JP5348944B2 - Longitudinal uniaxially stretched polyester film for metal cans, its production method, resin-laminated metal plate - Google Patents

Longitudinal uniaxially stretched polyester film for metal cans, its production method, resin-laminated metal plate Download PDF

Info

Publication number
JP5348944B2
JP5348944B2 JP2008136872A JP2008136872A JP5348944B2 JP 5348944 B2 JP5348944 B2 JP 5348944B2 JP 2008136872 A JP2008136872 A JP 2008136872A JP 2008136872 A JP2008136872 A JP 2008136872A JP 5348944 B2 JP5348944 B2 JP 5348944B2
Authority
JP
Japan
Prior art keywords
film
metal plate
polyester
resin
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008136872A
Other languages
Japanese (ja)
Other versions
JP2009279902A (en
Inventor
淳治 松村
道照 中能
克優 松波
芳輝 近藤
幸博 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Can Co Ltd
Original Assignee
Daiwa Can Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Can Co Ltd filed Critical Daiwa Can Co Ltd
Priority to JP2008136872A priority Critical patent/JP5348944B2/en
Publication of JP2009279902A publication Critical patent/JP2009279902A/en
Application granted granted Critical
Publication of JP5348944B2 publication Critical patent/JP5348944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、金属板を被覆するのに有用な、特定の樹脂組成と、特定の樹脂物性を有する金属缶用縦一軸延伸フィルム、及びその製造方法、当該樹脂が被覆された金属板に関する。   The present invention relates to a specific resin composition, a longitudinally uniaxially stretched film for a metal can having specific resin properties, a method for producing the same, and a metal plate coated with the resin, which are useful for coating a metal plate.

飲料缶や食缶に求められる最も重要な性能は内容物の保存性であり、風味を長期にわたって保持し、それと同時に金属の腐食を防止することが重要である。こうした中で金属板に樹脂フィルムをラミネートし、この材料を用いて絞り缶や絞りしごき缶を製造する方法はすでに多く提案されてきている。例えば、特許文献1には、ポリエステル樹脂よりなる二軸延伸フィルムを金属板に熱融着により積層し、積層後の被覆樹脂層において金属板近傍の樹脂層での結晶化の状態および非近傍の樹脂層での配向の状態を適性範囲に制御することで、優れた加工性、加工密着を有する缶用素材を提供することが開示されている。しかし、この特性を得るためには被覆樹脂層の二軸配向度を適正に制御することが必要なため金属板と二軸延伸フィルムの熱融着条件を厳密に管理する煩わしさがある。   The most important performance required for beverage cans and food cans is the shelf life of the contents, and it is important to maintain the flavor over a long period of time and at the same time prevent corrosion of the metal. Under these circumstances, many methods have already been proposed for laminating a resin film on a metal plate and producing a drawn can and a drawn and ironed can using this material. For example, in Patent Document 1, a biaxially stretched film made of a polyester resin is laminated on a metal plate by thermal fusion, and in the coated resin layer after lamination, the crystallization state in the resin layer near the metal plate and non-nearness It is disclosed to provide a can material having excellent workability and work adhesion by controlling the orientation state in the resin layer within an appropriate range. However, in order to obtain this characteristic, it is necessary to appropriately control the degree of biaxial orientation of the coating resin layer, and thus there is a troublesome task of strictly managing the heat fusion conditions between the metal plate and the biaxially stretched film.

また、二軸延伸フィルムの製膜は、一般的に、Tダイから押し出して冷却ロールで固化させたシートを再加熱して、縦方向に延伸した後で幅方向に延伸し、熱固定ゾーンを経てロール上に巻き取るという工程で製造される。縦方向の延伸は、加熱ロールでフィルムを加熱し、複数個のロールの周速差で延伸をすればよいが、横延伸はフィルムの両端をつかんで広げるので、好適な延伸温度を維持するために大きな加熱炉が必要となる。さらにフィルムの熱安定性を保証するために、延伸後の熱固定のための加熱炉も必要となり、大きなエネルギーを使用することになる。また熱固定をするほどフィルムの熱安定性は向上するものの、フィルムの結晶化が進行するために金属板との熱融着性が低下するという相反する現象が起こり、こうした二軸延伸フィルムは必ずしも金属板ラミネート用フィルムとして最適といえるものではなかった。   In addition, the biaxially stretched film is generally formed by reheating a sheet extruded from a T-die and solidified with a cooling roll, stretching in the longitudinal direction, stretching in the width direction, and It is manufactured in a process of winding on a roll. For stretching in the machine direction, the film may be heated with a heating roll and stretched at a difference in peripheral speed between a plurality of rolls. However, since transverse stretching is performed by grasping both ends of the film to maintain a suitable stretching temperature. A large heating furnace is required. Furthermore, in order to guarantee the thermal stability of the film, a heating furnace for heat setting after stretching is also required, and a large amount of energy is used. In addition, although the thermal stability of the film is improved as the heat setting is performed, the contradictory phenomenon that the heat fusion property with the metal plate is lowered due to the progress of crystallization of the film occurs. It was not the most suitable film for laminating metal plates.

このように、従来、金属缶用樹脂被覆金属板として、二軸延伸を施して配向性を樹脂フィルムに付与した樹脂フィルムを金属板に熱接着したものが用いられていたが、金属素材の薄肉化に伴い、加工性を向上させるために、金属板に被覆した状態で無配向の状態とする必要が生じてきた。そこで、金属板に無配向状態で被覆しやすく、製缶によるフィルムのダメージを防止しようとする金属板被覆用樹脂フィルムとその製造方法が、例えば特許文献2に開示されている。   Thus, conventionally, as a resin-coated metal plate for metal cans, a biaxially stretched resin film obtained by thermally bonding a resin film with orientation imparted to the resin film has been used. In order to improve the workability, it has become necessary to make it non-oriented in a state where it is coated on a metal plate. Therefore, for example, Patent Document 2 discloses a resin film for coating a metal plate that is easy to cover a metal plate in a non-oriented state and tries to prevent damage to the film due to the can.

この特許文献2には、熱可塑性樹脂を加熱溶解してTダイから連続的に帯状に押し出して冷却固化し、次いで低温度範囲で延伸加工した後、熱固定せずに延伸フィルムを製膜することにより、金属板に熱融着可能な金属板被膜用樹脂フィルムの製造方法が開示されているが、Tg〜Tg+80℃と比較的に低い温度範囲で延伸加工をするので、延伸後に収縮しようとする傾向が強くなる。このため長期保管をしている間に巻き締まりを起こして、しわの発生やブロッキングのトラブルが発生する場合があり、熱固定を必要としたり、延伸倍率を通常の延伸倍率より低めの1.5〜2.5倍程度に設定したりすることが好ましい旨の記載があるが、これに開示された方法で、特に主たる成分がポリブチレンテレフタレート樹脂などの組成物からフィルムを製膜しようとする場合には、その樹脂のガラス転移温度Tgが低いために、延伸後に収縮しようとする傾向がさらに強くなる。そのため上記の様な問題が深刻化して、必ずしも樹脂フィルム被覆金属板の製造方法として最適といえるものではなかった。   In Patent Document 2, a thermoplastic resin is heated and melted, extruded continuously from a T-die in a band shape, cooled and solidified, and then stretched in a low temperature range, and then a stretched film is formed without heat fixing. Thus, a method for producing a resin film for coating a metal plate that can be heat-sealed to a metal plate has been disclosed, but since it is stretched in a relatively low temperature range of Tg to Tg + 80 ° C., it tends to shrink after stretching. The tendency to do becomes strong. For this reason, winding tightening may occur during long-term storage, and wrinkles and blocking troubles may occur. Heat fixing is required, or the draw ratio is 1.5. Although there is a description that it is preferable to set to about 2.5 times, in the case of trying to form a film from a composition such as a polybutylene terephthalate resin, in particular, by the method disclosed therein Since the glass transition temperature Tg of the resin is low, the tendency to shrink after stretching is further increased. Therefore, the problems as described above have become serious, and it has not always been optimal as a method for producing a resin film-coated metal plate.

特開平6−155660号公報JP-A-6-155660 特開2002−120278号公報JP 2002-120278 A

本発明は、上記の問題を解決することを目的として、絞り缶、絞りしごき缶などに適した特定の樹脂組成物をフィルムの構成とし、密着性、ラミネート適性に優れ、製膜工程で熱固定(ヒートセット)を不要にし、巻き取ったロールにシワのない外観性に優れた金属缶用縦一軸延伸フィルム、及びその製造方法、及び、当該樹脂が被覆され、製缶性に優れた金属缶用樹脂ラミネート金属板を提供することを目的とする。   In order to solve the above problems, the present invention has a specific resin composition suitable for squeezed cans and squeezed and squeezed cans as a film structure, excellent in adhesion and laminating properties, and heat-set in a film forming process. (Cannot be heat set), and the rolled roll is a uniaxially stretched film for a metal can excellent in appearance without wrinkles, a method for manufacturing the same, and a metal can coated with the resin and excellent in can manufacturing An object of the present invention is to provide a resin laminated metal plate.

本発明の第1は、ジカルボン酸成分がテレフタル酸からなり、グリコール成分が1,4−ブタンジオールからなるポリエステル(a)50〜70重量%と、ジカルボン酸成分がテレフタル酸からなり、グリコール成分がエチレングリコールからなるポリエステル(b)50〜30重量%とからなるポリエステル樹脂組成物で構成された縦一軸延伸フィルムであって、
(1)面内の屈折率差(フィルムの縦方向の屈折率と横方向の屈折率の差)ΔNが60×10−3以上、
(2)結晶化分率が50%以下、
(3)150℃×30分の条件における加熱収縮率が、フィルムの縦方向(MD方向)で25%以下、フィルムの横方向(TD方向)で8%以下、
であることを特徴とする金属缶用縦一軸延伸ポリエステルフィルムに関する。
本発明の第2は、請求項1に記載のポリエステルフィルムを製造する方法であって、ジカルボン酸成分がテレフタル酸からなり、グリコール成分が1,4−ブタンジオールからなるポリエステル(a)50〜70重量%と、ジカルボン酸成分がテレフタル酸からなり、グリコール成分がエチレングリコールからなるポリエステル(b)50〜30重量%とからなるポリエステル樹脂組成物を、押出機を用いてTダイから押し出し、溶融樹脂をキャストロール上でシートになるように冷却固化し、その後、前記ポリエステル(a)のガラス転移温度をTg(a)としたとき、当該シートを[Tg(a)+80℃]以上で[Tg(a)+100℃]以下の温度範囲に加熱制御された延伸前ロールと延伸後ロールとの周速差により3〜4.5倍に縦延伸し、次いで熱固定を施さずに延伸後ロールとその後に連なるガイドロールとの周速比を100:97.0〜100:99.6の範囲に制御し、延伸後ロールの後に連なるガイドロールの間でフィルムの張力を緩め、延伸加工されたフィルムの内部応力を緩和するようにしたことを特徴とする金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法に関する。
本発明の第3は、請求項2に記載の金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法であって、延伸後ロールとその後に連なる複数のガイドロールとの周速比を制御して段階的にフィルムの張力を緩和することを特徴とする金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法に関する。
本発明の第4は、請求項2または3のいずれかに記載の金属板被覆用縦一軸ポリエステルフィルムの製造方法であって、縦延伸後、前記ポリエステル(a)のガラス転移温度をTg(a)、またポリエステル(b)のガラス転移温度をTg(b)としたときTg(a)〜Tg(b)の温度範囲において、複数のガイドロールを用いて、縦方向の張力緩和量の合計が0.4%以上となるように制御する工程を含むことを特徴とする金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法に関する。
本発明の第5は、請求項1に記載のフィルムが直接、または有機樹脂皮膜層を介して片面、もしくは両面に被覆された金属缶用樹脂ラミネート金属板であり、この被覆樹脂フィルムの結晶状態が結晶化分率で35%を超えないものであることを特徴とする樹脂ラミネート金属板に関する。
According to the first aspect of the present invention, the dicarboxylic acid component is composed of terephthalic acid, the glycol component is composed of 1,4-butanediol, 50 to 70% by weight of the polyester (a), the dicarboxylic acid component is composed of terephthalic acid, and the glycol component is composed of A longitudinally uniaxially stretched film composed of a polyester resin composition comprising 50 to 30% by weight of a polyester (b) made of ethylene glycol,
(1) In-plane refractive index difference (difference between the vertical refractive index and the horizontal refractive index of the film) ΔN is 60 × 10 −3 or more,
(2) The crystallization fraction is 50% or less,
(3) Heat shrinkage under conditions of 150 ° C. × 30 minutes is 25% or less in the longitudinal direction (MD direction) of the film, 8% or less in the lateral direction (TD direction) of the film,
The present invention relates to a longitudinally uniaxially stretched polyester film for metal cans.
2nd of this invention is a method of manufacturing the polyester film of Claim 1, Comprising: Polyester (a) 50-70 whose dicarboxylic acid component consists of terephthalic acid and whose glycol component consists of 1, 4- butanediol. A polyester resin composition consisting of 50% by weight and a polyester (b) 50 to 30% by weight of a dicarboxylic acid component consisting of terephthalic acid and a glycol component consisting of ethylene glycol is extruded from a T die using an extruder, and a molten resin Is cooled and solidified to form a sheet on a cast roll, and then when the glass transition temperature of the polyester (a) is Tg (a), the sheet is [Tg (a) + 80 ° C.] or more and [Tg ( vertically 3-4.5 fold by the peripheral speed difference between a) + 100 ℃] before stretching is a heating control temperature range below the roll and draw roll after Next, the peripheral speed ratio between the roll after stretching and the guide roll continuous thereafter is controlled in the range of 100: 97.0 to 100: 99.6 without performing heat setting, and the guide roll continuous after the roll after stretching. The present invention relates to a method for producing a longitudinally uniaxially stretched polyester film for covering a metal plate, wherein the tension of the film is relaxed to relieve the internal stress of the stretched film.
3rd of this invention is a manufacturing method of the longitudinally uniaxially stretched polyester film for metal plate coating | coated of Claim 2, Comprising: Controlling the peripheral speed ratio of the roll after extending | stretching and several guide rolls connected after that, it is a step. In particular, the present invention relates to a method for producing a longitudinally uniaxially stretched polyester film for coating a metal plate, characterized by relaxing the tension of the film.
4th of this invention is a manufacturing method of the vertical uniaxial polyester film for metal plate coating | coated in any one of Claim 2 or 3, Comprising: After longitudinal stretching, the glass transition temperature of the said polyester (a) is set to Tg (a In the temperature range of Tg (a) to Tg (b) when the glass transition temperature of the polyester (b) is Tg (b), the total amount of tension relaxation in the longitudinal direction is determined using a plurality of guide rolls. The present invention relates to a method for producing a longitudinally uniaxially stretched polyester film for coating a metal plate, comprising a step of controlling the content to be 0.4% or more.
A fifth aspect of the present invention is a resin-laminated metal plate for a metal can in which the film according to claim 1 is coated directly or on one side or both sides via an organic resin film layer, and the crystalline state of the coated resin film Relates to a resin-laminated metal plate characterized in that the crystallization fraction does not exceed 35%.

以下に、本発明について、以下に詳細に説明する。本発明におけるフィルムを構成するポリエステルフィルムは、ジカルボン酸成分がテレフタル酸からなり、グリコール成分が1,4−ブタンジオールからなるポリエステル(a)50〜70重量%と、ジカルボン酸成分がテレフタル酸からなり、グリコール成分がエチレングリコールからなるポリエステル(b)50〜30重量%との配合比率でなる2種のブレンドポリエステルフィルムである。   Hereinafter, the present invention will be described in detail. The polyester film constituting the film of the present invention comprises a polyester (a) 50 to 70% by weight of a dicarboxylic acid component made of terephthalic acid, a glycol component made of 1,4-butanediol, and a dicarboxylic acid component made of terephthalic acid. These are two types of blended polyester films having a blending ratio of 50 to 30% by weight of the polyester (b) whose glycol component is ethylene glycol.

樹脂組成物中において、ジカルボン酸成分がテレフタル酸からなり、グリコール成分が1,4−ブタンジオールからなるポリエステル(a)は50〜70重量%の範囲にあり、より好ましい範囲は55〜65重量%である。ポリエステル(a)の組成比が樹脂組成物のうちの70重量%を超えると金属板との密着力が低下し金属缶に成形する素材には不向きなものとなる。また、ポリエステル(a)の組成比が樹脂組成物のうちの50重量%未満では金属缶のレトルト殺菌処理などの加熱処理で被覆樹脂が乳白化して外観を損ねる。
本発明におけるポリエステル(a)は本発明の効果が損なわれない範囲で適宜、他の成分を共重合したものでも良いが、そのためにはテレフタル酸と1,4−ブタンジオールは、それぞれ90モル%以上存在することが好ましい。
In the resin composition, the polyester (a) in which the dicarboxylic acid component is composed of terephthalic acid and the glycol component is composed of 1,4-butanediol is in the range of 50 to 70% by weight, more preferably 55 to 65% by weight. It is. When the composition ratio of the polyester (a) exceeds 70% by weight of the resin composition, the adhesion with the metal plate is lowered and it is not suitable for a material to be molded into a metal can. Moreover, when the composition ratio of polyester (a) is less than 50% by weight of the resin composition, the coating resin becomes milky and deteriorates in appearance by heat treatment such as retort sterilization treatment of the metal can.
The polyester (a) in the present invention may be appropriately copolymerized with other components as long as the effects of the present invention are not impaired. For that purpose, terephthalic acid and 1,4-butanediol are each 90 mol%. It is preferable to exist above.

前記ポリエステル(a)の共重合成分としての酸成分としては、イソフタル酸、(無水)フタル酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、炭素数20〜60のダイマー酸、(無水)マレイン酸、フマル酸、イタコン酸等の脂肪族ジカルボン酸、(無水)ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸等の脂環族ジカルボン酸、その他ヒドロキシカルボン酸や多官能カルボン酸を挙げることができる。
また、前記ポリエステル(a)の共重合成分としてのアルコール成分としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロパンジオールなどの脂肪族グリコール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジエタノールなどの脂環族ジオール、あるいは芳香族ジオール、多官能アルコールなどが挙げられる。
Examples of the acid component as a copolymerization component of the polyester (a) include isophthalic acid, (anhydrous) phthalic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, oxalic acid, succinic acid, adipic acid, and sebacic acid. , Dimer acids having 20 to 60 carbon atoms, aliphatic dicarboxylic acids such as (anhydrous) maleic acid, fumaric acid and itaconic acid, alicyclic dicarboxylic acids such as (anhydrous) hexahydrophthalic acid and hexahydroterephthalic acid, and other hydroxy groups Carboxylic acid and polyfunctional carboxylic acid can be mentioned.
Examples of the alcohol component as a copolymerization component of the polyester (a) include aliphatic glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and 1,2-propanediol, 1,4-cyclohexanedimethanol, and 1,4. -Alicyclic diols such as cyclohexanediethanol, aromatic diols, polyfunctional alcohols and the like.

樹脂組成物中において、ジカルボン酸成分がテレフタル酸からなり、グリコール成分がエチレングリコールからなるポリエステル(b)は50〜30重量%の範囲にあり、より好ましい範囲は45〜35重量%である。ポリエステル(b)の組成比が樹脂組成物のうちの50重量%を超えると金属缶のレトルト殺菌処理などの加熱処理で被覆樹脂が乳白化して外観を損ねることとなる。また、ポリエステル(b)の組成比が樹脂組成物のうちの30重量%未満では金属板との密着力が低下し金属缶に成形する素材には不向きとなる。
本発明におけるポリエステル(b)は本発明の効果が損なわれない範囲で適宜、前記ポリエステル(a)の場合と同様の他の成分を共重合したものでも良いが、そのためにはテレフタル酸とエチレングリコールは、それぞれ90モル%以上存在することが好ましい。
In the resin composition, the polyester (b) in which the dicarboxylic acid component is made of terephthalic acid and the glycol component is made of ethylene glycol is in the range of 50 to 30% by weight, more preferably 45 to 35% by weight. When the composition ratio of the polyester (b) exceeds 50% by weight of the resin composition, the coating resin becomes milky and deteriorates in appearance by heat treatment such as retort sterilization treatment of the metal can. Moreover, if the composition ratio of polyester (b) is less than 30% by weight of the resin composition, the adhesion to the metal plate is reduced, making it unsuitable for a material to be molded into a metal can.
The polyester (b) in the present invention may be appropriately copolymerized with other components similar to those in the case of the polyester (a) as long as the effects of the present invention are not impaired. For that purpose, terephthalic acid and ethylene glycol are used. Are preferably present in an amount of 90 mol% or more.

ポリエステル(b)の共重合成分としての酸成分、アルコール成分としては、前記ポリエステル(a)と同様なものが挙げられる。   Examples of the acid component and the alcohol component as the copolymerization component of the polyester (b) include the same as the polyester (a).

なお、樹脂組成物には必要に応じて、適量の顔料、アンチブロッキング剤、酸化防止剤、安定剤等を添加しても良い。   In addition, you may add an appropriate amount of a pigment, an antiblocking agent, antioxidant, a stabilizer, etc. to a resin composition as needed.

本発明では、前記のポリエステル(a)と前記ポリエステル(b)とは実質的に非相溶である。
ポリエステル(a)としては、融点が212〜224℃、極限粘度が0.78〜1.45dl/gの範囲で選択することが好ましい。
また、ポリエステル(b)としては、融点が246〜255℃、極限粘度が0.66〜0.99dl/gの範囲で選択することが好ましい。
In the present invention, the polyester (a) and the polyester (b) are substantially incompatible.
The polyester (a) is preferably selected in the range of a melting point of 212 to 224 ° C. and an intrinsic viscosity of 0.78 to 1.45 dl / g.
The polyester (b) is preferably selected in the range of a melting point of 246 to 255 ° C. and an intrinsic viscosity of 0.66 to 0.99 dl / g.

本発明のフィルムは、フィルムの縦方向の屈折率と横方向の屈折率の差である面内の屈折率差ΔNの下限が、60×10−3以上、好ましくは100×10−3以上である。ここで、ΔNは次式により定義されるものである。
〔数1〕
ΔN=Nx−Ny ・・・(1)
ただし、Nxは縦方向(MD方向:マシンダイレクション)の、Nyは横方向(TD方向:トラバースダイレクション)の各々をアッべ屈折計で測定した屈折率の値である。
かかる面内の屈折率差ΔNが60×10−3未満のフィルムの場合は、MD方向の延伸が不足しているか、TD方向の延伸が強すぎるかのいずれかの場合が考えられるが、本発明では、TD方向の横延伸は行わないので、MD方向の延伸が不足していることになる。このMD方向の延伸が不足していると、金属板にラミネートする工程でテンションコントロールが困難となり、しわが発生し易くなり、フィルムの端部が金属板からはみ出したり、TD方向のフィルムの幅が不安定になったりして、フィルム端部が所定の位置に貼り合わせるのが困難となる。かかる意味から、本発明のフィルムは、面内の屈折率差ΔNは60×10−3以上とする。
なお、該屈折率差ΔNの上限については、特に制限はないが、カールが発生しない程度に設定され、好ましくは200×10−3を超えないようにする。
In the film of the present invention, the lower limit of the in-plane refractive index difference ΔN, which is the difference between the longitudinal refractive index and the lateral refractive index of the film, is 60 × 10 −3 or more, preferably 100 × 10 −3 or more. is there. Here, ΔN is defined by the following equation.
[Equation 1]
ΔN = Nx−Ny (1)
However, Nx is a value of a refractive index measured by an Abbe refractometer in the longitudinal direction (MD direction: machine direction) and Ny is a lateral direction (TD direction: traverse direction).
In the case of a film having an in-plane refractive index difference ΔN of less than 60 × 10 −3 , either MD direction stretching is insufficient or TD direction stretching is too strong. In the invention, since the transverse stretching in the TD direction is not performed, the stretching in the MD direction is insufficient. If the stretching in the MD direction is insufficient, the tension control becomes difficult in the process of laminating on the metal plate, wrinkles are easily generated, the end of the film protrudes from the metal plate, or the width of the film in the TD direction It becomes unstable and it becomes difficult for the film edge part to stick together in a predetermined position. In this sense, the film of the present invention has an in-plane refractive index difference ΔN of 60 × 10 −3 or more.
The upper limit of the refractive index difference ΔN is not particularly limited, but is set to such an extent that no curling occurs and preferably does not exceed 200 × 10 −3 .

また、本発明のフィルムの結晶化分率は、50%以下、好ましくは30%以下である。該結晶化分率が50%を超えると金属板への密着性が低下し易くなり、良好なラミネート金属板が得られにくくなる。なお、結晶化分率の下限は、工業上の生産性等の観点から0.5%である。
フィルムの結晶化分率は、フィルムを金属板にラミネートしたときのフィルムと金属板の密着性に影響し、ラミネート後、缶の成形性や缶の品位に影響を与える。
本発明におけるラミネート前のフィルムの結晶化分率は下記方法により求めたものである。
(1)製膜したフィルムをサンプルaとした。
(2)製膜したフィルムを窒素雰囲気中で270℃に1分間加熱溶融し、直ちに5℃に冷却された水中へ投入したものをサンプルbとした。
(3)製膜したフィルムを窒素雰囲気中で270℃に1分間加熱溶融し、その後3時間かけて50℃まで徐冷したものをサンプルcとした。
(4)これらサンプルa、bおよびcの密度を密度勾配管により公知の方法で測定し、下記式により算出してもとめた値を結晶化分率(%)とする。
〔数2〕
結晶化分率(%)={(Da−Db)/(Dc−Db)}×100・・・(2)
なお、式中のDa、Db及びDcは、それぞれサンプルa、b及びcの密度を示す。
The crystallization fraction of the film of the present invention is 50% or less, preferably 30% or less. When the crystallization fraction exceeds 50%, the adhesion to the metal plate tends to be lowered, and it becomes difficult to obtain a good laminated metal plate. The lower limit of the crystallization fraction is 0.5% from the viewpoint of industrial productivity.
The crystallization fraction of the film affects the adhesion between the film and the metal plate when the film is laminated on the metal plate, and affects the moldability of the can and the quality of the can after lamination.
The crystallization fraction of the film before lamination in the present invention is determined by the following method.
(1) The film formed was designated as sample a.
(2) The film formed was melted by heating at 270 ° C. for 1 minute in a nitrogen atmosphere and immediately put into water cooled to 5 ° C. as sample b.
(3) The film formed was heated and melted at 270 ° C. for 1 minute in a nitrogen atmosphere, and then gradually cooled to 50 ° C. over 3 hours to obtain a sample c.
(4) The density of these samples a, b and c is measured by a known method using a density gradient tube, and the value obtained by calculating with the following formula is defined as the crystallization fraction (%).
[Equation 2]
Crystallization fraction (%) = {(Da−Db) / (Dc−Db)} × 100 (2)
In addition, Da, Db, and Dc in a formula show the density of samples a, b, and c, respectively.

更に、本発明のフィルムは、150℃×30分の条件における加熱収縮率が、MD方向としては25%以下、好ましくは23%以下とする。TD方向としては8%以下、好ましくは6%以下である。
その理由として、まずMD方向の加熱収縮率であるが、その加熱収縮率が25%を超えると、フィルムを金属板に貼り合わせる際の予備加熱された金属板からの輻射熱の影響でフィルムが収縮を起こし、張力制御が不安定になり、結果として良好なラミネート金属板が得られにくくなる。なお、MD方向の下限としては、工業上の生産性の観点から、好ましくは0.5%以上とする。
一方、TD方向の加熱収縮率では、その加熱収縮率が8%を超えると、フィルムの巾方向の寸法が不安定となり、金属板の所定の位置にフィルムを貼り合わせることが困難になる。なお、TD方向の下限としては、工業上の生産性の観点から、好ましくは0.1%とする。
Furthermore, the film of the present invention has a heat shrinkage rate of 150 ° C. × 30 minutes in the MD direction of 25% or less, preferably 23% or less. The TD direction is 8% or less, preferably 6% or less.
The reason is that the heat shrinkage rate in the MD direction is first, but if the heat shrinkage rate exceeds 25%, the film shrinks due to the influence of radiant heat from the preheated metal plate when the film is bonded to the metal plate. As a result, the tension control becomes unstable, and as a result, it becomes difficult to obtain a good laminated metal plate. The lower limit in the MD direction is preferably 0.5% or more from the viewpoint of industrial productivity.
On the other hand, in the heat shrinkage rate in the TD direction, if the heat shrinkage rate exceeds 8%, the dimension in the width direction of the film becomes unstable, and it becomes difficult to bond the film to a predetermined position of the metal plate. The lower limit of the TD direction is preferably 0.1% from the viewpoint of industrial productivity.

加熱収縮率は次のように測定した。
フィルムから、MD方向の加熱収縮率を測定する場合は、長手方向に150mm、幅方向に20mmの寸法の短冊状に切り取り、またTD方向の加熱収縮率を測定する場合は、長手方向に20mm、幅方向に150mmの寸法の短冊状に切り取り試験片とした。試験片を一昼夜、23±2℃で保管した後、標線間距離が100mmになるように標線を2本入れる。150℃の電気オーブンにこの試験片を入れて15分間加熱し、取り出してから室温に30分放置した後に、標線間距離を測定して加熱収縮率を算出した。
〔数3〕
[加熱収縮率](%)=[100mm−(加熱後標線間距離)]/100mm×100
・・・(3)
The heat shrinkage was measured as follows.
When measuring the heat shrinkage rate in the MD direction from the film, it is cut into a strip shape having a dimension of 150 mm in the longitudinal direction and 20 mm in the width direction, and when measuring the heat shrinkage rate in the TD direction, 20 mm in the longitudinal direction. A test specimen was cut into a strip shape having a dimension of 150 mm in the width direction. After storing the test piece at 23 ± 2 ° C. all day and night, put two marked lines so that the distance between marked lines becomes 100 mm. The test piece was put in an electric oven at 150 ° C., heated for 15 minutes, taken out and left at room temperature for 30 minutes, and then the distance between marked lines was measured to calculate the heat shrinkage rate.
[Equation 3]
[Heat shrinkage ratio] (%) = [100 mm- (distance between marked lines after heating)] / 100 mm × 100
... (3)

本発明のフィルムの厚さは、6〜40μmの範囲が適しており、より好ましい範囲は8〜30μmである。厚さ6μm未満ではフィルムの機械強度が低いためにラミネート時の張力制御が難しくなり、作業性が低下する。厚さが40μmを超えても作業性の向上はみられず材料が無駄であり、経済的でない。   The thickness of the film of the present invention is suitably in the range of 6 to 40 μm, and more preferably in the range of 8 to 30 μm. If the thickness is less than 6 μm, the mechanical strength of the film is low, so that it is difficult to control the tension during lamination, and workability is reduced. Even if the thickness exceeds 40 μm, the workability is not improved and the material is useless, which is not economical.

本発明の樹脂組成物のフィルム製造方法について以下に説明する。Tダイを備えた押出機を用いてキャストロール上で冷却する公知の方法で所定の厚さにシートを製造した後、当該シートを、主たる成分であるポリエステル(a)のガラス転移温度Tg(a)としたとき、[Tg(a)+80℃]以上で[Tg(a)+100℃]以下の温度範囲に加熱制御された延伸前ロールと延伸後ロールの周速差で3〜4.5倍に縦延伸し、次いで熱固定を施さずに延伸後ロールと延伸後ロールの後に連なるガイドロールの間でフィルムの張力を緩め、延伸加工されたフィルムの内部応力を緩和することが重要である。好ましくは、延伸後ロールとその後に連なるガイドロールとの周速比を100:97.0〜100:99.6の範囲に制御して、縦方向のフィルム張力緩和量が0.4%(100:99.6)〜3%(100:97)となるように制御する。更に好ましくは、縦延伸後において、Tg(a)〜Tg(b)〔Tg(b)はポリエステル(b)のガラス転移温度である。〕の温度範囲にあるガイドロールを徐々に減速させ最後のガイドロールの周速比を上記の範囲内に収めるようにする。例えば、延伸後ロールとそれに連なる複数のガイドロールとの関係を、延伸後ロール100に対して4本の各ガイドロールの周速比を順に99.9、99.8、99.6、99.4となるように段階的に減速させて延伸フィルムの縦方向の張力を緩和させるようにする。このように、Tg(a)〜Tg(b)の温度範囲にある複数のガイドロールを使用して徐々に延伸フィルムの縦方向の張力を緩和した方がフィルム面内の加熱収縮率の均質化が図れ安定したフィルムに仕上がるので好ましい態様である。また、延伸フィルムの張力を段階的に緩めるためのガイドロールは上記の範囲内であれば4本に限定されない。なお、縦方向の張力緩和量の上限については、フィルムを巻き上げた時のロールにシワがあってはならないという理由から3%(100:97)を超えないようにする The film manufacturing method of the resin composition of this invention is demonstrated below. After manufacturing a sheet to a predetermined thickness by a known method of cooling on a cast roll using an extruder equipped with a T die, the sheet is converted into a glass transition temperature Tg (a ), The difference in peripheral speed between the roll before stretching and the roll after stretching, which is heated to a temperature range of [Tg (a) + 80 ° C.] or more and [Tg (a) + 100 ° C.] or less, is 3 to 4.5 times. It is important to relax the internal stress of the stretched film by longitudinally stretching the film and then relaxing the tension between the post-stretching roll and the guide roll following the post-stretching roll without heat setting. Preferably, the ratio of the peripheral speed between the roll after stretching and the guide roll that follows the roll is controlled in the range of 100: 97.0 to 100: 99.6, and the amount of relaxation of the film tension in the machine direction is 0.4% (100 : 99.6) to 3% (100: 97). More preferably, after longitudinal stretching, Tg (a) to Tg (b) [Tg (b) is the glass transition temperature of the polyester (b). The guide roll in the temperature range is gradually decelerated so that the peripheral speed ratio of the last guide roll falls within the above range. For example, the relationship between the post-stretching roll and the plurality of guide rolls connected thereto is set such that the peripheral speed ratio of each of the four guide rolls to the post-stretching roll 100 is 99.9, 99.8, 99.6, 99. The longitudinal tension of the stretched film is relaxed by decelerating stepwise so as to be 4. As described above, the film shrinkage rate in the film plane is more uniform when the longitudinal tension of the stretched film is gradually relaxed using a plurality of guide rolls in the temperature range of Tg (a) to Tg (b). This is a preferred embodiment because it is possible to achieve a stable film. Moreover, the guide roll for loosening the tension | tensile_strength of a stretched film in steps will not be limited to four if it is in said range. The upper limit of the amount of tension relaxation in the longitudinal direction should not exceed 3% (100: 97) because the roll when the film is wound should not be wrinkled .

本発明の樹脂組成物のフィルムを製造するにあたり、延伸前ロールの温度が[Tg(a)+80℃]未満では延伸後のフィルムの内部歪が大きくなり、MD方向の加熱収縮率を25%以下にすることが困難となる。また[Tg(a)+100℃]を超えるとフィルムの結晶化が進んで、延伸後のフィルムの結晶化分率が50%を超えてしまう。
さらに、延伸後、延伸後ロールとその次のガイドロール(またはその後に連なるガイドロール群)との周速比が100:99.6超ではフィルムに延伸後のリラックス効果がなく、MD方向の加熱収縮率が25%を超えてしまい、フィルムを金属板に貼り合わせる際に、予備加熱された金属板からの輻射熱の影響でフィルムが収縮を起こし、フィルムの張力制御が不安定になり、結果として良好なラミネート金属板が得られにくくなる(縦方向にしわのある)場合がある。
周速比が100:97未満でも、リラックス効果の向上はみられず、生産性が低下するだけであり経済的でない。ここでリラックス効果とは、引き伸ばされることで樹脂フィルムが受けた歪の弾性変形部分と塑性変形部分のうち、主に弾性変形部分の応力をいくらかでも緩和させることをいう。
なお、延伸後ロールの温度は特に制限はなく、延伸前ロールの温度以下であればよい。
このようにして延伸後は、両側の耳部をスリットし、公知の方法で巻き取られ、ロール状の製品となる。
In producing the film of the resin composition of the present invention, if the temperature of the roll before stretching is less than [Tg (a) + 80 ° C.], the internal strain of the film after stretching becomes large, and the heat shrinkage in the MD direction is 25% or less. It becomes difficult to make. Moreover, when it exceeds [Tg (a) +100 degreeC], crystallization of a film will advance and the crystallization fraction of the film after extending | stretching will exceed 50%.
Further, when the peripheral speed ratio between the stretched roll and the next guide roll (or a group of guide rolls continuous thereafter) is more than 100: 99.6 after stretching, the film has no relaxing effect after stretching, and heating in the MD direction. When the shrinkage rate exceeds 25% and the film is bonded to the metal plate, the film shrinks due to the radiant heat from the preheated metal plate, resulting in unstable tension control of the film, and as a result It may be difficult to obtain a good laminated metal plate (wrinkles in the vertical direction).
Even if the peripheral speed ratio is less than 100: 97, the relaxation effect is not improved, the productivity is lowered, and it is not economical. Here, the relaxation effect means that some of the stress of the elastically deformed portion is relaxed mainly among the elastically deformed portion and the plastically deformed portion of the strain received by the resin film.
In addition, the temperature of the roll after extending | stretching does not have a restriction | limiting in particular, What is necessary is just below the temperature of the roll before extending | stretching.
Thus, after extending | stretching, the ear | edge part of both sides is slit and it winds up by a well-known method, and becomes a roll-shaped product.

また、本発明のフィルム製造では、延伸工程後の熱固定は行わない。熱固定をすると、主たる成分であるポリブチレンテレフタレート樹脂の結晶化速度が速いために、フィルムの結晶化分率が50%を超えてしまい、熱融着性が低下するので、ラミネート時に金属板を比較的高温にする必要が生ずる。その結果、金属板からの輻射熱の影響でフィルムが軟化するために、フィルムを金属板の所定の位置に貼り合わせることが困難となるためである。
このように延伸後の熱固定を行わず、ポリエステル樹脂組成物で構成された縦一軸延伸フィルムの結晶化分率を50%以下にすることにより、該フィルムを金属板へラミネートする際に、圧着ロールの温度を精度よくコントロールしたり、また雰囲気温度をコントロールしたりする厳密な工程管理を行わなくても、フィルムの幅が安定して所定の位置に貼り合わせることができ、密着性に優れた良好なラミネート適性を有する。
また、製膜工程で、延伸工程後の熱固定を行うためのヒートセット工程を設ける必要がなく、そのためのエネルギーコストを削減することができる。
Moreover, in the film manufacture of this invention, the heat setting after an extending process is not performed. When heat-fixed, the crystallization rate of the polybutylene terephthalate resin, which is the main component, is high, so the crystallization fraction of the film exceeds 50%, and the heat-fusibility is lowered. A relatively high temperature is required. As a result, since the film is softened due to the influence of radiant heat from the metal plate, it is difficult to bond the film to a predetermined position on the metal plate.
When the film is laminated on a metal plate by pressing the crystallized fraction of the longitudinally uniaxially stretched film composed of the polyester resin composition to 50% or less without performing heat setting after stretching in this way. Even without strictly controlling the roll temperature or controlling the ambient temperature, the film width is stable and can be bonded in place, providing excellent adhesion. Good laminating properties.
Moreover, it is not necessary to provide the heat setting process for heat-setting after a extending process at a film forming process, and the energy cost for it can be reduced.

次に、本発明の樹脂組成物フィルムを金属板へラミネートする方法について、以下に説明する。
製缶用の樹脂被覆金属板の基材となる金属板については、特に限定されるものではなく、アルミニウム板やアルミニウム合金板、或いは、ニッケルメッキ鋼板、錫メッキ鋼板、極薄錫メッキ鋼板、電解クロム酸処理鋼板、亜鉛メッキ鋼板等の表面処理鋼板のような従来から知られた製缶用金属板のうちから適宜に選択されるものであって、熱硬化性樹脂や熱可塑性樹脂との密着性に富むような表面処理を施しておくことが好ましい。
具体的には、絞りしごき加工等が施されるシームレス缶用の金属板として、厚さが0.24〜0.38mmのアルミニウム合金板については、片面の付着量として1〜40mg/mのクロムを付着させたリン酸クロメート処理、もしくは4〜17mg/mのジルコニウムを付着させたリン酸ジルコニウム処理等の化成処理を両面に施したものが挙げられる。また、表面処理鋼板としては、厚さ(表面処理鋼板自体の厚さ)が0.15〜0.25mm、10〜200mg/mの皮膜量の金属クロムからなる下層と、クロム換算で1〜30mg/mのクロム水和酸化物からなる上層との2層皮膜を鋼板に形成させたTFS(ティン・フリー・スチール)が樹脂密着性、耐食性の観点から好ましい。また、ニッケルメッキ鋼板については、片面の付着量として20〜2000mg/mのニッケルメッキ層の上に、C量として1〜100mg/mの有機樹脂を主体とする化成処理被膜層を両面に施したものが挙げられる。
Next, a method for laminating the resin composition film of the present invention on a metal plate will be described below.
The metal plate used as the base material for the resin-coated metal plate for can manufacturing is not particularly limited, and is an aluminum plate, an aluminum alloy plate, a nickel-plated steel plate, a tin-plated steel plate, an ultrathin tin-plated steel plate, an electrolysis plate, or the like. It is appropriately selected from conventionally known metal plates for can manufacturing such as surface-treated steel sheets such as chromic acid-treated steel sheets and galvanized steel sheets, and is in close contact with thermosetting resins and thermoplastic resins. It is preferable to perform a surface treatment rich in properties.
Specifically, as a metal plate for a seamless can subjected to squeezing and ironing, etc., for an aluminum alloy plate having a thickness of 0.24 to 0.38 mm, the amount of adhesion on one side is 1 to 40 mg / m 2 . Examples thereof include those subjected to chemical conversion treatment such as a phosphoric acid chromate treatment to which chromium is adhered or a zirconium phosphate treatment to which 4 to 17 mg / m 2 of zirconium is adhered. Further, as the surface-treated steel sheet, the thickness (thickness of the surface-treated steel sheet itself) is 0.15 to 0.25 mm, a lower layer made of metal chromium with a coating amount of 10 to 200 mg / m 2 , and 1 to 3 in terms of chromium. TFS (Tin Free Steel), in which a two-layer coating with an upper layer made of chromium hydrated oxide of 30 mg / m 2 is formed on a steel sheet, is preferable from the viewpoints of resin adhesion and corrosion resistance. In addition, for nickel-plated steel sheets, a chemical conversion coating layer mainly composed of an organic resin of 1 to 100 mg / m 2 as the amount of C is formed on both sides on the nickel plating layer of 20 to 2000 mg / m 2 as the amount of adhesion on one side. What you gave.

本発明の樹脂組成物フィルムを金属板へラミネートする方法としては、金属板を予備加熱し、金属板の片面、あるいは両面に樹脂組成物フィルムをゴムロールで加圧して貼り合わせる。金属板の加熱方法は、熱風加熱方式、電熱ロール加熱方式、高周波加熱方式、赤外線加熱方式などの公知の方法が好適に利用でき、加熱温度は主たる成分であるポリエステル(a)の融点±10℃が適している。
金属板とフィルムを貼り合わせた後、加熱炉でポリエステル(b)の融点〜融点+40℃に至るまで加熱しフィルムを熱溶融させ、直ちに水槽内で、もしくは冷却エアーを吹き付けるなどの方法により急冷することで被覆樹脂フィルムの配向結晶構造を壊し、結晶化分率35%以下まで無定形化する必要がある。
その理由は、結晶化分率が35%を超えると、絞り成形、絞りしごき成形で被覆樹脂フィルムの伸び特性が不十分なために被覆樹脂フィルムにクラックが入って、缶としての品位が保てなくなるためである。なお、該結晶化分率の下限は、冷却に要するエネルギーコストや設備の大きさを考慮して決定され、好ましくは3%以上とする。
As a method of laminating the resin composition film of the present invention on a metal plate, the metal plate is preheated, and the resin composition film is pressed and bonded to one side or both sides of the metal plate with a rubber roll. As a method for heating the metal plate, a known method such as a hot air heating method, an electric heating roll heating method, a high frequency heating method, an infrared heating method or the like can be suitably used, and the heating temperature is the melting point of polyester (a), which is the main component, ± 10 ° C. Is suitable.
After laminating the metal plate and the film, heat the polyester (b) from the melting point to the melting point + 40 ° C. in a heating furnace to melt the film, and immediately quench in a water bath or by blowing cooling air. Therefore, it is necessary to break the oriented crystal structure of the coated resin film and make it amorphous to a crystallization fraction of 35% or less.
The reason for this is that if the crystallization fraction exceeds 35%, the coated resin film is insufficiently stretched and formed by drawing and ironing, so that the coated resin film cracks and the quality of the can is maintained. This is because it disappears. The lower limit of the crystallization fraction is determined in consideration of the energy cost required for cooling and the size of the equipment, and is preferably 3% or more.

こうすることにより、該フィルムが直接、または有機樹脂皮膜層を介して片面、もしくは両面に被覆された金属缶用樹脂ラミネート金属板は、この被覆樹脂フィルムの結晶状態が結晶化分率で35%を超えないものであるため、金属板との熱融着性に優れ、絞りしごき加工などの厳しい加工が要求される金属缶用として用いるのに適し、絞りしごき加工中に剥離などの成形トラブルがなく、金属缶の内面側となるフィルムにクラックなどの欠陥が発生することもない。しかも、長期間にわたって缶内の飲食品の風味を保持し、製缶された金属缶の内面が金属の腐食反応の起こらない高品位で、かつ充填後の殺菌温度で外観を損なうことなく、製缶材料に適した樹脂フィルム被覆金属板とすることができる。   By carrying out like this, the resin laminated metal plate for metal cans coated on one side or both sides of the film directly or through an organic resin film layer, the crystal state of this coated resin film is 35% in terms of crystallization fraction. Therefore, it is suitable for use in metal cans that require severe processing such as drawing and ironing, and there are molding troubles such as peeling during drawing and ironing. No defects such as cracks occur in the film on the inner surface side of the metal can. Moreover, the flavor of the food and drink in the can is maintained for a long period of time, and the inner surface of the metal can that has been made is of high quality without causing the corrosion reaction of the metal, and without damaging the appearance at the sterilization temperature after filling. It can be set as the resin film covering metal plate suitable for a can material.

上記の通り、金属板を被覆しているフィルムの結晶状態が結晶化分率で35%を超えないことが金属缶を製造する上で必要な要件である。そのためにも、金属板と貼り合わせる前の縦一軸延伸フィルムの結晶状態が重要である。金属板と貼り合わせる前の縦一軸延伸フィルムの結晶化分率を50%以下にする必要性は前述の通りであるが、それに加えて、本発明の要件であるフィルムの結晶化分率が50%以下という条件をはずれた縦一軸延伸フィルムは、フィルムの結晶化分率50%以下のそれに比べて熱溶融し難い性質になっている。そのため、このようなフィルムを使用する場合は、金属板に貼り付けた当該フィルムの結晶構造を完全に崩壊させる必要があるため、そのフィルムの加熱溶融温度として、ポリエステル(b)の融点+40℃を超える加熱温度(加熱されたフィルム自体の温度)が必要となり、さらにその温度で5秒程度の保持時間が必要となる。このため、樹脂の熱劣化を伴わずに結晶化分率を35%以下にまで無定形化することが困難となる。被覆樹脂の熱劣化は低分子量成分の生成を引き起こし、金属缶のフレーバー性に悪影響を及ぼすので好ましいことではなく、可能なかぎり熱劣化を防ぐべきである。かかる意味から、金属板を被覆しているフィルムの結晶状態が結晶化分率で35%を超えないものにする上で、金属板を被覆するのに用いる縦一軸延伸フィルムは、その結晶化分率を50%以下にすることが必要である。   As described above, it is a requirement necessary for producing a metal can that the crystal state of the film covering the metal plate does not exceed 35% in terms of crystallization fraction. Therefore, the crystal state of the longitudinally uniaxially stretched film before being bonded to the metal plate is important. The necessity for setting the crystallization fraction of the longitudinally uniaxially stretched film before being bonded to the metal plate to 50% or less is as described above. In addition, the crystallization fraction of the film, which is a requirement of the present invention, is 50. A longitudinally uniaxially stretched film that deviates from the condition of% or less is less susceptible to thermal melting than that of a film having a crystallization fraction of 50% or less. Therefore, when using such a film, since it is necessary to completely collapse the crystal structure of the film attached to the metal plate, the melting point of the polyester (b) + 40 ° C. is used as the heating and melting temperature of the film. A heating temperature exceeding that (the temperature of the heated film itself) is required, and a holding time of about 5 seconds is required at that temperature. For this reason, it becomes difficult to make the crystallization fraction amorphous to 35% or less without thermal degradation of the resin. Thermal degradation of the coating resin is not preferable because it causes the formation of low molecular weight components and adversely affects the flavor properties of the metal can, and thermal degradation should be prevented as much as possible. In this sense, the longitudinal uniaxially stretched film used to coat the metal plate is used to make the crystal state of the film covering the metal plate not exceed 35% in terms of crystallization fraction. The rate needs to be 50% or less.

本発明における、ラミネート後の金属板を被覆している被覆樹脂の結晶化分率は下記方法により求めたものである。
(1)樹脂被覆金属板の表面から削り取った樹脂フィルムをサンプルaaとした。
(2)製膜したフィルムを窒素雰囲気中で270℃に1分間加熱溶融し、直ちに5℃に冷却された水中へ投入したものをサンプルbとした。
(3)製膜したフィルムを窒素雰囲気中で270℃に1分間加熱溶融し、その後3時間かけて50℃まで徐冷したものをサンプルcとした。
(4)これらサンプルaa、bおよびcの密度を密度勾配管により公知の方法で測定し、下記式により算出してもとめた値を結晶化分率(%)とする。
〔数4〕
結晶化分率(%)={(Daa−Db)/(Dc−Db)}×100・・・(4)
なお、式中のDaa、DbおよびDcは、それぞれサンプルaa、b及びcの密度を示す。
In the present invention, the crystallization fraction of the coating resin coating the laminated metal plate is determined by the following method.
(1) A resin film scraped from the surface of the resin-coated metal plate was used as sample aa.
(2) The film formed was melted by heating at 270 ° C. for 1 minute in a nitrogen atmosphere and immediately put into water cooled to 5 ° C. as sample b.
(3) The film formed was heated and melted at 270 ° C. for 1 minute in a nitrogen atmosphere, and then gradually cooled to 50 ° C. over 3 hours to obtain a sample c.
(4) The density of these samples aa, b, and c is measured by a known method using a density gradient tube, and the value obtained by calculating the following formula is defined as the crystallization fraction (%).
[Equation 4]
Crystallization fraction (%) = {(Daa−Db) / (Dc−Db)} × 100 (4)
In addition, Daa, Db, and Dc in a formula show the density of samples aa, b, and c, respectively.

本発明の樹脂組成フィルムは、金属板と直接接着することも可能であるが、有機樹脂皮膜(接着剤)を介して貼り合わせることもできる。本発明に好適に使用できる有機樹脂皮膜としては、アルキド樹脂塗料、エポキシ樹脂塗料、アクリル樹脂塗料、尿素樹脂塗料、フェノール樹脂塗料、ポリウレタン樹脂塗料などが挙げられ、これらを1種または2種以上を組み合わせ使用することができる。塗布は公知の技術でなされ、塗布量は、厚さとして0.6〜6μmが好ましい。
この接着剤については、熱可塑性樹脂フィルムの側に塗布して接着剤層を形成しても良いし、金属板の側に塗布して接着剤層を形成しても良い。また、接着剤には、必要に応じて平均粒径が0.1〜0.5μmの白色顔料(酸化チタン)を添加するようにしても良い。
The resin composition film of the present invention can be directly bonded to a metal plate, but can also be bonded through an organic resin film (adhesive). Examples of the organic resin film that can be suitably used in the present invention include alkyd resin paints, epoxy resin paints, acrylic resin paints, urea resin paints, phenol resin paints, polyurethane resin paints, and the like. Can be used in combination. Coating is performed by a known technique, and the coating amount is preferably 0.6 to 6 μm in thickness.
The adhesive may be applied to the thermoplastic resin film side to form an adhesive layer, or may be applied to the metal plate side to form an adhesive layer. Moreover, you may make it add a white pigment (titanium oxide) with an average particle diameter of 0.1-0.5 micrometer to an adhesive agent as needed.

以下に、前述の樹脂組成被覆金属板を用いて、絞り成形、絞りしごき成形など公知の製造方法により製造される金属缶について述べる。金属缶は、絞り成形、絞りしごき成形により金属缶の上下方向にのばされた缶胴部分の当該樹脂組成皮膜は不可避的に配向結晶が生成し、結晶化分率を上昇させるため加工性を阻害しやすい。そのためこの結晶状態を回避するために、公知のツーピース金属缶を製造する工程の中で最後に加熱される工程、すなわち、外面の印刷、クリアー塗料の熱硬化の工程で、缶体を樹脂皮膜中のポリエステル(b)の融点〜融点+40℃に至るまで加熱し、冷風で急冷することで配向結晶を消滅せしめ、結晶化分率を50%以下することが重要である。
缶体の段階で結晶化分率が50%を超えていると、金属缶に内容物が充填された後の流通過程で衝撃変形を受けた場合にクラックが入って金属部が露出し腐食につながる場合がある。
Below, the metal can manufactured by well-known manufacturing methods, such as drawing forming and drawing ironing, using the above-mentioned resin composition coating metal plate is described. The metal can has a workability because the resin composition film of the can body portion stretched in the vertical direction of the metal can by drawing and ironing inevitably produces oriented crystals and increases the crystallization fraction. Easy to block. Therefore, in order to avoid this crystalline state, the can body is placed in the resin film in the process of heating at the end of the process of manufacturing a known two-piece metal can, that is, the process of printing the outer surface and the heat curing of the clear paint. It is important to heat the polyester (b) from the melting point to the melting point + 40 ° C. and quench with cold air to eliminate the oriented crystals and reduce the crystallization fraction to 50% or less.
If the crystallization fraction exceeds 50% at the stage of the can, cracks will occur and the metal part will be exposed and corroded when subjected to impact deformation in the distribution process after the metal can is filled with the contents. May lead to a connection.

本発明における、金属缶では配向結晶を消滅させた後の被覆樹脂の結晶化分率は下記方法により求めたものである。
(1)樹脂被覆金属缶の缶胴薄肉部から削り取った樹脂フィルムをサンプルaaaとした。
(2)製膜したフィルムを窒素雰囲気中で270℃に1分間加熱溶融し、直ちに5℃に冷却された水中へ投入したものをサンプルbとした。
(3)製膜したフィルムを窒素雰囲気中で270℃に1分間加熱溶融し、その後3時間かけて50℃まで徐冷したものをサンプルcとした。
(4)これらサンプルaaa、bおよびcの密度を密度勾配管により公知の方法で測定し、下記式により算出してもとめた値を結晶化分率(%)とする。
〔数5〕
結晶化分率(%)={(Daaa−Db)/(Dc−Db)}×100・・・(5)
なお、式中のDaaa、DbおよびDcは、それぞれサンプルaaa、b及びcの密度を示す。
In the present invention, in the metal can, the crystallization fraction of the coating resin after extinguishing the oriented crystals is obtained by the following method.
(1) The resin film scraped from the thin part of the can body of the resin-coated metal can was used as sample aaa.
(2) The film formed was melted by heating at 270 ° C. for 1 minute in a nitrogen atmosphere and immediately put into water cooled to 5 ° C. as sample b.
(3) The film formed was heated and melted at 270 ° C. for 1 minute in a nitrogen atmosphere, and then gradually cooled to 50 ° C. over 3 hours to obtain a sample c.
(4) The density of these samples aaa, b, and c is measured by a known method using a density gradient tube, and the value obtained by calculating the following formula is defined as the crystallization fraction (%).
[Equation 5]
Crystallization fraction (%) = {(Daa-Db) / (Dc-Db)} × 100 (5)
In addition, Daaa, Db, and Dc in a formula show the density of samples aaa, b, and c, respectively.

本発明によれば、金属板とのラミネート密着性に優れた、縦方向には張力がかけられ、横方向の収縮の小さいラミネート適性に優れ、巻き取ったロールにシワのない外観性に優れたフィルムを、製膜工程でヒートセット工程を必要とせず製造することができる。その結果、厳密な工程管理を行わなくても良好なラミネート金属板が得られるようになり、被覆樹脂を所定の結晶化分率に制御することで、製缶性に優れたラミネート金属板を安定的に製造することができるという効果を奏する。   According to the present invention, the laminate adhesiveness with the metal plate is excellent, the tension is applied in the longitudinal direction, the laminating suitability with small shrinkage in the lateral direction is excellent, and the wound roll is excellent in appearance without wrinkles. The film can be produced without requiring a heat setting step in the film forming step. As a result, a good laminated metal plate can be obtained without strict process control. By controlling the coating resin to a predetermined crystallization fraction, a laminated metal plate with excellent canability can be stabilized. The effect that it can manufacture automatically is produced.

以下に、実施例および比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれにより何ら限定されるものではない。また各実施例および各比較例の結果を、表1および表2に示すが、表2中の(−)は、評価に値するサンプルが得られなかったことを示す。また、比較例2を除く実施例及び比較例における「横延伸倍率1倍」とは、幅方向を拘束せず、かつ横延伸を行わないことを意味する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited thereto. Moreover, although the result of each Example and each comparative example is shown in Table 1 and Table 2, (-) in Table 2 shows that the sample which deserves evaluation was not obtained. Further, “lateral stretching ratio of 1” in the examples and comparative examples other than Comparative Example 2 means that the width direction is not restricted and the lateral stretching is not performed.

なお、以下に示す実施例、および比較例では、次の原料樹脂、金属板を使用した。
ポリエステル(a)(以下、PBTと称す。):
極限粘度が1.10dl/g、融点が222℃、Tgが23℃のポリブチレンテレフ
タレート(PBT)樹脂
ポリエステル(b)(以下、PETと称す。):
極限粘度が0.73dl/g、融点が253℃、Tgが73℃のポリエチレンテレフ
タレート(PET)樹脂
金属板(以下、アルミ板と称す。):
表面にリン酸クロメート処理が施された、厚さ0.3mmのJIS3000系のアル
ミニウム合金板
In the following examples and comparative examples, the following raw resin and metal plate were used.
Polyester (a) (hereinafter referred to as PBT):
Polybutylene terephthalate (PBT) resin polyester (b) having an intrinsic viscosity of 1.10 dl / g, a melting point of 222 ° C., and a Tg of 23 ° C. (hereinafter referred to as PET):
Polyethylene terephthalate (PET) resin metal plate (hereinafter referred to as an aluminum plate) having an intrinsic viscosity of 0.73 dl / g, a melting point of 253 ° C., and a Tg of 73 ° C .:
JIS 3000 series aluminum alloy plate with a thickness of 0.3mm, with phosphoric acid chromate treatment on the surface

(実施例1)
PBT樹脂ペレットとPET樹脂ペレットを各々60:40の重量比率になるように混合してTダイを備えた押出機へ投入し、280℃ほどの温度で加熱溶融した。溶融された樹脂はTダイに送り込まれ、ノズルからシート状に成形されて押し出され、キャストロール上で冷却固化し、80μm厚のシートとなった。このシートをPBTの[Tg+87℃]=(110℃)に加熱した延伸前ロールで加熱し、延伸後ロールとの周速差で4倍に縦延伸し、次いで熱固定を施さずに延伸後ロールとその次のガイドロールの周速を各々100:99.4の周速比になるように制御してフィルムの張力を緩め、その後フィルムの両端をスリット除去しながら巻き取り、20μmの厚さの供試フィルムを得た。当該フィルムの評価結果を表1に示す。
Example 1
PBT resin pellets and PET resin pellets were mixed at a weight ratio of 60:40, charged into an extruder equipped with a T die, and heated and melted at a temperature of about 280 ° C. The melted resin was fed into a T-die, formed into a sheet form from a nozzle, extruded, cooled and solidified on a cast roll, and formed into an 80 μm thick sheet. This sheet was heated with a roll before stretching heated to [Tg + 87 ° C.] = (110 ° C.) of PBT, longitudinally stretched 4 times by the peripheral speed difference from the roll after stretching, and then the roll after stretching without heat setting. And the following guide rolls are controlled so that the peripheral speed ratio is 100: 99.4, respectively, and the film tension is relaxed, and then both ends of the film are wound while removing the slits to obtain a thickness of 20 μm. A test film was obtained. The evaluation results of the film are shown in Table 1.

当該フィルムを、220℃に加熱したアルミ板の両面に一対の圧着ロールで挟みつけて圧着した後、290℃の加熱炉に入れてアルミ板の両面に圧着されたフィルムを熱溶融させ、ただちに冷却エアーを吹き付けて5秒以内に120℃以下になるように急冷却させて被覆フィルムを非晶質で無配向化したラミネート金属板を得た。このラミネート金属板にワックス系潤滑剤を塗布し、直径155mmの円盤に打ち抜き、直径95mmのパンチ金型で円盤に浅絞り成形(絞り比:1.60)し、浅絞りカップを得た。ついでこの浅絞りカップを直径66mmの金型パンチで再絞り成形(絞り比:1.44)し、得られた再絞りカップにしごき加工(缶胴側壁部のしごき率:56%)を施し、深絞り−しごき缶体を得た。この深絞り−しごき缶体を常法に従い缶底に対してドーミング成形を行い、缶高さ124mmになるように開口端部をトリミング加工した。
次いで、胴部に印刷・塗装を施し、焼き付け時の缶温到達温度を260℃に至るまで加熱し、到達後4秒間で缶温が60℃となるように空冷し、被覆樹脂の配向結晶を消滅させた後、開口端部に公知の方法でネック成形・フランジ成形することにより350ml用の2ピース金属缶を得た。得られた金属缶の評価結果を表1に示す。
The film is sandwiched between a pair of crimping rolls on both sides of an aluminum plate heated to 220 ° C., and then put in a heating furnace at 290 ° C., and the film crimped on both sides of the aluminum plate is heat-melted and immediately cooled. Air was blown and rapidly cooled to 120 ° C. or less within 5 seconds to obtain a laminated metal plate in which the coating film was amorphous and non-oriented. A wax-based lubricant was applied to the laminated metal plate, punched out into a disk having a diameter of 155 mm, and then subjected to shallow drawing (drawing ratio: 1.60) into the disk with a punch mold having a diameter of 95 mm to obtain a shallow drawn cup. Next, this shallow drawn cup was redrawn with a die punch having a diameter of 66 mm (drawing ratio: 1.44), and the obtained redrawn cup was ironed (the ironing ratio of the can body side wall: 56%). A deep drawing-ironing can body was obtained. This deep-drawn and ironed can body was domed with respect to the bottom of the can according to a conventional method, and the opening end portion was trimmed so that the can height was 124 mm.
Next, the body is printed and painted, and the can temperature at the time of baking is heated to 260 ° C., and air-cooled so that the can temperature reaches 60 ° C. in 4 seconds after reaching the temperature. After extinguishing, a two-piece metal can for 350 ml was obtained by neck-forming and flange-forming the open end by a known method. The evaluation results of the metal can obtained are shown in Table 1.

ただし、前記缶胴側壁部のしごき率は、
〔数6〕
(t−t)/t×100・・・(6)
から算出する。
ここで、tは加工前の板厚、tは加工後の缶胴側壁部の板厚である。
However, the ironing rate of the side wall of the can body is
[Equation 6]
(T 0 −t 1 ) / t 0 × 100 (6)
Calculate from
Here, t 0 is the thickness before processing, t 1 is the thickness of the can body side wall portion after processing.

各々の評価方法を以下に示す。
(フィルムロール外観特性)
縦一軸延伸フィルムを巻取ったフィルムロールの外観特性を調べた。
フィルムを巻き取ったロールにシワが混入していなかったのものは(○)、混入していたものは(×)とした。各々の評価結果は表1に示す。
(ラミネート性)
金属板に熱圧着されたフィルムの外観、及び金属板とフィルムの位置関係を調べた。
外観では、フィルムしわがないものは(○)、フィルムにしわが発生したものは(×)とした。
また、位置関係では、フィルムの端部が金属板からはみ出すなど所定の位置にない場合(設定位置に対して±1mm以上)は不可(×)とした。
また、フィルムラミネート金属板を用いて絞り成形、再絞り成形、しごき成形などの加工中に、フィルムが金属板から剥がれる現象も(×)とした。
(製缶性)
絞り成形、しごき成形によるフィルムのダメージを目視で調べた。
加工後、フィルムにダメージがないものは(○)、フィルム剥離が散見された場合は(△)、フィルムが剥がれるなどのダメージがみられる場合は(×)とした。
(金属缶の内面品位)
金属缶に1%の食塩水を入れ、その中に銅線電極を陰極として漬け、缶胴外面側の一部のフィルムを削り取り陽極とし、両極間に+6Vの電圧を3秒間かけて、流れた電流の最大値(mA)を測定した。流れる電流は小さいほどよく、漏洩電流が7mA未満であれば(○)、7mA以上を(×)とした。
(金属缶の耐衝撃性)
金属缶に水を充填、密封し、125℃、30分のレトルト処理を施した後、5℃に冷却した缶胴側壁部にV字型の撃芯をのせる。その撃芯めがけて、500gのおもりを15cmの高さから落下させて缶胴側壁部に衝撃をともなう変形を与える。変形した缶を上記の内面品位評価と同じ方法で調査した。流れる電流は小さいほどよく、漏洩電流が7mA未満であれば(○)、7mA以上を(×)とした。
(金属缶の加熱殺菌後の外観)
金属缶に水を充填、密封し、125℃、30分のレトルト処理を施した後、外観を目視で調査した。フィルム外観が正常の場合は(○)、フィルムに水玉模様状のしみができたり、白化がみられたりした場合は不可(×)とした。
Each evaluation method is shown below.
(Film roll appearance characteristics)
The appearance characteristics of a film roll wound with a longitudinally uniaxially stretched film were examined.
The roll in which the film was wound was not marked with wrinkles (◯), and the roll was marked with (x). Each evaluation result is shown in Table 1.
(Laminate)
The appearance of the film thermocompression bonded to the metal plate and the positional relationship between the metal plate and the film were examined.
In terms of appearance, those without film wrinkles were marked with (◯), and those with wrinkles on the film were marked with (x).
In addition, regarding the positional relationship, when the end portion of the film is not in a predetermined position such as protruding from the metal plate (± 1 mm or more with respect to the set position), it was determined as impossible (×).
In addition, the phenomenon that the film peeled off from the metal plate during processing such as drawing, redrawing, and ironing using the film-laminated metal plate was also defined as (x).
(Can manufacturing)
The damage of the film by drawing and ironing was examined visually.
After processing, the film was not damaged (O), when film peeling was observed (F), and when damage such as film peeling was observed (X).
(Inner grade of metal can)
A 1% saline solution was put in a metal can, and a copper wire electrode was immersed in the metal can as a cathode, a part of the film on the outer surface of the can body was scraped off and used as an anode, and a voltage of +6 V was applied between both electrodes for 3 seconds. The maximum current (mA) was measured. The smaller the current that flows, the better. If the leakage current is less than 7 mA (◯), 7 mA or more was taken as (x).
(Shock resistance of metal cans)
A metal can is filled with water, sealed, subjected to a retort treatment at 125 ° C. for 30 minutes, and a V-shaped hitting core is placed on the side wall of the can body cooled to 5 ° C. Aiming at the strike center, a 500 g weight is dropped from a height of 15 cm to give a deformation with impact to the side wall of the can body. The deformed can was examined by the same method as the inner surface quality evaluation. The smaller the current that flows, the better. If the leakage current is less than 7 mA (◯), 7 mA or more was taken as (x).
(Appearance after heat sterilization of metal can)
The metal can was filled with water, sealed, subjected to a retort treatment at 125 ° C. for 30 minutes, and then the appearance was visually examined. When the film appearance was normal (◯), when the film had a polka-dot blot or whitening, it was determined not to be possible (×).

(実施例2)
PBT樹脂ペレットとPET樹脂ペレットの配合が各々70:30の重量比率である樹脂組成物に変えた以外は実施例1と同様の試験を行った。結果を表1に示す。
(Example 2)
The same test as in Example 1 was performed except that the resin composition in which the blending of the PBT resin pellets and the PET resin pellets was a weight ratio of 70:30 was used. The results are shown in Table 1.

(実施例3)
PBT樹脂ペレットとPET樹脂ペレットの配合がそれぞれ50:50の重量比率である樹脂組成物に変えた以外は実施例1と同様の試験を行った。結果を表1に示す。
(Example 3)
The same test as in Example 1 was performed except that the blend of the PBT resin pellet and the PET resin pellet was changed to a resin composition having a weight ratio of 50:50. The results are shown in Table 1.

(実施例4)
実施例1記載のラミネートをし、290℃の加熱炉に入れてアルミ板の両面に圧着されたフィルムを熱溶融させ、吹き付ける冷却エアーの流量を実施例1よりやや弱め、7秒以内に120℃以下になるように冷却条件を変更した以外は実施例1と同様の試験を行った。結果を表1に示す。
Example 4
The laminate described in Example 1 was put in a heating furnace at 290 ° C. and the film bonded to both surfaces of the aluminum plate was melted by heat. The flow rate of the cooling air to be sprayed was slightly weaker than that in Example 1, and within 120 seconds at 120 ° C. The same test as in Example 1 was performed except that the cooling conditions were changed so as to be as follows. The results are shown in Table 1.

(実施例5)
実施例1の成形加工をした後、印刷、塗装後の焼付け時の缶温到達温度を260℃とし、その後6秒間で缶温が50℃以下になるように空冷条件を変更した以外は実施例1と同様の試験を行った。結果を表1に示す。
(Example 5)
Example of Example 1 except that after the molding process of Example 1, the temperature reached at the can temperature at the time of baking after printing and painting was 260 ° C., and the air cooling conditions were changed so that the can temperature would be 50 ° C. or less after 6 seconds. The same test as 1 was conducted. The results are shown in Table 1.

(実施例6)
実施例1の樹脂組成物をシートにし、その後、延伸倍率を3倍とした以外は実施例1と同様の試験を実施した。結果を表1に示す。
(Example 6)
The same test as in Example 1 was performed except that the resin composition of Example 1 was made into a sheet, and then the draw ratio was set to 3 times. The results are shown in Table 1.

(実施例7)
実施例1の樹脂組成物をシートにし、その後、延伸倍率を4.5倍とした以外は実施例1と同様の試験を実施した。結果を表1に示す。
(Example 7)
The same test as in Example 1 was performed except that the resin composition of Example 1 was made into a sheet, and then the draw ratio was 4.5 times. The results are shown in Table 1.

(実施例8)
実施例1の樹脂組成物をシートにし、その後、延伸前ロール温度をPBTの[Tg+82℃]=(105℃)に下げた以外は実施例1と同様の試験を実施した。結果を表1に示す。
(Example 8)
The same test as in Example 1 was performed, except that the resin composition of Example 1 was made into a sheet, and then the roll temperature before stretching was lowered to [Tg + 82 ° C.] = (105 ° C.) of PBT. The results are shown in Table 1.

(実施例9)
実施例1の樹脂組成物をシートにし、その後、延伸前ロール温度をPBTの[Tg+100℃]=(123℃)に上げた以外は実施例1と同様の試験を実施した。結果を表1に示す。
Example 9
The same test as in Example 1 was performed, except that the resin composition of Example 1 was made into a sheet, and then the roll temperature before stretching was increased to [Tg + 100 ° C.] = (123 ° C.) of PBT. The results are shown in Table 1.

(実施例10)
実施例1の樹脂組成物をシートにし、実施例1の温度条件で延伸し、延伸後ロールの周速を100としたとき、それに連なる4本のガイドロールをそれぞれ99.9、99.8、99.6、99.4の比率で徐々に減速した以外は実施例1と同様の試験を実施した。結果を表1に示す。
(Example 10)
When the resin composition of Example 1 is made into a sheet and stretched under the temperature conditions of Example 1, and the peripheral speed of the roll after stretching is set to 100, the four guide rolls connected thereto are respectively 99.9, 99.8, The same test as in Example 1 was performed except that the speed was gradually decreased at a ratio of 99.6 and 99.4. The results are shown in Table 1.

(比較例1)
PBT樹脂ペレットとPET樹脂ペレットの配合が各々90:10の重量比率である樹脂組成物に変えた以外は実施例1と同様の試験を行った。結果を表2に示す。
PBT樹脂は結晶化速度が速く、その組成比が高すぎるためにフィルムの結晶化分率が50%を超えてしまう。その結果、フィルムと金属板の密着力が低下し、金属缶にするための加工に耐えきれず剥離に至った。
(Comparative Example 1)
The same test as in Example 1 was performed except that the blend of PBT resin pellets and PET resin pellets was changed to a resin composition having a weight ratio of 90:10. The results are shown in Table 2.
The PBT resin has a high crystallization rate and its composition ratio is too high, so that the crystallization fraction of the film exceeds 50%. As a result, the adhesion between the film and the metal plate was reduced, and the film could not withstand the processing for forming a metal can, resulting in peeling.

(比較例2)
実施例1の樹脂組成物をシートにし、その後、縦延伸倍率を3倍、横延伸倍率を3倍とした以外は実施例1と同様の試験を実施した。結果を表2に示す。
シートを縦、横方向ともに3倍延伸したために、面内屈折率差ΔNが53×10−3となり、結果として横方向の加熱収縮率が8%を超えたために、フィルムを金属板にラミネートする際に金属板のエッジ部に対してフィルムのエッジが蛇行し所定の位置の限界を超えてしまった。結果としてフィルムが金属板からはみ出してしまい、ラミネート後のフィルムの熱溶融ではみ出した部分のフィルムが玉状に盛り上がってしまい、帯状の金属板をコイル状に巻き取ると両端が盛り上がって裂けるトラブルが発生した。
(Comparative Example 2)
The same test as in Example 1 was carried out except that the resin composition of Example 1 was made into a sheet, and then the longitudinal stretch ratio was 3 times and the lateral stretch ratio was 3 times. The results are shown in Table 2.
Since the sheet was stretched 3 times in both the vertical and horizontal directions, the in-plane refractive index difference ΔN was 53 × 10 −3 , and as a result, the heat shrinkage rate in the horizontal direction exceeded 8%, and the film was laminated to a metal plate. At that time, the edge of the film meandered with respect to the edge portion of the metal plate, and exceeded the limit of the predetermined position. As a result, the film protrudes from the metal plate, and the film of the part that protrudes by heat melting of the laminated film swells in a ball shape. Occurred.

(比較例3)
PBT樹脂ペレットとPET樹脂ペレットの配合が各々45:55の重量比率である樹脂組成物に変えた以外は実施例1と同様の試験を行った。結果を表2に示す。
ラミネート工程、製缶工程での問題はみられなかったが、水を充填、密封した金属缶をレトルト殺菌(125℃、20分)することで、フィルム表面がスポット状に白化し外観を損ねた。PBTの組成比が50%未満で起こる現象である。
(Comparative Example 3)
The same test as in Example 1 was performed except that the blend of the PBT resin pellet and the PET resin pellet was changed to a resin composition having a weight ratio of 45:55. The results are shown in Table 2.
Although there were no problems in the laminating process and the can manufacturing process, the film surface was whitened in a spot shape and damaged in appearance by retort sterilization (125 ° C, 20 minutes) of a metal can filled and sealed with water. . This is a phenomenon that occurs when the composition ratio of PBT is less than 50%.

(比較例4)
実施例1の延伸フィルムを、150℃×15秒の条件でヒートセット(熱固定)した以外は実施例1と同様の試験を行った。結果を表2に示す。
フィルムをヒートセットすることで、加熱収縮しにくくなるメリットはあるが、その熱でフィルムの結晶化分率が50%を超えてしまう。その結果、フィルムと金属板の密着力が低下し、金属缶にするための加工に耐えきれず剥離に至った。
(Comparative Example 4)
The same test as in Example 1 was performed except that the stretched film of Example 1 was heat set (heat-set) under the conditions of 150 ° C. × 15 seconds. The results are shown in Table 2.
Although there is a merit that heat-shrinking is difficult by heat setting the film, the heat causes the crystallization fraction of the film to exceed 50%. As a result, the adhesion between the film and the metal plate was reduced, and the film could not withstand the processing for forming a metal can, resulting in peeling.

(比較例5)
実施例1の延伸をした後、延伸後ロールとその次のロールの周速を各々100:99.8の周速比に変更した以外は実施例1と同様の試験を実施した。結果を表2に示す。
延伸後のリラックス効果が不十分となり、フィルムのMD方向の加熱収縮率が25%を超えた。結果として、ラミネート時に、予備加熱された金属板からの輻射熱でフィルムが収縮を起こしてしまい張力制御が不安定となり、縦方向にしわのあるラミネートの仕上がりとなってしまった。
(Comparative Example 5)
After stretching in Example 1, the same test as in Example 1 was performed except that the circumferential speed of the roll after stretching and the next roll was changed to a circumferential speed ratio of 100: 99.8. The results are shown in Table 2.
The relaxation effect after stretching became insufficient, and the heat shrinkage in the MD direction of the film exceeded 25%. As a result, at the time of lamination, the film contracted due to radiant heat from the preheated metal plate, the tension control became unstable, and the laminate finished with wrinkles in the vertical direction.

(比較例6)
実施例1の樹脂組成物をシートにし、その後、縦方向の延伸倍率を5倍とした以外は実施例1と同様の試験を実施した。結果を表2に示す。
縦方向の延伸倍率を5倍にして、フィルムのMD方向の加熱収縮率が25%を超えるフィルムを作製してラミネートを実施したところ、比較例5と同じ現象が起きた。
(Comparative Example 6)
The same test as in Example 1 was performed except that the resin composition of Example 1 was made into a sheet, and then the stretching ratio in the longitudinal direction was 5 times. The results are shown in Table 2.
When the stretching ratio in the machine direction was set to 5 times and a film having a heat shrinkage ratio in the MD direction of the film exceeding 25% was produced and laminated, the same phenomenon as in Comparative Example 5 occurred.

(比較例7)
実施例1の樹脂組成物をシートにし、その後、延伸前ロール温度をPBTの[Tg+74℃]=(97℃)に下げた以外は実施例1と同様の試験を実施した。結果を表2に示す。
延伸温度が[Tg+80℃]=(103℃)未満であるので、延伸後のフィルムの内部歪が大きくなり、加熱収縮率が25%を超えてしまった。結果として比較例5と同じ現象が起きた。
(Comparative Example 7)
The same test as in Example 1 was performed, except that the resin composition of Example 1 was made into a sheet, and then the roll temperature before stretching was lowered to [Tg + 74 ° C.] = (97 ° C.) of PBT. The results are shown in Table 2.
Since the stretching temperature was less than [Tg + 80 ° C.] = (103 ° C.), the internal strain of the film after stretching increased, and the heat shrinkage ratio exceeded 25%. As a result, the same phenomenon as in Comparative Example 5 occurred.

(比較例8)
実施例1の樹脂組成物をシートにし、その後、延伸前ロール温度をPBTの[Tg+105℃]=(128℃)に上げた以外は実施例1と同様の試験を実施した。結果を表2に示す。
延伸温度が[Tg+100℃]=(123℃)を超え、その熱で樹脂の結晶化が進行し、延伸後のフィルムの結晶化度が50%を超えてしまった。結果として比較例4と同じ現象がおきた。
(Comparative Example 8)
The same test as in Example 1 was performed, except that the resin composition of Example 1 was made into a sheet, and then the roll temperature before stretching was increased to [Tg + 105 ° C.] = (128 ° C.) of PBT. The results are shown in Table 2.
The stretching temperature exceeded [Tg + 100 ° C.] = (123 ° C.), crystallization of the resin proceeded with the heat, and the crystallinity of the stretched film exceeded 50%. As a result, the same phenomenon as in Comparative Example 4 occurred.

(比較例9)
実施例1記載のラミネートをし、290℃の加熱炉に入れてアルミ板の両面に圧着されたフィルムを熱溶融させ、吹き付ける冷却エアーの流量を弱め、12秒以内に120℃以下になるように冷却条件を変更した以外は実施例1と同様の試験を行い、樹脂ラミネート金属板を得た。結果を表2に示す。
熱溶融された樹脂フィルムは徐冷となり、樹脂フィルムの結晶化が進行し結晶化分率が請求項5で規定する条件である35%未満という条件をはずれ、樹脂ラミネート金属板の被覆樹脂フィルムの結晶化分率が35%を超えてしまった。その結果、樹脂フィルムの伸び特性が悪くなり、絞りしごき加工でフィルムの剥離が散見され、最終製品の金属缶の内面品位も10〜18mAであった。
(Comparative Example 9)
Laminate as described in Example 1, put in a heating furnace at 290 ° C., heat melt the film pressed on both sides of the aluminum plate, weaken the flow rate of the cooling air to be blown so that it becomes 120 ° C. or less within 12 seconds. Except that the cooling conditions were changed, the same test as in Example 1 was performed to obtain a resin-laminated metal plate. The results are shown in Table 2.
The heat-melted resin film is gradually cooled, crystallization of the resin film proceeds, and the crystallization fraction is less than 35%, which is the condition defined in claim 5, and The crystallization fraction has exceeded 35%. As a result, the elongation characteristic of the resin film was deteriorated, peeling of the film was observed by drawing ironing, and the inner surface quality of the final product metal can was 10 to 18 mA.

(比較例10)
PBT樹脂ペレットとPET樹脂ペレットの配合を各々70:30の重量比率である樹脂組成物に変更して、当該樹脂組成物をシートにし、その後、延伸前ロール温度をPBTの[Tg+99℃]=(122℃)に変更し、延伸倍率を3倍とし、延伸後ロールとその次のロールの周速を各々100:96.0の周速比に変更した以外は実施例1と同様の試験を実施した。
その結果、ロールの周速差が大きすぎたためにフィルム面内の屈折率差が55×10−3となり、後方巻き取り付近のテンションコントロールが不安定化したために、フィルムを巻き上げたロール製品の中にフィルムしわが散見されるようになり、使用に耐えられるものではなかった。結果を表2に示す。
(Comparative Example 10)
The blend of PBT resin pellets and PET resin pellets is changed to a resin composition having a weight ratio of 70:30, and the resin composition is made into a sheet. Thereafter, the roll temperature before stretching is set to [Tg + 99 ° C.] = (PBT). 122 ° C.), the stretching ratio was set to 3 times, and the same test as in Example 1 was performed except that the peripheral speed of the roll after stretching and the peripheral speed of the next roll were changed to a peripheral speed ratio of 100: 96.0 respectively. did.
As a result, since the difference in the peripheral speed of the roll was too large, the difference in the refractive index in the film surface became 55 × 10 −3 , and the tension control in the vicinity of the rear winding was destabilized. Film wrinkles began to erupt and could not be used. The results are shown in Table 2.

Figure 0005348944
Figure 0005348944

Figure 0005348944
Figure 0005348944

Claims (5)

ジカルボン酸成分がテレフタル酸からなり、グリコール成分が1,4−ブタンジオールからなるポリエステル(a)50〜70重量%と、ジカルボン酸成分がテレフタル酸からなり、グリコール成分がエチレングリコールからなるポリエステル(b)50〜30重量%とからなるポリエステル樹脂組成物で構成された縦一軸延伸フィルムであって、
(1)面内の屈折率差(フィルムの縦方向の屈折率と横方向の屈折率の差)ΔNが60×10−3以上、
(2)結晶化分率が50%以下、
(3)150℃×30分の条件における加熱収縮率が、フィルムの縦方向(MD方向)で25%以下、フィルムの横方向(TD方向)で8%以下、
であることを特徴とする金属缶用縦一軸延伸ポリエステルフィルム。
Polyester (a) 50 to 70% by weight of a dicarboxylic acid component made of terephthalic acid and a glycol component made of 1,4-butanediol, a polyester (b) made of terephthalic acid and a glycol component made of ethylene glycol (b) A longitudinally uniaxially stretched film composed of a polyester resin composition comprising 50 to 30% by weight,
(1) In-plane refractive index difference (difference between the vertical refractive index and the horizontal refractive index of the film) ΔN is 60 × 10 −3 or more,
(2) The crystallization fraction is 50% or less,
(3) Heat shrinkage under conditions of 150 ° C. × 30 minutes is 25% or less in the longitudinal direction (MD direction) of the film, 8% or less in the lateral direction (TD direction) of the film,
A vertically uniaxially stretched polyester film for metal cans.
請求項1に記載のポリエステルフィルムを製造する方法であって、ジカルボン酸成分がテレフタル酸からなり、グリコール成分が1,4−ブタンジオールからなるポリエステル(a)50〜70重量%と、ジカルボン酸成分がテレフタル酸からなり、グリコール成分がエチレングリコールからなるポリエステル(b)50〜30重量%とからなるポリエステル樹脂組成物を、押出機を用いてTダイから押し出し、溶融樹脂をキャストロール上でシートになるように冷却固化し、その後、前記ポリエステル(a)のガラス転移温度をTg(a)としたとき、当該シートを[Tg(a)+80℃]以上で[Tg(a)+100℃]以下の温度範囲に加熱制御された延伸前ロールと延伸後ロールとの周速差により3〜4.5倍に縦延伸し、次いで熱固定を施さずに延伸後ロールとその後に連なるガイドロールとの周速比を100:97.0〜100:99.6の範囲に制御し、延伸後ロールの後に連なるガイドロールの間でフィルムの張力を緩め、延伸加工されたフィルムの内部応力を緩和するようにしたことを特徴とする金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法。 A method for producing a polyester film according to claim 1, wherein the dicarboxylic acid component is made of terephthalic acid and the glycol component is made of 1,4-butanediol. A polyester resin composition comprising 50 to 30% by weight of a polyester (b) comprising terephthalic acid and a glycol component comprising ethylene glycol is extruded from a T-die using an extruder, and the molten resin is formed into a sheet on a cast roll. Then, when the glass transition temperature of the polyester (a) is Tg (a), the sheet is [Tg (a) + 80 ° C.] or more and [Tg (a) + 100 ° C.] or less. the peripheral speed difference between the roll before heating controlled stretching of the temperature range and after stretching rolls longitudinally stretched 3 to 4.5 times, then heat The peripheral speed ratio between the post-stretching roll and the subsequent guide rolls is controlled in the range of 100: 97.0 to 100: 99.6 without performing the adjustment, and the film is placed between the guide rolls following the post-stretching roll. A method for producing a longitudinally uniaxially stretched polyester film for coating a metal plate, wherein the tension is relaxed and the internal stress of the stretched film is relaxed. 請求項2に記載の金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法であって、延伸後ロールとその後に連なる複数のガイドロールとの周速比を制御して段階的にフィルムの張力を緩和することを特徴とする金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法。   It is a manufacturing method of the longitudinally uniaxially stretched polyester film for metal plate coating | coated of Claim 2, Comprising: The tension | tensile_strength of a film is relieve | moderated in steps by controlling the peripheral speed ratio of a post-stretch roll and a plurality of guide rolls connected thereafter. A method for producing a longitudinally uniaxially stretched polyester film for coating a metal plate. 請求項2または3のいずれかに記載の金属板被覆用縦一軸ポリエステルフィルムの製造方法であって、縦延伸後、前記ポリエステル(a)のガラス転移温度をTg(a)、またポリエステル(b)のガラス転移温度をTg(b)としたときTg(a)〜Tg(b)の温度範囲において、複数のガイドロールを用いて、縦方向の張力緩和量の合計が0.4%以上となるように制御する工程を含むことを特徴とする金属板被覆用縦一軸延伸ポリエステルフィルムの製造方法。   It is a manufacturing method of the vertical uniaxial polyester film for metal plate coating | cover in any one of Claim 2 or 3, Comprising: After longitudinal stretch, the glass transition temperature of the said polyester (a) is Tg (a), and polyester (b) When the glass transition temperature of Tg (b) is Tg (b), the total amount of tension relaxation in the longitudinal direction is 0.4% or more using a plurality of guide rolls in the temperature range of Tg (a) to Tg (b). The manufacturing method of the longitudinally uniaxially-stretched polyester film for metal plate coating | cover characterized by including the process controlled so 請求項1に記載のフィルムが直接、または有機樹脂皮膜層を介して片面、もしくは両面に被覆された金属缶用樹脂ラミネート金属板であり、この被覆樹脂フィルムの結晶状態が結晶化分率で35%を超えないものであることを特徴とする樹脂ラミネート金属板。   The film according to claim 1 is a resin laminated metal plate for a metal can, which is coated directly or on one side or both sides via an organic resin film layer. The crystal state of the coated resin film is 35 in terms of crystallization fraction. % Resin laminated metal sheet characterized by not exceeding%.
JP2008136872A 2008-05-26 2008-05-26 Longitudinal uniaxially stretched polyester film for metal cans, its production method, resin-laminated metal plate Active JP5348944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136872A JP5348944B2 (en) 2008-05-26 2008-05-26 Longitudinal uniaxially stretched polyester film for metal cans, its production method, resin-laminated metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136872A JP5348944B2 (en) 2008-05-26 2008-05-26 Longitudinal uniaxially stretched polyester film for metal cans, its production method, resin-laminated metal plate

Publications (2)

Publication Number Publication Date
JP2009279902A JP2009279902A (en) 2009-12-03
JP5348944B2 true JP5348944B2 (en) 2013-11-20

Family

ID=41450867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136872A Active JP5348944B2 (en) 2008-05-26 2008-05-26 Longitudinal uniaxially stretched polyester film for metal cans, its production method, resin-laminated metal plate

Country Status (1)

Country Link
JP (1) JP5348944B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994281B2 (en) * 2011-02-28 2016-09-21 東レ株式会社 Multilayer film for surface decoration, method for producing the same, and surface decoration sheet
EP2878616A4 (en) * 2012-07-24 2016-03-30 Unitika Ltd Polyester film for cold forming and method for producing same
CN110001149B (en) * 2014-02-18 2020-12-11 大日本印刷株式会社 Packaging material for battery
US10639874B2 (en) * 2015-12-17 2020-05-05 Tata Steel Ijmuiden B.V. Process for laminating a polymeric film to a metal strip substrate and a metal strip substrate produced thereby
JP7004048B1 (en) 2020-10-09 2022-02-04 三菱ケミカル株式会社 Heat shrinkable films, packaging materials, articles or containers

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518233B2 (en) * 1986-11-22 1996-07-24 東洋紡績株式会社 Longitudinal tearable laminated film
JPH08309924A (en) * 1995-05-23 1996-11-26 Toray Ind Inc Film for metal laminate molding processing
JP3873334B2 (en) * 1995-10-02 2007-01-24 東レ株式会社 Biaxially stretched polyester film for laminating
JPH1180388A (en) * 1997-09-04 1999-03-26 Mitsubishi Rayon Co Ltd Polyester film for lamination to steel sheet
JPH11279294A (en) * 1998-03-25 1999-10-12 Toyobo Co Ltd Polyester film for resin-coated metal plate and usage thereof
JP2000273213A (en) * 1999-01-22 2000-10-03 Toray Ind Inc Polyester film for packaging
JP2004042618A (en) * 2002-05-13 2004-02-12 Toyobo Co Ltd Method for manufacturing polyester film-coated metallic sheet
JP4288575B2 (en) * 2002-06-21 2009-07-01 東洋紡績株式会社 Method for producing polyester film-coated metal sheet
JP4261253B2 (en) * 2002-12-24 2009-04-30 東洋紡績株式会社 Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP4494758B2 (en) * 2003-11-07 2010-06-30 東洋紡績株式会社 Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP4258765B2 (en) * 2003-11-07 2009-04-30 東洋紡績株式会社 Polyester film for coating metal plate, method for producing the same, and method for producing polyester film-coated metal plate
JP2005139365A (en) * 2003-11-07 2005-06-02 Toyobo Co Ltd Polyester film for metal plate coating, method for producing the same and method for producing polyester film-coated metal plate

Also Published As

Publication number Publication date
JP2009279902A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
EP2962951B1 (en) Laminated metal plate for two-piece cans and two-piece laminated can body
EP2799227B1 (en) Laminated metal sheet and food can container
WO1993014152A1 (en) Polyester film for metal sheet lamination and use thereof
JPH0755552B2 (en) Deep drawing can manufacturing method
WO2013030972A1 (en) Resin coated metal sheet
JP6484173B2 (en) Organic resin-coated metal plate, manufacturing method thereof, metal can formed by processing the organic resin-coated metal plate, and can lid
JP5348944B2 (en) Longitudinal uniaxially stretched polyester film for metal cans, its production method, resin-laminated metal plate
JP5186772B2 (en) Two-piece can manufacturing method and two-piece laminated can
JP3366205B2 (en) Polyester film for lamination of metal plate for can body and method for producing laminated metal plate for can body using the film
JP2001353812A (en) Resin-coated seamless can
JP4445787B2 (en) Polyester resin film coated metal plate and polyester resin film coated metal can
EP0685332B1 (en) Laminated polyester film for metal lamination
EP0415345B1 (en) Composite steel sheet having high workability for drawn and ironed cans
JP4366730B2 (en) Laminate for can manufacturing and seamless can
JP3826450B2 (en) Method for producing film-coated metal plate for can manufacturing process and method for producing printing can
US5874163A (en) Laminated polyester film to be laminated on metal plate
JP2002178471A (en) Polyester film for laminating metal plate, metal plate and metal vessel formed by using the same
JP4297779B2 (en) Method for producing polyester film-coated metal sheet
JP4576147B2 (en) Polyester film-coated metal sheet, method for producing polyester film-coated metal sheet, and polyester film-coated metal can
JP4405301B2 (en) Polyester resin film coated metal plate with excellent galling resistance
JP2002120278A (en) Method for manufacturing resin film for covering metal plate, resin film for covering metal plate, method for manufacturing resin film-covered metal plate, resin film-covered metal plate, and can made by forming it
JP3991259B2 (en) Polyester film for metal plate lamination molding
JP3485003B2 (en) Manufacturing method of laminated metal sheet
JP2005144727A (en) Polyester film coated metal sheet, its manufacturing method and polyester film coated metal can
JP2005144734A (en) Polyester film coated metal sheet, its manufacturing method and polyester film coated metal can

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5348944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150