the electric discharge machining condition is changed from the machining time extension machining condition to the normal machining machining condition. 前記パルス発生手段は、前記短絡の検出用のチェックパルスを前記加工パルスに先立って含むパルス電圧を、前記電極と前記ワークとの間に印加し、
前記短絡発生検出手段は、前記チェックパルスを印加した際に前記電極と前記ワークとの間に生じた電位差に基づいて、前記短絡の発生を検出することを特徴とする請求項1から5のいずれか1項記載の細穴放電加工機。
The pulse generating means applies a pulse voltage including a check pulse for detecting the short circuit prior to the machining pulse between the electrode and the workpiece,
6. The short circuit occurrence detection means detects the occurrence of the short circuit based on a potential difference generated between the electrode and the workpiece when the check pulse is applied. The fine hole electric discharge machine according to claim 1.
前記短絡頻度検出手段は、予め設定された期間中の前記チェックパルスの総数と、前記短絡の発生回数とに基づいて、前記短絡発生頻度を検出することを特徴とする請求項6記載の細穴放電加工機。   7. The narrow hole according to claim 6, wherein the short-circuit frequency detecting means detects the short-circuit occurrence frequency based on a total number of the check pulses during a preset period and the number of occurrences of the short-circuit. Electric discharge machine. 先端から加工液を噴射するパイプ状の電極とワークとの間に加工パルスを含むパルス電圧を休止時間を挟んで間欠的に印加して、前記電極と前記ワークとの間に介在する前記加工液中で前記加工パルスによる放電を発生させて前記ワークに対して放電加工を施す細穴放電加工機による細穴放電加工方法であって、
通常加工中の前記電極と前記ワークとの間での短絡の発生頻度が第1の閾値以上である場合に、前記放電加工によって穴が部分的に貫通したと判断して、前記放電加工の条件を、前記休止時間を前記通常加工時よりも延長した休止時間延長加工条件へ変更する工程と、
前記休止時間延長加工条件下での加工中の前記短絡の発生頻度が前記第1の閾値よりも小さい第2の閾値以下である場合に、前記放電加工によって穴が貫通したと判断して加工を終了させる工程とを有することを特徴とする細穴放電加工方法。
The machining fluid interposed between the electrode and the workpiece by intermittently applying a pulse voltage including a machining pulse between the pipe-like electrode for ejecting the machining fluid from the tip and the workpiece with a pause time in between A fine hole electric discharge machining method by a fine hole electric discharge machine that generates electric discharge by the machining pulse in the electric discharge machining to the workpiece,
When the frequency of occurrence of a short circuit between the electrode and the workpiece during normal machining is greater than or equal to a first threshold value, it is determined that a hole has partially penetrated by the electric discharge machining, and the electric discharge machining conditions Changing the downtime to a downtime extended processing condition that is longer than that during the normal processing, and
When the occurrence frequency of the short circuit during the processing under the extended working time is less than or equal to the second threshold value that is smaller than the first threshold value, it is determined that the hole has penetrated by the electric discharge machining. A fine hole electric discharge machining method.
JP2010078527A 2010-03-30 2010-03-30 Fine hole electric discharge machine and fine hole electric discharge machining method Active JP5349391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078527A JP5349391B2 (en) 2010-03-30 2010-03-30 Fine hole electric discharge machine and fine hole electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078527A JP5349391B2 (en) 2010-03-30 2010-03-30 Fine hole electric discharge machine and fine hole electric discharge machining method

Publications (2)

Publication Number Publication Date
JP2011206896A JP2011206896A (en) 2011-10-20
JP5349391B2 true JP5349391B2 (en) 2013-11-20

Family

ID=44938565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078527A Active JP5349391B2 (en) 2010-03-30 2010-03-30 Fine hole electric discharge machine and fine hole electric discharge machining method

Country Status (1)

Country Link
JP (1) JP5349391B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549576B2 (en) * 2010-12-20 2014-07-16 株式会社デンソー Electrolytic processing method and electrolytic processing apparatus
US9370836B2 (en) 2012-02-17 2016-06-21 Mitsubishi Electric Corporation Electric discharge machine and electric discharge machining method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1574143A (en) * 1976-04-15 1980-09-03 Rolls Royce Electro-discharge drilling machine tool
JPS57132930A (en) * 1981-02-13 1982-08-17 Mitsubishi Electric Corp Discharge machining device
JPS57138540A (en) * 1981-02-13 1982-08-26 Mitsubishi Electric Corp Electric spark machining device
JPS57138538A (en) * 1981-02-13 1982-08-26 Mitsubishi Electric Corp Electric spark machining device
JPS61274813A (en) * 1985-05-30 1986-12-05 Fanuc Ltd Confirming device for hole machining completion in electric discharge machine
JP2005144651A (en) * 2003-11-12 2005-06-09 Asutekku:Kk Penetration detecting device, method and electric discharge machine
US8168914B2 (en) * 2004-10-28 2012-05-01 Mitsubishi Electric Corporation Electric-discharge-machining power supply apparatus and electric discharge machining method

Also Published As

Publication number Publication date
JP2011206896A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5037941B2 (en) Wire electric discharge machining apparatus and wire electric discharge machining method
US8168914B2 (en) Electric-discharge-machining power supply apparatus and electric discharge machining method
JP5414864B1 (en) Machining power supply for wire-cut electrical discharge machining equipment
JP2006334601A (en) Pulse arc welding control method and pulse arc welding equipment
JP4444303B2 (en) Discharge occurrence detection method and apparatus
WO1993001017A1 (en) Wirecut electric discharge machining system
EP2223764B1 (en) Wire electric discharge machine
TWI422450B (en) Wire-cut electric discharge machine with function to suppress local production of streaks during finish machining
JP5264789B2 (en) Power control device for electrical discharge machine
JP5349391B2 (en) Fine hole electric discharge machine and fine hole electric discharge machining method
WO2013121586A1 (en) Electrical discharge machine and electrical discharge machining method
JP2010201521A (en) Machining power supply apparatus of die-sinking electric discharge machining device
JPWO2005072900A1 (en) Electric discharge machine and electric discharge method
EP2497593B1 (en) Electric discharge machining method
CN101433987A (en) Wire break detecting device for wire electric discharge machine
JP6165210B2 (en) Machining power supply for wire electrical discharge machining equipment
US8278586B2 (en) Sinker electric discharge machining method, and sinker electric discharge machining apparatus
JP5349375B2 (en) EDM machine
JP2020028948A (en) Electric discharge machine
JPWO2014087457A1 (en) EDM machine
JPH08281516A (en) Electric discharge machining device
JP2003266244A (en) Electric discharge machining method, and discharge control device for electric discharge machine
JP2008062303A (en) Control method for wire electric discharge machine
JP2004276188A (en) Control device and method for micropore electric discharge machine
JPH071238A (en) Electric discharge machining method and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5349391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250