JP5346243B2 - Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method - Google Patents

Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method Download PDF

Info

Publication number
JP5346243B2
JP5346243B2 JP2009135028A JP2009135028A JP5346243B2 JP 5346243 B2 JP5346243 B2 JP 5346243B2 JP 2009135028 A JP2009135028 A JP 2009135028A JP 2009135028 A JP2009135028 A JP 2009135028A JP 5346243 B2 JP5346243 B2 JP 5346243B2
Authority
JP
Japan
Prior art keywords
glass substrate
mask blank
manufacturing
mask
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009135028A
Other languages
Japanese (ja)
Other versions
JP2010282007A (en
JP2010282007A5 (en
Inventor
勝 田辺
今朝広 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2009135028A priority Critical patent/JP5346243B2/en
Publication of JP2010282007A publication Critical patent/JP2010282007A/en
Publication of JP2010282007A5 publication Critical patent/JP2010282007A5/en
Application granted granted Critical
Publication of JP5346243B2 publication Critical patent/JP5346243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a defect-free product by reliably detecting inner defects in the whole region inside a glass substrate including a region close to the surface. <P>SOLUTION: The method for manufacturing the glass substrate for mask blank includes: a primary shaping step of processing a sheet glass into a shape of a glass substrate for a mask blank; a defect inspection step of polishing one end face of the glass substrate into a mirror face, introducing an inspection beam at a wavelength of not more than 200 nm into the glass to inspect whether fluorescent light emitting from an inner defect is present or not, and selecting a glass substrate with no detection of fluorescent light; and a secondary shaping step of grinding and polishing the selected glass substrate. The width in a direction across both of the main surfaces of a region, where the inspection beam at an intensity necessary to emit fluorescent light from an inner defect in the glass substrate can reach in the defect inspection step, is larger than the thickness between both of the main surfaces of the glass substrate after the secondary shaping step. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、マスクブランク用ガラス基板の内部欠陥を検出するマスクブランク用ガラス基板の欠陥検査工程を備えたマススクブランク用ガラス基板の製造方法、マスクブランクの製造方法及び露光用マスクの製造方法に関する。   The present invention relates to a mask blank glass substrate manufacturing method, a mask blank manufacturing method, and an exposure mask manufacturing method, each of which includes a defect inspection process for a mask blank glass substrate that detects an internal defect of the mask blank glass substrate. .

近年、半導体デバイスの微細化に伴って、光リソグラフィー技術において露光光として、例えば、ArFエキシマレーザー(露光波長193nm)等のような短波長の光が用いられるようになってきた。また、光リソグラフィー技術において使用される露光用マスク及びこの露光用マスクを製造するためのマスクブランクの技術分野においても、上述の短波長の露光光に対して光を遮断できる遮光膜や、位相を変化させる位相シフト膜の開発が急速に行われ、様々な膜材料が提案されている。   In recent years, with the miniaturization of semiconductor devices, light having a short wavelength such as an ArF excimer laser (exposure wavelength 193 nm) has been used as exposure light in the photolithography technique. Also in the technical field of exposure masks used in photolithography technology and mask blanks for manufacturing this exposure mask, a light-shielding film capable of blocking light against the exposure light having the short wavelength described above, and a phase. A phase shift film to be changed has been rapidly developed, and various film materials have been proposed.

ところで、上記マスクブランク用ガラス基板や、このマスクブランク用ガラス基板を製造するための合成石英ガラス基板の内部には、異物や気泡などの欠陥が存在しないことが要求されている。特許文献1には、ガラス基板内に、波長が200nm以下の波長の検査光を導入したときにガラス基板の内部欠陥から発生される蛍光を検出してガラス基板に存在する内部欠陥(異物や気泡など)を検出する欠陥検出方法が開示されている。   By the way, it is required that the mask blank glass substrate and the synthetic quartz glass substrate for manufacturing the mask blank glass substrate are free from defects such as foreign matters and bubbles. Patent Document 1 discloses an internal defect (foreign matter or bubble) present in a glass substrate by detecting fluorescence generated from the internal defect of the glass substrate when inspection light having a wavelength of 200 nm or less is introduced into the glass substrate. And the like are disclosed.

特開2007‐86050号公報JP 2007-86050 A

ところが、上述の欠陥検出方法によって内部欠陥が存在しないと判定されたガラス基板であっても、特に2つの主表面の近傍付近に欠陥が残っている場合のあることが判明した。本願発明者がその原因を究明した結果、以下のことが判明した。   However, it has been found that even if the glass substrate is determined to have no internal defects by the above-described defect detection method, defects may remain particularly near the vicinity of the two main surfaces. As a result of investigating the cause of the inventor, the following has been found.

図4は従来のマスクブランク用ガラス基板の欠陥検査方法の説明図であり、図5は図4におけるガラス基板10の斜視図である。図4、図5において、符号10は検査対象たるガラス基板であり、このガラス基板10は、2つの主表面11,12と、4つの端面13,14,15,16とを有する。2つの主表面11,12と、4つの端面13,14,15,16とが交差する角部には、面取り面13a,13b,14a,14b,15a,15b,16a,16bが形成されている。   FIG. 4 is an explanatory view of a conventional defect inspection method for a mask blank glass substrate, and FIG. 5 is a perspective view of the glass substrate 10 in FIG. 4 and 5, reference numeral 10 denotes a glass substrate to be inspected. The glass substrate 10 has two main surfaces 11 and 12 and four end surfaces 13, 14, 15, and 16. Chamfered surfaces 13a, 13b, 14a, 14b, 15a, 15b, 16a, 16b are formed at corners where the two main surfaces 11, 12 and the four end surfaces 13, 14, 15, 16 intersect. .

検査光Lは、図中左方から端面13に対して垂直に照射されてガラス基板10の内部に導入される。検査光Lは、ガラス基板10の厚さtgより少し大きい幅 (上下幅)t
を有し、かつ実質的にはほぼ平行な光である。それゆえ、検査光Lは、実際には、端面13と、面取り面13a,13bとを通じて内部に導入されることになる。なお、検査光Lの横幅(端面13及び2つの主表面に平行な方向の幅)も上記上下幅tと略同等程度の幅を有する。したがって、ガラス基板を端面13及び2つの主表面に平行な方向に移動することによって検査光をガラス基板全体に導入してガラス基板全体を検査している。
The inspection light L is irradiated perpendicularly to the end face 13 from the left side in the drawing and introduced into the glass substrate 10. The inspection light L is a width (vertical width) t L that is slightly larger than the thickness tg of the glass substrate 10.
And substantially parallel light. Therefore, the inspection light L is actually introduced into the inside through the end surface 13 and the chamfered surfaces 13a and 13b. The horizontal width (the end face 13 and the two major surfaces parallel to the width) of the inspection light L also has a width of about substantially equal to the vertical width t L. Accordingly, the entire glass substrate is inspected by introducing inspection light to the entire glass substrate by moving the glass substrate in a direction parallel to the end face 13 and the two main surfaces.

ここで、検査光Lは端面13からはほぼ垂直に入射されるが、面取り面13a,13bを通じて内部に導入される光は、これら面取り面に対して45°前後の角度で入射し、ガ
ラス基板10内の領域S1,S2を通過することになる。このため、面取り面13a,13bから入射する際に、これらの面で反射や屈折が起こり、これらの面から入射して領域S1,S2を通過する検査光の強度が、端面13から垂直に入射して他の領域を通過する検査光の強度に比較してかなり弱くなるものと考えられる。その結果、領域S1,S2内にある欠陥Ka,Kb等に照射される検査光の強度が十分でなくなり、欠陥から発生する蛍光も十分なものでなくなるものと考えられる。
Here, the inspection light L is incident from the end face 13 substantially perpendicularly, but the light introduced into the inside through the chamfered faces 13a and 13b is incident at an angle of about 45 ° with respect to the chamfered faces. 10 passes through the regions S1 and S2. For this reason, when incident from the chamfered surfaces 13a and 13b, reflection and refraction occur at these surfaces, and the intensity of the inspection light incident from these surfaces and passing through the regions S1 and S2 is incident from the end surface 13 vertically. Therefore, it is considered that the intensity of the inspection light passing through another region is considerably weakened. As a result, it is considered that the intensity of the inspection light applied to the defects Ka, Kb, etc. in the regions S1, S2 is not sufficient, and the fluorescence generated from the defects is not sufficient.

本発明は、上述の背景のもとでなされたものであり、その目的は、主表面近傍の内部欠陥のないマスクブランク用ガラス基板を製造するためのマスクブランク用ガラス基板の製造方法、マスクブランクの製造方法及び露光用マスクの製造方法を提供することを目的とする。   The present invention has been made under the above-mentioned background, and the object thereof is a method for manufacturing a glass substrate for a mask blank and a mask blank for manufacturing a glass substrate for a mask blank having no internal defects near the main surface. An object of the present invention is to provide a manufacturing method of the above and a manufacturing method of an exposure mask.

上述の課題を解決するための手段は以下の通りである。
第1の手段
ガラスインゴットから切り出された板状ガラスを研削し、2つの主表面と4つの端面を有するマスクブランク用ガラス基板の形状に加工する1次形状加工工程と、
前記ガラス基板の少なくとも一端面を鏡面研磨する鏡面研磨工程と、
前記ガラス基板の鏡面研磨された前記一端面から波長200nm以下の検査光を前記ガラス基板内に導入し、前記検査光によって内部欠陥から発生する蛍光の有無を検査し、蛍光が検出されないガラス基板を選定する欠陥検査工程と、
前記選定されたガラス基板の2つの主表面および4つの端面の研削および研磨を行う2次形状加工工程とを有し、
前記欠陥検査工程における前記ガラス基板内の内部欠陥から蛍光が発生するのに必要な強度の検査光が届く領域の両主表面間方向の幅は、2次形状加工工程後のガラス基板の両主表面間の厚さよりも大きい
ことを特徴とするマスクブランク用ガラス基板の製造方法。
第2の手段
前記2次形状加工工程後のガラス基板は、2つの主表面と前記4つの端面とが交差する角部に面取り面が形成されていることを特徴とする第1の手段にかかるマスクブランク用ガラス基板の製造方法。
第3の手段
前記欠陥検査工程で検査されるガラス基板は、2つの主表面と前記4つの端面とが交差する角部に面取り面が形成されており、前記端面の両主表面間方向の幅は、前記2次形状加工工程後のガラス基板の両主表面間の厚さよりも大きいことを特徴とする第1または第2の手段のいずれかにかかるマスクブランク用ガラス基板の製造方法。
第4の手段
第1から第3の手段のいずれかにかかるマスクブランク用ガラス基板の製造方法によって製造されたマスクブランク用ガラス基板の主表面にパターン形成用の薄膜を形成する工程を備えたことを特徴とするマスクブランクの製造方法。
第5の手段
第4の手段にかかるマスクブランクの製造方法によって製造されたマスクブランクの前記パターン形成用の薄膜に露光用の転写パターンを形成する工程を有することを特徴とする露光用マスクの製造方法。
Means for solving the above-described problems are as follows.
1st means The primary shape processing process which grinds the plate-like glass cut out from the glass ingot, and processes it into the shape of the glass substrate for mask blanks which has two main surfaces and four end faces,
A mirror polishing step of mirror polishing at least one end surface of the glass substrate;
An inspection light having a wavelength of 200 nm or less is introduced into the glass substrate from the one end surface of the glass substrate that has been mirror-polished, the presence or absence of fluorescence generated from an internal defect is inspected by the inspection light, and a glass substrate in which no fluorescence is detected is obtained. Defect inspection process to select,
A secondary shape processing step of grinding and polishing the two main surfaces and the four end surfaces of the selected glass substrate;
In the defect inspection step, the width in the direction between both main surfaces of the region where the inspection light having the intensity necessary for generating fluorescence from the internal defect in the glass substrate reaches the two main surfaces of the glass substrate after the secondary shape processing step. The manufacturing method of the glass substrate for mask blanks characterized by being larger than the thickness between surfaces.
Second means The glass substrate after the secondary shape processing step has a chamfered surface formed at a corner where two main surfaces and the four end faces intersect with each other. A method for producing a mask blank glass substrate.
Third means The glass substrate to be inspected in the defect inspection step has a chamfered surface formed at a corner where two main surfaces and the four end surfaces intersect, and the width of the end surface in the direction between both main surfaces. Is larger than the thickness between both main surfaces of the glass substrate after the secondary shape processing step, The method for producing a mask blank glass substrate according to either the first or second means.
4th means It provided with the process of forming the thin film for pattern formation in the main surface of the glass substrate for mask blanks manufactured by the manufacturing method of the glass substrate for mask blanks concerning either of the 1st to 3rd means A method for producing a mask blank characterized by the above.
5th means Manufacturing of the exposure mask characterized by having the process of forming the transcription | transfer pattern for exposure in the said thin film for pattern formation of the mask blank manufactured by the manufacturing method of the mask blank concerning 4th means Method.

上述の手段によれば、欠陥検査工程を1次形状加工工程と2次形状加工工程の間に実施するようにし、さらに、欠陥検査工程において、検査光が内部欠陥から蛍光が発生する強度で届くガラス基板内の領域の両主表面間方向における幅を、2次形状加工工程後のガラス基板の両主表面間の厚さよりも大きくすることにより、欠陥検査工程での内部欠陥の検
査が不十分になる領域を2次形状加工工程で除去されるため、内部欠陥のないマスクブランク用ガラス基板を製造することが可能となる。
According to the above-described means, the defect inspection step is performed between the primary shape processing step and the secondary shape processing step, and further, in the defect inspection step, the inspection light reaches at an intensity at which fluorescence is generated from the internal defect. Insufficient inspection of internal defects in the defect inspection process by making the width in the direction between the two main surfaces of the region in the glass substrate larger than the thickness between the two main surfaces of the glass substrate after the secondary shape processing step Therefore, the mask blank glass substrate having no internal defects can be manufactured.

本発明の実施の形態にかかるマスクブランク用ガラス基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the glass substrate for mask blanks concerning embodiment of this invention. ガラス基板の内部欠陥を検査するための装置構成を示す図である。It is a figure which shows the apparatus structure for test | inspecting the internal defect of a glass substrate. 内部欠陥検出の説明図である。It is explanatory drawing of an internal defect detection. 従来のマスクブランク用ガラス基板の欠陥検査方法の説明図である。It is explanatory drawing of the defect inspection method of the conventional glass substrate for mask blanks. 図4におけるガラス基板10の斜視図である。It is a perspective view of the glass substrate 10 in FIG.

図1は本発明の実施の形態にかかるマスクブランク用ガラス基板の製造法の説明図、図2は本発明の実施の形態にかかるマスクブランク用ガラス基板の欠陥検査工程を実施するための装置構成を示す図、図3は欠陥検出の説明図である。以下、これらの図面を参照しながら本発明の実施の形態にかかるマスクブランク用ガラス基板の製造方法、マスクブランクの製造方法及び露光用マスクの製造方法を説明する。なお、本実施の形態の検査対象であるマスクブランク用ガラス基板は、上述の従来のマスクブランク用ガラス基板の検査方法の対象であるマスクブランク用ガラス基板と同じものであるので、同一の部分には同一の符号を付して説明する。なお、以下の説明では、露光用マスクの製造方法を説明する過程で、マスクブランク用ガラス基板の製造方法及びマスクブランクの製造方法を併せて説明する。   FIG. 1 is an explanatory diagram of a method for manufacturing a mask blank glass substrate according to an embodiment of the present invention, and FIG. 2 is an apparatus configuration for performing a defect inspection process for the mask blank glass substrate according to the embodiment of the present invention. FIG. 3 is an explanatory diagram of defect detection. Hereinafter, a mask blank glass substrate manufacturing method, a mask blank manufacturing method, and an exposure mask manufacturing method according to embodiments of the present invention will be described with reference to these drawings. In addition, since the glass substrate for mask blanks which is the inspection target of the present embodiment is the same as the glass substrate for mask blanks which is the target of the above-described conventional mask blank glass substrate inspection method, Are described with the same reference numerals. In the following description, a method for manufacturing a mask blank glass substrate and a method for manufacturing a mask blank will be described together in the course of describing a method for manufacturing an exposure mask.

実施の形態にかかる露光用マスクの製造方法は、(1)マスクブランク用ガラス基板の製造工程、(2)マスクブランクの製造工程、(3)露光用マスクの製造工程からなる。上記工程のうち、本実施の形態の最大の特徴は、(1)マスクブランク用ガラス基板の製造方法にあり、他の工程は、公知の工程を用いるので、以下では、公知の工程の説明は必要最小限にし、マスクブランク用ガラス基板の製造方法を中心に説明する。   An exposure mask manufacturing method according to the embodiment includes (1) a mask blank glass substrate manufacturing process, (2) a mask blank manufacturing process, and (3) an exposure mask manufacturing process. Among the above steps, the greatest feature of the present embodiment is (1) a method for manufacturing a glass substrate for mask blank, and other steps use known steps. Description will be made focusing on the manufacturing method of the glass substrate for mask blanks with the minimum necessary.

(1)マスクブランク用ガラス基板の製造工程
a.板状ガラスの研削工程
公知の方法(例えば、特開平8―31723号公報、特開2003―81654号公報等参照)により作成された合成石英ガラスインゴットから、縦寸法及び横寸法が共にa0=152.40mmで、厚さt0=7.28mmの寸法の板状体を切り出して合成石英の板状ガラスを得る(図1(a)参照)。この板状ガラス(ガラス基板10)は、対向する2つの主表面11,12と、この表・裏面に直交する4つの端面13,14,15,16とを有する。この段階では、まだ面取り面は形成されていない。
(1) Manufacturing process of mask blank glass substrate a. Sheet glass grinding step From a synthetic quartz glass ingot produced by a known method (for example, see JP-A-8-31723, JP-A-2003-81654, etc.), both the vertical dimension and the horizontal dimension are a0 = 152. A plate-like body having a thickness of .40 mm and a thickness of t0 = 7.28 mm is cut out to obtain a synthetic quartz plate-like glass (see FIG. 1A). This plate-like glass (glass substrate 10) has two main surfaces 11, 12 facing each other and four end surfaces 13, 14, 15, 16 orthogonal to the front and back surfaces. At this stage, no chamfered surface has yet been formed.

b.1次面取り加工工程
上記ガラス基板10の主表面11,12と、4つの端面13,14,15,16とが交差する角部に、従来の加工装置を用い、面取り面13a,13b,14a,14b,15a,15b,16a,16bを形成する(図1(b)参照)。この面取り加工後の各面取り面の主表面11,12間方向(両主表面間方向:両主表面に垂直な方向)の寸法m1は、m1=0.43mmとなる。また、各端面の主表面11側の面取り面と交差する角部と、主表面12側の面取り面と交差する角部との間の長さtm1は、tm1=6.42mmとなる。
b. Primary chamfering process Step Chamfered surfaces 13 a, 13 b, 14 a, and chamfered surfaces 13 a, 13 b, 14 a, and the like are used at the corners where the main surfaces 11, 12 of the glass substrate 10 intersect the four end surfaces 13, 14, 15, 16. 14b, 15a, 15b, 16a, 16b are formed (see FIG. 1B). The dimension m1 in the direction between the main surfaces 11 and 12 of each chamfered surface after chamfering (direction between both main surfaces: a direction perpendicular to both main surfaces) is m1 = 0.43 mm. In addition, the length tm1 between the corner portion that intersects the chamfered surface on the main surface 11 side of each end surface and the corner portion that intersects the chamfered surface on the main surface 12 side is tm1 = 6.42 mm.

c.主表面ラップ研削加工工程
前記面取り面の形成後、従来の加工装置を用い、主表面11,12をラップ研削する(図1(c)参照)。この両主表面のラップ研削後、ガラス基板の両主表面間方向の厚さt
1は、t1=6.90mmとなる。その結果、面取り面の両主表面方向の寸法m2は、m2=0.24mmになる。ここで、主表面11,12の表面粗さRa(算術平均粗さ)は約0.5μm以下となる。
以上のように、「a.板状ガラスの研削工程」、「b.1次面取り加工工程」、「c.主表面ラップ研削加工工程」の順に1次形状加工工程(「a.板状ガラスの研削工程」は1次形状加工工程には含まず、独立の工程とする場合もある。)が行われる。
c. Main surface lapping process After forming the chamfered surface, the main surfaces 11 and 12 are lapped using a conventional processing apparatus (see FIG. 1C). After this lapping of both main surfaces, the thickness t between the two main surfaces of the glass substrate
1 is t1 = 6.90 mm. As a result, the dimension m2 of the chamfered surface in both main surface directions is m2 = 0.24 mm. Here, the surface roughness Ra (arithmetic mean roughness) of the main surfaces 11 and 12 is about 0.5 μm or less.
As described above, the primary shape processing step (“a. Plate glass” in the order of “a. Plate glass grinding step”, “b. Primary chamfering step”, “c. Main surface lapping grinding step”. The “grinding step” is not included in the primary shape processing step, and may be an independent step).

d.鏡面研磨工程
主表面ラップ研削加工工程の次に、検査光を導入する端面(一端面)を研磨して鏡面にし、欠陥検査工程時に検査光たるArFエキシマレーザー光がガラス基板の内部に導入できるようにする。(図1(d)参照)。ここでは、4つの端面のすべてに鏡面研磨を行い、結果、端面13,14間方向の寸法(端面13,14に垂直な方向における両端面の間の距離=端面13と端面14との距離)及び端面15,16間方向の寸法(端面15,16に垂直な方向における両端面の間の距離=端面15と端面16との距離)が共にa1=152.35mmになる。そのほかの寸法は実質的に変化しない。鏡面研磨された端面の表面粗さRa(算術平均粗さ)は約0.03μm以下となる。次に、こうして得られたマスクブランク用ガラス基板10は次の工程である欠陥検査工程に供給される。
d. Mirror surface polishing process After the main surface lapping process, the end surface (one end surface) for introducing inspection light is polished into a mirror surface so that ArF excimer laser light, which is inspection light during the defect inspection process, can be introduced into the glass substrate. To. (See FIG. 1 (d)). Here, all four end faces are mirror-polished, and as a result, the dimension in the direction between the end faces 13 and 14 (distance between both end faces in the direction perpendicular to the end faces 13 and 14 = distance between the end faces 13 and 14). In addition, the dimension in the direction between the end faces 15 and 16 (distance between both end faces in the direction perpendicular to the end faces 15 and 16 = distance between the end faces 15 and 16) is a1 = 152.35 mm. Other dimensions are substantially unchanged. The surface roughness Ra (arithmetic average roughness) of the mirror-polished end surface is about 0.03 μm or less. Next, the mask blank glass substrate 10 thus obtained is supplied to a defect inspection process which is the next process.

e.欠陥検査工程
この工程では、上述のようにして得られたガラス基板10を以下説明する欠陥検査装置によってその内部欠陥の有無を検査し、内部欠陥のないガラス基板を選定する(図1(e)参照)。なお、ここで用いる欠陥検査方法は、既に説明した特許文献1に記載の方法を用いる。すなわち、ガラス基板10内に、波長が200nm以下の波長の検査光を導入したときにガラス基板10の内部欠陥から発生される蛍光を検出してガラス基板10に存在する内部欠陥(異物や気泡など)を検出するものである。図2はガラス基板10の内部欠陥を検査するための装置構成を示す図であり、図3は欠陥検出の説明図である。以下、図2、図3を参照にしながら、内部欠陥検査の工程を説明する。
e. Defect Inspection Process In this process, the glass substrate 10 obtained as described above is inspected for the presence of internal defects by a defect inspection apparatus described below, and a glass substrate having no internal defects is selected (FIG. 1 (e)). reference). The defect inspection method used here is the method described in Patent Document 1 already described. That is, when an inspection light having a wavelength of 200 nm or less is introduced into the glass substrate 10, fluorescence generated from the internal defects of the glass substrate 10 is detected to detect internal defects (foreign matter, bubbles, etc.) present in the glass substrate 10. ) Is detected. FIG. 2 is a diagram showing a device configuration for inspecting an internal defect of the glass substrate 10, and FIG. 3 is an explanatory diagram of defect detection. The internal defect inspection process will be described below with reference to FIGS.

図2において、符号20は、ガラス基板の欠陥検査装置である。このガラス基板の欠陥検査装置20は、検査光Lを発生してガラス基板10に照射するためのレーザー装置21と、ガラス基板10を載せてX方向、Y方向、Z方向にそれぞれ移動させるとともにその位置情報を送出するXYZステージ22と、ガラス基板10で発生した蛍光を検出するCCDカメラ23と、CCDカメラ23からの画像情報やXYZステージ22からの位置情報等を入力して所定の処理をするコンピュータ27とを有する。レーザー装置21は、XYZステージ22に載せられたガラス基板10の鏡面研磨された端面13の側に設けられている。レーザー装置21から射出された検査光Lは、端面13を通じてガラス基板10内に導入されるようになっている。   In FIG. 2, the code | symbol 20 is a defect inspection apparatus of a glass substrate. The glass substrate defect inspection apparatus 20 includes a laser device 21 for generating inspection light L and irradiating the glass substrate 10, and the glass substrate 10 is placed on the glass substrate 10 and moved in the X, Y, and Z directions, respectively. An XYZ stage 22 for sending position information, a CCD camera 23 for detecting fluorescence generated on the glass substrate 10, image information from the CCD camera 23, position information from the XYZ stage 22, etc. are input to perform predetermined processing. And a computer 27. The laser device 21 is provided on the side of the mirror-polished end face 13 of the glass substrate 10 placed on the XYZ stage 22. The inspection light L emitted from the laser device 21 is introduced into the glass substrate 10 through the end face 13.

レーザー装置21から射出される検査光は、ビーム形状が7.0mm×4.0mm、パワーが2mJ、周波数が400Hzのパルス状のArFエキシマレーザー光(露光波長:193nm)であり、XYZステージ22は、ガラス基板10を載置してこれをXYZ方向に移動できるようになっており、ガラス基板を所望の位置に移動させ、その位置情報をコンピュータ27に送出するものである。本欠陥検査を行う場合には、検査開始の位置にガラス基板10を設置し、次に、レーザー装置21によって、ガラス基板10内に検査光Lを導入し、そのときの蛍光Lkc,Lkdの像をCCDカメラ23によって撮像し、その画像情報及び上記位置情報をコンピュータ27に送って蓄積する。次に、XYZステージ22を駆動してガラス基板10を、検査光Lの幅分だけY方向に移動させ、同様に、検査光Lを照射し、そのときの蛍光Lkc,Lkdの像をCCDカメラ23によって撮像し、その画像情報を並びに位置情報をコンピュータ27に送る。この動作を繰り返すことにより、端面13の一方の端(端面15側)から他方の端(端面16側)までの全ての領域
から検査光Lを導入する。
The inspection light emitted from the laser device 21 is pulsed ArF excimer laser light (exposure wavelength: 193 nm) having a beam shape of 7.0 mm × 4.0 mm, a power of 2 mJ, and a frequency of 400 Hz. The glass substrate 10 can be placed and moved in the XYZ directions, the glass substrate is moved to a desired position, and the position information is sent to the computer 27. In the case of performing this defect inspection, the glass substrate 10 is placed at the inspection start position, and then the inspection light L is introduced into the glass substrate 10 by the laser device 21, and images of the fluorescence Lkc and Lkd at that time are introduced. Is imaged by the CCD camera 23, and the image information and the position information are sent to the computer 27 and stored. Next, the XYZ stage 22 is driven to move the glass substrate 10 in the Y direction by the width of the inspection light L. Similarly, the inspection light L is irradiated, and images of the fluorescence Lkc and Lkd at that time are CCD cameras. 23, and the image information and the position information are sent to the computer 27. By repeating this operation, the inspection light L is introduced from all regions from one end (end face 15 side) of the end face 13 to the other end (end face 16 side).

これによって、ガラス基板10内のほぼ全ての領域に検査光Lを照射し、ガラス基板10内の蛍光の画像を蓄積する。CCDカメラ23は、主表面のうちの一方の主表面11の側(図の上方)に配置され、ガラス基板10から発せられる光の情報に基づいた画像をつくる。すなわち、ガラス基板10の内部欠陥Kc,Kdから発生される蛍光Lkc,Lkdを、検知し、その蛍光による像を撮影し、その画像情報をコンピュータ27に送る。なお、この実施の形態では、CCDカメラ23として、いわゆる白黒カメラを用いた。   As a result, the inspection light L is irradiated to almost the entire region in the glass substrate 10 and the fluorescent image in the glass substrate 10 is accumulated. The CCD camera 23 is disposed on one main surface 11 side (upper side in the drawing) of the main surfaces, and creates an image based on information of light emitted from the glass substrate 10. That is, the fluorescence Lkc and Lkd generated from the internal defects Kc and Kd of the glass substrate 10 are detected, an image of the fluorescence is taken, and the image information is sent to the computer 27. In this embodiment, a so-called monochrome camera is used as the CCD camera 23.

コンピュータ27は、CCDカメラ23からの画像を入力して、ガラス基板10のY方向の各位置で画像処理し、このガラス基板10のY方向の各位置について、CCDカメラ23が受光する光Lkc,Lkd,Lgの光量(強度)を、ガラス基板10のX方向位置との関係で解析する。つまり、コンピュータ27は、光Lkc,Lkd,Lgの光量が所定閾値以上の局所的な光量を有する場合に、その所定閾値以上の局所的な光量の光Lkc,Lkdを内部欠陥Kc,Kdが発したと判断して、この内部欠陥Kc,Kdの位置(ガラス基板10におけるX方向及びY方向の位置)と共に、内部欠陥Kc,Kdが発する局所的な光量の光Lkc,Lkdの形状などから内部欠陥Kc,Kdの種類(局所脈理、内容物、異質物)を特定して検出する。   The computer 27 inputs an image from the CCD camera 23, processes the image at each position in the Y direction of the glass substrate 10, and at each position in the Y direction of the glass substrate 10, the light Lkc received by the CCD camera 23 is received. The light amounts (intensities) of Lkd and Lg are analyzed in relation to the X direction position of the glass substrate 10. That is, when the light quantity of the light Lkc, Lkd, and Lg has a local light quantity that is equal to or greater than a predetermined threshold, the computer 27 emits the light Lkc and Lkd with a local light quantity that is greater than or equal to the predetermined threshold value due to the internal defects Kc and Kd. It is determined that the internal defects Kc, Kd are located from the positions of the internal defects Kc, Kd (positions in the X direction and Y direction on the glass substrate 10), and the local amounts of light Lkc, Lkd emitted from the internal defects Kc, Kd. The types of defects Kc and Kd (local striae, contents, and foreign substances) are specified and detected.

例えば、ガラス基板10に内部欠陥Kcとして局所脈理または内容物が存在する場合には、レーザー照射装置21からのArFエキシマレーザー光がガラス基板10に導入されることによって、上記局所脈理または内容物が図5(A)に示すように、所定閾値(1000counts)以上の局所的な光量の光Lkcを発し、合成石英ガラス基板4の局所脈理または内容物以外の領域が光Lgを発する。コンピュータ27は、CCDカメラ23が受光した光Lkc及びLgを画像処理して解析することで、所定閾値以上の局所的な光量の光Lkcの形状から内部欠陥Kcを局所脈理または異質物と判断し、且つその所定閾値以上の局所的な光量の光Lkcが発する位置に局所脈理または内容物が存在するとして、その局所脈理または内容物をその位置と共に検出する。ここで、図3(A)の場合、横軸はガラス基板10のX方向位置を、縦軸は光Lkc及びLgの光量(強度)をそれぞれ示す。   For example, when local striae or contents exist as the internal defect Kc in the glass substrate 10, ArF excimer laser light from the laser irradiation device 21 is introduced into the glass substrate 10. As shown in FIG. 5A, the object emits light Lkc having a local light quantity equal to or greater than a predetermined threshold (1000 counts), and the region other than the local striae or contents of the synthetic quartz glass substrate 4 emits light Lg. The computer 27 determines that the internal defect Kc is a local striae or a foreign substance from the shape of the light Lkc having a local light amount equal to or greater than a predetermined threshold by performing image processing and analyzing the light Lkc and Lg received by the CCD camera 23. If the local striae or contents are present at a position where the light Lkc having a local light quantity equal to or greater than the predetermined threshold is emitted, the local striae or contents are detected together with the position. Here, in FIG. 3A, the horizontal axis indicates the X-direction position of the glass substrate 10, and the vertical axis indicates the light amounts (intensities) of the light Lkc and Lg.

また、ガラス基板10に内部欠陥Kdとして異質物が存在する場合には、レーザー照射装置21からArFエキシマレーザー光がガラス基板10に導入されることによって、上記異質物が図3(B)に示すように、所定の範囲(例えば20〜50mm)に所定閾値(1000counts)以上の局所的な光量の光Lkdを発し、合成石英ガラス基板4の異質物以外の領域が光Lgを発する。コンピュータ27は、CCDカメラ23が受光した光Lkd及びLgを画像処理して解析することで、所定閾値以上の局所的な光量の光Lkdの形状から内部欠陥Kdを異質物と判断し、且つその所定閾値以上の局所的な光量の光Lkdが発生する位置に当該異質物が存在するとして、この異質物をその位置と共に検出する。ここで、図3(B)の場合も、横軸はガラス基板10のX方向位置を、縦軸は検出された光量(強度)をそれぞれ示す。   Further, when an extraneous matter exists as an internal defect Kd in the glass substrate 10, ArF excimer laser light is introduced into the glass substrate 10 from the laser irradiation device 21, whereby the extraneous matter is shown in FIG. As described above, a light Lkd having a local light amount equal to or greater than a predetermined threshold (1000 counts) is emitted in a predetermined range (for example, 20 to 50 mm), and a region other than the foreign matter of the synthetic quartz glass substrate 4 emits light Lg. The computer 27 performs image processing on the light Lkd and Lg received by the CCD camera 23 and analyzes them to determine the internal defect Kd as a foreign substance from the shape of the light Lkd having a local light amount equal to or greater than a predetermined threshold, and Assuming that the extraneous matter is present at a position where light Lkd having a local light quantity equal to or greater than a predetermined threshold is generated, the extraneous matter is detected together with the position. Here, also in FIG. 3B, the horizontal axis indicates the X-direction position of the glass substrate 10, and the vertical axis indicates the detected light amount (intensity).

上記ガラス基板の欠陥検査装置20によって、蛍光Lkc,Lkdが検出されない、すなわち内部欠陥Kc,Kdが検出されないガラス基板10を選定し、次の2次研削加工工程に供給する。   The glass substrate defect inspection apparatus 20 selects the glass substrate 10 in which the fluorescence Lkc and Lkd are not detected, that is, the internal defects Kc and Kd are not detected, and supplies the selected glass substrate 10 to the next secondary grinding process.

f.2次研削加工工程
上記欠陥検査工程で選定されたガラス基板10に対し、従来の加工装置を用い、研削加工を施し、面取り面を大きくするとともに、端面を研削する(図1(f)参照)。
この2次形状加工工程後の面取り面の両主表面方向の寸法m3は、m3=0.65mmとなる。また、各端面の主表面11側の面取り面と交差する角部と主表面12側の面取り
面と交差する角部との間の長さtm2は、tm2=5.60mmとなる。また、端面13,14間方向の寸法及び端面15,16間方向の寸法が共にa2=152.15mmになる。
f. Secondary grinding process Using a conventional processing apparatus, the glass substrate 10 selected in the defect inspection process is ground to increase the chamfered surface and grind the end face (see FIG. 1 (f)). .
The dimension m3 of the chamfered surfaces after the secondary shape processing step in both main surface directions is m3 = 0.65 mm. In addition, the length tm2 between the corner portion of each end face that intersects the chamfered surface on the main surface 11 side and the corner portion that intersects the chamfered surface on the main surface 12 side is tm2 = 5.60 mm. Further, the dimension in the direction between the end faces 13 and 14 and the dimension in the direction between the end faces 15 and 16 are both a2 = 152.15 mm.

g.端面・面取り面研磨工程
2次研削加工工程が行われたガラス基板10に対し、従来の加工装置を用いて各端面および面取り面を研磨する(図1(g)参照)。
この端面・面取り面研磨工程後の面取り面の両主表面方向の寸法m4は、m4=0.675mmとなる。また、各端面の主表面11側の面取り面と交差する角部と主表面12側の面取り面と交差する角部との間の長さtm3は、tm3=5.55mmとなる。端面13,14間方向の寸法及び端面15,16間方向の寸法が共にa4=152.10mmになる。
g. End surface / chamfered surface polishing step Each end surface and the chamfered surface are polished by using a conventional processing apparatus on the glass substrate 10 subjected to the secondary grinding process (see FIG. 1G).
The dimension m4 in the direction of both main surfaces of the chamfered surface after the end face / chamfered surface polishing step is m4 = 0.675 mm. Further, the length tm3 between the corner portion of each end face that intersects the chamfered surface on the main surface 11 side and the corner portion that intersects the chamfered surface on the main surface 12 side is tm3 = 5.55 mm. Both the dimension between the end faces 13 and 14 and the dimension between the end faces 15 and 16 are a4 = 152.10 mm.

h.3次研削加工工程
端面・面取り面研磨工程が行われたガラス基板10に対し従来の加工装置を用いて、主表面11,12を研削する(図1(h)参照)。
この3次研削加工工程後、ガラス基板の両主表面間方向の厚さt2は、t2=6.40mmとなる。また、面取り面の両主表面方向の寸法m5は、m5=0.425mmとなる。
h. Tertiary grinding process The main surfaces 11 and 12 are ground using the conventional processing apparatus with respect to the glass substrate 10 by which the end surface and the chamfering surface grinding | polishing process were performed (refer FIG.1 (h)).
After this tertiary grinding process, the thickness t2 between the two main surfaces of the glass substrate is t2 = 6.40 mm. Further, the dimension m5 of the chamfered surface in both main surface directions is m5 = 0.425 mm.

i.精密研磨工程
この精密研磨工程では、従来の加工装置を用いて、各端面および面取り面を研磨し、さらに主表面11,12を従来の両面研磨装置を用いて精密に研磨する(図1(i)参照)。この精密研磨によってマスクブランク用ガラス基板が得られる。
i. Precision Polishing Process In this precision polishing process, each end face and chamfered surface are polished using a conventional processing apparatus, and the main surfaces 11 and 12 are polished precisely using a conventional double-side polishing apparatus (FIG. 1 (i )reference). A mask blank glass substrate is obtained by this precision polishing.

この精密研磨後のマスクブランク用ガラス基板の両主表面方向の厚さt3は,t3=6.35mmとなる。また、面取り面の厚さ方向の寸法m6は、m6=0.39mmとなる。また、表面11の面取り面と裏面12の面取り面との距離tm4は、tm4=5.57mmとなる。縦寸法及び横寸法が共にa5=152.0mmになる。
以上のように、「f.2次研削加工工程」、「g.端面・面取り面研磨工程」、「i.精密研磨工程」の順に2次形状加工工程が行われる。
The thickness t3 in both main surface directions of the glass substrate for mask blank after this precision polishing is t3 = 6.35 mm. The dimension m6 in the thickness direction of the chamfered surface is m6 = 0.39 mm. The distance tm4 between the chamfered surface of the front surface 11 and the chamfered surface of the back surface 12 is tm4 = 5.57 mm. Both the vertical dimension and the horizontal dimension are a5 = 152.0 mm.
As described above, the secondary shape machining process is performed in the order of “f. Secondary grinding process”, “g. End face / chamfering surface grinding process”, and “i. Precision grinding process”.

欠陥検査工程時におけるガラス基板10の各端面の主表面11側の面取り面と交差する角部と主表面12側の面取り面と交差する角部との間の長さtm1は、tm1=6.42mmであり、検査光はこのtm1の幅の領域内を到達する。これに対し、2次形状加工工程が行われたマスクブランク用ガラス基板10の両主表面方向の厚さt3は,t3=6.35mmであり、tm1よりも小さい。すなわち、欠陥検査工程時に検査光が到達しないガラス基板10内の領域は、2次形状加工工程で除去されていることになり、この実施の形態で製造されたマスクブランク用ガラス基板10は、内部欠陥がないものであることを保証することができる。   The length tm1 between the corners intersecting the chamfered surface on the main surface 11 side of each end surface of the glass substrate 10 and the corner intersecting the chamfered surface on the main surface 12 side in the defect inspection step is tm1 = 6. The inspection light reaches the inside of this tm1 width region. On the other hand, the thickness t3 in both main surface directions of the mask blank glass substrate 10 subjected to the secondary shape processing step is t3 = 6.35 mm, which is smaller than tm1. That is, the region in the glass substrate 10 where the inspection light does not reach during the defect inspection process is removed in the secondary shape processing step, and the mask blank glass substrate 10 manufactured in this embodiment has an internal structure. It can be guaranteed that there are no defects.

(2)マスクブランクの製造方法
次に、上述のようにして得たマスクブランク用ガラス基板10の主表面11上にマスクパターン形成用の薄膜(ハーフトーン膜)を公知のスパッタリング装置、例えば、DCマグネトロンスパッタリング装置等を用いて形成し、マスクブランクとしてのハーフトーン型位相シフトマスクブランクを得る。
(2) Mask Blank Manufacturing Method Next, a mask pattern forming thin film (halftone film) is formed on the main surface 11 of the mask blank glass substrate 10 obtained as described above by a known sputtering apparatus, for example, DC. A half-tone type phase shift mask blank as a mask blank is obtained by using a magnetron sputtering apparatus or the like.

(3)転写用マスクの製造方法
次に、上記マスクブランク(ハーフトーン型位相シフトマスクブランク)のハーフトーン膜に、公知のパターン形成方法によってパターンを形成して露光用マスクとしてのハー
フトーン位相シフトマスクを得る。すなわち、上記ハーフトーン膜の表面にレジストを塗布した後、加熱処理してレジスト膜を形成し、このレジスト膜に所定のパターンを描画・現像処理し、レジストパターンを形成し、上記レジストパターンをマスクにして、ハーフトーン膜をドライエッチングしてハーフトーン膜パターンを形成し、レジストパターンを除去して、ガラス基板10上にハーフトーン膜パターンが形成された転写用マスクを得る。なお、このハーフトーン膜に用いられる材料としては、モリブデン、タンタル、タングステン、ジルコニウム等の遷移金属とケイ素とからなる遷移金属シリサイドを酸化、窒化、酸窒化させたものを主成分とする材料が挙げられる。また、ハーフトーン膜を、主として露光光に対する透過率を調整する透過率調整層と、主として膜中を透過する露光光に対して位相差を調整する位相調整層との2層以上の積層構造としてもよい。
(3) Transfer Mask Manufacturing Method Next, a halftone phase shift as an exposure mask is formed by forming a pattern on the halftone film of the mask blank (halftone type phase shift mask blank) by a known pattern forming method. Get a mask. That is, after applying a resist to the surface of the halftone film, a heat treatment is performed to form a resist film, a predetermined pattern is drawn and developed on the resist film, a resist pattern is formed, and the resist pattern is masked Then, the halftone film is dry-etched to form a halftone film pattern, the resist pattern is removed, and a transfer mask having the halftone film pattern formed on the glass substrate 10 is obtained. As a material used for this halftone film, a material mainly composed of a transition metal silicide composed of transition metal silicide such as molybdenum, tantalum, tungsten, zirconium and the like and silicon is oxidized, nitrided, or oxynitrided. It is done. Further, the halftone film has a laminated structure of two or more layers of a transmittance adjusting layer that mainly adjusts the transmittance for exposure light and a phase adjusting layer that mainly adjusts the phase difference for the exposure light transmitted through the film. Also good.

以上のようにして作製された転写用マスクをスキャナ等の露光装置のマスクステージに載置し、半導体ウェハ上のレジスト膜等の転写対象物に対して、パターンの転写を行ったところ、露光装置から照射されるArF露光光が転写用マスクのガラス基板内を透過する際、内部欠陥から蛍光を発することに起因する転写対象物への転写に異常が発生することはなく、精度よく転写パターンを転写することができた。   The transfer mask produced as described above was placed on the mask stage of an exposure apparatus such as a scanner, and the pattern was transferred to the transfer object such as a resist film on the semiconductor wafer. When the ArF exposure light irradiated from the light passes through the glass substrate of the transfer mask, there is no abnormality in the transfer to the transfer object due to the fluorescence from the internal defect, and the transfer pattern can be accurately formed. I was able to transcribe.

上記実施の形態によれば、欠陥検査工程を1次形状加工工程と2次形状加工工程の間に実施し、さらに、検査光が内部欠陥から蛍光が発生する強度で到達するガラス基板内の領域の両主表面方向の幅を、2次形状加工工程後のガラス基板の両主表面間の厚さよりも大きくすることにより、従来のガラス基板の欠陥検査工程時において面取り面の影になって検査光Lの強度が弱くなる領域(図4のS1,S2)が2次形状加工工程で確実に除去されることになる。従って、微小な欠陥が存在する可能性のあった領域(図4のS1,S2)が除去されることにより、内部欠陥のないマスクブランク用ガラス基板を確実に製造することができる。   According to the above embodiment, the defect inspection step is performed between the primary shape processing step and the secondary shape processing step, and further, the region in the glass substrate where the inspection light reaches with an intensity at which fluorescence is generated from the internal defect By making the width in the direction of both main surfaces of the glass substrate larger than the thickness between the two main surfaces of the glass substrate after the secondary shape processing step, it becomes a shadow of the chamfered surface in the conventional glass substrate defect inspection process. The regions where the intensity of the light L is weak (S1, S2 in FIG. 4) are surely removed in the secondary shape processing step. Therefore, by removing the regions (S1 and S2 in FIG. 4) where the minute defects may exist, it is possible to reliably manufacture a glass substrate for a mask blank having no internal defects.

なお、この実施の形態では、欠陥検査工程において、内部欠陥Kc,Kdが発する光Lkc,Lkd,Lgを受光するCCDカメラ23を、主表面11の側に配置した例を示したが、これは、ArFエキシマレーザー光を導入する端面13,14以外の端面の側に配置してもよい。また、検査光が導入可能な程度に研磨されていれば、端面15と端面16からArFエキシマレーザー光を導入する配置としてもよい。   In this embodiment, the example in which the CCD camera 23 that receives the light Lkc, Lkd, and Lg emitted from the internal defects Kc and Kd is arranged on the main surface 11 side in the defect inspection process is shown. , ArF excimer laser light may be disposed on the side of the end face other than the end faces 13 and 14 for introducing the laser beam. Alternatively, ArF excimer laser light may be introduced from the end face 15 and the end face 16 as long as it is polished to such an extent that inspection light can be introduced.

この実施形態では、欠陥検査工程を行うガラス基板10には、面取り面13a,13b,14a,14b,15a,15b,16a,16bがそれぞれ形成されているが、1次面取り加工工程を行わない、すなわち面取り面を形成せずに鏡面研磨工程を行い、少なくともいずれかの端面を鏡面研磨し、欠陥検査工程で鏡面研磨された端面から検査光を導入して内部欠陥の検査を行うようにしてもよい。このようにすると、内部欠陥から蛍光が発するのに必要な強度の検査光が届く領域の両主表面方向の幅がより広くすることができる。   In this embodiment, chamfered surfaces 13a, 13b, 14a, 14b, 15a, 15b, 16a, and 16b are formed on the glass substrate 10 that performs the defect inspection process, respectively, but the primary chamfering process is not performed. That is, a mirror polishing process is performed without forming a chamfered surface, at least one of the end surfaces is mirror polished, and inspection light is introduced from the end surface mirror-polished in the defect inspection process to inspect internal defects. Good. In this way, the width in the direction of both main surfaces of the region where the inspection light having the intensity necessary for fluorescence to be emitted from the internal defect can be increased.

この実施形態では、ガラス基板10内の検査光が内部欠陥から蛍光が発するのに必要な強度で到達する領域について、主表面11,12に平行な方向については、このガラス基板10を用いて作製されるマスクブランクのパターン形成用の薄膜に転写パターンが形成される領域である主表面の中心から132mm角の範囲が最低限カバーしていればよい。132mm角の境界近傍の内部欠陥をより精度よく検査するには、主表面の中心から142mm角の範囲をカバーすることが好ましく、より好ましくは146mm角の範囲をカバーするとよい。   In this embodiment, a region where the inspection light in the glass substrate 10 reaches with an intensity necessary for fluorescence to be emitted from an internal defect is produced using the glass substrate 10 in the direction parallel to the main surfaces 11 and 12. It suffices that a range of 132 mm square from the center of the main surface, which is a region where a transfer pattern is formed on the thin film for forming a mask blank pattern, covers at least. In order to inspect an internal defect near the 132 mm square boundary with higher accuracy, it is preferable to cover a 142 mm square range from the center of the main surface, and more preferably, a 146 mm square range.

また、ガラス基板10の一端面から導入する検査光のみで、内部欠陥から蛍光が発するのに必要な強度で到達する領域を形成しなければならないわけではなく、対向する2つの
端面(端面13,14あるいは端面15,16)から同時にあるいは、別々に検査光を導入することで、前記領域を形成してもよい。この場合、一端面から導入する検査光によって内部欠陥から蛍光が発するのに必要な強度で到達する領域は、対向する端面間の中間点よりも広い程度でよくなる。これにより、導入する検査光の光強度を、一端面からのみの検査光で領域を形成する場合よりも弱くすることが可能となり、検査光の導入によるガラス基板へのダメージをより小さくすることができる。
In addition, it is not necessary to form a region that reaches with an intensity necessary for fluorescence to be emitted from an internal defect only with inspection light introduced from one end surface of the glass substrate 10, and two opposing end surfaces (end surfaces 13, 14 or end faces 15 and 16) may be formed simultaneously or separately by introducing inspection light. In this case, the region that reaches with the intensity required for fluorescence to be emitted from the internal defect by the inspection light introduced from the one end face may be wider than the intermediate point between the opposing end faces. As a result, the light intensity of the inspection light to be introduced can be made weaker than when the region is formed by inspection light from only one end surface, and damage to the glass substrate due to the introduction of the inspection light can be reduced. it can.

この実施の形態では、露光光源がArFエキシマレーザーの場合を述べたが、波長が200nm以下、好ましくは波長が100nm〜200nmの光であればよく、F2エキシマレーザーであってもよい。また、ArFエキシマレーザーやF2エキシマレーザーと同じ波長を得るために、重水(D2)ランプ等の光源から光を分光させて中心波長がArFエキシマレーザー、F2エキシマレーザーと同じ光を用いても構わない。   In this embodiment, the case where the exposure light source is an ArF excimer laser has been described. However, the light may be light having a wavelength of 200 nm or less, preferably 100 nm to 200 nm, and may be an F2 excimer laser. In addition, in order to obtain the same wavelength as the ArF excimer laser or the F2 excimer laser, the light having a central wavelength that is the same as that of the ArF excimer laser or the F2 excimer laser may be used by dispersing light from a light source such as a heavy water (D2) lamp. .

この実施の形態においては、CCDカメラ23をカラーカメラとして、ガラス基板10の内部欠陥及びこの内部欠陥以外の領域が発する、蛍光を受光して撮影し、コンピュータ27は、このCCDカメラ23の画像を赤、緑、青の色別に画像処理し、この色別に画像処理した光の強度(光量)分布から内部欠陥16を検出してもよい。この場合、コンピュータ27は、色別に画像処理した光の色や波長等の情報から内部欠陥を検出してもよい。また、内部欠陥の検出は、マスクブランク用ガラス基板の製造工程の最終段階で実施してもよい。   In this embodiment, the CCD camera 23 is used as a color camera, the internal defect of the glass substrate 10 and a region other than the internal defect are emitted and photographed by receiving fluorescence, and the computer 27 captures an image of the CCD camera 23. Image processing may be performed for each color of red, green, and blue, and the internal defect 16 may be detected from the intensity (light quantity) distribution of light subjected to image processing for each color. In this case, the computer 27 may detect an internal defect from information such as the color and wavelength of light subjected to image processing for each color. Moreover, you may implement an internal defect detection at the final stage of the manufacturing process of the glass substrate for mask blanks.

この実施の形態では、ガラス基板10の内部欠陥及びこの内部欠陥以外の領域が発する、蛍光をCCDカメラ23が受光するものを述べたが、これらの光を分光器が受光して、内部欠陥の分光特性(波長及び強度)や、光Lkc,Lkd,Lgの強度(光量)分布を測定して、内部欠陥を検出してもよい。   In this embodiment, it has been described that the CCD camera 23 receives the fluorescence emitted from the internal defect of the glass substrate 10 and the region other than the internal defect. However, the spectroscope receives these lights and the internal defect is detected. Internal defects may be detected by measuring spectral characteristics (wavelength and intensity) and intensity (light quantity) distribution of light Lkc, Lkd, and Lg.

この実施の形態では、マスクブランク用ガラス基板10上にハーフトーン膜を形成したハーフトーン型位相シフトマスクブランクの場合を述べたが、これに限定されるものではない。例えば、ガラス基板10上にハーフトーン膜と、このハーフトーン膜上に遮光膜とを有するハーフトーン型位相シフトマスクブランクや、マスクブランク用ガラス基板10上に遮光膜が形成された、いわゆるバイナリー型のマスクブランクであっても構わない。この場合の遮光膜の構造としては、基板側から遮光層、表面反射防止層の2層積層構造や、さらにそれに基板と遮光層の間に裏面反射防止層を加えた3層積層構造などが挙げられる。遮光膜に用いられる材料としては、クロムを主成分とする材料がまず挙げられ、裏面反射防止層、遮光層、表面反射防止層に必要とされる特性を満たすように、これを主成分に適度に酸化、窒化、炭化等させた材料を、それぞれ用いるようにするとよい。また、クロム以外の遮光膜に適用可能な材料としては、たとえば、モリブデン、タングステン、ジルコニウム等の遷移金属とシリコンとからなる遷移金属シリサイドが挙げられ、クロムの場合と同様、これを主成分に適度に酸化、窒化、炭化等させた材料を使用するとよい。このほかにも、タンタルを主成分として、適度に酸化、窒化、炭化等させた材料を用いて、2層積層構造あるいは3層積層構造の遮光膜を形成してもよい。尚、これらのハーフトーン型位相シフトマスクブランク、バイナリー型マスクブランクの遮光膜上にレジスト膜を形成していてもよい。   In this embodiment, the case of a halftone phase shift mask blank in which a halftone film is formed on the mask blank glass substrate 10 has been described. However, the present invention is not limited to this. For example, a halftone phase shift mask blank having a halftone film on the glass substrate 10 and a light shielding film on the halftone film, or a so-called binary type in which a light shielding film is formed on the glass substrate 10 for mask blank. It may be a mask blank. Examples of the structure of the light shielding film in this case include a two-layer laminated structure of a light shielding layer and a front surface antireflection layer from the substrate side, and a three-layer laminated structure in which a back surface antireflection layer is added between the substrate and the light shielding layer. It is done. As a material used for the light shielding film, a material mainly composed of chromium is first mentioned, and this is appropriately used as a main component so as to satisfy the characteristics required for the back surface antireflection layer, the light shielding layer, and the surface antireflection layer. It is preferable to use materials oxidized, nitrided, carbonized, etc., respectively. In addition, examples of materials applicable to the light-shielding film other than chromium include transition metal silicides composed of silicon and transition metals such as molybdenum, tungsten, and zirconium. It is preferable to use a material oxidized, nitrided, carbonized or the like. In addition, a light shielding film having a two-layer laminated structure or a three-layer laminated structure may be formed using a material mainly composed of tantalum and appropriately oxidized, nitrided, carbonized, or the like. Note that a resist film may be formed on the light-shielding film of these halftone phase shift mask blank and binary mask blank.

本発明は、超LSI等の製造の際に、超微細パターンの転写用マスクとして用いられる転写用マスク、この転写用マスクの材料として用いられるマスクブランク及びそのマスクブランクの材料として用いられるマスクブランク用ガラス基板の製造に利用することができる。   The present invention relates to a transfer mask used as a transfer mask for an ultrafine pattern in the manufacture of a VLSI, a mask blank used as a material for the transfer mask, and a mask blank used as a material for the mask blank. It can be used for the production of glass substrates.

10・・・マスクブランク用ガラス基板
11,12・・・主表面
13,14,15,16・・・端面
13a,13b,14a,14b,15a,15b,16a,16b・・・面取り面
20・・・ガラス基板の欠陥検査装置
21・・・レーザー装置
22・・・XYZステージ
23・・・CCDカメラ
27 ・・・コンピュータ
DESCRIPTION OF SYMBOLS 10 ... Glass substrate 11 for mask blanks, 12 ... Main surface 13, 14, 15, 16 ... End surface 13a, 13b, 14a, 14b, 15a, 15b, 16a, 16b ... Chamfering surface 20 ..Glass substrate defect inspection device 21... Laser device 22... XYZ stage 23... CCD camera 27.

Claims (8)

ガラスインゴットから切り出された板状ガラスを研削し、2つの主表面4つの端面、および、当該主表面と端面とが交差する角部に形成された面取り面を有するマスクブランク用ガラス基板の形状に加工する1次形状加工工程と、
前記ガラス基板の少なくとも一端面を鏡面研磨する鏡面研磨工程と、
前記ガラス基板の鏡面研磨された前記一端面から波長200nm以下の検査光を前記ガラス基板内に導入し、前記検査光によって内部欠陥から発生する蛍光の有無を、主表面のうちの一方の側から検査し、蛍光が検出されないガラス基板を選定する欠陥検査工程と、
前記選定されたガラス基板の面取り面を大きくするとともに、前記選定されたガラス基板の2つの主表面および4つの端面の研削および研磨を行うことにより、前記欠陥検査工程における面取り面の影になって検査光の強度が弱くなっていた主表面近傍の領域を除去する2次形状加工工程とを有し、
前記欠陥検査工程における前記ガラス基板内の内部欠陥から蛍光が発生するのに必要な強度の検査光が届く領域の両主表面間方向の幅は、前記2次形状加工工程後のガラス基板の両主表面間の厚さよりも大きく、
前記1次形状加工工程において形成された面取り面であって、検査光の導入側に位置する面取り面と、当該面取り面に対して主表面を挟んで対向する面取り面とが、両主表面方向の寸法において同一である
ことを特徴とするマスクブランク用ガラス基板の製造方法。
The shape of a glass substrate for a mask blank, which is obtained by grinding plate glass cut out from a glass ingot and having two main surfaces , four end surfaces , and a chamfered surface formed at a corner where the main surface and the end surface intersect A primary shape processing step for processing into
A mirror polishing step of mirror polishing at least one end surface of the glass substrate;
An inspection light having a wavelength of 200 nm or less is introduced into the glass substrate from the one end surface of the glass substrate that has been mirror-polished, and the presence or absence of fluorescence generated from an internal defect by the inspection light is determined from one side of the main surface. A defect inspection process for inspecting and selecting a glass substrate from which fluorescence is not detected;
With increasing the chamfered surface of the selected glass substrate, the two major surfaces and four end surfaces of the grinding and polishing line Ukoto of the selected glass substrate, in shade of the chamfered surface in the defect inspection step And a secondary shape processing step for removing a region near the main surface where the intensity of the inspection light was weak ,
Wherein both main surfaces between the direction of the width of the region reaching the inspection light intensity required for fluorescence is generated from the internal defects of the glass substrate in the defect inspection process, both the glass substrate after the second shaping step much larger than the thickness between the main surface,
The chamfered surface formed in the primary shape processing step, the chamfered surface located on the inspection light introduction side and the chamfered surface facing the chamfered surface across the main surface are in both main surface directions. The method of manufacturing a glass substrate for a mask blank, characterized in that the dimensions are the same .
前記2次形状加工工程後のガラス基板は、2つの主表面と前記4つの端面とが交差する角部に面取り面が形成されていることを特徴とする請求項1記載のマスクブランク用ガラス基板の製造方法。   The glass substrate for a mask blank according to claim 1, wherein the glass substrate after the secondary shape processing step has a chamfered surface formed at a corner where two main surfaces and the four end surfaces intersect. Manufacturing method. 前記欠陥検査工程で検査されるガラス基板は、2つの主表面と前記4つの端面とが交差する角部に面取り面が形成されており、一方の主表面側の面取り面と端面とが交差する角部と、他方の主表面側の面取り面と端面とが交差する角部との間における両主表面間方向の幅は、前記2次形状加工工程後のガラス基板の両主表面間の厚さよりも大きいことを特徴とする請求項1または2のいずれかに記載のマスクブランク用ガラス基板の製造方法。 The glass substrate to be inspected in the defect inspection step has a chamfered surface formed at a corner where two main surfaces and the four end surfaces intersect, and a chamfered surface on one main surface side and an end surface intersect. and the corner portion, the width at the both main surfaces between the direction between the corners and the chamfered surface and the end surface intersects the other major surface side, between both main surfaces of the glass substrate after the second shaping step The method for producing a glass substrate for a mask blank according to claim 1, wherein the method is larger than the thickness. 前記欠陥検査工程で使用される検査光は、レーザー光であることを特徴とする請求項1から3のいずれかに記載のマスクブランク用ガラス基板の製造方法。The method for producing a glass substrate for a mask blank according to any one of claims 1 to 3, wherein the inspection light used in the defect inspection step is laser light. 前記ガラス基板は、合成石英からなることを特徴とする請求項1から4のいずれかに記載のマスクブランク用ガラス基板の製造方法。The said glass substrate consists of synthetic quartz, The manufacturing method of the glass substrate for mask blanks in any one of Claim 1 to 4 characterized by the above-mentioned. 請求項1から5のいずれかに記載のマスクブランク用ガラス基板の製造方法によって製造されたマスクブランク用ガラス基板の主表面にパターン形成用の薄膜を形成する工程を備えたことを特徴とするマスクブランクの製造方法。A mask comprising a step of forming a thin film for pattern formation on a main surface of a glass substrate for a mask blank manufactured by the method for manufacturing a glass substrate for a mask blank according to any one of claims 1 to 5. Blank manufacturing method. 請求項6に記載のマスクブランクの製造方法によって製造されたマスクブランクの前記パターン形成用の薄膜に露光用の転写パターンを形成する工程を有することを特徴とする露光用マスクの製造方法。A method for producing an exposure mask, comprising a step of forming a transfer pattern for exposure on the thin film for pattern formation of the mask blank produced by the method for producing a mask blank according to claim 6. 請求項7に記載の露光用マスクの製造方法で製造された露光用マスクを、露光装置のマスクステージに載置し、転写対象物であるレジスト膜に対して、ArF露光光を用いたパターン転写を行うことを特徴とするパターン転写方法。An exposure mask manufactured by the method for manufacturing an exposure mask according to claim 7 is placed on a mask stage of an exposure apparatus, and pattern transfer using ArF exposure light is applied to a resist film which is a transfer object. The pattern transfer method characterized by performing.
JP2009135028A 2009-06-04 2009-06-04 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method Active JP5346243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135028A JP5346243B2 (en) 2009-06-04 2009-06-04 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135028A JP5346243B2 (en) 2009-06-04 2009-06-04 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method

Publications (3)

Publication Number Publication Date
JP2010282007A JP2010282007A (en) 2010-12-16
JP2010282007A5 JP2010282007A5 (en) 2012-06-07
JP5346243B2 true JP5346243B2 (en) 2013-11-20

Family

ID=43538782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135028A Active JP5346243B2 (en) 2009-06-04 2009-06-04 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method

Country Status (1)

Country Link
JP (1) JP5346243B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651032B2 (en) * 2011-02-03 2015-01-07 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP6398902B2 (en) * 2014-08-19 2018-10-03 信越化学工業株式会社 Rectangular substrate for imprint lithography and method for manufacturing the same
JP7202861B2 (en) * 2018-11-30 2023-01-12 Hoya株式会社 Defect inspection method, mask blank, transfer mask, and semiconductor device manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250846A (en) * 1988-03-31 1989-10-05 Hoya Corp Defect inspecting equipment for transparent body
JP2007086050A (en) * 2005-02-18 2007-04-05 Hoya Corp Method for inspecting translucent article made of translucent material, method and apparatus for inspecting defect of glass substrate, glass substrate for mask blank, and manufacturing method therefor, mask bland and manufacturing method therefor, mask for exposure and manufacturing method therefor, and manufacturing method of semiconductor device
JP4683416B2 (en) * 2005-06-10 2011-05-18 Hoya株式会社 Mask blank glass substrate defect inspection method, mask blank glass substrate, mask blank, exposure mask, mask blank glass substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method

Also Published As

Publication number Publication date
JP2010282007A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
KR101117826B1 (en) Light-transmitting object examining method, manufacturing method for light-transmitting substrate of mask blank, manufacturing method for mask blank, manufacturing method for light-expososure mask, manufacturing method for semiconductor device and manufacturing method for phase shift mask
US9829442B2 (en) Defect inspecting method, sorting method and producing method for photomask blank
JP6609568B2 (en) Inspection using differential die and differential database
CN106292180B (en) Defect inspection method, sorting method and preparation method of photomask blank
US7211354B2 (en) Mask substrate and its manufacturing method
JP2007086050A (en) Method for inspecting translucent article made of translucent material, method and apparatus for inspecting defect of glass substrate, glass substrate for mask blank, and manufacturing method therefor, mask bland and manufacturing method therefor, mask for exposure and manufacturing method therefor, and manufacturing method of semiconductor device
JP4683416B2 (en) Mask blank glass substrate defect inspection method, mask blank glass substrate, mask blank, exposure mask, mask blank glass substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
JP5346243B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method
JP2008216590A (en) Defect detection method and defect detection device for gray tone mask, defect detection method for photomask, method for manufacturing gray tone mask, and pattern transfer method
JP4688150B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and defect inspection apparatus
JP5028437B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, and manufacturing method of photomask for exposure
JP4859436B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography
TWI461831B (en) Method of manufacturing a glass substrate for a mask blank, method of manufacturing a mask blank and method of manufacturing a photomask for exposure
JP4761360B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method
JP5090379B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, and manufacturing method of photomask for exposure
JP5786211B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
US6603543B1 (en) Inspection system with enhanced contrast
JP5525838B2 (en) Mask blank substrate, mask blank, transfer mask, and semiconductor device manufacturing method
JP4100514B2 (en) Manufacturing method of glass substrate for electronic device, manufacturing method of photomask blank, and manufacturing method of photomask
JP6375696B2 (en) Photomask inspection method and photomask manufacturing method
US20060154152A1 (en) Flare reduction in photolithography
JP5651032B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP2020086363A (en) Defect inspection method, mask blank, transfer mask and method for manufacturing semiconductor device
JP2013200456A (en) Method of manufacturing substrate for mask blank, method of manufacturing mask blank, method of manufacturing transfer mask, and method of manufacturing semiconductor device
JP2014027065A (en) Method of manufacturing reflection mask for euv exposure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130816

R150 Certificate of patent or registration of utility model

Ref document number: 5346243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250