JP5346503B2 - Progressive power lens and manufacturing method thereof - Google Patents

Progressive power lens and manufacturing method thereof Download PDF

Info

Publication number
JP5346503B2
JP5346503B2 JP2008161700A JP2008161700A JP5346503B2 JP 5346503 B2 JP5346503 B2 JP 5346503B2 JP 2008161700 A JP2008161700 A JP 2008161700A JP 2008161700 A JP2008161700 A JP 2008161700A JP 5346503 B2 JP5346503 B2 JP 5346503B2
Authority
JP
Japan
Prior art keywords
power
lens
addition
progressive
wearer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008161700A
Other languages
Japanese (ja)
Other versions
JP2010002713A (en
Inventor
好徳 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Essilor Co Ltd
Original Assignee
Nikon Essilor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Essilor Co Ltd filed Critical Nikon Essilor Co Ltd
Priority to JP2008161700A priority Critical patent/JP5346503B2/en
Publication of JP2010002713A publication Critical patent/JP2010002713A/en
Application granted granted Critical
Publication of JP5346503B2 publication Critical patent/JP5346503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eyeglasses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a progressive-power lens capable of obtaining a proper corrective add diopter corresponding to an apparent adjustment power generated by refractive correction of a wearer, and also to provide the method of manufacturing the same. <P>SOLUTION: This invention relates to a progressive-power lens 100 comprising a farsight portion 101 with a farsight diopter, a nearsight portion 102 with a nearsight diopter, and an intermediate portion 103 in which a refractive power progressively varies in accordance with an add diopter between the farsight portion 101 and the nearsight portion 102. The add diopter is adjustable in accordance with the correction degree of a wearer. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、累進屈折力レンズ及びその製造方法に関する。   The present invention relates to a progressive power lens and a manufacturing method thereof.

老視などの視力の補正機能を備えた眼鏡用レンズとしては、単焦点レンズや多焦点レンズ、累進屈折力レンズなどがある。そのレンズの中でも、累進屈折力レンズは、1つのレンズで異なる度数の視野が得られるだけでなく、多焦点レンズのような境目がないため、外観に優れた眼鏡用レンズとしてその需要が高まっている。   Examples of the spectacle lens having a vision correction function such as presbyopia include a single focus lens, a multifocal lens, and a progressive power lens. Among these lenses, progressive-power lenses not only provide different power fields with a single lens, but they do not have the same boundaries as multifocal lenses. Yes.

従来の眼鏡用レンズは、装用者毎に処方されるレンズのデータ(例えば、球面度数や、乱視度数、加入度など。)によって屈折面の形状が異なるために、受注生産が一般的である。このため、累進屈折力レンズを製造する際は、製造工程の簡略化とコストダウンの必要性から、所定のピッチ(一般的には0.25D刻み)で加入度を異ならせた半製品のレンズ(以下、セミフィニッシュレンズという。)を予め用意しておき、この中から装用者に処方された加入度を有するセミフィニッシュレンズを選択し、選択されたセミフィニッシュレンズの何れかの屈折面(処方面という。)を装用者の処方に合わせて加工し、完成品の眼鏡レンズを得るようにしている。(例えば、特許文献1〜3を参照。)。   Conventional spectacle lenses are generally made to order because the shape of the refracting surface varies depending on lens data prescribed for each wearer (for example, spherical power, astigmatism power, addition power, etc.). For this reason, when manufacturing a progressive power lens, a semi-finished lens with different addition powers at a predetermined pitch (generally in increments of 0.25D) due to the necessity of simplifying the manufacturing process and reducing costs. (Hereinafter referred to as a semi-finished lens) is prepared in advance, a semi-finished lens having an addition power prescribed to the wearer is selected from these, and any refractive surface (process) of the selected semi-finished lens is selected. Are processed according to the prescription of the wearer to obtain a finished spectacle lens. (For example, refer to Patent Documents 1 to 3.)

また、セミフィニッシュレンズは、予めレンズの一方の屈折面(通常は外面)を加入度に応じて非球面(累進面という。)に加工したものであり、加入度はこの段階で固定されている。そして、セミフィニッシュレンズでは、この加工済みの累進面とは反対側の処方面(通常は内面)を球面又はトーリック面に加工することが行われている。このように、セミフィニッシュレンズは、一定の度数範囲で同じレンズを共用することになるため、加エコストや在庫の減少などのコストダウンに大きな役割を果たしている。
特開平10−175149号公報 特開2004−133024号公報 特許第3845251号公報
A semi-finished lens is obtained by processing one refracting surface (usually the outer surface) of a lens into an aspherical surface (referred to as a progressive surface) according to the addition, and the addition is fixed at this stage. . In the semi-finished lens, the prescription surface (usually the inner surface) opposite to the processed progressive surface is processed into a spherical surface or a toric surface. As described above, the semi-finished lens shares the same lens within a certain power range, and thus plays a major role in cost reduction such as heating cost and inventory reduction.
Japanese Patent Laid-Open No. 10-175149 JP 2004-133024 A Japanese Patent No. 3845251

ところで、眼鏡等を装用して近視や遠視などに対する屈折矯正を行った人の場合、その矯正度数によって、屈折矯正により生じる見かけ上の調節力と、実際の目の調節力との間に差が生じることがわかっている。   By the way, in the case of a person who has performed refractive correction for myopia or hyperopia by wearing glasses, etc., there is a difference between the apparent adjustment power caused by refractive correction and the actual eye adjustment power depending on the correction power. I know it will happen.

しかしながら、従来の累進屈折力レンズでは、このような屈折矯正を行った人に対して処方加入度を有するセミフィニッシュレンズを使用しても、適正な矯正加入度数が得られなくなるという問題があった。   However, the conventional progressive-power lens has a problem that even if a semi-finished lens having a prescription addition is used for a person who has performed such refractive correction, an appropriate correction addition power cannot be obtained. .

そこで、本発明は、このような従来の事情に鑑みて提案されたものであり、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を得ることが可能な累進屈折力レンズ及びその製造方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of such conventional circumstances, and progressive refraction capable of obtaining an appropriate correction addition power according to the apparent adjustment force generated by the refractive correction of the wearer. An object of the present invention is to provide a force lens and a method for manufacturing the same.

上記目的を達成するために、本発明に係る累進屈折力レンズは、遠用度数の入った遠用部と、近用度数の入った近用部と、遠用部と近用部との間で加入度に応じて屈折力が累進的に変化する中間部とを備える累進屈折力レンズであって、装用者の実際の目の調節力と、装用者の屈折矯正により生じる見かけ上の調節力との差に基づいて、加入度が装用者の矯正度数に応じて調整されてなることを特徴とする。 In order to achieve the above object, a progressive-power lens according to the present invention includes a distance portion containing a distance power, a near portion containing a near power, and a distance portion and a near portion. A progressive power lens having an intermediate portion in which the refractive power changes progressively according to the addition power, and the actual adjustment power of the wearer 's eyes and the apparent adjustment power generated by the refractive correction of the wearer Based on the difference , the addition power is adjusted according to the correction power of the wearer.

また、本発明に係る累進屈折力レンズの製造方法は、遠用度数の入った遠用部と、近用度数の入った近用部と、遠用部と近用部との間で加入度に応じて屈折力が累進的に変化する中間部とを備える累進屈折力レンズの製造方法であって、所定のピッチで加入度を異ならせてなるセミフィニッシュレンズの中から一のセミフィニッシュレンズを選択し、当該セミフィニッシュレンズの何れか一方の面又は両面に、装用者の実際の目の調節力と、装用者の屈折矯正により生じる見かけ上の調節力との差に基づいて、加入度を装用者の矯正度数に応じて調整する加工を施すことを特徴とする。 Further, the method of manufacturing a progressive-power lens according to the present invention includes a distance part containing a distance power, a near part containing a near power, and an addition power between the distance part and the near part. A progressive power lens manufacturing method comprising an intermediate portion in which the refractive power changes progressively according to a semi-finished lens having different addition powers at a predetermined pitch. And select the addition power on either or both sides of the semi-finished lens based on the difference between the wearer's actual eye adjustment and the apparent adjustment of the wearer's refractive correction. It is characterized by performing a process of adjusting according to the correction power of the wearer.

以上のように、本発明によれば、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を累進屈折力レンズに与えることが可能であり、このような累進屈折力レンズを製造工程の簡略化を図りつつ、低コストで製造することが可能である。   As described above, according to the present invention, it is possible to give the progressive addition lens an appropriate correction addition power according to the apparent adjustment force generated by the refractive correction of the wearer. The lens can be manufactured at low cost while simplifying the manufacturing process.

以下、本発明を適用した累進屈折力レンズ及びその製造方法について、図面を参照して詳細に説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される数値等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
Hereinafter, a progressive-power lens to which the present invention is applied and a manufacturing method thereof will be described in detail with reference to the drawings.
In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent. In addition, numerical values and the like exemplified in the following description are examples, and the present invention is not necessarily limited to them, and can be appropriately changed and implemented without changing the gist thereof.

また、以下の説明において、レンズの「上方」、「下方」、「上下方向」「水平方向」等といった場合は、眼鏡を装用したときのレンズの位置関係に基づくものとし、図面においても、レンズの位置関係(上下左右)は、紙面に対する位置関係(上下左右)と一致するものとする。また、レンズを構成する2つの屈折面のうち、物体側の面を「外面」とし、眼球側の面を「内面」として表すものとする。   Also, in the following description, “upward”, “downward”, “vertical direction”, “horizontal direction”, etc. of the lens are based on the positional relationship of the lens when wearing spectacles. The positional relationship (up / down / left / right) of FIG. Of the two refracting surfaces constituting the lens, the object side surface is referred to as an “outer surface” and the eyeball side surface is referred to as an “inner surface”.

本発明が適用される累進屈折力レンズ100は、例えば図1に示すように、遠くを見るときの度数(遠用度数という。)が入った遠用部101が上方に配置され、近くを見るときの度数(近用度数という。)が入った近用部102が下方に配置され、これら遠用部101と近用部102との間で累進的に屈折力が変化する中間部103が配置された構造を有している。なお、この累進焦点レンズ100を眼鏡用レンズ100a(図中実線で示す。)に加工する前(玉摺り加工前の状態)は、図中二点鎖線で示すように平面視で円形状を為している。   In the progressive-power lens 100 to which the present invention is applied, for example, as shown in FIG. 1, a distance portion 101 containing a power for viewing a distance (referred to as a distance power) is disposed on the upper side, and the vicinity is viewed. The near portion 102 containing the power of the hour (referred to as the near power) is disposed below, and the intermediate portion 103 in which the refractive power gradually changes between the distance portion 101 and the near portion 102 is disposed. Has a structured. In addition, before this progressive focus lens 100 is processed into a spectacle lens 100a (shown by a solid line in the figure) (a state before the lashing process), it has a circular shape in plan view as shown by a two-dot chain line in the figure. doing.

累進屈折力レンズ100を製造する際は、製造工程の簡略化とコストダウンの必要性から、所定のピッチ(一般的には0.25D刻み)で加入度を異ならせたセミフィニッシュレンズを予め用意しておき、この中から装用者に処方された加入度を有する一のセミフィニッシュレンズを選択し、この選択された一のセミフィニッシュレンズの何れかの屈折面(処方面という。)を装用者の処方に合わせて加工し、最終的に眼鏡レンズ100aを得ている。   When manufacturing the progressive-power lens 100, semi-finished lenses with different additions are prepared in advance at a predetermined pitch (generally in increments of 0.25D) in order to simplify the manufacturing process and reduce costs. One semi-finished lens having an addition power prescribed to the wearer is selected from these, and any refractive surface (referred to as a prescription surface) of the selected one semi-finished lens is used. The spectacle lens 100a is finally obtained.

セミフィニッシュレンズは、予めレンズの一方の屈折面(通常は外面)を加入度に応じて非球面(累進面という。)に加工したものであり、加入度はこの段階で固定されている。そして、セミフィニッシュレンズでは、この加工済みの累進面とは反対側の処方面(通常は内面)を球面又はトーリック面に加工することが行われている。   The semi-finished lens is obtained by processing one refracting surface (usually the outer surface) of a lens into an aspherical surface (referred to as a progressive surface) according to the addition, and the addition is fixed at this stage. In the semi-finished lens, the prescription surface (usually the inner surface) opposite to the processed progressive surface is processed into a spherical surface or a toric surface.

ここで、加入度とは、遠用度数に対して近用部へ加入した度数のことであり、遠用度数と近用度数との差で表される値である。また、セミフィニッシュレンズの加入度は、「最低加入度〜最高加入度」(例えば、0.50D〜4.00D)で表記され、この範囲で加入度を0.25D刻みで異ならせたセミフィニッシュレンズが予め用意されている。
また、加入度は、表面屈折力により定義される値を用いることができる。又は、装用者が装用した状態での屈折力により定義される値を用いることができる。
Here, the addition power is the power that has joined the near portion with respect to the distance power, and is a value represented by the difference between the distance power and the near power. In addition, the addition power of the semi-finished lens is expressed as “lowest addition to maximum addition” (for example, 0.50D to 4.00D), and the semifinishing in which the addition power is varied in steps of 0.25D within this range. A lens is prepared in advance.
Further, as the addition, a value defined by the surface refractive power can be used. Or the value defined by the refractive power in the state which the wearer wore can be used.

本発明を適用した累進屈折力レンズ100は、このような加入度を所定のピッチで異ならせてなる複数のセミフィニッシュレンズの中から一のセミフィニッシュレンズを選択した後に、この選択されたセミフィニッシュレンズの何れか一方の面又は両面に、装用者の矯正度数に応じて加入度を調整する加工が施されてなることを特徴とする。   In the progressive-power lens 100 to which the present invention is applied, after selecting one semi-finished lens from a plurality of semi-finished lenses having different addition powers at a predetermined pitch, the selected semi-finished lens is selected. One or both surfaces of the lens are processed to adjust the addition according to the correction power of the wearer.

具体的に、加入度が装用者の矯正度数に応じて調整されてなる累進屈折力レンズ100には、装用者の屈折矯正により生じる見かけ上の調節力に基づいて加入度を調整する加工が施されている。   Specifically, the progressive addition lens 100 in which the addition power is adjusted according to the correction power of the wearer is subjected to processing for adjusting the addition power based on the apparent adjustment force generated by the wearer's refractive correction. Has been.

上述したように、眼鏡等を装用して近視や遠視などに対する屈折矯正を行った人の場合、その矯正度数によって、屈折矯正により生じる見かけ上の調節力と、実際の目の調節力との間に差が生じることがわかっている。   As described above, in the case of a person who has performed refractive correction for myopia or hyperopia by wearing glasses, etc., the apparent adjustment force caused by the refractive correction and the actual eye adjustment force depend on the correction power. It is known that there will be a difference in

ここで、装用者の屈折矯正により生じる見かけ上の調節力(Acc)[D]は、実際の目の調節力をAc[D]、目とレンズとの距離をL[m]と、装用者の矯正度数をR[D]としたときに、下記式(1)又は(2)により求まる値である。
Acc=Ac(1−L・R) …(1)
Acc=Ac(1−2L・R) …(2)
Here, the apparent adjustment force (Acc) [D] generated by the wearer's refraction correction is the actual eye adjustment force Ac [D], the distance between the eyes and the lens L [m], and the wearer Is the value obtained by the following formula (1) or (2), where R [D] is the correction frequency.
Acc = Ac (1-LR) 2 (1)
Acc = Ac (1-2L ・ R) ... (2)

本発明を適用した累進屈折力レンズ100では、この屈折矯正により生じる見かけ上の調節力Accに基づいて、加入度を下記[1],[2]のように調整する。すなわち、
[1] 装用者の矯正度数が遠用部101においてプラス(+)となる場合は、実際の調節力よりも見かけ上の調節力が小さくなる(Acc<Ac)ことから、加入度が増す方向に調整する。
[2] 装用者の矯正度数が遠用部においてマイナス(−)となる場合は、実際の調節力よりも見かけ上の調節力が大きくなる(Acc>Ac)ことから、加入度が減じる方向に調整する。
又は、加入度を下記[3],[4]のように調整する。
[3] 装用者の矯正度数が近用部においてプラス(+)となる場合は、実際の調節力よりも見かけ上の調節力が小さくなる(Acc<Ac)ことから、加入度が増す方向に調整する。
[4] 装用者の矯正度数が近用部においてマイナス(−)となる場合は、実際の調節力よりも見かけ上の調節力(Acc>Ac)が大きくなることから、加入度が減じる方向に調整する。
In the progressive-power lens 100 to which the present invention is applied, the addition power is adjusted as shown in [1] and [2] below based on the apparent adjustment force Acc generated by this refractive correction. That is,
[1] When the corrective power of the wearer is plus (+) in the distance portion 101, the apparent adjustment force is smaller than the actual adjustment force (Acc <Ac), so that the addition increases. Adjust to.
[2] When the corrective power of the wearer is negative (−) in the distance portion, the apparent adjustment force becomes larger than the actual adjustment force (Acc> Ac), so that the addition decreases. adjust.
Alternatively, the addition is adjusted as shown in [3] and [4] below.
[3] When the corrective power of the wearer is plus (+) in the near portion, the apparent adjustment force is smaller than the actual adjustment force (Acc <Ac). adjust.
[4] When the corrective power of the wearer is minus (−) in the near portion, the apparent adjustment force (Acc> Ac) is larger than the actual adjustment force, so that the degree of addition decreases. adjust.

このように、矯正度数がマイナス度数(近視眼)であれば、実際の調節力よりも見かけの調節力が大きくなるため、これを考慮して加入度を減ずる方向に調整する。これにより、累進屈折カレンズ特有のゆれや歪みを軽減することが可能である。一方、矯正度数がプラス度数(遠視眼)であれば、実際の調節力よりも見かけの調節力が小さくなるため、これを考慮して加入度を増す方向に調整する。これにより、正しく近用度数が矯正され、矯正不足から、近くが見にくくなることを防ぐことが可能である。   In this way, if the correction power is minus power (myopic eye), the apparent adjustment force becomes larger than the actual adjustment force, so that the addition power is adjusted in a direction that decreases. Thereby, it is possible to reduce the shake and distortion peculiar to the progressive refraction lens. On the other hand, if the correction power is a positive power (hyperopic eye), the apparent adjustment force is smaller than the actual adjustment force, so that the addition is adjusted in consideration of this. Thereby, it is possible to correct the near-use power correctly and to prevent the vicinity from being difficult to see due to insufficient correction.

また、装用者の矯正度数に応じて調整される加入度のピッチは、上述したセミフィニッシュレンズの加入度のピッチ(0.25D刻み)よりも小さいことが好ましく、具体的には0.01D刻みとすることが好ましい。これにより、装用者の屈折矯正により生じる見かけ上の調節力Accに応じた適正な矯正加入度数を得ることが可能である。   Further, the addition pitch adjusted in accordance with the correction power of the wearer is preferably smaller than the addition pitch (in 0.25 D increments) of the semi-finished lens described above, specifically, in 0.01 D increments. It is preferable that Thereby, it is possible to obtain an appropriate correction addition power according to the apparent adjustment force Acc generated by the refractive correction of the wearer.

また、このような加工を施す一のセミフィニッシュレンズについては、装用者に処方された加入度を有するセミフィニッシュレンズを選択する場合と、装用者の屈折矯正により生じる見かけ上の調節力に基づいた加入度に最も近い加入度を有するセミフィニッシュレンズを選択する場合がある。   In addition, for one semi-finished lens that performs such processing, it is based on the case of selecting a semi-finished lens having the addition prescribed to the wearer and the apparent adjustment force generated by the refractive correction of the wearer. There is a case where a semi-finished lens having the addition closest to the addition is selected.

前者の場合は、装用者に処方された加入度と、セミフィニッシュレンズに記入された加入度とが一致するため、装用者の矯正度数に応じて加入度を調整した後に、処方された加入度が異なるといった誤解を処方者や装用者に与えることがない。   In the case of the former, since the addition prescribed to the wearer and the addition entered on the semi-finished lens match, the addition is adjusted according to the correction power of the wearer, and then the prescribed addition Does not give prescribers or wearers the misunderstanding that

一方、後者の場合は、後述するセミフィニッシュレンズの処方面に対する調整量を小さくすることができる。なお、この場合は、セミフィニッシュレンズに加入度を彫刻していないもの使用し、装用者の矯正度数に応じて加入度を調整した後に、処方された加入度をレンズに彫刻するようにすれば、上述した誤解の発生を未然に防ぐことができる。   On the other hand, in the latter case, the adjustment amount with respect to the prescription surface of the semi-finished lens described later can be reduced. In this case, use a semi-finished lens without engraving addition, adjust the addition according to the correction power of the wearer, and then engrave the prescribed addition on the lens. The occurrence of the misunderstanding described above can be prevented in advance.

上述した累進屈折力レンズに対する加入度を調整するための加工については、NC加工を用いることができる。具体的には、数値制御で制御するNC加工装置を用いることで、装用者の矯正度数に応じて加入度を調整(増減)するための加工を累進屈折力レンズに対して精度良く行うことが可能である。   NC processing can be used for the processing for adjusting the addition to the progressive power lens described above. Specifically, by using an NC processing device controlled by numerical control, processing for adjusting (increasing / decreasing) the addition power according to the correction power of the wearer can be accurately performed on the progressive addition lens. Is possible.

以上のように、本発明によれば、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を累進屈折力レンズに与えることが可能である。また、本発明によれば、このような累進屈折力レンズを製造工程の簡略化を図りつつ、低コストで製造することが可能である。   As described above, according to the present invention, it is possible to give the progressive addition lens an appropriate correction addition power corresponding to the apparent adjustment force generated by the refractive correction of the wearer. Further, according to the present invention, it is possible to manufacture such a progressive power lens at a low cost while simplifying the manufacturing process.

なお、本発明は、外面を累進面、内面を処方面とした外面累進屈折力レンズに限らず、内面を累進面と処方面とを合成した面とした内面累進屈折力レンズや、内面を累進面、外面を処方面としたレンズにも適用可能である。また、これらレンズの累進面側に、上述した加入度を調整するための加工を施すことも可能である。   The present invention is not limited to an outer surface progressive addition lens with an outer surface as a progressive surface and an inner surface as a prescription surface, but an inner surface with a progressive surface and a prescription surface as a composite surface. The present invention can also be applied to lenses having a prescription surface on the surface and outer surface. Moreover, it is also possible to perform the process for adjusting the addition mentioned above on the progressive surface side of these lenses.

さらに、本発明は、両面を累進面とした両面累進屈折力レンズにも適用可能である。両面累進屈折力レンズは、外面に付与された縦方向/横方向の屈折力と、内面に付与された縦方向/横方向の屈折力との合成により加入度を与えるものである。この場合も、上述した加入度を調整するための加工を施すことが可能である。   Furthermore, the present invention can also be applied to a double-sided progressive-power lens having both surfaces as progressive surfaces. The double-sided progressive addition lens gives addition power by combining the longitudinal / lateral refractive power applied to the outer surface and the vertical / lateral refractive power applied to the inner surface. Also in this case, it is possible to perform the process for adjusting the addition mentioned above.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
実施例1では、装用者が矯正度数S−6.00D、加入度2.00Dの処方を受けた場合の本発明を適用した累進屈折力レンズについて説明する。
実施例1では、先ず、0.25D単位で加入度を異ならせてなるセミフィニッシュレンズの中から、加入度2.00Dのセミフィニッシュレンズを選択した。このセミフィニッシュレンズは、図2(a)に示すように、外面が累進面(非球面)、内面が処方面(球面)とされ、図2(a)中には、各面の遠用部及び近用部における具体的な屈折力(遠用度数及び近用度数)を例示している。
Example 1
In Example 1, a progressive-power lens to which the present invention is applied when the wearer receives a prescription with a correction power of S-6.00D and an addition power of 2.00D will be described.
In Example 1, first, a semi-finished lens having an addition of 2.00D was selected from semi-finished lenses having different additions in units of 0.25D. As shown in FIG. 2A, the semi-finished lens has a progressive surface (aspheric surface) on the outer surface and a prescription surface (spherical surface) on the inner surface. And specific refractive powers (distance power and near power) in the near portion.

次に、装用者の屈折矯正により生じる見かけ上の調節力を上記式(1)により求めた。
すなわち、近方作業距離を例えば0.25mとすると、必要な調節力は4.00Dであり、処方された加入度は2.00Dであるから、装用者の目の調節力は2.00D(=4.00D−2.00D)である。このように、装用者は、目の調節力2.00Dと、レンズの加入度2.00Dとを合わせて、近方0.25mを見るための調節力4.00Dを得ている。
Next, the apparent adjustment force produced by the wearer's refraction correction was determined by the above formula (1).
That is, if the near working distance is 0.25 m, for example, the necessary adjustment force is 4.00D and the prescribed addition power is 2.00D, so the wearer's eye adjustment force is 2.00D ( = 4.00D-2.00D). In this way, the wearer obtains an adjustment power of 4.00D for viewing the near 0.25 m by combining the eye adjustment power of 2.00D and the lens addition power of 2.00D.

この場合、目とレンズとの距離Lを例えば0.012mとすると、実際の目の調節力Acが2.00D、装用者の矯正度数Rが−6.00Dであることから、装用者の屈折矯正により生じる見かけ上の調節力Accは、上記式(1)により求めると、
Acc=2.00(1−0.012×−6.00)=2.30D
となっている。
In this case, when the distance L between the eyes and the lens is, for example, 0.012 m, the actual eye adjustment force Ac is 2.00 D, and the wearer's correction power R is −6.00 D. The apparent adjustment force Acc caused by the correction is obtained by the above equation (1).
Acc = 2.00 (1-0.012 × −6.00) 2 = 2.30D
It has become.

ここで、近方0.25mを見るために必要な調節力は4.00Dであるから、不足分は1.70D(=4.00D−2.30D)となり、レンズの加入度は1.70Dが適正値であることがわかる。したがって、セミフィニッシュッレンズには、加入度2.00Dが与えられているため、この加入度を0.30D(=2.00D−1.70D)だけ減じる方向に調整する必要がある。   Here, since the adjustment force necessary for viewing the near 0.25 m is 4.00D, the shortage is 1.70D (= 4.00D-2.30D), and the addition power of the lens is 1.70D. Is an appropriate value. Therefore, since the addition of 2.00 D is given to the semi-finished lens, it is necessary to adjust the addition in a direction to reduce the addition by 0.30 D (= 2.00 D-1.70 D).

そこで、セミフィニッシュレンズの処方面に、加入度を0.30Dだけ減じるためのNC加工を施すことによって、図2(b)に示すような両面が非球面となる累進屈折力レンズを得た。
以上のようにして、本発明によれば、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を有する累進屈折力レンズを得ることが可能である。
Therefore, by performing NC processing for reducing the addition power by 0.30D on the prefinished surface of the semi-finished lens, a progressive power lens having both aspheric surfaces as shown in FIG. 2B was obtained.
As described above, according to the present invention, it is possible to obtain a progressive addition lens having an appropriate correction addition power corresponding to an apparent adjustment force generated by the refractive correction of the wearer.

(実施例2)
実施例2では、装用者が矯正度数S+6.00D、加入度2.00Dの処方を受けた場合の本発明を適用した累進屈折力レンズについて説明する。
実施例2では、先ず、異なる外面ベースカーブを有するセミフィニッシュレンズの中から、矯正度数S+6.00D、加入度2.00Dに適したセミフィニッシュレンズを選択した。このレンズは、図3(a)に示すように、外面が球面、内面が累進面と処方面とが合成された面(非球面)とされ、図3(a)中には、各面の遠用部及び近用部における具体的な屈折力(遠用度数及び近用度数)を例示している。
(Example 2)
In Example 2, a progressive-power lens to which the present invention is applied when the wearer receives a prescription with a correction power of S + 6.00D and an addition power of 2.00D will be described.
In Example 2, first, a semi-finished lens suitable for the correction power S + 6.00D and the addition power 2.00D was selected from the semi-finished lenses having different outer surface base curves. As shown in FIG. 3 (a), this lens has a spherical outer surface and an inner surface (aspherical surface) in which a progressive surface and a prescription surface are combined. In FIG. The specific refractive power (distance power and near power) in the distance part and near part is illustrated.

次に、装用者の屈折矯正により生じる見かけ上の調節力を上記式(1)により求めた。
すなわち、近方作業距離を例えば0.25mとすると、必要な調節力は4.00Dであり、処方された加入度は2.00Dであるから、装用者の目の調節力は2.00D(=4.00D−2.00D)である。このように、装用者は、目の調節力2.00Dと、レンズの加入度2.00Dとを合わせて、近方0.25mを見るための調節力4.00Dを得ている。
Next, the apparent adjustment force produced by the wearer's refraction correction was determined by the above formula (1).
That is, if the near working distance is 0.25 m, for example, the necessary adjustment force is 4.00D and the prescribed addition power is 2.00D, so the wearer's eye adjustment force is 2.00D ( = 4.00D-2.00D). In this way, the wearer obtains an adjustment power of 4.00D for viewing the near 0.25 m by combining the eye adjustment power of 2.00D and the lens addition power of 2.00D.

この場合、目とレンズとの距離Lを例えば0.012mとすると、実際の目の調節力Acが2.00D、装用者の矯正度数Rが+6.00Dであることから、装用者の屈折矯正により生じる見かけ上の調節力Accは、上記式(1)により求めると、
Acc=2.00(1−0.012×6.00)=1.72D
となっている。
In this case, if the distance L between the eyes and the lens is, for example, 0.012 m, the actual eye adjustment force Ac is 2.00 D, and the wearer's correction power R is +6.00 D. The apparent adjustment force Acc generated by the following equation (1)
Acc = 2.00 (1-0.012 × 6.00) 2 = 1.72D
It has become.

ここで、近方0.25mを見るために必要な調節力は4.00Dであるから、不足分は2.28D(=4.00D−1.72D)となり、レンズの加入度は2.28Dが適正値であることがわかる。したがって、内面に調整された加入度2.28Dを与える必要がある。   Here, since the adjusting force necessary for viewing the near 0.25 m is 4.00D, the shortage is 2.28D (= 4.00D-1.72D), and the addition power of the lens is 2.28D. Is an appropriate value. Therefore, it is necessary to give an adjusted addition 2.28D on the inner surface.

そこで、セミフィニッシュレンズの処方面(内面)に、加入度2.28Dを与えるためのNC加工を施すことによって、図3(b)に示すような累進屈折力レンズを得た。
以上のようにして、本発明によれば、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を有する累進屈折力レンズを得ることが可能である。
Therefore, a progressive power lens as shown in FIG. 3B was obtained by subjecting the prefinished surface (inner surface) of the semi-finished lens to NC processing for giving an addition of 2.28D.
As described above, according to the present invention, it is possible to obtain a progressive addition lens having an appropriate correction addition power corresponding to an apparent adjustment force generated by the refractive correction of the wearer.

(実施例3)
実施例3では、実施例1と同様に、装用者が矯正度数S−6.00D、加入度2.00Dの処方を受けた場合であるが、上述した装用者の屈折矯正により生じる見かけ上の調節力が2.30Dであることを考慮して、図4(a)に示すように、加入度1.75Dのセミフィニッシュレンズを選択した。
この場合、レンズの加入度は1.70Dが適正値であることから、加入度を0.05D(=1.75D−1.70D)だけ減じる方向に調整すればよい。
(Example 3)
In Example 3, as in Example 1, the wearer received a prescription with a correction power of S-6.00D and an addition power of 2.00D, but apparently caused by the above-mentioned refractive correction of the wearer. Considering that the adjusting force is 2.30D, a semi-finished lens having an addition of 1.75D was selected as shown in FIG.
In this case, since the addition of the lens is 1.70D, which is an appropriate value, the addition may be adjusted in a direction to reduce the addition by 0.05D (= 1.75D-1.70D).

そこで、セミフィニッシュレンズの処方面に、加入度を0.05Dだけ減じるためのNC加工を施すことによって、図4(b)に示すような両面が非球面となる累進屈折力レンズを得た。
以上のようにして、本発明によれば、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を有する累進屈折力レンズを得ることが可能である。
Therefore, by applying NC processing for reducing the addition power by 0.05D to the prefinished surface of the semi-finished lens, a progressive power lens having both aspheric surfaces as shown in FIG. 4B was obtained.
As described above, according to the present invention, it is possible to obtain a progressive addition lens having an appropriate correction addition power corresponding to an apparent adjustment force generated by the refractive correction of the wearer.

(実施例4)
実施例4では、実施例2と同様に、装用者が矯正度数S+6.00D、加入度2.00Dの処方を受けた場合であるが、上述した装用者の屈折矯正により生じる見かけ上の調節力が1.72Dであることを考慮して、図5(a)に示すように、加入度2.25Dを内面に与えた。
この場合、レンズの加入度は2.28Dが適正値であることから、外面で加入度を0.03D(=2.28D−2.25D)だけ増す方向に調整すればよい。
Example 4
In the fourth embodiment, as in the second embodiment, the wearer receives a prescription with the correction power S + 6.00D and the addition power 2.00D, but the apparent adjustment force generated by the above-described refractive correction of the wearer. Is 1.72D, and an addition of 2.25D is given to the inner surface as shown in FIG. 5 (a).
In this case, since the addition power of the lens is an appropriate value of 2.28D, it is only necessary to adjust the addition power by 0.03D (= 2.28D-2.25D) on the outer surface.

そこで、内面に加入度2.25Dを与えたレンズの外面に、加入度を0.03Dだけ増すためのNC加工を施すことによって、図5(b)に示すような両面が非球面となる累進屈折力レンズを得た。
以上のようにして、本発明によれば、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を有する累進屈折力レンズを得ることが可能である。
Therefore, by performing NC processing for increasing the addition by 0.03D on the outer surface of the lens having the addition power of 2.25D on the inner surface, the progression that both surfaces become aspherical as shown in FIG. A refractive lens was obtained.
As described above, according to the present invention, it is possible to obtain a progressive addition lens having an appropriate correction addition power corresponding to an apparent adjustment force generated by the refractive correction of the wearer.

(実施例5)
実施例5では、実施例1と同様に、装用者が矯正度数S−6.00D、加入度2.00Dの処方を受けた場合であるが、両面累進屈折力レンズとして、図4(a)に示すように、外面に付与された縦方向/横方向の屈折力と、内面に付与された縦方向/横方向の屈折力との合成により加入度を与えるレンズとした。このレンズは、図6(a)に示すように、外面及び内面が累進面(非球面)とされ、図6(a)中には、各面の遠用部及び近用部における具体的な屈折力(縦方向成分/横方向成分)を例示している。
(Example 5)
In Example 5, as in Example 1, the wearer received a prescription with a correction power of S-6.00D and an addition power of 2.00D. As a double-sided progressive power lens, FIG. As shown in FIG. 4, the lens gives the addition power by the combination of the longitudinal / lateral refractive power applied to the outer surface and the vertical / lateral refractive power applied to the inner surface. In this lens, as shown in FIG. 6A, the outer surface and the inner surface are progressive surfaces (aspherical surfaces), and in FIG. Refractive power (longitudinal component / lateral component) is illustrated.

この場合、上述した装用者の屈折矯正により生じる見かけ上の調節力が縦横それぞれの方向において2.30Dであることから、レンズの加入度は縦横それぞれの方向において1.70Dが適正値である。したがって、縦横それぞれの方向の加入度を0.30D(=2.00D−1.70D)だけ減じる方向に調整すればよい。   In this case, since the apparent adjusting force generated by the above-mentioned refractive correction of the wearer is 2.30D in the vertical and horizontal directions, 1.70D is an appropriate value for the addition of the lens in the vertical and horizontal directions. Therefore, it is only necessary to adjust the addition in the vertical and horizontal directions so as to reduce the addition by 0.30D (= 2.00D-1.70D).

そこで、外面が完成されているセミフィニッシュレンズの内面に、加入度を縦横それぞれの方向において0.30Dだけ減じるためのNC加工を施すことによって、図6(b)に示すような両面累進屈折力レンズを得た。
以上のようにして、本発明によれば、装用者の屈折矯正により生じる見かけ上の調節力に応じた適正な矯正加入度数を有する累進屈折力レンズを得ることが可能である。
Therefore, by performing NC processing for reducing the addition power by 0.30D in the vertical and horizontal directions on the inner surface of the semi-finished lens whose outer surface is completed, the progressive power on both sides as shown in FIG. I got a lens.
As described above, according to the present invention, it is possible to obtain a progressive addition lens having an appropriate correction addition power corresponding to an apparent adjustment force generated by the refractive correction of the wearer.

なお、上記実施例1〜5では、標準的な値として、近方作業距離を0.25m、目とレンズの距離を0.012mとして使用したが、これらの数値が変わると加入度の増減量が変化する。このため、これらの数値に実際の装用者に合わせた値を使用することにより、より厳密な加入度調整を行うことが可能である。また、上記実施例1〜5では、装用者の屈折矯正により生じる見かけ上の調節力を上記式(1)により求めたが、上記式(2)により求めることも可能である。   In Examples 1 to 5 above, the standard working value is 0.25 m for the near working distance and 0.012 m for the distance between the eyes and the lens. Changes. For this reason, it is possible to adjust the addition power more strictly by using values according to the actual wearer for these numerical values. In Examples 1 to 5, the apparent adjustment force caused by the refractive correction of the wearer is obtained by the above equation (1), but can also be obtained by the above equation (2).

図1は、本発明が適用される累進屈折力レンズの一例を示す平面図である。FIG. 1 is a plan view showing an example of a progressive power lens to which the present invention is applied. 図2は、実施例1の場合であり、(a)は従来のレンズ、(b)は本発明が適用された累進屈折力レンズを示す断面図である。FIG. 2 shows a case of Example 1, where (a) is a conventional lens, and (b) is a sectional view showing a progressive-power lens to which the present invention is applied. 図3は、実施例2の場合であり、(a)は従来のレンズ、(b)は本発明が適用された累進屈折力レンズを示す断面図である。FIG. 3 shows a case of Example 2, where (a) is a conventional lens, and (b) is a cross-sectional view showing a progressive-power lens to which the present invention is applied. 図4は、実施例3の場合であり、(a)は従来のレンズ、(b)は本発明が適用された累進屈折力レンズを示す断面図である。FIG. 4 is a case of Example 3, where (a) is a conventional lens, and (b) is a cross-sectional view showing a progressive power lens to which the present invention is applied. 図5は、実施例4の場合であり、(a)は従来のレンズ、(b)は本発明が適用された累進屈折力レンズを示す断面図である。FIG. 5 shows a case of Example 4, wherein (a) is a conventional lens, and (b) is a sectional view showing a progressive-power lens to which the present invention is applied. 図6は、実施例5の場合であり、(a)は従来のレンズ、(b)は本発明が適用された累進屈折力レンズを示す断面図である。FIG. 6 shows a case of Example 5, where (a) is a conventional lens, and (b) is a sectional view showing a progressive-power lens to which the present invention is applied.

符号の説明Explanation of symbols

100…累進屈折力レンズ 100a…眼鏡用レンズ 101…遠用部 102…近用部 103…中間部   DESCRIPTION OF SYMBOLS 100 ... Progressive-power lens 100a ... Lens for spectacles 101 ... Distance part 102 ... Near part 103 ... Middle part

Claims (15)

遠用度数の入った遠用部と、近用度数の入った近用部と、前記遠用部と前記近用部との間で加入度に応じて屈折力が累進的に変化する中間部とを備える累進屈折力レンズであって、
装用者の実際の目の調節力と、装用者の屈折矯正により生じる見かけ上の調節力との差に基づいて、前記加入度が装用者の矯正度数に応じて調整されてなることを特徴とする累進屈折力レンズ。
A distance part containing a distance power, a near part containing a near power, and an intermediate part where the refractive power gradually changes according to the addition power between the distance part and the near part. A progressive-power lens comprising
The addition power is adjusted according to the correction power of the wearer based on the difference between the actual adjustment power of the wearer 's eyes and the apparent adjustment power generated by the refractive correction of the wearer. Progressive power lens.
前記装用者の屈折矯正により生じる見かけ上の調節力(Acc)[D]は、実際の目の調節力をAc[D]、目とレンズとの距離をL[m]と、装用者の矯正度数をR[D]としたときに、
Acc=Ac(1−L・R)
又は
Acc=Ac(1−2L・R)
により求まる値であることを特徴とする請求項1に記載の累進屈折力レンズ。
The apparent adjustment force (Acc) [D] generated by the refractive correction of the wearer is Ac [D] as the actual eye adjustment force and L [m] as the distance between the eyes and the lens. When the frequency is R [D],
Acc = Ac (1-LR) 2
Or Acc = Ac (1-2L · R)
The progressive-power lens according to claim 1, wherein the progressive power lens is a value obtained by:
当該レンズの何れか一方の面又は両面に、前記装用者の矯正度数に応じて加入度を調整する加工が施されていることを特徴とする請求項1又は2に記載の累進屈折力レンズ。   The progressive-power lens according to claim 1 or 2, wherein any one or both surfaces of the lens is processed to adjust the addition according to the correction power of the wearer. 当該レンズの何れか一方の面又は両面が、前記装用者に処方された加入度を付与する累進面を構成していることを特徴とする請求項3に記載の累進屈折力レンズ。   4. The progressive-power lens according to claim 3, wherein any one or both surfaces of the lens constitute a progressive surface that gives the addition power prescribed to the wearer. 前記装用者の矯正度数に応じて調整される加入度のピッチが、所定のピッチで加入度を異ならせてなるセミフィニッシュレンズの加入度のピッチよりも小さいことを特徴とする請求項1〜4の何れか一項に記載の累進屈折力レンズ。   5. The addition pitch adjusted according to the correction power of the wearer is smaller than the addition pitch of a semi-finished lens obtained by changing the addition at a predetermined pitch. A progressive-power lens according to any one of the above. 前記加入度は、表面屈折力により定義される値であることを特徴とする請求項1〜5の何れか一項に記載の累進屈折力レンズ。   The progressive addition lens according to claim 1, wherein the addition is a value defined by a surface refractive power. 前記加入度は、前記装用者が装用した状態での屈折力により定義される値であることを特徴とする請求項1〜5の何れか一項に記載の累進屈折力レンズ。   The progressive addition lens according to any one of claims 1 to 5, wherein the addition power is a value defined by a refractive power in a state worn by the wearer. 遠用度数の入った遠用部と、近用度数の入った近用部と、前記遠用部と前記近用部との間で加入度に応じて屈折力が累進的に変化する中間部とを備える累進屈折力レンズの製造方法であって、
所定のピッチで加入度を異ならせてなるセミフィニッシュレンズの中から一のセミフィニッシュレンズを選択し、当該セミフィニッシュレンズの何れか一方の面又は両面に、装用者の実際の目の調節力と、装用者の屈折矯正により生じる見かけ上の調節力との差に基づいて、前記加入度を装用者の矯正度数に応じて調整する加工を施すことを特徴とする累進屈折力レンズの製造方法。
A distance part containing a distance power, a near part containing a near power, and an intermediate part where the refractive power gradually changes according to the addition power between the distance part and the near part. A method of manufacturing a progressive power lens comprising:
Select one semi-finished lens from semi-finished lenses with different addition powers at a predetermined pitch, and adjust the actual eye's eye adjustment power on either or both sides of the semi-finished lens. A process for producing a progressive-power lens, characterized in that, based on a difference from an apparent adjustment force caused by a wearer's refractive correction, a process of adjusting the addition power according to the correction power of the wearer is performed.
前記装用者の屈折矯正により生じる見かけ上の調節力(Acc)[D]として、実際の目の調節力をAc[D]、目とレンズとの距離をL[m]と、装用者の矯正度数をR[D]としたときに、
Acc=Ac(1−L・R)
又は
Acc=Ac(1−2L・R)
により求まる値を用いることを特徴とする請求項8に記載の累進屈折力レンズの製造方法。
As the apparent accommodation force (Acc) [D] generated by the wearer's refraction correction, the actual eye accommodation force is Ac [D], and the distance between the eyes and the lens is L [m]. When the frequency is R [D],
Acc = Ac (1-LR) 2
Or Acc = Ac (1-2L · R)
The method according to claim 8, wherein a value obtained by: is used.
前記加工を施す際に、
前記装用者の矯正度数が前記遠用部においてプラスとなる場合は、前記加入度が増す方向に調整し、
前記装用者の矯正度数が前記遠用部においてマイナスとなる場合は、前記加入度が減じる方向に調整することを特徴とする請求項8又は9に記載の累進屈折力レンズの製造方法。
When performing the processing,
If the corrective power of the wearer is positive in the distance portion, adjust in the direction that the addition increases,
10. The method of manufacturing a progressive-power lens according to claim 8, wherein when the wearer's correction power is negative in the distance portion, the addition power is adjusted in a decreasing direction.
前記加工を施す際に、
前記装用者の矯正度数が前記近用部においてプラスとなる場合は、前記加入度が増す方向に調整し、
前記装用者の矯正度数が前記近用部においてマイナスとなる場合は、前記加入度が減じる方向に調整することを特徴とする請求項8又は9に記載の累進屈折力レンズの製造方法。
When performing the processing,
If the corrective power of the wearer is positive in the near-use part, adjust in the direction to increase the addition,
10. The method of manufacturing a progressive-power lens according to claim 8, wherein when the wearer's correction power is negative in the near portion, the addition power is adjusted in a decreasing direction.
前記加入度の調整する量を、装用時に想定される近方距離又は目とレンズとの距離のうち少なくとも一方の情報に基づいて決定することを特徴とする請求項8〜11の何れか一項に記載の累進屈折力レンズの製造方法。   The amount of addition to be adjusted is determined based on information on at least one of a near distance assumed at the time of wearing or a distance between an eye and a lens. A manufacturing method of the progressive-power lens as described in 2. 前記装用者の矯正度数に応じて調整される加入度のピッチを、前記セミフィニッシュレンズの加入度のピッチよりも小さくすることを特徴とする請求項8〜12の何れか一項に記載の累進屈折力レンズの製造方法。   The progressive pitch according to any one of claims 8 to 12, wherein an addition pitch adjusted according to a correction power of the wearer is made smaller than an addition pitch of the semi-finished lens. A manufacturing method of a refractive power lens. 前記一のセミフィニッシュレンズとして、前記装用者に処方された加入度を有するセミフィニッシュレンズを選択することを特徴とする請求項8〜13の何れか一項に記載の累進屈折力レンズの製造方法。   The method for producing a progressive power lens according to any one of claims 8 to 13, wherein a semi-finish lens having an addition power prescribed to the wearer is selected as the one semi-finish lens. . 前記一のセミフィニッシュレンズとして、前記装用者の屈折矯正により生じる見かけ上の調節力に基づいた加入度に最も近い加入度を有するセミフィニッシュレンズを選択することを特徴とする請求項8〜13の何れか一項に記載の累進屈折力レンズの製造方法。   The semi-finished lens having an addition power closest to the addition power based on an apparent adjustment force generated by the refractive correction of the wearer is selected as the one semi-finishing lens. The manufacturing method of the progressive-power lens as described in any one.
JP2008161700A 2008-06-20 2008-06-20 Progressive power lens and manufacturing method thereof Active JP5346503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008161700A JP5346503B2 (en) 2008-06-20 2008-06-20 Progressive power lens and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161700A JP5346503B2 (en) 2008-06-20 2008-06-20 Progressive power lens and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010002713A JP2010002713A (en) 2010-01-07
JP5346503B2 true JP5346503B2 (en) 2013-11-20

Family

ID=41584488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161700A Active JP5346503B2 (en) 2008-06-20 2008-06-20 Progressive power lens and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5346503B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8100529B2 (en) * 2008-07-31 2012-01-24 Hoya Corporation Progressive-addition lens
JP2012103312A (en) * 2010-11-08 2012-05-31 Seiko Epson Corp Progressive refractive power lens and design method thereof
EP2506063A1 (en) 2011-03-31 2012-10-03 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Progressive ophthalmic lens
JP6095271B2 (en) * 2012-03-05 2017-03-15 イーエイチエス レンズ フィリピン インク Lens set, lens design method, and lens manufacturing method
JP5948150B2 (en) * 2012-05-25 2016-07-06 Hoya株式会社 Manufacturing method of progressive power lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829435B2 (en) * 1996-10-14 2006-10-04 セイコーエプソン株式会社 Manufacturing method of spectacle lens
JP3845251B2 (en) * 2000-07-05 2006-11-15 ペンタックス株式会社 Manufacturing method and supply method of spectacle lens
JP3896079B2 (en) * 2002-12-27 2007-03-22 東海光学株式会社 Progressive power lens and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010002713A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
KR101702136B1 (en) Presbyopic treatment system
CN102460273B (en) Making of progressive spectacle lens customized based on blur perception
US8807746B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP2007241276A (en) Method for the determination of progressive focus ophthalmic lens
TW201621403A (en) Freeform lens design and method for preventing and/or slowing myopia progression
JP2007233388A (en) Method for determination of progressive ophthalmic lens
US20080231800A1 (en) Glasses Lens Comprising a Carrying Edge
JP5346503B2 (en) Progressive power lens and manufacturing method thereof
US10928655B2 (en) Reduced distortion spectacle lens
JP2004045633A (en) Multifocal spectacle lens and its manufacturing method
JP5948150B2 (en) Manufacturing method of progressive power lens
CN111065960A (en) Progressive multifocal lens and method for manufacturing same
KR101859009B1 (en) Methods for determining a progressive ophthalmic lens and a set of semi finished lens blanks
JP6522512B2 (en) Multifocal ophthalmic lens
US20180307058A1 (en) Computer implemented method of determining a base curve for a spectacle lens and method of manufacturing a spectacle lens
EP2095174B1 (en) Improved single vision spectacle lens
WO2013141160A1 (en) Spectacle lens, method for designing spectacle lens, manufacturing method and manufacturing system
JP2016057324A (en) Processing method of lens material block
CN113557468B (en) Method and system for optimizing the optical function of a progressive ophthalmic lens under specific wear conditions
JP7126842B2 (en) Method for designing and manufacturing a pair of spectacle lenses, and a pair of spectacle lenses
EP3276399A1 (en) Method for determining a progressive ophthalmic lens for myopic wearers
JP6109872B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP2009103795A (en) Eyeglasses, and method for manufacturing eyeglasses, and system for manufacturing eyeglasses

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5346503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250