JP5345101B2 - Hot water heat source machine - Google Patents

Hot water heat source machine Download PDF

Info

Publication number
JP5345101B2
JP5345101B2 JP2010094842A JP2010094842A JP5345101B2 JP 5345101 B2 JP5345101 B2 JP 5345101B2 JP 2010094842 A JP2010094842 A JP 2010094842A JP 2010094842 A JP2010094842 A JP 2010094842A JP 5345101 B2 JP5345101 B2 JP 5345101B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
hot water
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010094842A
Other languages
Japanese (ja)
Other versions
JP2011226676A (en
Inventor
則幸 ▲高▼須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010094842A priority Critical patent/JP5345101B2/en
Publication of JP2011226676A publication Critical patent/JP2011226676A/en
Application granted granted Critical
Publication of JP5345101B2 publication Critical patent/JP5345101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water heat source machine of high efficiency by ensuring necessary heating capacity without increasing a capacity of a low order-side refrigerating cycle. <P>SOLUTION: When an operational frequency of a low order-side compressor 11 becomes lower than a threshold value A, the opening of a low order-side expansion valve 15 is controlled so that a condensation temperature of a low order-side refrigerant in a low order-side condenser 14 becomes equal to a condensation temperature set value determined on the basis of the total efficiency, and when the operational frequency of the low order-side compressor 11 becomes higher than the threshold value A, the opening of the low order-side expansion valve 15 is controlled so that the condensation temperature of the low order-side refrigerant is increased according to the increase of the operational frequency of the low order-side compressor 11. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、二元冷凍サイクルを用いて水を加熱する温水熱源機に関する。   The present invention relates to a hot water heat source machine that heats water using a dual refrigeration cycle.

従来、冷凍サイクルを用いて高温水を生成する技術として、二元冷凍サイクルを用いて外気から採熱し、温水を加熱する技術が用いられている。二元冷凍サイクルは低元側冷媒回路と高元側冷媒回路にそれぞれの温度、圧力特性に適した異なる冷媒を用いることにより、高効率で高温水を生成することを可能としたものである。温水熱源機に二元冷凍サイクルを適用するにあたっては、外気条件などにより変動する室内暖房負荷に合わせて、暖房期間を通して、必要加熱能力を確保し、かつ効率の高い運転を行う必要がある。   Conventionally, as a technique for generating high-temperature water using a refrigeration cycle, a technique of collecting heat from outside air using a binary refrigeration cycle and heating the hot water is used. The two-way refrigeration cycle can generate high-temperature water with high efficiency by using different refrigerants suitable for the temperature and pressure characteristics of the low-side refrigerant circuit and the high-side refrigerant circuit. When applying a dual refrigeration cycle to a hot water heat source machine, it is necessary to ensure the required heating capacity and perform high-efficiency operation throughout the heating period in accordance with the indoor heating load that fluctuates due to outside air conditions and the like.

例えば、特許文献1においては、熱交換器の出入口の温水温度から算出した加熱能力が設定値になるように高元側圧縮機を制御し、中間熱交換器の温度を効率が最大となる温度となるように低元側圧縮機の制御を行う技術が開示されている。   For example, in Patent Document 1, the high-end compressor is controlled so that the heating capacity calculated from the hot water temperature at the inlet / outlet of the heat exchanger becomes a set value, and the temperature of the intermediate heat exchanger becomes the temperature at which the efficiency becomes maximum. A technique for controlling the low-end compressor is disclosed.

特開昭62−49160号公報JP-A-62-49160

通常、効率が最大となる条件における加熱能力は、温水熱源機が発揮できる最大加熱能力より低い。しかしながら、特許文献1によれば、温水熱源機の効率が最大となるように低元側圧縮機を制御しているため、低元側冷凍サイクルの加熱能力を充分に引き出すことができない。したがって、特許文献1の技術を適用すると、必要加熱能力を確保するために、低元側冷凍サイクルの容量を大きくする必要が生じ、結果として、温水熱源機の大型化、製造コストの増大を招くことになる。   Usually, the heating capacity in a condition that maximizes the efficiency is lower than the maximum heating capacity that the hot water heat source machine can exhibit. However, according to Patent Document 1, since the low-side compressor is controlled so that the efficiency of the hot water heat source unit is maximized, the heating capacity of the low-side refrigeration cycle cannot be sufficiently obtained. Therefore, when the technique of Patent Document 1 is applied, it is necessary to increase the capacity of the low-source side refrigeration cycle in order to ensure the necessary heating capacity, resulting in an increase in the size of the hot water heat source machine and an increase in manufacturing cost. It will be.

本発明は、上記に鑑みてなされたものであって、低元側冷凍サイクルの容量を大きくすることなく必要加熱能力を確保し、かつできるだけ高効率な温水熱源機を得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at ensuring a required heating capability, without enlarging the capacity | capacitance of a low-source side refrigerating cycle, and obtaining a hot water heat source apparatus as efficient as possible.

上述した課題を解決し、目的を達成するために、本発明は、外気の熱を採熱して第1冷媒をガス化する第1蒸発器、前記ガス化された第1冷媒を昇圧する第1圧縮機、前記昇圧されたガス状の第1冷媒を凝縮させて前記第1冷媒から熱を取り出す第1凝縮器、および前記凝縮された第1冷媒を降圧する第1膨張弁、が配管接続されて形成されている第1冷凍サイクルと、前記第1凝縮器から取り出された熱を用いて第2冷媒をガス化する第2蒸発器、前記ガス化された第2冷媒を昇圧する第2圧縮機、前記昇圧されたガス状の第2冷媒を凝縮させて前記第2冷媒から熱を取り出す第2凝縮器、および前記凝縮された第2冷媒を降圧する第2膨張弁、が配管接続されて形成されている第2冷凍サイクルと、前記第2凝縮器から取り出された熱を用いて水の温度を昇温する温水熱交換器を備える温水生成系と、前記第1冷凍サイクル、前記第2冷凍サイクル、および前記温水生成系を制御する制御部と、前記第1凝縮器における前記第1冷媒の凝縮温度を検知する凝縮温度検知手段と、前記温水熱交換器が吐出した水の温度を検知する吐出水温検知手段と、を備え、前記制御部は、前記吐出水温検知手段が検知した温度が水温設定値に等しくなるように前記第1圧縮機の運転周波数を増減する加熱能力制御部と、前記第1圧縮機の運転周波数が所定のしきい値を下回ったとき、前記第1凝縮器における前記第1冷媒の凝縮温度が総合効率に基づいて定められる凝縮温度設定値に等しくなるように前記第1膨張弁の開度を制御し、前記第1圧縮機の運転周波数が前記しきい値を上回ったとき、前記第1冷媒の凝縮温度が前記運転周波数の増加に応じて増加するように前記第1膨張弁の開度を制御する膨張弁制御部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a first evaporator that collects heat from outside air to gasify the first refrigerant, and a first pressure that boosts the gasified first refrigerant. A compressor, a first condenser that condenses the pressurized gaseous first refrigerant and extracts heat from the first refrigerant, and a first expansion valve that steps down the condensed first refrigerant are connected by piping. A first refrigeration cycle formed by the second evaporator, a second evaporator that gasifies the second refrigerant using heat extracted from the first condenser, and a second compression that pressurizes the gasified second refrigerant A second condenser that condenses the pressurized gaseous second refrigerant and extracts heat from the second refrigerant, and a second expansion valve that lowers the pressure of the condensed second refrigerant are connected by piping. The formed second refrigeration cycle and the heat extracted from the second condenser. A hot water generation system comprising a hot water heat exchanger for raising the temperature of the water, the control unit for controlling the first refrigeration cycle, the second refrigeration cycle, and the hot water generation system, and the first condenser in the first condenser Condensation temperature detection means for detecting the condensation temperature of the first refrigerant, and discharge water temperature detection means for detecting the temperature of the water discharged by the hot water heat exchanger, the control unit is detected by the discharge water temperature detection means A heating capacity controller that increases or decreases the operating frequency of the first compressor so that the measured temperature is equal to a water temperature set value, and when the operating frequency of the first compressor falls below a predetermined threshold, The opening of the first expansion valve is controlled so that the condensation temperature of the first refrigerant in the condenser is equal to a condensation temperature set value determined based on the overall efficiency, and the operating frequency of the first compressor is When the threshold is exceeded Characterized by comprising a, an expansion valve control unit the condensation temperature of the first refrigerant controls the opening of the first expansion valve so as to increase in accordance with increase of the operation frequency.

本発明によれば、必要加熱能力に応じて熱源機の効率を優先した運転を行うか必要加熱能力の確保を優先した運転を行うかを切り替えることができるので、低元側冷凍サイクルの容量を大きくすることなく必要加熱能力を確保し、かつできるだけ高効率な温水熱源機を得ることができるという効果を奏する。   According to the present invention, it is possible to switch between performing an operation that prioritizes the efficiency of the heat source unit or performing an operation that prioritizes securing the necessary heating capacity according to the required heating capacity. There is an effect that it is possible to secure a necessary heating capacity without increasing the size and to obtain a hot water heat source as highly efficient as possible.

図1は、温水熱源機の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the hot water heat source machine. 図2は、制御部の機能構成を説明する図である。FIG. 2 is a diagram illustrating a functional configuration of the control unit. 図3は、低元側圧縮機の運転周波数と周波数設定関数により求まる高元側圧縮機の運転周波数との関係を示す図である。FIG. 3 is a diagram showing the relationship between the operating frequency of the low-side compressor and the operating frequency of the high-side compressor determined by the frequency setting function. 図4は、低元側圧縮機の運転周波数と周波数設定関数により求まる高元側圧縮機の運転周波数との関係を示す図である。FIG. 4 is a diagram showing the relationship between the operating frequency of the low-side compressor and the operating frequency of the high-side compressor determined by the frequency setting function. 図5は、低元側凝縮温度と熱源機効率の関係を示す図である。FIG. 5 is a graph showing the relationship between the low-side condensation temperature and the heat source efficiency. 図6は、低元側凝縮温度と高元側加熱能力の関係を示す図である。FIG. 6 is a diagram illustrating the relationship between the low-source-side condensation temperature and the high-source-side heating capacity. 図7は、低元側圧縮機の運転周波数と凝縮温度設定関数により求まる凝縮温度設定値との関係を示す図である。FIG. 7 is a diagram showing the relationship between the operating frequency of the low-side compressor and the condensing temperature setting value obtained from the condensing temperature setting function. 図8は、異なる温水温度設定値毎の低元側圧縮機の運転周波数と凝縮温度設定値との関係を示す図である。FIG. 8 is a diagram showing the relationship between the operating frequency of the low-end compressor and the condensing temperature setting value for each different hot water temperature setting value. 図9は、制御部の動作を説明するフローチャートである。FIG. 9 is a flowchart for explaining the operation of the control unit. 図10は、制御部の動作を説明するフローチャートである。FIG. 10 is a flowchart for explaining the operation of the control unit.

以下に、本発明にかかる温水熱源機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a hot water heat source apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明の実施の形態にかかる温水熱源機の構成を示すブロック図である。図示するように、温水熱源機100は、低元側冷凍サイクル1、高元側冷凍サイクル2、温水循環サイクル3、制御部5を備えて構成される。温水熱源機100は、温水循環サイクル3内を循環する温水の熱を利用して室内を暖房する放熱器4と組み合わせて使用される。
Embodiment.
FIG. 1 is a block diagram showing a configuration of a hot water heat source apparatus according to an embodiment of the present invention. As shown in the figure, the hot water heat source apparatus 100 includes a low-source side refrigeration cycle 1, a high-source side refrigeration cycle 2, a hot water circulation cycle 3, and a control unit 5. The hot water heat source device 100 is used in combination with the radiator 4 that heats the room using the heat of hot water circulating in the hot water circulation cycle 3.

低元側冷凍サイクル1は、低元側圧縮機11、低元側四方弁12、低元側凝縮器14、低元側膨張弁15、低元側蒸発器13を備え、これらが順次配管接続されて構成されている。低元側冷凍サイクル1の配管内には冷媒(低元側冷媒)が循環する。また、低元側冷凍サイクル1は、低元側圧縮機11の吐出冷媒温度を検知する低元側吐出冷媒温度検知手段16、低元側凝縮器14で凝縮する冷媒の凝縮温度(低元側凝縮温度)を検知する低元側凝縮器冷媒温度検知手段17を備えている。   The low-source-side refrigeration cycle 1 includes a low-source-side compressor 11, a low-source-side four-way valve 12, a low-source-side condenser 14, a low-source-side expansion valve 15, and a low-source-side evaporator 13, which are sequentially connected by piping. Has been configured. A refrigerant (low-source side refrigerant) circulates in the piping of the low-source side refrigeration cycle 1. Further, the low-side refrigeration cycle 1 includes a low-side discharge refrigerant temperature detecting means 16 for detecting the discharge refrigerant temperature of the low-side compressor 11 and a condensation temperature of the refrigerant condensed in the low-side condenser 14 (low-side side). The low-side condenser refrigerant temperature detecting means 17 for detecting the (condensation temperature) is provided.

高元側冷凍サイクル2は、高元側圧縮機21、高元側四方弁22、高元側凝縮器24、高元側膨張弁25、高元側蒸発器23を備え、それらが順次配管接続されて構成されている。高元側冷凍サイクル2の配管内には冷媒(高元側冷媒)が循環する。また、高元側冷凍サイクル2は、高元側圧縮機21の吐出冷媒温度を検知する高元側吐出冷媒温度検知手段26、高元側凝縮器24で凝縮する冷媒の凝縮温度(高元側凝縮温度)を検知する高元側凝縮器冷媒温度検知手段27を備えている。   The high-side refrigeration cycle 2 includes a high-side compressor 21, a high-side four-way valve 22, a high-side condenser 24, a high-side expansion valve 25, and a high-side evaporator 23, which are sequentially connected by piping. Has been configured. A refrigerant (high-side refrigerant) circulates in the piping of the high-side refrigeration cycle 2. The high-end side refrigeration cycle 2 includes a high-end side discharge refrigerant temperature detecting means 26 that detects the discharge refrigerant temperature of the high-end side compressor 21, and a condensation temperature (high-end side) of the refrigerant condensed in the high-end side condenser 24. A high-side condenser refrigerant temperature detecting means 27 for detecting a condensing temperature) is provided.

低元側冷凍サイクル1の低元側凝縮器14および高元側冷凍サイクル2の高元側蒸発器23は、互いに熱交換可能に接続されており、中間熱交換器6として機能する。   The low original side condenser 14 of the low original side refrigeration cycle 1 and the high original side evaporator 23 of the high original refrigeration cycle 2 are connected to each other so as to be able to exchange heat, and function as the intermediate heat exchanger 6.

温水循環サイクル3は、タンク33、温水循環手段31、温水熱交換器32を備え、それらが順次配管接続されて構成されている。また、温水熱交換器32の出口には、温水熱交換器32が吐出した温水の温度を検知する温水温度検知手段34が配設されている。温水熱交換器32は、高元側冷凍サイクル2の凝縮器24と熱交換可能に接続されている。放熱器4は、温水循環サイクル3と配管接続されて、室内に配置される。放熱器4から室内に温水の温度が放熱されることで、室内が暖房される。   The hot water circulation cycle 3 includes a tank 33, a hot water circulation means 31, and a hot water heat exchanger 32, which are sequentially connected by piping. A hot water temperature detecting means 34 for detecting the temperature of the hot water discharged from the hot water heat exchanger 32 is disposed at the outlet of the hot water heat exchanger 32. The hot water heat exchanger 32 is connected to the condenser 24 of the high-side refrigeration cycle 2 so as to be able to exchange heat. The radiator 4 is pipe-connected to the hot water circulation cycle 3 and is disposed indoors. The temperature of the hot water is radiated from the radiator 4 into the room, thereby heating the room.

低元側冷凍サイクル1では、低元側圧縮機11によって冷媒が循環される。低元側冷凍サイクル1では、低元側凝縮器14で熱を奪われ、凝縮、液化した冷媒が、低元側膨張弁15で低温低圧の気液2相状態となり、低元側蒸発器13で外気から採熱し、蒸発し、低温低圧のガス状態なり、低元側圧縮機11で圧縮され、高温高圧のガス冷媒となり、再び低元側凝縮器14で熱を奪われ、凝縮、液化するサイクルを繰り返す。   In the low source side refrigeration cycle 1, the refrigerant is circulated by the low source side compressor 11. In the low-source side refrigeration cycle 1, the refrigerant that has been deprived of heat by the low-source side condenser 14 and condensed and liquefied becomes a low-temperature and low-pressure gas-liquid two-phase state by the low-source side expansion valve 15. The heat is collected from the outside air, evaporated, becomes a low-temperature and low-pressure gas state, is compressed by the low-side compressor 11 and becomes a high-temperature and high-pressure gas refrigerant, and is again deprived of heat by the low-side condenser 14 to condense and liquefy. Repeat cycle.

高元側冷凍サイクル2では、低元側冷凍サイクル1と同様に、高元側圧縮機21によって冷媒が循環される。高元側凝縮器24で熱を奪われ、凝縮、液化した冷媒は、高元側膨張弁25で低温低圧の気液2相状態となり、高元側蒸発器23で低元側冷凍サイクル1の冷媒から採熱し、蒸発し、低温低圧のガス状態となり、高元側圧縮機21で圧縮され、高温高圧のガス冷媒となり、再び高元側凝縮器24で熱を奪われ、凝縮、液化するサイクルを繰り返す。   In the high-source side refrigeration cycle 2, similarly to the low-source side refrigeration cycle 1, the refrigerant is circulated by the high-source side compressor 21. The refrigerant that has been deprived of heat by the high-end side condenser 24 and condensed and liquefied becomes a low-temperature and low-pressure gas-liquid two-phase state at the high-side expansion valve 25, and the low-side side refrigeration cycle 1 in the high-side evaporator 23. A cycle in which heat is collected from the refrigerant, evaporated, and converted into a low-temperature and low-pressure gas state, compressed by the high-side compressor 21 to become a high-temperature and high-pressure gas refrigerant, and again deprived of heat by the high-side condenser 24 to be condensed and liquefied. repeat.

低元側圧縮機11、高元側圧縮機21は運転周波数が可変に構成されており、運転周波数に応じて回転数を変化させて冷媒の循環量を調整することが可能となっている。また、低元側膨張弁15、高元側膨張弁25は、その開度が調整され、冷凍サイクルを循環する冷媒量、圧縮機から吐出する冷媒温度、凝縮器で凝縮する冷媒の温度を制御する。   The operation frequency of the low-side compressor 11 and the high-side compressor 21 is configured to be variable, and it is possible to adjust the circulation amount of the refrigerant by changing the rotation speed according to the operation frequency. In addition, the opening of the low-side expansion valve 15 and the high-side expansion valve 25 is adjusted, and the amount of refrigerant circulating in the refrigeration cycle, the temperature of refrigerant discharged from the compressor, and the temperature of refrigerant condensed in the condenser are controlled. To do.

温水循環サイクル3では、温水循環手段31によって温水が循環される。温水循環サイクル3においては、温水熱交換器32で高元側冷凍サイクル2の冷媒から採熱し、温水を加熱する。加熱された温水は温水循環手段31で放熱器4へ搬送され、放熱器4で放熱し、タンク33を経由して、再び温水熱交換器32に送られる。   In the hot water circulation cycle 3, hot water is circulated by the hot water circulation means 31. In the hot water circulation cycle 3, heat is collected from the refrigerant of the high-end refrigeration cycle 2 by the hot water heat exchanger 32 to heat the hot water. The heated warm water is conveyed to the radiator 4 by the warm water circulation means 31, dissipated by the radiator 4, and is sent to the warm water heat exchanger 32 again via the tank 33.

低元側吐出冷媒温度検知手段16、低元側凝縮器冷媒温度検知手段17、高元側吐出冷媒温度検知手段26、高元側凝縮器冷媒温度検知手段27、および温水温度検知手段34が検知した温度は、夫々制御部5へ送られる。制御部5は、受信した温度に基づいて、低元側冷凍サイクル1、高元側冷凍サイクル2、および温水循環サイクル3を制御する。また、制御部5は、図示しない計時手段によって、低元側冷凍サイクル1、高元側冷凍サイクル2、温水循環サイクル3の運転時間を計時するようにしてもよい。   Low original side refrigerant temperature detection means 16, low original condenser temperature detection means 17, high original discharge refrigerant temperature detection means 26, high original condenser refrigerant temperature detection means 27, and hot water temperature detection means 34 Each of the temperatures is sent to the control unit 5. The control unit 5 controls the low-source side refrigeration cycle 1, the high-source side refrigeration cycle 2, and the hot water circulation cycle 3 based on the received temperature. Further, the control unit 5 may measure the operation time of the low-source side refrigeration cycle 1, the high-source side refrigeration cycle 2, and the hot water circulation cycle 3 by a timing unit (not shown).

図2は、制御部5の機能構成を説明する図である。図示するように、制御部5は、加熱能力制御部51と、膨張弁制御部52と、関数格納領域53と、を備えている。制御部5は、CPU、ROM(Read Only Memory)、およびRAM(random Access Memory)、を備えた通常のコンピュータ構成のハードウェアにおいて、制御プログラムを実行することにより実現される。制御プログラムは、ROMに格納されており、起動時にROMから読み出されてRAM上のプログラム展開領域に展開される。CPUは、プログラム展開領域に展開された制御プログラムを実行することによって、加熱能力制御部51および膨張弁制御部52として機能する。関数格納領域53は、ROMやRAMにより構成される。   FIG. 2 is a diagram illustrating a functional configuration of the control unit 5. As illustrated, the control unit 5 includes a heating capacity control unit 51, an expansion valve control unit 52, and a function storage area 53. The control unit 5 is realized by executing a control program in hardware of a normal computer configuration including a CPU, a ROM (Read Only Memory), and a RAM (Random Access Memory). The control program is stored in the ROM, read from the ROM at the time of startup, and expanded in a program expansion area on the RAM. The CPU functions as the heating capacity control unit 51 and the expansion valve control unit 52 by executing the control program developed in the program development area. The function storage area 53 is configured by a ROM or a RAM.

低元側圧縮機11の運転周波数が上がると、低元側冷凍サイクル1を循環する冷媒量が増大し、低元側蒸発器13で採熱する熱量が増大する。また、低元側圧縮機11の運転周波数が下がると、低元側冷凍サイクル1を循環する冷媒量が減少し、低元側蒸発器13で採熱する熱量が減少する。つまり、温水熱源機100の加熱能力は、主に低元側圧縮機11の運転周波数に依存する。加熱能力制御部51は、温水循環手段31を動作させ、温水温度検知手段34が検知する温度が温水の設定温度(温水温度設定値)と等しくなるように低元側圧縮機11の運転周波数を操作する。   When the operating frequency of the low-side compressor 11 increases, the amount of refrigerant circulating in the low-side refrigeration cycle 1 increases, and the amount of heat collected by the low-side evaporator 13 increases. Further, when the operating frequency of the low-side compressor 11 is lowered, the amount of refrigerant circulating in the low-side refrigeration cycle 1 is reduced, and the amount of heat collected by the low-side evaporator 13 is reduced. That is, the heating capacity of the hot water heat source apparatus 100 mainly depends on the operating frequency of the low-source compressor 11. The heating capacity control unit 51 operates the hot water circulation means 31 and sets the operating frequency of the low-source compressor 11 so that the temperature detected by the hot water temperature detection means 34 becomes equal to the set temperature of the hot water (hot water temperature set value). Manipulate.

また、加熱能力制御部51は、低元側圧縮機11の運転周波数に応じて高元側圧縮機21の運転周波数を変更する。高元側圧縮機21の運転周波数は低元側圧縮機11の運転周波数の関数(周波数設定関数54)として設定されている。周波数設定関数54は予め関数格納領域53に格納されている。   Further, the heating capacity control unit 51 changes the operation frequency of the high-side compressor 21 according to the operation frequency of the low-side compressor 11. The operating frequency of the high-side compressor 21 is set as a function of the operating frequency of the low-side compressor 11 (frequency setting function 54). The frequency setting function 54 is stored in the function storage area 53 in advance.

図3は、低元側圧縮機11の運転周波数と周波数設定関数54により求まる高元側圧縮機21の運転周波数の関係を示す図である。中間熱交換器6において、低元側冷凍サイクル1から与える熱量と高元側冷凍サイクル2が得る熱量は同一であることから、低元側圧縮機11の運転周波数を上げ、低元側冷凍サイクル1から与える熱量を増大させた場合、加熱能力制御部51は、上述の関数に基づいて高元側圧縮機21の運転周波数を上げ、高元側冷凍サイクル2が得る熱量を増大させる。高元側圧縮機21の運転周波数を上げることにより、高元側冷凍サイクル2を循環する冷媒量が増大し、温水熱交換器32での加熱能力が増大する。   FIG. 3 is a diagram showing the relationship between the operating frequency of the low-source side compressor 11 and the operating frequency of the high-side compressor 21 obtained by the frequency setting function 54. In the intermediate heat exchanger 6, the amount of heat given from the low source side refrigeration cycle 1 and the amount of heat obtained by the high source side refrigeration cycle 2 are the same, so the operating frequency of the low source side compressor 11 is increased and the low source side refrigeration cycle is increased. When the amount of heat applied from 1 is increased, the heating capacity control unit 51 increases the operating frequency of the high-side compressor 21 based on the above function, and increases the amount of heat obtained by the high-side refrigeration cycle 2. By increasing the operating frequency of the high-end side compressor 21, the amount of refrigerant circulating in the high-end side refrigeration cycle 2 increases, and the heating capacity in the hot water heat exchanger 32 increases.

逆に、低元側圧縮機11の運転周波数を下げ、低元側冷凍サイクル1から与える熱量を減少させた場合、加熱能力制御部51は、高元側圧縮機21の運転周波数を下げ、高元側冷凍サイクル2が得る熱量を減少させる。高元側圧縮機21の運転周波数を下げることにより、高元側冷凍サイクル2を循環する冷媒量が減少し、温水熱交換器32での加熱能力が減少する。図3において、低元側圧縮機11の運転周波数と高元側圧縮機21の運転周波数の関係は比例関係にあるが、必ずしも比例関係である必要はなく、図4のように階段状に上下させ、簡易化を図っても良い。   Conversely, when the operating frequency of the low-side compressor 11 is lowered and the amount of heat given from the low-side refrigeration cycle 1 is reduced, the heating capacity control unit 51 lowers the operating frequency of the high-side compressor 21 and increases the heat The amount of heat obtained by the original refrigeration cycle 2 is reduced. By reducing the operating frequency of the high-source side compressor 21, the amount of refrigerant circulating in the high-side refrigeration cycle 2 is reduced, and the heating capacity in the hot water heat exchanger 32 is reduced. In FIG. 3, the relationship between the operating frequency of the low-source compressor 11 and the operating frequency of the high-source compressor 21 is in a proportional relationship, but is not necessarily in a proportional relationship. Simplification may be achieved.

また、加熱能力制御部51は、低元側四方弁12および高元側四方弁22の回路の切り替え制御も実行する。   The heating capacity control unit 51 also executes switching control of the circuits of the low-source side four-way valve 12 and the high-source side four-way valve 22.

膨張弁制御部52は、低元側膨張弁15および高元側膨張弁25の開度を調節して低元側凝縮器14、高元側凝縮器24における凝縮温度を制御する。   The expansion valve control unit 52 controls the condensation temperatures in the low-side condenser 14 and the high-side condenser 24 by adjusting the opening degrees of the low-side expansion valve 15 and the high-side expansion valve 25.

より具体的には、膨張弁制御部52は、低元側凝縮器14の低元側凝縮器冷媒温度検知手段17が検知する低元側凝縮温度が目標の値(凝縮温度設定値)となるように低元側膨張弁15の開度を制御する。膨張弁制御部52は、低元側圧縮機11の運転周波数および温水温度設定値の関数(凝縮温度設定関数55)に基づいて凝縮温度設定値を算出する。凝縮温度設定関数55は関数格納領域53に予め格納されている。   More specifically, in the expansion valve control unit 52, the low-side condenser temperature detected by the low-side condenser refrigerant temperature detecting means 17 of the low-side condenser 14 becomes a target value (condensation temperature set value). In this way, the opening degree of the low-side expansion valve 15 is controlled. The expansion valve control unit 52 calculates a condensing temperature setting value based on a function (condensing temperature setting function 55) of the operating frequency of the low-source compressor 11 and the hot water temperature setting value. The condensation temperature setting function 55 is stored in advance in the function storage area 53.

図5は、低元側凝縮温度と熱源機効率(総合効率)との関係を示す図である。温水熱源機100の効率は低元側凝縮温度に影響を受ける。凝縮温度には、熱源機効率が最大となる凝縮温度が存在する。また、熱源機効率が最大となる凝縮温度は、生成する温水温度により異なり、例えば生成する温水温度が70℃の場合は30℃となる。   FIG. 5 is a diagram showing the relationship between the low-side condensation temperature and the heat source machine efficiency (total efficiency). The efficiency of the hot water heat source device 100 is affected by the low-side condensation temperature. The condensation temperature has a condensation temperature at which the efficiency of the heat source machine is maximized. In addition, the condensation temperature at which the efficiency of the heat source machine is maximized varies depending on the generated hot water temperature. For example, when the generated hot water temperature is 70 ° C., the condensation temperature is 30 ° C.

図6は、低元側凝縮温度と高元側加熱能力との関係を示す図である。高元側加熱能力は低元側凝縮温度が高いほど大きくなる。これは、低元側凝縮温度が高いほど、高元側冷凍サイクル2が中間熱交換器6から得る熱量が増大するためである。   FIG. 6 is a diagram illustrating a relationship between the low-side condensation temperature and the high-side heating capacity. The high-source-side heating capacity increases as the low-source-side condensation temperature increases. This is because the amount of heat that the high-source side refrigeration cycle 2 obtains from the intermediate heat exchanger 6 increases as the low-source-side condensation temperature increases.

図7は、低元側圧縮機11の運転周波数と凝縮温度設定関数55により求まる凝縮温度設定値との関係を示す図である。膨張弁制御部52は、低元側圧縮機11の運転周波数がA以下の範囲おいては凝縮温度設定値を一定とし、低元側圧縮機11の運転周波数がAを超える場合は、低元側圧縮機11の運転周波数が大きくなるに従い、凝縮温度設定値を大きくする。低元側圧縮機11の運転周波数がA以下の範囲における凝縮温度設定値は熱源機効率が最大となる凝縮温度(例えば30℃)に設定される。   FIG. 7 is a diagram illustrating the relationship between the operating frequency of the low-compressor compressor 11 and the condensing temperature setting value obtained by the condensing temperature setting function 55. The expansion valve control unit 52 makes the condensing temperature set value constant in a range where the operating frequency of the low-side compressor 11 is A or less, and when the operating frequency of the low-side compressor 11 exceeds A, the low-side compressor 11 As the operating frequency of the side compressor 11 increases, the condensation temperature set value is increased. The condensation temperature set value in the range where the operation frequency of the low-side compressor 11 is A or less is set to a condensation temperature (for example, 30 ° C.) at which the heat source machine efficiency is maximized.

しきい値である低元側圧縮機11の運転周波数Aは、熱源機効率が最大となる凝縮温度で必要加熱能力を確保できる上限の運転周波数とする。前述のように、高元側加熱能力は低元側圧縮機11の運転周波数が高いほど大きくなることから、低元側圧縮機11の運転周波数が高い状態においては、必要加熱能力が大きいと判断できる。熱源機効率が最大となるように運転するためには、常に最大効率となる凝縮温度(すなわち総合効率に基づいて定められる凝縮温度設定値)で運転すれば良いが、低元側圧縮機11の運転周波数が高く、必要とされる加熱能力が大きい場合は、熱源機効率よりも加熱能力の確保を優先すべきであるため、凝縮温度設定値は最大効率となる凝縮温度よりも高く設定される。   The operating frequency A of the low-side compressor 11 that is the threshold value is an upper limit operating frequency that can ensure the necessary heating capacity at the condensation temperature at which the heat source efficiency is maximized. As described above, since the high-source side heating capacity increases as the operating frequency of the low-side compressor 11 increases, it is determined that the required heating capacity is large in a state where the operating frequency of the low-source compressor 11 is high. it can. In order to operate so that the efficiency of the heat source machine is maximized, it is only necessary to operate at the condensation temperature at which the efficiency is always the maximum (that is, the condensation temperature set value determined based on the overall efficiency). If the operating frequency is high and the required heating capacity is large, priority should be given to securing the heating capacity over the efficiency of the heat source machine, so the condensing temperature setting value is set higher than the maximum condensing temperature. .

図8は、異なる温水温度設定値毎の低元側圧縮機11の運転周波数と凝縮温度設定値との関係を示す図である。熱源機効率が最大となる凝縮温度は生成する温水温度により異なるため、図示するように、凝縮温度設定値は温水温度設定値に応じて変更される。   FIG. 8 is a diagram showing the relationship between the operating frequency of the low-source compressor 11 and the condensing temperature setting value for each different hot water temperature setting value. Since the condensing temperature at which the heat source device efficiency is maximized varies depending on the generated hot water temperature, the condensing temperature setting value is changed according to the hot water temperature setting value as shown in the figure.

高元側膨張弁25の開度も同様に、高元側凝縮器24の高元側凝縮器冷媒温度検知手段27が検知する冷媒の凝縮温度が設定値となるように制御される。目標となる冷媒の凝縮温度は、生成する温水温度および高元側圧縮機21の運転周波数の関数として設定されており、膨張弁制御部52は、該関数に基づいて高元側凝縮器24の冷媒の目標となる凝縮温度を求める。該関数は予め関数格納領域53に記憶されている(図示せず)。目標とする凝縮温度の考え方は低元側膨張弁15の場合と同様であるため、ここでは詳細な説明を省略する。   Similarly, the opening degree of the high-side expansion valve 25 is controlled so that the refrigerant condensing temperature detected by the high-side condenser refrigerant temperature detecting means 27 of the high-side condenser 24 becomes a set value. The target refrigerant condensing temperature is set as a function of the generated hot water temperature and the operating frequency of the high-end compressor 21, and the expansion valve control unit 52 determines the high-end side condenser 24 based on the function. Find the target condensation temperature for the refrigerant. The function is stored in advance in the function storage area 53 (not shown). Since the concept of the target condensation temperature is the same as in the case of the low-source side expansion valve 15, detailed description thereof is omitted here.

次に、本発明の実施の形態の温水熱源機100の動作を説明する。図9は、制御部5の動作を説明するフローチャートである。運転開始操作が行われると、加熱能力制御部51は、まず、温水循環手段31を運転し、低元側圧縮機11,高元側圧縮機21を所定の運転周波数で運転する(ステップS1)。そして、加熱能力制御部51は、温水温度検知手段34で検知された温水温度が、設定された温水温度設定値より低いか否かを判定し(ステップS2)、検知された温水温度が温水温度設定値より低い場合は(ステップS2、Yes)、低元側圧縮機11の運転周波数を上げ(ステップS3)、検知された温水温度が温水温度設定値より高い場合は(ステップS2、No)、低元側圧縮機11の運転周波数を下げる(ステップS4)。なお、加熱能力制御部51は、低元側圧縮機11の運転周波数を変化させたとき、周波数設定関数54に基づいて、高元側圧縮機21の運転周波数も変化させる。   Next, the operation of the hot water heat source apparatus 100 according to the embodiment of the present invention will be described. FIG. 9 is a flowchart for explaining the operation of the control unit 5. When the operation start operation is performed, the heating capacity control unit 51 first operates the hot water circulation means 31, and operates the low-side compressor 11 and the high-side compressor 21 at a predetermined operating frequency (step S1). . And the heating capability control part 51 determines whether the warm water temperature detected by the warm water temperature detection means 34 is lower than the set warm water temperature setting value (step S2), and the detected warm water temperature is the warm water temperature. When lower than the set value (step S2, Yes), the operating frequency of the low-end compressor 11 is increased (step S3), and when the detected hot water temperature is higher than the hot water temperature set value (step S2, No), The operating frequency of the low source side compressor 11 is lowered (step S4). The heating capacity control unit 51 also changes the operating frequency of the high-side compressor 21 based on the frequency setting function 54 when the operating frequency of the low-side compressor 11 is changed.

このように、加熱能力制御部51は、必要加熱能力に対して加熱能力が不足する場合は、低元側圧縮機11の運転周波数を上げる方向に制御し、加熱能力が過大である場合は、低元側圧縮機11の運転周波数を下げる方向に制御するとともに、高元側圧縮機21の運転周波数を低元側圧縮機11の運転周波数の関数として予め設定された値となるように制御することによって、変動する暖房負荷に対して、必要な加熱能力を確実に確保することが可能となる。すなわち、低元側冷凍サイクルの容量を大きくすることなく必要加熱能力を確保することができる。   As described above, when the heating capacity is insufficient with respect to the required heating capacity, the heating capacity control unit 51 controls to increase the operation frequency of the low-source compressor 11, and when the heating capacity is excessive, In addition to controlling the operating frequency of the low-side compressor 11 to decrease, the operating frequency of the high-side compressor 21 is controlled to be a value set in advance as a function of the operating frequency of the low-side compressor 11. Thus, it becomes possible to ensure the necessary heating capacity against the varying heating load. That is, the required heating capacity can be ensured without increasing the capacity of the low-source side refrigeration cycle.

ステップS3またはステップS4の後、膨張弁制御部52は、凝縮温度設定関数55に基づいて低元側の凝縮温度設定値を求め(ステップS5)、低元側凝縮器冷媒温度検知手段17が検知する低元側凝縮温度が前記求めた凝縮温度設定値と等しくなるように低元側膨張弁15の開度を調整する(ステップS6)。そして、ステップS2へ移行する。なお、膨張弁制御部52は、低元側膨張弁15の開度を調整したとき、高元側膨張弁25の開度も調整する。   After step S3 or step S4, the expansion valve control unit 52 obtains the low-side condensing temperature set value based on the condensing temperature setting function 55 (step S5), and the low-side condensing refrigerant temperature detecting means 17 detects it. The opening degree of the low-side expansion valve 15 is adjusted so that the low-side condensation temperature to be equalized with the determined condensation temperature set value (step S6). Then, the process proceeds to step S2. The expansion valve control unit 52 also adjusts the opening degree of the high-side expansion valve 25 when the opening degree of the low-side expansion valve 15 is adjusted.

図10は、温水温度設定値が変更されたときの制御部5の動作を説明するフローチャートである。図示するように、温水温度設定値が変更されると(ステップS11)、膨張弁制御部52は、凝縮温度設定関数55に基づいて低元側の凝縮温度設定値を求め(ステップS12)、低元側凝縮器冷媒温度検知手段17が検知する低元側凝縮温度が前記求めた凝縮温度設定値と等しくなるように低元側膨張弁15の開度を調整する(ステップS13)。そして温水温度設定値が変更されたときの動作がリターンとなる。   FIG. 10 is a flowchart for explaining the operation of the controller 5 when the hot water temperature set value is changed. As shown in the figure, when the hot water temperature set value is changed (step S11), the expansion valve control unit 52 obtains the low-side condensing temperature set value based on the condensing temperature setting function 55 (step S12). The opening degree of the low-side expansion valve 15 is adjusted so that the low-side condensation temperature detected by the original-side condenser refrigerant temperature detection means 17 becomes equal to the determined condensation temperature set value (step S13). The operation when the hot water temperature set value is changed is a return.

以上のように、本発明の実施の形態によれば、制御部5は、温水温度検知手段34が検知した温度が温水温度設定値に等しくなるように低元側圧縮機11の運転周波数を増減する加熱能力制御部51と、低元側圧縮機11の運転周波数がしきい値Aを下回ったとき、低元側凝縮器14における低元側冷媒の凝縮温度が総合効率に基づいて定められる凝縮温度設定値に等しくなるように低元側膨張弁15の開度を制御し、低元側圧縮機11の運転周波数がしきい値Aを上回ったとき、低元側冷媒の凝縮温度が低元側圧縮機11の運転周波数の増加に応じて増加するように低元側膨張弁15の開度を制御する膨張弁制御部52と、を備えるように構成したので、常に熱源機の効率が最高効率となるように運転するのではなく、必要加熱能力に応じて熱源機の効率を優先した運転を行うか必要加熱能力の確保を優先した運転を行うかを切り替えることができるので、低元側冷凍サイクルの容量を大きくすることなく必要加熱能力を確保でき、かつできるだけ高効率な運転を行うことができるようになる。   As described above, according to the embodiment of the present invention, the control unit 5 increases or decreases the operating frequency of the low-side compressor 11 so that the temperature detected by the hot water temperature detection means 34 is equal to the hot water temperature set value. When the operating frequency of the heating capacity control unit 51 and the low-side compressor 11 is below the threshold value A, the condensation temperature of the low-side refrigerant in the low-side condenser 14 is determined based on the overall efficiency. When the opening of the low-side expansion valve 15 is controlled to be equal to the temperature set value and the operating frequency of the low-side compressor 11 exceeds the threshold value A, the condensation temperature of the low-side refrigerant is low. And the expansion valve control unit 52 that controls the opening degree of the low-side expansion valve 15 so as to increase in accordance with the increase in the operating frequency of the side compressor 11. Rather than operating for efficiency, depending on the required heating capacity Since it is possible to switch between the operation that prioritizes the efficiency of the heat source unit or the operation that prioritizes the required heating capacity, the necessary heating capacity can be secured without increasing the capacity of the low-source side refrigeration cycle, and It will be possible to operate as efficiently as possible.

また、しきい値Aおよび凝縮温度設定値は温水温度設定値毎に定められるので、しきい値Aおよび凝縮温度設定値をきめ細かく設定することができるので、熱源機の効率をさらに高めることができる。   Further, since the threshold value A and the condensation temperature set value are determined for each hot water temperature set value, the threshold value A and the condensation temperature set value can be set finely, so that the efficiency of the heat source machine can be further increased. .

なお、低元側凝縮器冷媒温度検知手段17、高元側凝縮器冷媒温度検知手段27が検知する凝縮温度と低元側吐出冷媒温度検知手段16、高元側吐出冷媒温度検知手段26が検知する吐出温度との間には相関関係がある。以上の説明においては、低元側凝縮器冷媒温度検知手段17、高元側凝縮器冷媒温度検知手段27が検知した凝縮温度に基づいて低元側膨張弁15、高元側膨張弁25の開度を制御するとして説明したが前記凝縮温度の代わりに低元側吐出冷媒温度検知手段16、高元側吐出冷媒温度検知手段26が検知した吐出温度に基づいて膨張弁15、25の開度を制御するようにしてもよい。このようにすることによって、中間熱交換器6や温水熱交換器32がプレート式熱交換器である場合のように、凝縮温度が検知できない場合であっても、前記凝縮温度に基づいた制御と同等の制御を実行することができる。より具体的には、膨張弁制御部52は、低元側圧縮機11の運転周波数が所定のしきい値を下回ったとき、低元側の吐出温度が総合効率に基づいて定められる吐出温度の設定値に等しくなるように低元側膨張弁15の開度を制御し、低元側圧縮機11の運転周波数が前記しきい値を上回ったとき、低元側の吐出温度が低元側圧縮機11の運転周波数の増加に応じて増加するように低元側膨張弁15の開度を制御するようにするとよい。このようにすることによって、低元側冷凍サイクルの容量を大きくすることなく必要加熱能力を確保でき、かつできるだけ高効率な運転を行うことができるようになる。   The low temperature side condenser refrigerant temperature detection means 17 and the high temperature side condenser refrigerant temperature detection means 27 detect the condensation temperature and the low voltage side discharge refrigerant temperature detection means 16 and the high voltage side discharge refrigerant temperature detection means 26 detect. There is a correlation with the discharge temperature. In the above description, the low-side expansion valve 15 and the high-side expansion valve 25 are opened based on the condensation temperatures detected by the low-side condenser refrigerant temperature detection unit 17 and the high-side condenser refrigerant temperature detection unit 27. The degree of opening of the expansion valves 15 and 25 is determined based on the discharge temperature detected by the low-end side discharge refrigerant temperature detection means 16 and the high-end side discharge refrigerant temperature detection means 26 instead of the condensation temperature. You may make it control. By doing in this way, even when the condensation temperature cannot be detected as in the case where the intermediate heat exchanger 6 and the hot water heat exchanger 32 are plate-type heat exchangers, the control based on the condensation temperature can be performed. Equivalent control can be performed. More specifically, when the operating frequency of the low-side compressor 11 falls below a predetermined threshold value, the expansion valve control unit 52 sets the discharge temperature at which the low-side discharge temperature is determined based on the overall efficiency. When the opening of the low-side expansion valve 15 is controlled to be equal to the set value, and the operating frequency of the low-side compressor 11 exceeds the threshold value, the low-side discharge temperature is low The opening degree of the low-side expansion valve 15 may be controlled so as to increase in accordance with an increase in the operating frequency of the machine 11. By doing so, the required heating capacity can be ensured without increasing the capacity of the low-source side refrigeration cycle, and the operation can be performed as efficiently as possible.

また、吐出温度に基づいて低元側膨張弁15の開度を制御する場合においても、効率を優先した運転を行うか加熱能力を確保するための運転を行うかを判定するための運転周波数のしきい値および吐出温度の設定値は温水温度設定値毎に定められるようにするとよい。このようにすることによって、前記しきい値および吐出温度の設定値をきめ細かく設定することができるので、熱源機の効率をさらに高めることができる。   Further, even when the opening degree of the low-side expansion valve 15 is controlled based on the discharge temperature, the operation frequency for determining whether to perform the operation giving priority to the efficiency or the operation for securing the heating capacity is performed. The set values of the threshold value and the discharge temperature may be determined for each hot water temperature set value. By doing in this way, since the set value of the said threshold value and discharge temperature can be set finely, the efficiency of a heat source machine can further be improved.

以上のように、本発明にかかる温水熱源機は、二元冷凍サイクルを用いて水を加熱する温水熱源機に適用して好適である。   As described above, the hot water heat source apparatus according to the present invention is suitable for application to a hot water heat source apparatus that heats water using a dual refrigeration cycle.

1 低元側冷凍サイクル
2 高元側冷凍サイクル
3 温水循環サイクル
4 放熱器
5 制御部
6 中間熱交換器
11 低元側圧縮機
12 低元側四方弁
13 低元側蒸発器
14 低元側凝縮器
15 低元側膨張弁
16 低元側吐出冷媒温度検知手段
17 低元側凝縮器冷媒温度検知手段
21 高元側圧縮機
22 高元側四方弁
23 高元側蒸発器
24 高元側凝縮器
25 高元側膨張弁
26 高元側吐出冷媒温度検知手段
27 高元側凝縮器冷媒温度検知手段
31 温水循環手段
32 温水熱交換器
33 タンク
34 温水温度検知手段
51 加熱能力制御部
52 膨張弁制御部
53 関数格納領域
54 周波数設定関数
55 凝縮温度設定関数
100 温水熱源機
DESCRIPTION OF SYMBOLS 1 Low original side refrigerating cycle 2 High original side refrigerating cycle 3 Hot water circulation cycle 4 Radiator 5 Control part 6 Intermediate heat exchanger 11 Low original side compressor 12 Low original side four-way valve 13 Low original side evaporator 14 Low original side condensation 15 Low original side expansion valve 16 Low original side discharge refrigerant temperature detecting means 17 Low original side condenser refrigerant temperature detecting means 21 High high side compressor 22 High high side four-way valve 23 High high side evaporator 24 High high side condenser 25 High-end expansion valve 26 High-end discharge refrigerant temperature detection means 27 High-end condenser refrigerant temperature detection means 31 Hot water circulation means 32 Hot water heat exchanger 33 Tank 34 Hot water temperature detection means 51 Heating capacity control unit 52 Expansion valve control Section 53 Function storage area 54 Frequency setting function 55 Condensation temperature setting function 100 Hot water heat source machine

Claims (5)

外気の熱を採熱して第1冷媒をガス化する第1蒸発器、前記ガス化された第1冷媒を昇圧する第1圧縮機、前記昇圧されたガス状の第1冷媒を凝縮させて前記第1冷媒から熱を取り出す第1凝縮器、および前記凝縮された第1冷媒を降圧する第1膨張弁、が配管接続されて形成されている第1冷凍サイクルと、
前記第1凝縮器から取り出された熱を用いて第2冷媒をガス化する第2蒸発器、前記ガス化された第2冷媒を昇圧する第2圧縮機、前記昇圧されたガス状の第2冷媒を凝縮させて前記第2冷媒から熱を取り出す第2凝縮器、および前記凝縮された第2冷媒を降圧する第2膨張弁、が配管接続されて形成されている第2冷凍サイクルと、
前記第2凝縮器から取り出された熱を用いて水の温度を昇温する温水熱交換器を備える温水生成系と、
前記第1冷凍サイクル、前記第2冷凍サイクル、および前記温水生成系を制御する制御部と、
前記第1凝縮器における前記第1冷媒の凝縮温度を検知する凝縮温度検知手段と、
前記温水熱交換器が吐出した水の温度を検知する吐出水温検知手段と、
を備え、
前記制御部は、
前記吐出水温検知手段が検知した温度が水温設定値に等しくなるように前記第1圧縮機の運転周波数を増減する加熱能力制御部と、
前記第1圧縮機の運転周波数が所定のしきい値を下回ったとき、前記第1凝縮器における前記第1冷媒の凝縮温度が総合効率に基づいて定められる凝縮温度設定値に等しくなるように前記第1膨張弁の開度を制御し、前記第1圧縮機の運転周波数が前記しきい値を上回ったとき、前記第1冷媒の凝縮温度が前記運転周波数の増加に応じて増加するように前記第1膨張弁の開度を制御する膨張弁制御部と、
を備えることを特徴とする温水熱源機。
A first evaporator that collects heat of outside air to gasify the first refrigerant, a first compressor that pressurizes the gasified first refrigerant, and condenses the pressurized gaseous first refrigerant to A first refrigeration cycle formed by connecting a first condenser for extracting heat from the first refrigerant and a first expansion valve for reducing the pressure of the condensed first refrigerant;
A second evaporator configured to gasify a second refrigerant using heat extracted from the first condenser; a second compressor configured to pressurize the gasified second refrigerant; and the pressurized gaseous second A second refrigeration cycle formed by connecting a second condenser for condensing the refrigerant to extract heat from the second refrigerant and a second expansion valve for reducing the pressure of the condensed second refrigerant;
A hot water generating system comprising a hot water heat exchanger that raises the temperature of the water using the heat extracted from the second condenser;
A control unit for controlling the first refrigeration cycle, the second refrigeration cycle, and the hot water generation system;
Condensing temperature detecting means for detecting the condensing temperature of the first refrigerant in the first condenser;
Discharge water temperature detection means for detecting the temperature of the water discharged by the hot water heat exchanger,
With
The controller is
A heating capacity controller that increases or decreases the operating frequency of the first compressor so that the temperature detected by the discharge water temperature detection means is equal to a water temperature set value;
When the operating frequency of the first compressor falls below a predetermined threshold, the condensing temperature of the first refrigerant in the first condenser is equal to a condensing temperature setting value determined based on total efficiency. When the opening of the first expansion valve is controlled and the operating frequency of the first compressor exceeds the threshold value, the condensing temperature of the first refrigerant increases so as to increase as the operating frequency increases. An expansion valve controller for controlling the opening of the first expansion valve;
A hot water heat source machine comprising:
前記所定のしきい値および前記凝縮温度設定値は、前記水温設定値毎に定められている、ことを特徴とする請求項1に記載の温水熱源機。   The hot water heat source apparatus according to claim 1, wherein the predetermined threshold value and the condensing temperature set value are determined for each water temperature set value. 外気の熱を採熱して第1冷媒をガス化する第1蒸発器、前記ガス化された第1冷媒を昇圧する第1圧縮機、前記昇圧されたガス状の第1冷媒を凝縮させて前記第1冷媒から熱を取り出す第1凝縮器、および前記凝縮された第1冷媒を降圧する第1膨張弁、が配管接続されて形成されている第1冷凍サイクルと、
前記第1凝縮器から取り出された熱を用いて第2冷媒をガス化する第2蒸発器、前記ガス化された第2冷媒を昇圧する第2圧縮機、前記昇圧されたガス状の第2冷媒を凝縮させて前記第2冷媒から熱を取り出す第2凝縮器、および前記凝縮された第2冷媒を降圧する第2膨張弁、が配管接続されて形成されている第2冷凍サイクルと、
前記第2凝縮器から取り出された熱を用いて水の温度を昇温する温水熱交換器を備える温水生成系と、
前記第1冷凍サイクル、前記第2冷凍サイクル、および前記温水生成系を制御する制御部と、
前記第1圧縮機が吐出した第1冷媒の温度を検知する吐出冷媒温度検知手段と、
前記温水熱交換器が吐出した水の温度を検知する吐出水温検知手段と、
を備え、
前記制御部は、
前記吐出水温検知手段が検知した温度が水温設定値に等しくなるように前記第1圧縮機の運転周波数を増減する加熱能力制御部と、
前記第1圧縮機の運転周波数が所定のしきい値を下回ったとき、前記第1圧縮機が吐出した第1冷媒の温度が総合効率に基づいて定められる冷媒温度設定値に等しくなるように前記第1膨張弁の開度を制御し、前記第1圧縮機の運転周波数が前記しきい値を上回ったとき、前記第1圧縮機が吐出した第1冷媒の温度が前記運転周波数の増加に応じて増加するように前記第1膨張弁の開度を制御する膨張弁制御部と、
を備えることを特徴とする温水熱源機。
A first evaporator that collects heat of outside air to gasify the first refrigerant, a first compressor that pressurizes the gasified first refrigerant, and condenses the pressurized gaseous first refrigerant to A first refrigeration cycle formed by connecting a first condenser for extracting heat from the first refrigerant and a first expansion valve for reducing the pressure of the condensed first refrigerant;
A second evaporator configured to gasify a second refrigerant using heat extracted from the first condenser; a second compressor configured to pressurize the gasified second refrigerant; and the pressurized gaseous second A second refrigeration cycle formed by connecting a second condenser for condensing the refrigerant to extract heat from the second refrigerant and a second expansion valve for reducing the pressure of the condensed second refrigerant;
A hot water generating system comprising a hot water heat exchanger that raises the temperature of the water using the heat extracted from the second condenser;
A control unit for controlling the first refrigeration cycle, the second refrigeration cycle, and the hot water generation system;
Discharge refrigerant temperature detection means for detecting the temperature of the first refrigerant discharged by the first compressor;
Discharge water temperature detection means for detecting the temperature of the water discharged by the hot water heat exchanger,
With
The controller is
A heating capacity controller that increases or decreases the operating frequency of the first compressor so that the temperature detected by the discharge water temperature detection means is equal to a water temperature set value;
When the operating frequency of the first compressor falls below a predetermined threshold, the temperature of the first refrigerant discharged from the first compressor is equal to the refrigerant temperature set value determined based on the overall efficiency. When the opening of the first expansion valve is controlled and the operating frequency of the first compressor exceeds the threshold value, the temperature of the first refrigerant discharged from the first compressor responds to an increase in the operating frequency. An expansion valve control unit for controlling the opening of the first expansion valve so as to increase,
A hot water heat source machine comprising:
前記所定のしきい値および前記冷媒温度設定値は、前記水温設定値毎に定められている、ことを特徴とする請求項3に記載の温水熱源機。   The hot water heat source apparatus according to claim 3, wherein the predetermined threshold value and the refrigerant temperature set value are determined for each water temperature set value. 前記加熱能力制御部は、前記第1圧縮機の運転周波数の増減に応じて前記第2圧縮機の運転周波数を増減する、
ことを特徴とする請求項1〜請求項4のうちの何れか一項に記載の温水熱源機。
The heating capacity control unit increases or decreases the operating frequency of the second compressor according to the increase or decrease of the operating frequency of the first compressor.
The hot water heat source machine according to any one of claims 1 to 4, wherein
JP2010094842A 2010-04-16 2010-04-16 Hot water heat source machine Active JP5345101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094842A JP5345101B2 (en) 2010-04-16 2010-04-16 Hot water heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094842A JP5345101B2 (en) 2010-04-16 2010-04-16 Hot water heat source machine

Publications (2)

Publication Number Publication Date
JP2011226676A JP2011226676A (en) 2011-11-10
JP5345101B2 true JP5345101B2 (en) 2013-11-20

Family

ID=45042226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094842A Active JP5345101B2 (en) 2010-04-16 2010-04-16 Hot water heat source machine

Country Status (1)

Country Link
JP (1) JP5345101B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013076751A1 (en) * 2011-11-21 2015-04-02 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus using the same
US20140290921A1 (en) * 2011-11-21 2014-10-02 Mitsubishi Electric Corporation Plate-type heat exchanger and refrigeration cycle apparatus using the same
GB2511654B (en) * 2011-11-30 2018-09-05 Mitsubishi Electric Corp Plate heat exchanger and refrigeration cycle apparatus including the same
JP5988698B2 (en) * 2012-05-25 2016-09-07 三菱電機株式会社 Dual refrigeration equipment
JP6211439B2 (en) * 2014-03-05 2017-10-11 本田技研工業株式会社 Control method of dual heat pump
JP6160555B2 (en) * 2014-05-08 2017-07-12 三菱重工冷熱株式会社 Capacity control method for compressor of multi-source refrigeration system
CN106440445A (en) * 2015-08-04 2017-02-22 吕瑞强 Efficient air source heat pump system suitable for low-temperature environment
CN109682102A (en) * 2019-01-28 2019-04-26 天津商业大学 Direct condensation by contact cryogenic refrigerating system with injection injection
CN110285619A (en) * 2019-06-28 2019-09-27 中国科学院理化技术研究所 Cascade type heat pump control method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249160A (en) * 1985-08-28 1987-03-03 シャープ株式会社 Heat-pump hot-water supply device
JPS6252377A (en) * 1985-08-30 1987-03-07 シャープ株式会社 Heat-pump hot-water supply device
JPH0336467A (en) * 1989-06-29 1991-02-18 Ebara Corp High temperature heat pump
JP5052631B2 (en) * 2010-02-04 2012-10-17 三菱電機株式会社 Heat pump type hot water supply device

Also Published As

Publication number Publication date
JP2011226676A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5345101B2 (en) Hot water heat source machine
US9121631B2 (en) Air conditioner and method of operating an air conditioner
JP6595205B2 (en) Refrigeration cycle equipment
US7509817B2 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
JP5452138B2 (en) Refrigeration air conditioner
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
US10082320B2 (en) Air-conditioning apparatus
CN102032704B (en) Heat pump apparatus
JP5818734B2 (en) Air conditioner
JP7190682B2 (en) refrigeration cycle system
KR20110028180A (en) Air conditioner and control method thereof
JP2004226006A (en) Controller for multiple indoor unit type air conditioner
CN109282446A (en) Heat pump system and its control method
US9958188B2 (en) Air conditioner and method of operating an air conditioner
JP2012042177A (en) Heat pump type hot water generator
KR20060066838A (en) Method for controlling indoor unit of multi-air conditioner
JP2018021732A (en) Heat pump device and control method thereof
KR102243376B1 (en) Air conditioning system
JP4730318B2 (en) Refrigeration equipment
US6808119B2 (en) Heat pump air conditioning system comprising additional heater and method for operating the same
JP2012247116A (en) Heat pump type hot water supply apparatus
JP5052631B2 (en) Heat pump type hot water supply device
JP6766239B2 (en) Refrigeration cycle equipment
KR100743719B1 (en) Process for preventing rising of pressure in multi type air conditioner
JP2019027601A (en) Refrigerant circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5345101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250