JP5345879B2 - Solar system - Google Patents

Solar system Download PDF

Info

Publication number
JP5345879B2
JP5345879B2 JP2009070728A JP2009070728A JP5345879B2 JP 5345879 B2 JP5345879 B2 JP 5345879B2 JP 2009070728 A JP2009070728 A JP 2009070728A JP 2009070728 A JP2009070728 A JP 2009070728A JP 5345879 B2 JP5345879 B2 JP 5345879B2
Authority
JP
Japan
Prior art keywords
heat
hot water
heat collection
storage tank
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009070728A
Other languages
Japanese (ja)
Other versions
JP2010223489A (en
Inventor
景介 奥備
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009070728A priority Critical patent/JP5345879B2/en
Publication of JP2010223489A publication Critical patent/JP2010223489A/en
Application granted granted Critical
Publication of JP5345879B2 publication Critical patent/JP5345879B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately store solar heat collected by a heat collecting panel. <P>SOLUTION: A solar system includes: the heat collecting panel 10 for collecting solar heat; and a storage tank 20 for heating hot water stored inside by the heat collected by the heat collecting panel 10 and supplying the heated hot water to a hot water consuming part 31 or a heat consuming part 30. The solar system further includes: a storage capacity changing means A for changing the amount of hot water stored in the storage tank 20; and a heat collecting state determination means B for determining the heat collecting state by the heat collecting panel 10. When the heat collecting state determination means B determines a high heat collecting state, in which heat quantity higher than that in a low heat collecting state which is determined as the low heat collecting state is collected, the storage capacity changing means A changes the storage capacity of the hot water stored in the storage tank 20 to the larger side. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、太陽熱を集熱する集熱パネルと、内部に貯留する湯水を前記集熱パネルで集熱した熱により加熱すると共に、加熱された湯水を湯水消費部又は熱消費部へ供給する貯留槽を備えるソーラーシステムに関する。   The present invention relates to a heat collecting panel for collecting solar heat, and a storage for heating hot water stored therein by heat collected by the heat collecting panel and supplying the heated hot water to a hot water consumption section or a heat consumption section. The present invention relates to a solar system including a tank.

従来のソーラーシステムは、太陽熱を集熱する集熱パネルと、当該集熱パネルが集熱した熱にて加熱された温水を貯留する貯留槽を備えて構成されている。集熱パネルと貯留槽との間には、熱媒(一般的には不凍液)を循環させる循環回路が設けられており、集熱パネルにて集熱した熱にて熱媒を加熱し、その加熱された熱媒を貯留槽に供給して貯留槽に貯留する湯水を加熱して、集熱パネルが集熱した熱にて加熱された温水を貯留槽に貯留している。そして、貯留槽に貯留した温水を浴槽等の湯水消費部、又は、床暖房や浴室乾燥暖房機等の熱消費部へ供給して、貯留槽に貯留した温水にて湯張りや暖房を行っている。また、貯留槽に貯留している湯水の温度が、湯水消費部や熱消費部にて要求されている温度よりも低い場合には、貯留槽に貯留している湯水を補助熱源機にて加熱した上で湯水消費部や熱消費部に供給している(例えば、特許文献1を参照。)。   A conventional solar system includes a heat collecting panel that collects solar heat and a storage tank that stores hot water heated by the heat collected by the heat collecting panel. A circulation circuit for circulating a heat medium (generally antifreeze) is provided between the heat collection panel and the storage tank, and the heat medium is heated by the heat collected by the heat collection panel. The heated heat medium is supplied to the storage tank, hot water stored in the storage tank is heated, and hot water heated by the heat collected by the heat collection panel is stored in the storage tank. The hot water stored in the storage tank is supplied to a hot water consuming section such as a bathtub or a heat consuming section such as a floor heater or a bathroom dryer, and the hot water stored in the storage tank is filled with water or heated. Yes. In addition, when the temperature of hot water stored in the storage tank is lower than the temperature required by the hot water consumption section or heat consumption section, the hot water stored in the storage tank is heated by the auxiliary heat source unit. In addition, the water is supplied to the hot water consumption section and the heat consumption section (see, for example, Patent Document 1).

特開平11−159889号公報Japanese Patent Application Laid-Open No. 11-159889

このようなソーラーシステムでは、一般的に、貯留槽に貯留する湯水の貯留容量を大きくするほど、貯留槽に貯留可能な温水量を多くできるので、多量の温水を湯水消費部や熱消費部にて使用することができ、省エネ性は向上することになる。しかしながら、貯留槽の貯留容量を大きくし過ぎると、貯留槽に貯留する湯水の温度が上がり難くなるので、集熱パネルにて集熱した熱だけでは、貯留槽に貯留する湯水を湯水消費部や熱消費部にて要求されている温度まで加熱できなくなる。よって、貯留槽に貯留している湯水を補助熱源機にて加熱した上で湯水消費部や熱消費部に供給することが多くなり、かえって省エネ性が低下することがある。   In such a solar system, in general, as the storage capacity of hot water stored in the storage tank increases, the amount of hot water that can be stored in the storage tank increases, so a large amount of hot water is supplied to the hot water consumption section and the heat consumption section. The energy saving performance will be improved. However, if the storage capacity of the storage tank is increased too much, the temperature of the hot water stored in the storage tank will be difficult to rise. It becomes impossible to heat to the temperature required in the heat consuming part. Therefore, after the hot water stored in the storage tank is heated by the auxiliary heat source device, the hot water is often supplied to the hot water consumption section and the heat consumption section, which may reduce the energy saving performance.

そこで、このようなシステムでは、貯湯槽の貯留容量をどのような貯留容量とするかを設計するに当たり、例えば、図4に示すように、集熱パネルの集熱量について1年間の平均値を求め、その平均値において貯留槽の貯留容量とCOP(成績係数:エネルギ消費効率の目安として使われる係数)との関係を求めている。そして、最も高いCOPを示す最適貯留容量(図4中P点)となるように、貯湯槽の貯留容量を設定することが考えられる。尚、当該図4のCOP変動曲線は、集熱パネルの集熱面積が6m2である場合のものである。 Therefore, in designing such a storage capacity of the hot water tank in such a system, for example, as shown in FIG. 4, an average value for one year is obtained for the heat collection amount of the heat collection panel. In the average value, the relationship between the storage capacity of the storage tank and COP (coefficient of performance: a coefficient used as a guideline for energy consumption efficiency) is obtained. And it is possible to set the storage capacity of a hot water tank so that it may become the optimal storage capacity (P point in FIG. 4) which shows the highest COP. Note that the COP fluctuation curve in FIG. 4 is obtained when the heat collection area of the heat collection panel is 6 m 2 .

しかしながら、冬季等の低集熱時においては、集熱パネルの集熱量が少ないので、当該最適貯留容量は減少する傾向(図4において、変動曲線の頂点Pが黒矢印側へ移動する傾向)にある。逆に、夏季等の高集熱時においては、集熱パネルの集熱量が多くなるので、該最適貯留容量は増加する傾向(図4において、変動曲線の頂点Pが白抜き矢印側へ移動する傾向)にある。よって、上述の如く、ソーラーシステムにおいて貯留槽の貯留容量を、年間を通じた最適貯留容量の平均値等を用いて決定された固定容量に設定しているだけでは、省エネ性の向上に限界があった。   However, at the time of low heat collection such as in winter, the amount of heat collected by the heat collection panel is small, so that the optimum storage capacity tends to decrease (in FIG. 4, the peak P of the fluctuation curve tends to move to the black arrow side). is there. On the contrary, at the time of high heat collection such as summer, the amount of heat collected by the heat collection panel increases, so that the optimum storage capacity tends to increase (in FIG. 4, the apex P of the fluctuation curve moves to the white arrow side). There is a tendency. Therefore, as described above, there is a limit to improving energy savings by simply setting the storage capacity of the storage tank in the solar system to a fixed capacity determined using the average value of the optimal storage capacity throughout the year. It was.

本発明は、かかる問題に着目してなされたものであり、その目的は、集熱パネルにより集熱された太陽熱を貯留槽にて適切に蓄熱して、省エネ性の向上を図ることができるソーラーシステムを実現することを目的とする。   The present invention has been made paying attention to such a problem, and the purpose thereof is a solar that can appropriately store solar heat collected by a heat collecting panel in a storage tank and improve energy saving performance. The purpose is to realize the system.

この目的を達成するための本発明に係るソーラーシステムは、太陽熱を集熱する集熱パネルと、内部に貯留する湯水を前記集熱パネルで集熱した熱により加熱すると共に、加熱された湯水を湯水消費部又は熱消費部へ供給する貯留槽を備えるソーラーシステムであって、
その特徴構成は、前記貯留槽に貯留する湯水の貯留容量を変更する貯留容量変更手段と、前記集熱パネルの集熱状態を判定する集熱状態判定手段とを有し、
前記集熱状態判定手段が、前記集熱状態を低集熱状態よりも高い熱量を集熱する高集熱状態であると判定する場合に、前記貯留容量変更手段が、前記貯留槽に貯留される湯水の貯留容量を多い側へ変更する構成を有し、
前記集熱状態判定手段は、
集熱状態を判定する第1判定期間において、外気の温度を計測する外気温度計測部が計測した最高到達外気温度に基づいて、前記集熱パネルの集熱状態を判定するように構成されるとともに、前記第1判定期間よりも長い第2判定期間において、前記最高到達外気温度の近似直線が上昇傾向にある場合に、前記高集熱状態であると判定し、前記最高到達外気温度の近似直線が下降傾向にある場合に、前記低集熱状態であると判定し、
又は、
前記第1判定期間において、貯留槽に貯留された温水の温度を計測する湯水温度計測部が計測する最高到達湯水温度に基づいて、前記集熱パネルの集熱状態を判定するように構成されるとともに、前記第1判定期間よりも長い第2判定期間において、前記最高到達湯水温度の近似直線が上昇傾向にある場合に、前記高集熱状態であると判定し、前記最高到達湯水温度の近似直線が下降傾向にある場合に、前記低集熱状態であると判定する点にある。
In order to achieve this object, a solar system according to the present invention includes a heat collecting panel that collects solar heat, and hot water stored inside is heated by the heat collected by the heat collecting panel. A solar system comprising a storage tank for supplying hot water consumption section or heat consumption section,
The characteristic configuration includes a storage capacity changing unit that changes a storage capacity of hot water stored in the storage tank, and a heat collection state determination unit that determines a heat collection state of the heat collection panel,
When the heat collection state determination unit determines that the heat collection state is a high heat collection state that collects a higher amount of heat than the low heat collection state, the storage capacity changing unit is stored in the storage tank. The storage capacity of the hot water is changed to the larger side ,
The heat collection state determination means includes
In the first determination period for determining the heat collection state, the heat collection state of the heat collection panel is determined based on the highest reached outside air temperature measured by the outside air temperature measurement unit that measures the temperature of the outside air. In the second determination period longer than the first determination period, when the approximate straight line of the highest reached outside air temperature tends to increase, it is determined that the heat collection state is high, and the approximate straight line of the highest reached outside air temperature Is in a downward trend, it is determined that the low heat collection state,
Or
In the said 1st determination period, it is comprised so that the heat collecting state of the said heat collection panel may be determined based on the highest reached hot water temperature which the hot water temperature measurement part which measures the temperature of the hot water stored by the storage tank measures. In addition, in the second determination period longer than the first determination period, when the approximate straight line of the highest reached hot water temperature tends to increase, it is determined that the heat collection state is high, and the highest reached hot water temperature is approximated. When the straight line has a downward trend, the low heat collection state is determined .

上記特徴構成によれば、集熱パネルの集熱状態が、低集熱状態よりも高集熱状態であると判定された場合に、貯留槽の貯留容量を多い側へ変更可能に構成されているので、集熱状態に追従するように、貯留槽の貯留容量を変更して、システム全体のCOP(成績係数)を向上させることができる。
例えば、冬季等のように集熱パネルの集熱量が少ない低集熱状態である場合には、貯留槽の貯留容量を少ない側へ変更し、貯留槽の湯水の温度を上昇しやすい状態として、当該貯留槽から熱消費部等に導かれる湯水を高温にして、補助熱源機等が用いられる頻度を低下させることで、COP(成績係数)を向上させることができる。
一方、夏季等のように集熱パネルの集熱量が多い高集熱状態である場合には、貯留槽の貯留容量を多い側へ変更し、貯留槽に蓄熱される熱量が多い状態として、集熱パネルで集熱された太陽熱を適切に蓄熱し、COP(成績係数)を向上させることができる。
以上から、集熱パネルにより集熱された太陽熱を貯留槽にて適切に蓄熱して、省エネ性の向上を図ることができるソーラーシステムを実現することができる。
更に、通常、最高到達外気温度又は最高到達湯水温度が高いと集熱パネルの集熱状態が高くなり、最高到達外気温度又は最高到達湯水温度が低いと集熱パネルの集熱状態が低くなるという一定の関係を有する。そこで、上記特徴構成によれば、例えば集熱状態を判定する第1判定期間が太陽熱の集熱周期である24時間(1日間)である場合、最高到達外気温度又は最高到達湯水温度に基づいて、最高到達外気温度又は最高到達湯水温度と集熱状態との一定の関係を利用して、集熱パネルの集熱状態を判定するので、上記第1判定期間における集熱状態を適切に判定することができる。
更に、第2判定期間とは、例えば24時間(1日間)程度の第1判定期間よりも長い1ヶ月程度の期間のことを指す。また、最高到達湯水温度又は最高到達外気温度が上昇傾向にある場合とは、上記第2判定期間において、最高到達湯水温度又は最高到達外気温度の変化傾向(上昇の傾き)が、予め設定された高集熱状態判定直線の傾きよりも大きい場
合をいう。一方、最高到達湯水温度又は最高到達外気温度が下降傾向にある場合とは、上記第2判定期間において、最高到達湯水温度又は最高到達外気温度の変化傾向(下降の傾き)が、予め設定された低集熱状態判定直線の傾きよりも小さい場合をいう。
上記特徴構成によれば、第2判定期間において、最高到達湯水温度又は最高到達外気温度が上昇傾向にあるか下降傾向にあるかにより集熱状態を判定するので、単純に、ある時点における最高到達湯水温度又は最高到達外気温度の値のみから判定する場合等に比べて、より高い精度で集熱状態を判定できる。
尚、上述したが、この判定においても、一旦、所定の集熱状態が判定された後は、現状の集熱状態と別の集熱状態であると判定されるまで、現状の集熱状態であると判定され続けられるものとする。
According to the above characteristic configuration, when it is determined that the heat collection state of the heat collection panel is higher in the heat collection state than in the low heat collection state, the storage capacity of the storage tank can be changed to a larger side. Therefore, the COP (coefficient of performance) of the entire system can be improved by changing the storage capacity of the storage tank so as to follow the heat collection state.
For example, in the case of a low heat collection state where the amount of heat collected by the heat collection panel is low, such as in winter, the storage capacity of the storage tank is changed to a smaller side, and the temperature of the hot water in the storage tank is likely to rise. COP (coefficient of performance) can be improved by raising the hot water led from the storage tank to the heat consuming unit or the like and reducing the frequency with which the auxiliary heat source device or the like is used.
On the other hand, if the heat collection panel is in a high heat collection state, such as in the summer, the storage capacity of the storage tank is changed to a larger side, and the heat collection in the storage tank is performed in a state where there is a large amount of heat. The solar heat collected by the heat panel can be stored appropriately and the COP (coefficient of performance) can be improved.
From the above, it is possible to realize a solar system that can appropriately save the solar heat collected by the heat collection panel in the storage tank and improve the energy saving performance.
Furthermore, normally, when the highest attained outside air temperature or the highest attained hot water temperature is high, the heat collection state of the heat collection panel is high, and when the highest ultimate outside air temperature or the highest ultimate hot water temperature is low, the heat collection state of the heat collection panel is low. Has a certain relationship. Therefore, according to the above characteristic configuration, for example, when the first determination period for determining the heat collection state is 24 hours (one day), which is the solar heat collection period, based on the highest reached outdoor air temperature or the highest reached hot water temperature. Since the heat collection state of the heat collection panel is determined using a certain relationship between the highest reached outside air temperature or the highest reached hot water temperature and the heat collection state, the heat collection state in the first determination period is appropriately determined. be able to.
Furthermore, the second determination period refers to a period of about one month longer than the first determination period of, for example, about 24 hours (one day). In addition, when the highest reached hot water temperature or the highest reached outdoor air temperature tends to increase, a change tendency (inclination of increase) of the highest reached hot water temperature or the highest reached outdoor air temperature is set in advance in the second determination period. Larger than the slope of the high heat collection state judgment line
Say goodbye. On the other hand, when the highest reached hot water temperature or the highest reached outdoor air temperature is in a downward trend, the change tendency (the downward slope) of the highest reached hot water temperature or the highest reached outdoor air temperature is preset in the second determination period. A case where the slope is smaller than the slope of the low heat collection state determination line.
According to the above characteristic configuration, since the heat collection state is determined in the second determination period based on whether the highest reached hot water temperature or the highest reached outside air temperature is in an upward trend or a downward trend, the maximum attainment at a certain point in time is simply performed. The heat collection state can be determined with higher accuracy than in the case where the determination is made only from the value of the hot water temperature or the maximum attained outside air temperature.
As described above, also in this determination, once the predetermined heat collection state is determined, the current heat collection state is maintained until it is determined that the current heat collection state is different from the current heat collection state. It shall continue to be determined that there is.

本発明の更なる特徴構成は、前記貯留容量変更手段は、前記貯留槽への給水の供給を断続する供給断続弁と、前記貯留槽からの湯水の排出を断続する排出断続弁との開閉状態を切り替えて、前記貯留槽の貯留容量を変更する点にある。   According to a further characteristic configuration of the present invention, the storage capacity changing means is an open / closed state of a supply intermittent valve for intermittently supplying water to the storage tank and a discharge intermittent valve for intermittently discharging hot water from the storage tank. To change the storage capacity of the storage tank.

上記特徴構成によれば、集熱パネルの集熱状態に基づいて、供給断続弁又は排出断続弁の開閉状態を切り替えることにより、貯留槽の貯留容量を変更するので、例えば貯留槽の貯留容積を物理的に変更する等することなく、比較的簡単な操作により、貯留槽の貯留容量を集熱パネルの集熱量に適合したものとすることができる。
例えば、冬季等で低集熱状態であると判定されている場合、水位計測部が低水位レベルを計測するまで、排出断続弁を開状態として貯留槽の湯水を排水して貯留容量を減少させ、貯留容量を低集熱状態に適したものとできる。
一方、夏季等で高集熱状態であると判定されている場合、水位計測部が高水位レベルを計測するまで、給水断続弁を開状態として、貯留槽に給水を供給して貯留容量を増加させ、貯留容量を高集熱状態に適したものとできる。
尚、集熱状態判定手段の判定結果に基づき、貯留槽の貯留容量を変更した後は、貯留槽の貯留容量は、現状の集熱状態と異なる集熱状態の判定がなされるまで、現状の貯留容量が維持されるように、適宜調整される。
According to the above characteristic configuration, the storage capacity of the storage tank is changed by switching the open / close state of the supply intermittent valve or the discharge intermittent valve based on the heat collection state of the heat collection panel. The storage capacity of the storage tank can be adapted to the heat collection amount of the heat collection panel by a relatively simple operation without physically changing.
For example, when it is determined that the heat collection state is low in winter, etc., the storage capacity is reduced by draining hot water from the storage tank with the discharge intermittent valve open until the water level measurement unit measures the low water level. The storage capacity can be made suitable for a low heat collection state.
On the other hand, when it is determined that the heat collection state is high in summer, etc., the water supply interrupting valve is opened until the water level measurement unit measures the high water level, supplying water to the storage tank and increasing the storage capacity. The storage capacity can be made suitable for a high heat collection state.
In addition, after changing the storage capacity of the storage tank based on the determination result of the heat collection state determination means, the storage capacity of the storage tank is not changed until the determination of the heat collection state different from the current heat collection state is made. It adjusts suitably so that a storage capacity may be maintained.

本発明の更なる特徴構成は、前記貯留容量変更手段は、前記貯留槽の内部に設けられた複数の貯留空間を接続する連通路を断続する貯留空間断続弁の開閉状態を切り替えて、前記貯留槽の貯留空間の容量を変更する点にある。   According to a further feature of the present invention, the storage capacity changing means switches the open / close state of a storage space interrupting valve that intermittently connects a plurality of storage spaces provided in the storage tank, and stores the storage space. The capacity of the storage space of the tank is changed.

上記特徴構成によれば、集熱パネルの集熱状態に応じて、貯留空間断続弁を開閉することにより、湯水が貯留される貯留空間の容量を変更するので、給排水等の操作を行うことなく、比較的短時間で貯留槽の貯留容量を集熱パネルの集熱量に適合したものとすることができる。   According to the above characteristic configuration, the capacity of the storage space in which the hot water is stored is changed by opening and closing the storage space intermittent valve according to the heat collection state of the heat collection panel. The storage capacity of the storage tank can be adapted to the heat collection amount of the heat collection panel in a relatively short time.

本発明のソーラーシステムの概略構成図である。It is a schematic block diagram of the solar system of this invention. 最高到達湯水(外気)温度の変化傾向とそれに基づく集熱状態判定方法を示すグラフ図The graph which shows the change tendency of the maximum hot water (outside air) temperature and the heat collection state judgment method based on it 本発明の貯留槽及び貯留容量変更手段の別実施形態を示す図The figure which shows another embodiment of the storage tank and storage capacity change means of this invention. 貯留槽の貯留容量に対するCOPの変動を示す図The figure which shows the fluctuation | variation of COP with respect to the storage capacity of a storage tank

本発明に係るソーラーシステムを説明するに先立って、その基本構成を図1に基づいて説明する。
本発明のソーラーシステムは、図1に示すように、太陽熱を集熱する集熱パネル10と、湯水を浴槽等の給湯部(湯水消費部30の一例)又は暖房機、床暖房パネルや浴室乾燥機(熱消費部31の一例)へ供給する貯留槽20とを備えている。集熱パネル10と、貯留槽20との間には、内部を熱媒が循環する循環回路11が設けられており、集熱パネル10で集熱された太陽熱は、循環回路11の内部を循環する熱媒によって、貯留槽20の内部に設けられた熱交換部21に導かれ、貯留槽20内部の湯水の熱として蓄熱される。
Prior to the description of the solar system according to the present invention, its basic configuration will be described with reference to FIG.
As shown in FIG. 1, the solar system of the present invention includes a heat collecting panel 10 that collects solar heat, a hot water supply unit such as a bathtub (an example of the hot water consumption unit 30) or a heater, a floor heating panel, and a bathroom dryer. And a storage tank 20 to be supplied to a machine (an example of the heat consumption unit 31). A circulation circuit 11 in which a heat medium circulates is provided between the heat collection panel 10 and the storage tank 20, and solar heat collected by the heat collection panel 10 circulates in the circulation circuit 11. The heat medium is guided to the heat exchanging unit 21 provided inside the storage tank 20 and is stored as heat of hot water in the storage tank 20.

上記集熱パネル10の内部は、太陽熱により熱媒が加熱されて、下方から上方へ自然対流するように構成されており、熱媒が上方から下方へ温度成層を形成するようになっている。そして、当該集熱パネル10で暖められた熱媒が、後述する循環回路11の往き路に導かれる。   The inside of the heat collecting panel 10 is configured so that the heat medium is heated by solar heat and naturally convects from below to above, and the heat medium forms a temperature stratification from above to below. Then, the heat medium warmed by the heat collecting panel 10 is guided to the outgoing path of the circulation circuit 11 described later.

循環回路11は、集熱パネル10の上方に往き路を接続し、集熱パネル10の下方に戻り路を接続し、往き路と戻り路の間にて、貯留槽20に設けられた熱交換部21を介するように配設されている。熱媒は、集熱パネル10にて所定の集熱量がある場合、循環回路11に設けられている循環ポンプPにて圧送されて、集熱パネル10と貯留槽20の熱交換部21との間を循環して、集熱パネル10にて得た熱量を、熱交換部21で放熱して貯留槽20に貯留された湯水を加熱する。当該循環回路11の往き路には、集熱パネル10から出た熱媒の温度を計測する第1温度センサ12が設けられ、当該循環回路11の戻り路には、貯留槽20から出た熱媒の温度を計測する第2温度センサ13が設けられている。   The circulation circuit 11 connects the forward path above the heat collection panel 10, connects the return path below the heat collection panel 10, and exchanges heat between the forward path and the return path provided in the storage tank 20. It arrange | positions so that the part 21 may be interposed. When the heat collection panel 10 has a predetermined amount of heat collection, the heat medium is pumped by the circulation pump P provided in the circulation circuit 11, and the heat collection panel 10 and the heat exchange unit 21 of the storage tank 20 are exchanged. The amount of heat obtained in the heat collecting panel 10 is circulated through the space, and the hot water stored in the storage tank 20 is heated by dissipating heat in the heat exchange unit 21. A first temperature sensor 12 that measures the temperature of the heat medium that has exited the heat collecting panel 10 is provided in the outgoing path of the circulation circuit 11, and the heat that has exited from the storage tank 20 is provided in the return path of the circulation circuit 11. A second temperature sensor 13 for measuring the temperature of the medium is provided.

貯留槽20は、周囲を断熱材(図示せず)により外囲された貯留槽であり、給水断続弁22の開閉状態を切り替えることにより給水調整して水位レベルを上昇可能に構成されていると共に、排水断続弁23の開閉状態を切り替えることにより排水調整して水位レベルを下降可能に構成されている。貯留槽20には、通電式の水位センサとして、高水位レベルを検出する一対の高水位センサ24と、低水位レベルを検出する一対の低水位センサ25とが設けられている。   The storage tank 20 is a storage tank surrounded by a heat insulating material (not shown), and is configured to be able to increase the water level by adjusting the water supply by switching the open / close state of the water supply intermittent valve 22. The water level can be lowered by adjusting the drainage by switching the open / close state of the drainage intermittent valve 23. The storage tank 20 is provided with a pair of high water level sensors 24 for detecting a high water level and a pair of low water level sensors 25 for detecting a low water level as energized water level sensors.

貯留槽20に貯留された湯水は、給湯部等の湯水消費部30に循環供給可能であると共に、暖房機、浴室乾燥機、及び床暖房パネル等の熱消費部31に循環供給可能に構成されている。貯留槽20から出た湯水は、外部からの給水(図示せず)や補助熱源機32により、適切な温度に調整された後、湯水消費部30又は、熱消費部31に供給される。   The hot water stored in the storage tank 20 can be circulated and supplied to the hot water consumption section 30 such as a hot water supply section, and can be circulated and supplied to the heat consumption section 31 such as a heater, a bathroom dryer, and a floor heating panel. ing. Hot water discharged from the storage tank 20 is adjusted to an appropriate temperature by an external water supply (not shown) or an auxiliary heat source device 32 and then supplied to the hot water consumption unit 30 or the heat consumption unit 31.

以上が、本発明のソーラーシステムの基本構成であるが、以下に、本発明のソーラーシステムの特徴構成を、図1及び図2に基づいて説明する。本発明のソーラーシステムは、集熱パネル10の集熱状態を判定する集熱状態判定手段Bの判定結果に基づいて、貯留容量変更手段Aが、貯留槽20の貯留容量を変更する点を特徴とする。   The above is the basic configuration of the solar system of the present invention. Hereinafter, the characteristic configuration of the solar system of the present invention will be described with reference to FIGS. 1 and 2. The solar system of the present invention is characterized in that the storage capacity changing means A changes the storage capacity of the storage tank 20 based on the determination result of the heat collection state determination means B that determines the heat collection state of the heat collection panel 10. And

制御装置40は、図1に示すように、集熱パネル10を出た熱媒の温度を計測する第1温度センサ12、及び、貯留槽20の熱交換部21を出た熱媒の温度を計測する第2温度センサ13の計測温度に基づいて、循環ポンプPの駆動状態を決定する。例えば、第1温度センサ12の計測温度が第2温度センサ13の計測温度よりも高い場合、集熱パネル10にて集熱した熱により貯留槽20に貯留された湯水を加熱可能な状態であると判定し、循環ポンプPを駆動する。逆に、第1温度センサ12の計測温度が第2温度センサ13の計測温度よりも低いか又は同程度の場合、集熱パネル10にて集熱した熱により貯留槽20に貯留された湯水を加熱できない状態であると判定し、循環ポンプPを停止する。   As shown in FIG. 1, the control device 40 measures the temperature of the heat medium that has exited the first temperature sensor 12 that measures the temperature of the heat medium that has exited the heat collection panel 10 and the heat exchange unit 21 of the storage tank 20. Based on the measured temperature of the second temperature sensor 13 to be measured, the driving state of the circulation pump P is determined. For example, when the measured temperature of the first temperature sensor 12 is higher than the measured temperature of the second temperature sensor 13, the hot water stored in the storage tank 20 can be heated by the heat collected by the heat collection panel 10. And the circulation pump P is driven. Conversely, when the measured temperature of the first temperature sensor 12 is lower than or equal to the measured temperature of the second temperature sensor 13, hot water stored in the storage tank 20 by the heat collected by the heat collection panel 10 is used. It is determined that heating is not possible, and the circulation pump P is stopped.

〔貯留容量変更手段〕
さらに、制御装置40は、集熱パネル10の集熱状態の判定結果に基づいて、貯留槽20の貯留容量を変更する貯留容量変更手段Aとして機能する。
制御装置40は、集熱パネル10が高集熱状態であると判定した場合、一対の高水位センサ24の一方にて高水位レベルの下限未満を検出すると、高水位センサ24の他方にて高水位レベルの上限に達したことを検出するまで、給水断続弁22を開弁させて貯留槽20内に湯水を供給している。これにより、制御装置40は、高集熱状態であると貯留容量を高水位レベルとしている。
一方、集熱パネル10が低集熱状態であると判定した場合、一対の低水位センサ25の一方にて低水位レベルの上限以上を検出すると、一対の低水位センサ25の一方にて低水位レベルの上限未満となるまで、排水断続弁23を開弁させて水位レベルを低下させる。また、一対の低水位センサ25の他方にて低水位レベルの下限未満を検出すると、低水位センサ25の他方にて低水位レベルの上限に達したことを検出するまで、給水断続弁22を開弁させて貯留槽20内に湯水を供給している。これにより、制御装置40は、低集熱状態であると貯留容量を低水位レベルとしている。
以上より、集熱パネルの集熱状態が、低集熱状態よりも高集熱状態の場合に、貯留槽20の貯留容量を多い側へ変更して、ソーラーシステムのCOP(成績係数)を増加させることができる。
[Storage capacity change means]
Furthermore, the control device 40 functions as a storage capacity changing unit A that changes the storage capacity of the storage tank 20 based on the determination result of the heat collection state of the heat collection panel 10.
When it is determined that the heat collecting panel 10 is in the high heat collecting state, the control device 40 detects that the lower of the high water level is below the lower limit of one of the pair of high water level sensors 24, the high water level sensor 24 Until it is detected that the upper limit of the water level has been reached, the water supply intermittent valve 22 is opened to supply hot water into the storage tank 20. Thereby, the control apparatus 40 is setting the storage capacity to the high water level level in the high heat collection state.
On the other hand, when it is determined that the heat collecting panel 10 is in the low heat collecting state, when one of the pair of low water level sensors 25 detects an upper limit of the low water level or more, the low water level is detected by one of the pair of low water level sensors 25. Until the level becomes less than the upper limit, the drainage intermittent valve 23 is opened to lower the water level. Further, when the other of the pair of low water level sensors 25 detects that the low water level is less than the lower limit, the water supply intermittent valve 22 is opened until the other of the low water level sensors 25 detects that the upper limit of the low water level has been reached. Hot water is supplied into the storage tank 20 by valve. Thereby, the control apparatus 40 is setting the storage capacity to the low water level level in the low heat collection state.
From the above, when the heat collection state of the heat collection panel is higher than the low heat collection state, the storage capacity of the storage tank 20 is changed to a larger side and the COP (coefficient of performance) of the solar system is increased. Can be made.

〔集熱状態判定手段〕
本発明の制御装置40は、外気温度又は貯留された湯水温度に基づいて、集熱状態を判定するものであるので、その実施形態を下記の(A)及び(B)において、図2に基づいて説明する。
制御装置40は、太陽熱の集熱周期である24時間(1日間)である第1判定期間T1において、外気の温度を計測する外気温度センサ14(外気温度計測部の一例)が計測した最高到達外気温度、又は、貯留槽20に貯留された湯水の温度を計測する湯水温度センサ15(湯水温度計測部の一例)が計測する最高到達湯水温度に基づいて、集熱パネルの集熱状態を判定する集熱状態判定手段Bとしても機能する。
尚、上記集熱状態判定手段Bでは、最高到達湯水温度と最高到達外気温度との何れに基づいても、略同様の判定行うこととなるので、以下では、最高到達湯水温度を例にとってその判定方法を説明する。
[Heat collection state determination means]
Since the control apparatus 40 of this invention determines a heat collecting state based on the external temperature or the stored hot water temperature, the embodiment is based on FIG. 2 in the following (A) and (B). I will explain.
In the first determination period T1, which is 24 hours (one day), which is the solar heat collection period, the control device 40 reaches the maximum reached by the outside air temperature sensor 14 (an example of the outside air temperature measurement unit) that measures the outside air temperature. The heat collection state of the heat collecting panel is determined based on the hot water temperature sensor 15 (an example of the hot water temperature measuring unit) that measures the outside air temperature or the temperature of hot water stored in the storage tank 20. It also functions as the heat collection state determination means B.
In the heat collection state determination means B, the determination is made in substantially the same manner based on either the highest reached hot water temperature or the highest reached outdoor air temperature. A method will be described.

(A)〔最高到達湯水温度の近似直線の傾きと判定直線の傾きを用いた判定〕
まず、上記集熱状態判定手段Bが、最高到達湯水温度の近似直線の傾きと予め記憶された判定直線の傾きとを比較して、貯留槽20の集熱状態を判定する判定方法について説明する。
図2(イ)において、黒丸は、各第1判定期間T1における最高到達湯水温度であり、実線は、上記第1判定期間よりも長い第2判定期間T2における最高到達湯水温度の近似直線f1(例えば、最小二乗法等に基づいて導出したもの)を示したものであり、1点鎖線は、高集熱状態判定直線f2を示したものである。尚、第2判定期間T2は、具体的には、1ヶ月程度の期間として判定している。
制御装置40は、第2判定期間T2において、例えば、最高到達湯水温度の近似直線f1の傾きが、高集熱状態判定直線f2の傾きαよりも大きい場合、高集熱状態であると判定する。
図2(ロ)においても、黒丸、及び、実線は、上記図2(イ)と同様のものを示すものであるが、一点鎖線f4は、低集熱状態判定直線f4を示したものである。制御装置40は、第2判定期間T2において、例えば、最高到達湯水温度の近似直線f1の傾きが、低集熱状態判定直線f4の傾きβよりも小さい場合、低集熱状態と判定する。
(A) [determination using the slope of the approximate straight line and the slope of the judgment line of the maximum hot water temperature]
First, the determination method for determining the heat collection state of the storage tank 20 by comparing the inclination of the approximate straight line of the maximum hot water temperature with the inclination of the determination line stored in advance by the heat collection state determination means B will be described. .
In FIG. 2 (a), the black circles represent the maximum reached hot water temperature in each first determination period T1, and the solid line represents the approximate straight line f1 (maximum reached hot water temperature in the second determination period T2 longer than the first determination period). For example, it is derived based on the least square method or the like), and the alternate long and short dash line represents the high heat collection state determination straight line f2. The second determination period T2 is specifically determined as a period of about one month.
In the second determination period T2, for example, when the inclination of the approximate straight line f1 of the maximum reached hot water temperature is larger than the inclination α of the high heat collection state determination line f2, the control device 40 determines that the heat collection state is high. .
Also in FIG. 2 (b), the black circle and the solid line indicate the same as in FIG. 2 (a), but the alternate long and short dash line f4 indicates the low heat collection state determination straight line f4. . In the second determination period T2, for example, when the inclination of the approximate straight line f1 of the maximum reached hot water temperature is smaller than the inclination β of the low heat collection state determination line f4, the control device 40 determines that the heat collection state is low.

(B)〔最高到達温度の値と判定閾値を用いた判定〕
次に、上記集熱状態判定手段Bが、最高到達湯水温度の値と判定閾値とを比較して、貯留槽20の集熱状態を判定する判定方法について説明する。
図2(イ)において、2点鎖線は、高集熱状態判定閾値f3を示すものである。制御装置40は、1ヶ月程度の第2判定期間T2において、例えば、最高到達湯水温度が、所定の回数より多く高集熱状態判定閾値f3を上回る場合や、連続して高集熱状態判定閾値f3を上回る場合に、高集熱状態であると判定する。
一方、図2(ロ)において、2点鎖線は、低集熱状態判定閾値f5を示すものである。制御装置40は、1ヶ月程度の第2判定期間T2において、例えば、最高到達湯水温度が、所定の回数より多く低集熱状態判定閾値f5を下回る場合や、連続して低集熱状態判定閾値f5を下回る場合に、低集熱状態であると判定する。
このように、第1判定期間T1より長い第2判定期間T2において、複数の最高到達湯水温度の値に基づいて判定することにより、例えば、ある時点における最高到達湯水温度と高集熱状態判定閾値f3、又は、低集熱状態判定閾値f5とを比較する場合に比べて、判定精度を高めることができる。
(B) [Judgment Using Maximum Achieving Temperature Value and Judgment Threshold]
Next, a determination method in which the heat collection state determination means B determines the heat collection state of the storage tank 20 by comparing the maximum reached hot water temperature value with a determination threshold value will be described.
In FIG. 2A, a two-dot chain line indicates a high heat collection state determination threshold f3. In the second determination period T2 of about one month, for example, the control device 40, for example, when the highest reached hot water temperature exceeds the high heat collection state determination threshold f3 more than a predetermined number of times, or continuously, the high heat collection state determination threshold value When it exceeds f3, it determines with it being a high heat collection state.
On the other hand, in FIG. 2B, the two-dot chain line indicates the low heat collection state determination threshold f5. In the second determination period T2 of about one month, for example, the control device 40 is configured such that, for example, the maximum reached hot water temperature is lower than the low heat collection state determination threshold f5 more than a predetermined number of times or continuously. When it is less than f5, it is determined that the heat collecting state is low.
Thus, in 2nd determination period T2 longer than 1st determination period T1, it determines based on the value of several maximum ultimate hot water temperature, for example, the maximum ultimate hot water temperature in a certain time, and the high heat collection state determination threshold value Compared with the case where f3 or the low heat collection state determination threshold f5 is compared, the determination accuracy can be increased.

ここで、高集熱状態判定閾値f3は、外気温度を用いて判定する場合、25度以上40度以下程度の温度であり、湯水温度を用いて判定する場合、70度以上90度以下の温度である。一方、低集熱状態判定閾値f5は、外気温度を用いて判定する場合、0度以上15度以下程度の温度であり、湯水温度を用いて判定する場合、10度以上30度以下の温度である。   Here, the high heat collection state determination threshold f3 is a temperature of about 25 degrees to 40 degrees when determined using the outside air temperature, and a temperature of about 70 degrees to 90 degrees when determined using the hot water temperature. It is. On the other hand, the low heat collection state determination threshold f5 is a temperature of about 0 to 15 degrees when determined using the outside air temperature, and a temperature of 10 to 30 degrees when determining using the hot water temperature. is there.

〔別実施形態〕
)貯留槽20は、図3(イ)に示すように、水圧測定式の水位センサ26を設けて構成することができ、制御手段40は、当該水位センサ26の計測結果に基づいて、貯留槽20の貯留容量を変更する貯留容量変更手段Aとして機能することもできる。これによれば、単一の水圧測定式の水位センサ26を設けることで、高水位レベル、及び、低水位レベルの双方を測定することができると共に、容易に多段の水位レベルを設定できる。
[Another embodiment]
( 1 ) The storage tank 20 can be configured by providing a water pressure measurement type water level sensor 26 as shown in FIG. 3 (a), and the control means 40 is based on the measurement result of the water level sensor 26. It can also function as storage capacity changing means A that changes the storage capacity of the storage tank 20. According to this, by providing the single water pressure measurement type water level sensor 26, it is possible to measure both the high water level and the low water level, and to easily set the multi-stage water level.

)貯留槽20は、図3(ロ)に示すように、その内部を複数の貯留空間V1〜V3に区画し、貯留空間V1とV2とを連通する連通路を断続する第1断続弁27と、貯留空間V2とV3とを連通する連通路を断続する第2断続弁28とを備えた密閉型の分割貯留空間を有する貯留槽として構成することができる。当該構成において、熱交換部21は、貯留空間V1に貯留された湯水を加熱するように配置されている。
制御装置40は、第1断続弁27及び第2断続弁28の開閉状態を切り替えることにより、貯留槽20の貯留容量を適宜変更する貯留容量変更手段Aとして機能する。例えば、貯留容量を小容量とする場合には、第1断続弁27を閉状態として、第1貯留空間V1のみを使用可能状態とする。貯留容量を中容量とする場合には、第1断続弁27を開状態とすると共に第2断続弁28を閉状態として、第1貯留空間V1及び第2貯留空間V2のみを使用可能状態とする。貯留容量を大容量とする場合には、第1断続弁27及び第2断続弁28の双方を開状態として、すべての貯留空間V1〜V3を使用可能状態とする。
( 2 ) As shown in FIG. 3 (b), the storage tank 20 is divided into a plurality of storage spaces V1 to V3, and a first intermittent valve that intermittently connects a communication path that connects the storage spaces V1 and V2. 27 and a storage tank having a sealed divided storage space provided with a second intermittent valve 28 that intermittently connects the communication path that connects the storage spaces V2 and V3. In the said structure, the heat exchange part 21 is arrange | positioned so that the hot water stored in the storage space V1 may be heated.
The control device 40 functions as storage capacity changing means A that appropriately changes the storage capacity of the storage tank 20 by switching the open / close state of the first intermittent valve 27 and the second intermittent valve 28. For example, when the storage capacity is small, the first intermittent valve 27 is closed and only the first storage space V1 is usable. When the storage capacity is a medium capacity, the first intermittent valve 27 is opened and the second intermittent valve 28 is closed so that only the first storage space V1 and the second storage space V2 can be used. . When the storage capacity is large, both the first intermittent valve 27 and the second intermittent valve 28 are opened, and all the storage spaces V1 to V3 are made usable.

)上記実施形態において、第1判定期間T1は、太陽熱の集熱周期である24時間(1日間)としたが、太陽熱が回収できる日の出から日の入りまでの日中だけとしてもよい。また、集熱周期である24時間(1日間)より長い期間としてもよく、例えば、1週間程度の期間としてもよい。 ( 3 ) In the above embodiment, the first determination period T1 is 24 hours (one day), which is the solar heat collection period, but it may be only during the daytime from sunrise to sunset when solar heat can be recovered. Moreover, it is good also as a period longer than 24 hours (1 day) which is a heat collection period, for example, it is good also as a period of about one week.

)上記実施形態において、第2判定期間T2は、1ヶ月程度の期間であるとしたが、第1判定期間T1よりも長い期間であり、6ヶ月(夏季と冬季との間の期間)より短い期間であれば、どのような期間であってもよい。 ( 4 ) In the above embodiment, the second determination period T2 is a period of about one month, but is a period longer than the first determination period T1, and is six months (period between summer and winter) Any period may be used as long as it is shorter.

)上述した実施形態において、集熱状態判定手段Bは、低集熱状態と高集熱状態との2段階の判定を行うものとして説明したが、別に中集熱状態などを判定するようにして、多段階の判定を行うものとしてもよい。
例えば、上記実施形態において、集熱状態判定手段Bは、集熱状態を判定する際、熱媒を循環させる循環ポンプの回転速度と、高集熱状態判定回転速度、及び、低集熱状態判定回転速度とを比較して判定したが、集熱状態が中程度である中集熱状態判定回転速度と比較して判定してもよい。
また、上記別実施形態において、集熱状態判定手段Bは、集熱状態を判定する際、高集熱状態判定閾値、及び、低集熱状態判定閾値に基づいて判定したが、集熱状態が中程度である中集熱状態判定閾値と比較して判定してもよい。
( 5 ) In the above-described embodiment, the heat collection state determination means B has been described as performing the two-stage determination of the low heat collection state and the high heat collection state. Thus, it is possible to perform multi-stage determination.
For example, in the above-described embodiment, the heat collection state determination means B determines the heat collection state, the rotation speed of the circulation pump that circulates the heat medium, the high heat collection state determination rotation speed, and the low heat collection state determination. Although the determination is made by comparing with the rotation speed, the determination may be made by comparison with the medium heat collection state determination rotation speed at which the heat collection state is medium.
Moreover, in the said another embodiment, when the heat collection state determination means B determined the heat collection state, it determined based on the high heat collection state determination threshold value and the low heat collection state determination threshold value. The determination may be made in comparison with a medium heat collection state determination threshold value that is medium.

本発明のソーラーシステムは、集熱パネルにより集熱された太陽熱を適切に蓄熱可能なソーラーシステムとして、有効に利用可能である。   The solar system of the present invention can be effectively used as a solar system capable of appropriately storing solar heat collected by a heat collection panel.

10: 集熱パネル
11: 循環回路
12: 第1温度センサ
13: 第2温度センサ
14: 外気温度センサ
15: 湯水温度センサ
20: 貯留槽
21: 熱交換部
22: 給水断続弁
23: 排水断続弁
24: 高水位センサ
25: 低水位センサ
30: 給湯部
31: 熱消費部
A : 貯留容量切替手段
B : 集熱状態判定手段
T1: 第1判定期間
T2: 第2判定期間
f3: 高集熱状態判定閾値
α : 高集熱状態判定直線の傾き
f5: 低集熱状態判定閾値
β : 低集熱状態判定直線の傾き
27: 第1断続弁
28: 第2断続弁
V1: 第1貯留空間
V2: 第2貯留空間
V3: 第3貯留空間
DESCRIPTION OF SYMBOLS 10: Heat collection panel 11: Circulation circuit 12: 1st temperature sensor 13: 2nd temperature sensor 14: Outside temperature sensor 15: Hot water temperature sensor 20: Reservoir 21: Heat exchange part 22: Water supply interruption valve 23: Drainage interruption valve 24: High water level sensor 25: Low water level sensor 30: Hot water supply unit 31: Heat consumption unit A: Storage capacity switching unit B: Heat collection state determination unit T1: First determination period T2: Second determination period f3: High heat collection state Determination threshold value α: High heat collection state determination straight line slope f5: Low heat collection state determination straight line β: Low heat collection state determination straight line inclination 27: First intermittent valve 28: Second intermittent valve V1: First storage space V2: Second storage space V3: Third storage space

Claims (3)

太陽熱を集熱する集熱パネルと、
内部に貯留する湯水を前記集熱パネルで集熱した熱により加熱すると共に、加熱された湯水を湯水消費部又は熱消費部へ供給する貯留槽を備えるソーラーシステムであって、
前記貯留槽に貯留する湯水の貯留容量を変更する貯留容量変更手段と、
前記集熱パネルの集熱状態を判定する集熱状態判定手段と備え、
前記集熱状態判定手段が、前記集熱状態を低集熱状態よりも高い熱量を集熱する高集熱状態であると判定する場合に、前記貯留容量変更手段が、前記貯留槽に貯留される湯水の貯留容量を多い側へ変更する構成を有し、
前記集熱状態判定手段は、
集熱状態を判定する第1判定期間において、外気の温度を計測する外気温度計測部が計測した最高到達外気温度に基づいて、前記集熱パネルの集熱状態を判定するように構成されるとともに、前記第1判定期間よりも長い第2判定期間において、前記最高到達外気温度の近似直線が上昇傾向にある場合に、前記高集熱状態であると判定し、前記最高到達外気温度の近似直線が下降傾向にある場合に、前記低集熱状態であると判定し、
又は、
前記第1判定期間において、貯留槽に貯留された温水の温度を計測する湯水温度計測部が計測する最高到達湯水温度に基づいて、前記集熱パネルの集熱状態を判定するように構成されるとともに、前記第1判定期間よりも長い第2判定期間において、前記最高到達湯水温度の近似直線が上昇傾向にある場合に、前記高集熱状態であると判定し、前記最高到達湯水温度の近似直線が下降傾向にある場合に、前記低集熱状態であると判定するソーラーシステム。
A heat collecting panel for collecting solar heat,
A solar system comprising a storage tank that heats hot water stored inside by the heat collected by the heat collecting panel and supplies the heated hot water to a hot water consumption section or a heat consumption section,
A storage capacity changing means for changing a storage capacity of hot water stored in the storage tank;
A heat collecting state determining means for determining a heat collecting state of the heat collecting panel;
When the heat collection state determination unit determines that the heat collection state is a high heat collection state that collects a higher amount of heat than the low heat collection state, the storage capacity changing unit is stored in the storage tank. The storage capacity of the hot water is changed to the larger side ,
The heat collection state determination means includes
In the first determination period for determining the heat collection state, the heat collection state of the heat collection panel is determined based on the highest reached outside air temperature measured by the outside air temperature measurement unit that measures the temperature of the outside air. In the second determination period longer than the first determination period, when the approximate straight line of the highest reached outside air temperature tends to increase, it is determined that the heat collection state is high, and the approximate straight line of the highest reached outside air temperature Is in a downward trend, it is determined that the low heat collection state,
Or
In the said 1st determination period, it is comprised so that the heat collecting state of the said heat collection panel may be determined based on the highest reached hot water temperature which the hot water temperature measurement part which measures the temperature of the hot water stored by the storage tank measures. In addition, in the second determination period longer than the first determination period, when the approximate straight line of the highest reached hot water temperature tends to increase, it is determined that the heat collection state is high, and the highest reached hot water temperature is approximated. The solar system which determines that it is the said low heat collecting state, when a straight line has the downward tendency.
前記貯留容量変更手段は、前記貯留槽への給水の供給を断続する供給断続弁と、前記貯留槽からの湯水の排出を断続する排出断続弁との開閉状態を切り替えて、前記貯留槽の貯留容量を変更する請求項1に記載のソーラーシステム。  The storage capacity changing means switches the open / closed state between a supply interrupt valve for intermittently supplying water to the storage tank and a discharge interrupt valve for intermittently discharging hot water from the storage tank to store the storage tank. The solar system according to claim 1, wherein the capacity is changed. 前記貯留容量変更手段は、前記貯留槽の内部に設けられた複数の貯留空間を接続する連通路を断続する貯留空間断続弁の開閉状態を切り替えて、前記貯留槽の貯留空間の容量を変更する請求項1に記載のソーラーシステム。  The storage capacity changing means changes a capacity of the storage space of the storage tank by switching an open / close state of a storage space intermittent valve that intermittently connects a communication path connecting a plurality of storage spaces provided in the storage tank. The solar system according to claim 1.
JP2009070728A 2009-03-23 2009-03-23 Solar system Expired - Fee Related JP5345879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070728A JP5345879B2 (en) 2009-03-23 2009-03-23 Solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070728A JP5345879B2 (en) 2009-03-23 2009-03-23 Solar system

Publications (2)

Publication Number Publication Date
JP2010223489A JP2010223489A (en) 2010-10-07
JP5345879B2 true JP5345879B2 (en) 2013-11-20

Family

ID=43040863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070728A Expired - Fee Related JP5345879B2 (en) 2009-03-23 2009-03-23 Solar system

Country Status (1)

Country Link
JP (1) JP5345879B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174389A (en) * 2012-02-24 2013-09-05 Yazaki Energy System Corp Solar hot water supply system
JP5985205B2 (en) * 2012-02-24 2016-09-06 矢崎エナジーシステム株式会社 Solar water heating system
JP6064671B2 (en) * 2012-06-29 2017-01-25 パナソニックIpマネジメント株式会社 Tank system and control method thereof
JP2014112015A (en) * 2012-12-05 2014-06-19 Yazaki Energy System Corp Hot water supply system utilizing solar heat
JP5869534B2 (en) * 2013-07-26 2016-02-24 リンナイ株式会社 Hot water system
JP6548925B2 (en) * 2015-03-19 2019-07-24 株式会社東芝 Solar heat collection system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157909A (en) * 1981-03-26 1982-09-29 Babcock Hitachi Kk Drum level control system for waste heat recovery boiler
JPS5977254A (en) * 1982-10-25 1984-05-02 Matsushita Electric Ind Co Ltd Solar heat water heater
JPS59231361A (en) * 1983-06-11 1984-12-26 Matsushita Electric Works Ltd Solar heat-utilizing hot water supplying apparatus
JP2000205663A (en) * 1999-01-14 2000-07-28 Chofu Seisakusho Co Ltd Solar water heater and solar water heating system
JP2002181393A (en) * 2000-10-04 2002-06-26 Sekisui Chem Co Ltd Hot-water supplier utilizing solar heat
JP4917866B2 (en) * 2006-11-13 2012-04-18 旭化成ホームズ株式会社 Season judgment method

Also Published As

Publication number Publication date
JP2010223489A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5345879B2 (en) Solar system
JP5745779B2 (en) Hot water system
JP4389378B2 (en) Hot water storage type heat pump water heater
JP2006275478A (en) Cogeneration system
JP6329347B2 (en) Solar energy utilization system
JP4837453B2 (en) Hot water storage hot water supply system
JP4208792B2 (en) Cogeneration system
JP5401946B2 (en) Hot water storage water heater
JP5210195B2 (en) Hot water storage water heater
JP3985773B2 (en) Hot water storage water heater
JP3968643B2 (en) Solar water heater
JP3915820B2 (en) Heat pump water heater
KR100849636B1 (en) Boiler that use sun mineral ore
KR101250466B1 (en) Variable Flow Rate Solar Energy Collector Control System and Control Method using thereof
JP2006308261A (en) Heat pump type hot water supplier
JP3992199B2 (en) Hot water heater
JP3719155B2 (en) Heat pump water heater
JP2011185551A (en) Heat supply device using solar heat
JP5800490B2 (en) Heat source device, heat source control method, and heat source control program
JP2004170025A (en) Electric water heater
JP2002195650A (en) Storage type hot water supply apparatus
JP3915821B2 (en) Heat pump water heater
JPS60164150A (en) Heat pump type hot water supplier
JP2013042838A (en) Electric kettle
KR200432063Y1 (en) Boiler that use sun mineral ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130815

R150 Certificate of patent or registration of utility model

Ref document number: 5345879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees