JP5343420B2 - High light transmittance fluororesin film - Google Patents
High light transmittance fluororesin film Download PDFInfo
- Publication number
- JP5343420B2 JP5343420B2 JP2008170712A JP2008170712A JP5343420B2 JP 5343420 B2 JP5343420 B2 JP 5343420B2 JP 2008170712 A JP2008170712 A JP 2008170712A JP 2008170712 A JP2008170712 A JP 2008170712A JP 5343420 B2 JP5343420 B2 JP 5343420B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- fluororesin film
- shape
- fluororesin
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002834 transmittance Methods 0.000 title claims abstract description 23
- -1 perfluoro Chemical group 0.000 claims description 24
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 229910052731 fluorine Inorganic materials 0.000 claims description 12
- 229920001577 copolymer Polymers 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 210000004027 cell Anatomy 0.000 claims description 6
- 229920001038 ethylene copolymer Polymers 0.000 claims description 6
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 239000011295 pitch Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 30
- 239000002994 raw material Substances 0.000 description 15
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 14
- 238000012546 transfer Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 9
- 229920000573 polyethylene Polymers 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000002788 crimping Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- 230000003667 anti-reflective effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- KHXKESCWFMPTFT-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2-trifluoroethenoxy)propane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)C(F)(F)F KHXKESCWFMPTFT-UHFFFAOYSA-N 0.000 description 1
- SKYXLDSRLNRAPS-UHFFFAOYSA-N 1,2,4-trifluoro-5-methoxybenzene Chemical compound COC1=CC(F)=C(F)C=C1F SKYXLDSRLNRAPS-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- DSSAWHFZNWVJEC-UHFFFAOYSA-N 3-(ethenoxymethyl)heptane Chemical compound CCCCC(CC)COC=C DSSAWHFZNWVJEC-UHFFFAOYSA-N 0.000 description 1
- OJPSFJLSZZTSDF-UHFFFAOYSA-N 3-ethoxyprop-1-ene Chemical compound CCOCC=C OJPSFJLSZZTSDF-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- PSJOREXZNBZJPT-UHFFFAOYSA-N ethene;1,1,2,3,3,3-hexafluoroprop-1-ene Chemical group C=C.FC(F)=C(F)C(F)(F)F PSJOREXZNBZJPT-UHFFFAOYSA-N 0.000 description 1
- BIUZXWXXSCLGNK-UHFFFAOYSA-N ethenoxymethylcyclohexane Chemical compound C=COCC1CCCCC1 BIUZXWXXSCLGNK-UHFFFAOYSA-N 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- GVVKBARIYRBZHC-UHFFFAOYSA-N prop-2-enyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OCC=C GVVKBARIYRBZHC-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 description 1
Landscapes
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
本発明は、表面に微細パターンを有する、高光透過性フッ素樹脂フィルムに関する。 The present invention relates to a highly light-transmitting fluororesin film having a fine pattern on the surface.
液晶ディスプレイ、CRTディスプレイ等のディスプレイの分野では、視認性向上のために、ディスプレイの表面に反射防止処理を行うことが一般的である。反射防止は光透過性を向上させる効果もあり、ディスプレイに使用する部材の透明性向上の観点からも反射防止処理が行われている。また、半導体の微細加工におけるフォトリソグラフィーにおいても、反射防止は重要な技術である。
従来、反射防止技術としては、金属膜の蒸着や反射防止コートを行うか、反射防止フィルムを接着するなどして、反射防止層を設ける方法が一般的であった。
近年、基材表面に微細なパターンを形成する方法として、微細なパターンを有するモールドを、基材に圧着により転写するナノインプリント技術が提案されている。該技術によって基材の表面に微細なパターンを形成することによって、基材の反射率を低下させる反射防止技術が開発されている。
In the field of displays such as liquid crystal displays and CRT displays, it is common to perform antireflection treatment on the surface of the display in order to improve visibility. Antireflection also has the effect of improving light transmission, and antireflection treatment is performed from the viewpoint of improving the transparency of members used in displays. Antireflection is also an important technique in photolithography in fine processing of semiconductors.
Conventionally, as an antireflection technique, a method of providing an antireflection layer by depositing a metal film, applying an antireflection coating, or adhering an antireflection film has been generally used.
In recent years, as a method for forming a fine pattern on the surface of a base material, a nanoimprint technique has been proposed in which a mold having a fine pattern is transferred to the base material by pressure bonding. An antireflection technique has been developed that reduces the reflectance of a base material by forming a fine pattern on the surface of the base material.
たとえば、透明性成形品の片面に光の波長以下のピッチの無数の微細凹凸を形成して、厚み方向に光の屈折率が変化する反射防止構造を有する反射防止性成形品が開示されている(特許文献1)。
また、凸型または凹型の錐体状をなし、可視光線の波長より短いピッチで配列された第1の微細構造の間に、同じく凸型または凹型の錐体状をなし、上記第1の微細構造よりも小さい底部または開口部を有する第2の微細構造を備えている反射防止性光学構造が開示されている(特許文献2)。
また、含フッ素重合体のフッ素含有量が35重量%以上である含フッ素重合体を含有する熱可塑性樹脂からなる転写層と所望のパターンを有するモールドを圧着させて、該転写層に所望のパターンを形成する工程と、該モールドを該転写層から離脱させる工程とを具備する転写層にパターンを形成する方法が開示されている(特許文献3)。
For example, an antireflective molded article having an antireflective structure in which innumerable fine irregularities having a pitch equal to or less than the wavelength of light are formed on one surface of a transparent molded article and the refractive index of light changes in the thickness direction is disclosed. (Patent Document 1).
Further, a convex or concave cone shape is formed, and a convex or concave cone shape is similarly formed between the first microstructures arranged at a pitch shorter than the wavelength of visible light, and the first fine structure is formed. An antireflection optical structure having a second microstructure having a bottom or opening smaller than the structure is disclosed (Patent Document 2).
Further, a transfer layer made of a thermoplastic resin containing a fluorine-containing polymer having a fluorine content of 35% by weight or more and a mold having a desired pattern are pressure-bonded, and the desired pattern is applied to the transfer layer. Discloses a method of forming a pattern on a transfer layer comprising a step of forming a mold and a step of releasing the mold from the transfer layer (Patent Document 3).
一方、フッ素重合体樹脂は耐候性や防炎性に優れるため、建築材料や農業ハウス材料またフレキシブル太陽電池カバー材料として用いられている。その中でも特に、成形性、機械強度、透明性に優れたテトラフルオロエチレン/エチレン系共重合体が好ましく用いられている。しかし、農業ハウスでは作物の育成を促進するため、また、太陽電池の用途に対してはその変換効率を改善するため、光の透過性はまだ十分すぎることはなく、更なる透過率の改善が求められている。これまで、コーティング方式による透過率の改良が試みられてきたが、コーティング層のフッ素樹脂に比較した耐候性や、フッ素樹脂に対する接着性は満足できる結果が得られていない。 On the other hand, fluoropolymer resins are excellent in weather resistance and flameproofness, and are therefore used as building materials, agricultural house materials, and flexible solar cell cover materials. Among these, a tetrafluoroethylene / ethylene copolymer excellent in moldability, mechanical strength, and transparency is preferably used. However, in order to promote the cultivation of crops in agricultural houses and to improve the conversion efficiency for solar cell applications, the light transmission is still not enough, and further improvements in transmittance are possible. It has been demanded. Up to now, attempts have been made to improve the transmittance by a coating method, but satisfactory results have not been obtained in terms of weather resistance compared to the fluororesin of the coating layer and adhesion to the fluororesin.
本発明の目的は、表面に微細パターンを有する、高光透過性フッ素樹脂フィルムを提供する。 An object of the present invention is to provide a highly light-transmitting fluororesin film having a fine pattern on the surface.
本発明者らは、一方または両方の表面に錐体状、半球状、柱状、または放物面体状のいずれかの形状を有する微細な凹部または凸部から構成されるパターンを有し、該パターンのピッチが30nm〜5μmであり、凸部または凹部の幅が30nm〜5μmであり、アスペクト比が0.2〜15とすることによって、可視光線の光透過率が94%以上であり、かつ可視光線の反射率が3%以下である高光透過性フッ素樹脂フィルムが得られることを見出した。
すなわち本発明は、以下の[1]〜[4]である。
The present inventors have a pattern composed of fine concave portions or convex portions having a conical, hemispherical, columnar, or parabolic shape on one or both surfaces, and the pattern The pitch of 30 nm to 5 μm, the width of the convex part or the concave part is 30 nm to 5 μm, and the aspect ratio is 0.2 to 15, whereby the light transmittance of visible light is 94% or more and visible It has been found that a highly transparent fluororesin film having a light reflectance of 3% or less can be obtained.
That is, this invention is the following [1]-[ 4 ].
[1]フッ素樹脂フィルムの一方または両方の表面に、錐体状、半球状、柱状、または放物面体状のいずれかの形状を有する微細な凹部または凸部から構成される微細パターンを有し、微細パターンのピッチが30nm〜500nmであり、凸部または凹部の幅が30nm〜500nmであり、凸部または凹部のアスペクト比が0.2〜15であり、フィルムの厚さが10〜300μmであり、フッ素樹脂がテトラフルオロエチレン/エチレン系共重合体またはテトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体であって、可視光線の光透過率が94%以上であり、かつ可視光線の反射率が3%以下であることを特徴とする高光透過性フッ素樹脂フィルム。
[2]微細パターンを有する表面の水の接触角が、110°以上であることを特徴とする[1]に記載の高光透過性フッ素樹脂フィルム。
[3][1]または[2]に記載の農業ハウス用高光透過性フッ素樹脂フィルム。
[4][1]または[2]に記載の太陽電池表面材用高光透過性フッ素樹脂フィルム。
[1] One or both surfaces of the fluororesin film have a fine pattern composed of fine concave portions or convex portions having a conical, hemispherical, columnar, or parabolic shape. The pitch of the fine pattern is 30 nm to 500 nm, the width of the convex part or the concave part is 30 nm to 500 nm, the aspect ratio of the convex part or the concave part is 0.2 to 15, and the thickness of the film is 10 to 300 μm. The fluororesin is a tetrafluoroethylene / ethylene copolymer or a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer having a visible light transmittance of 94% or more, and A highly light-transmitting fluororesin film having a reflectance of 3% or less.
[2] The high light-transmitting fluororesin film according to [1], wherein the contact angle of water on the surface having a fine pattern is 110 ° or more.
[3] A highly transparent fluororesin film for agricultural houses according to [1] or [2].
[4] [1] or high light permeability fluorocarbon resin film arm for a solar cell surface material according to [2].
本発明の高光透過性フッ素樹脂フィルムは、一方または両方の表面に錐体状、半球状、柱状、または放物面体状のいずれかの形状を有する微細な凹部または凸部から構成されるパターンが形成され、該パターンのピッチが30nm〜5μmであり、凸部または凹部の幅が30nm〜5μmであり、アスペクト比が0.2〜15であることによって、可視光線の光透過率が94%以上であり、かつ可視光線の反射率が3%以下となる。 The high light-transmitting fluororesin film of the present invention has a pattern composed of fine concave portions or convex portions having a cone shape, a hemispherical shape, a columnar shape, or a paraboloid shape on one or both surfaces. When the formed pattern has a pitch of 30 nm to 5 μm, a width of a convex or concave portion of 30 nm to 5 μm, and an aspect ratio of 0.2 to 15, the light transmittance of visible light is 94% or more. And the reflectance of visible light is 3% or less.
以下、本発明についてさらに詳しく説明する。
<高光透過性フッ素樹脂フィルム>
本発明の高光透過性フッ素樹脂フィルムは、表面に錐体状、半球状、柱状、または放物面体状のいずれかの形状を有する微細な凹部または凸部から構成されるパターンを有する。
Hereinafter, the present invention will be described in more detail.
<High light transmission fluororesin film>
The highly light-transmitting fluororesin film of the present invention has a pattern composed of fine concave portions or convex portions having a conical, hemispherical, columnar, or parabolic shape on the surface.
(フッ素樹脂)
本発明の高光透過性フッ素樹脂フィルムにおけるフッ素樹脂は、フルオロオレフィンの単独重合体もしくはフルオロオレフィンの2種以上の共重合体、または1種以上のフルオロオレフィンと1種以上のその他のモノマーとの共重合体である。
(Fluorine resin)
The fluororesin in the highly transparent fluororesin film of the present invention is a fluoroolefin homopolymer or a copolymer of two or more fluoroolefins, or a copolymer of one or more fluoroolefins and one or more other monomers. It is a polymer.
フルオロオレフィンは重合性不飽和結合とフッ素原子とを有するモノマーであり、他に水素原子や塩素原子、酸素原子などを有していてもよい。フルオロオレフィンとしては、たとえばテトラフルオロエチレン、フッ化ビニル、フッ化ビニリデン、パーフルオロ(アルキルビニルエーテル)、クロロトリフルオロエチレン、ヘキサフルオロプロピレンが好ましい。パーフルオロ(アルキルビニルエーテル)としては、特にパーフルオロ(プロピルビニルエーテル)が好ましい。 The fluoroolefin is a monomer having a polymerizable unsaturated bond and a fluorine atom, and may further have a hydrogen atom, a chlorine atom, an oxygen atom, or the like. As the fluoroolefin, for example, tetrafluoroethylene, vinyl fluoride, vinylidene fluoride, perfluoro (alkyl vinyl ether), chlorotrifluoroethylene, and hexafluoropropylene are preferable. As perfluoro (alkyl vinyl ether), perfluoro (propyl vinyl ether) is particularly preferable.
その他のモノマーとしては非フッ素系モノマーが好ましく、エチレン、プロピレン、ブテン、ノルボルネンなどのオレフィン類;シクロヘキシルメチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、2−エチルヘキシルビニルエーテル、エチルアリルエーテルなどのアルケニルエーテル類;酢酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、ピバリン酸アリル、バーサチック酸アリルなどのアルケニルエステル類が好ましい。 Other monomers are preferably non-fluorine monomers, and olefins such as ethylene, propylene, butene and norbornene; alkenyl ethers such as cyclohexyl methyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether, 2-ethylhexyl vinyl ether and ethyl allyl ether. Alkenyl esters such as vinyl acetate, vinyl pivalate, vinyl versatate, allyl pivalate, allyl versatate are preferred.
前記モノマーを重合したフッ素樹脂としては、テトラフルオロエチレン/エチレン系共重合体(以下、ETFEという。)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン/エチレン共重合体、フッ化ビニリデン/テトラフルオロエチレン系共重合体、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体(以下、FEPという。)、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチレン/プロピレン系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/エチレン系共重合体が好ましい。テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体においては、テトラフルオロエチレン/パーフルオロ(プロピルビニルエーテル)共重合体(以下、PFAという。)が好ましい。これらの中でも、加工性および使用されるフィルム物性の面からETFE、PFA、FEP、ポリフッ化ビニル、ポリフッ化ビニリデンがより好ましい。 Examples of the fluoropolymer obtained by polymerizing the monomer include tetrafluoroethylene / ethylene copolymer (hereinafter referred to as ETFE), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, polyvinyl fluoride, polyvinylidene fluoride, Polychlorotrifluoroethylene, chlorotrifluoroethylene / ethylene copolymer, vinylidene fluoride / tetrafluoroethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, tetrafluoroethylene / hexafluoropropylene copolymer Polymer (hereinafter referred to as FEP), vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene / hexafluoropropylene Ethylene copolymer is preferred. In the tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, a tetrafluoroethylene / perfluoro (propyl vinyl ether) copolymer (hereinafter referred to as PFA) is preferable. Among these, ETFE, PFA, FEP, polyvinyl fluoride, and polyvinylidene fluoride are more preferable in terms of processability and physical properties of the film used.
本発明におけるフッ素樹脂のフッ素含有量は、35質量%以上が好ましい。フッ素含有量は、45〜76質量%がより好ましく、50〜76質量%がさらに好ましい。フッ素含有量がこの範囲である場合、離脱工程における高光透過性フッ素樹脂フィルム上の微細パターンの形状が精度良く保持される。
本発明におけるフッ素樹脂は、軟化点を有するものであれば特に限定されない。軟化点とは、フッ素樹脂が非結晶性である場合はガラス転移温度を意味し、フッ素樹脂が結晶性である場合は融点を意味する。
The fluorine content of the fluororesin in the present invention is preferably 35% by mass or more. As for fluorine content, 45-76 mass% is more preferable, and 50-76 mass% is further more preferable. When the fluorine content is within this range, the shape of the fine pattern on the highly light-transmitting fluororesin film in the separation step is accurately maintained.
The fluororesin in the present invention is not particularly limited as long as it has a softening point. The softening point means the glass transition temperature when the fluororesin is amorphous, and the melting point when the fluororesin is crystalline.
本発明におけるフッ素樹脂の軟化点は、−20〜350℃が好ましく、30〜280℃が特より好ましい。軟化点がこの範囲である場合、圧着工程を円滑に行うことができる。
また、フッ素樹脂の重量平均分子量(MW)は、500〜10000000が好ましく、2000〜2000000がより好ましい。フッ素樹脂の重量平均分子量(MW)がこの範囲である場合、圧着工程におけるパターンの形成性に優れる。
本発明の高光透過性フッ素樹脂フィルムは、厚さが10〜300μmであることが好ましい。フィルムの厚さがこの範囲である場合、取扱い性と可視光線の光透過性に優れる。
The softening point of the fluororesin in the present invention is preferably -20 to 350 ° C, and more preferably 30 to 280 ° C. When the softening point is within this range, the crimping process can be performed smoothly.
Further, the weight average molecular weight (MW) of the fluororesin is preferably 500 to 10000000, more preferably 2000 to 2000000. When the weight average molecular weight (MW) of a fluororesin is this range, it is excellent in the pattern formation property in a crimping | compression-bonding process.
The high light-transmitting fluororesin film of the present invention preferably has a thickness of 10 to 300 μm. When the thickness of the film is within this range, the handleability and the visible light transmittance are excellent.
(微細パターン)
本発明の高光透過性フッ素樹脂フィルムは、一方または両方の表面に微細な凹部または凸部から構成される微細パターンを有する。それぞれの表面に形成される微細パターンは同一であっても異なっていてもよい。高光透過性フッ素樹脂フィルムの両方の表面に微細パターンを有する方が、光線透過率は高く、反射率は低い傾向にあるが、製造コストが高くなる傾向にある。微細パターンを、高光透過性フッ素樹脂フィルムの両方の表面に形成するか一方の面に形成するかは、製造の容易さ、製造コスト、フィルムの要求特性などを考慮して決定すればよい。
(Fine pattern)
The highly light-transmitting fluororesin film of the present invention has a fine pattern composed of fine concave portions or convex portions on one or both surfaces. The fine patterns formed on each surface may be the same or different. When both surfaces of the high light-transmitting fluororesin film have fine patterns, the light transmittance is high and the reflectance tends to be low, but the manufacturing cost tends to be high. Whether the fine pattern is formed on both surfaces or one surface of the high light-transmitting fluororesin film may be determined in consideration of ease of manufacture, manufacturing cost, required characteristics of the film, and the like.
本発明における微細パターンとは、フィルム表面に穴がある部分(凹部)またはフィルムの表面から立ち上がった部分(凸部)の集合から構成されるものであり、凹部と凸部の両者の集合から構成されていてもよい。通常、フィルム表面に平行な断面積が最も大きい面を基面として、凹部はフィルムの表面から内部に向かう方向に穴の断面積が変化しないか低減する形状を有し、凸部はフィルムの表面から外部に向かう方向に凸を形成する実質(フッ素樹脂からなる)の断面積が変化しないか低減する形状を有する。例えば、円錐状の凹部とは、穴空間が円錐形状をなし、円錐の底面を基面として円錐の頂点がフイルムの深さ方向にある穴をいう。また、例えば、円錐状の凸部とは、フッ素樹脂からなる実質が円錐形状をなし、円錐の底面を基面として円錐の頂点がフィルムの外方向にある突起をいう。 The fine pattern in the present invention is composed of a set of a part having a hole on the film surface (concave part) or a part rising from the surface of the film (convex part), and is composed of a set of both the concave part and the convex part. May be. Usually, with the surface having the largest cross-sectional area parallel to the film surface as the base surface, the concave portion has a shape in which the cross-sectional area of the hole does not change or decreases in the direction from the film surface to the inside, and the convex portion is the surface of the film. It has a shape in which the substantial cross-sectional area (made of fluororesin) forming a convex in the direction from the outside to the outside does not change or is reduced. For example, a conical recess means a hole in which the hole space has a conical shape, and the apex of the cone is in the depth direction of the film with the bottom surface of the cone as the base surface. Further, for example, the conical convex portion refers to a protrusion made of a fluororesin having a substantially conical shape, with the bottom of the cone as a base surface, and the apex of the cone in the outward direction of the film.
フィルムの微細パターンを有する表面は上記基面の集合を含み、上記基面の集合は通常平滑な1つの面をなす。フィルムの微細パターンを有する表面は、凹部および凸部の基面部と該基面部以外の表面部からなり、凹部および凸部の密度の高い表面では微細パターンを有する表面に対する基面部の総面積の割合が相対的に高い。フィルムの一つの面(表裏二面の一方の面)において、微細パターンを有する表面部はフィルムの微細パターンを有しない表面部と同一面であることが好ましいが、同一でなくてもよい。例えば、他の表面よりもわずかに高い段上に微細パターンを有する表面を形成することができる。 The surface having the fine pattern of the film includes the set of the base surfaces, and the set of the base surfaces usually forms one smooth surface. The surface having the fine pattern of the film is composed of the base surface portion of the concave portion and the convex portion and the surface portion other than the base surface portion, and the ratio of the total area of the base surface portion to the surface having the fine pattern in the high density surface of the concave portion and the convex portion Is relatively high. In one surface of the film (one surface of the front and back surfaces), the surface portion having the fine pattern is preferably the same surface as the surface portion not having the fine pattern of the film, but may not be the same. For example, a surface having a fine pattern can be formed on a step slightly higher than the other surfaces.
フィルムの微細パターンを有する表面における凹部および凸部の基面の配置は特に限定されない。例えば、直角をなす2方向に基面を多数配置したパターン、60度をなす3方向に基面を多数配置したパターンなどがある。また、ある方向に多数配置された基面における隣接する基面間の距離は一定であることが好ましい。
凹部の穴の形状や凸部の形状としては、光の反射を低く抑える観点から、錐体状、半球状、柱状、または放物面体状のいずれかの形状が適切である。人の手が触れたり、他のものと接触するなどして、形状の実質部の特に先端部分や角の部分が破損することがあるので、適宜破損しにくい形状に変更してもよい。
The arrangement of the base surfaces of the concave and convex portions on the surface having the fine pattern of the film is not particularly limited. For example, there are a pattern in which a large number of base surfaces are arranged in two directions forming a right angle, and a pattern in which a large number of base surfaces are arranged in three directions forming 60 degrees. Moreover, it is preferable that the distance between the adjacent base surfaces in the base surface arranged many in a certain direction is constant.
As the shape of the hole of the concave portion or the shape of the convex portion, any one of a cone shape, a hemispherical shape, a columnar shape, or a paraboloid shape is appropriate from the viewpoint of suppressing light reflection. Since the substantial part of the shape, particularly the tip part and the corner part, may be damaged when a human hand touches it or comes into contact with another object, the shape may be appropriately changed to a form that is not easily damaged.
錐体状の形状は、母線が直線である正確な円錐や、三角錐、四角錐または六角錐等の多角錐の形状だけでなく、先細りとなっていれば、稜線形状が曲線であり、側面が外側に膨らんだ3次元曲面の形状であってもよい。円錐の底面(基面)の形状は、真円に限らず楕円であってもよい。多角錐の形状の底面の多角形は、正多角形に限らず、多角形を構成するそれぞれの辺の長さや角の角度が異なっている形状であってもよい。また、錐状体の形状の頂点に丸みをつけたり平坦にした形状であってもよい。例えば、円錐台や角錐台などの形状であってもよい。頂点をこのような形状とすることによって、成形性や耐破損性が向上する。 The shape of the pyramid is not only an accurate cone whose generating line is a straight line or a polygonal pyramid shape such as a triangular pyramid, a quadrangular pyramid or a hexagonal pyramid, but if it is tapered, the ridgeline shape is a curve, The shape may be a three-dimensional curved surface bulging outward. The shape of the bottom surface (base surface) of the cone is not limited to a perfect circle and may be an ellipse. The polygon on the bottom surface of the polygonal pyramid shape is not limited to a regular polygon, and may be a shape in which the length of each side and the angle of each corner constituting the polygon are different. Moreover, the shape which rounded or flattened the vertex of the shape of a cone-shaped body may be sufficient. For example, the shape may be a truncated cone or a truncated pyramid. By forming the apex in such a shape, moldability and breakage resistance are improved.
半球状の形状は、球を半分に割った半球の形状である。該球は断面が真円のものに限らず、楕円の形状を有する球でもよい。底面(基面)の形状は、真円に限らず楕円であってもよい。
柱状の形状は、円柱、三角柱、または四角柱等の多角柱の形状が好ましい。円柱の形状の底面(基面)の円は、真円に限らず楕円であってもよい。多角柱の形状の底面(基面)の多角形は、正多角形に限らず、多角形を構成するそれぞれの辺の長さや角の角度が異なっている形状であってもよい。また、角や稜線の部分を曲線の形状とすることも好ましい。該形状することによって、成形性や耐破損性が向上する。
放物面体状の形状とは放物線を回転させた軌跡によって描かれる形状である。該形状は成形性や耐破損性、低反射性に優れるためより好ましい。
The hemispherical shape is a hemispherical shape obtained by dividing a sphere in half. The sphere is not limited to a perfect circle in cross section, and may be a sphere having an elliptical shape. The shape of the bottom surface (base surface) is not limited to a perfect circle and may be an ellipse.
The columnar shape is preferably a polygonal column such as a cylinder, a triangular column, or a quadrangular column. The circle on the bottom surface (base surface) of the cylindrical shape is not limited to a perfect circle and may be an ellipse. The polygonal shape of the bottom surface (base surface) of the polygonal column shape is not limited to a regular polygon, and may be a shape in which the length of each side and the angle of each corner constituting the polygon are different. Moreover, it is also preferable to make a corner | angular part and a ridgeline part into the shape of a curve. By forming the shape, formability and breakage resistance are improved.
A paraboloid shape is a shape drawn by a trajectory obtained by rotating a parabola. The shape is more preferable because it is excellent in moldability, breakage resistance and low reflectivity.
凸部または凹部の幅は、30nm〜5μmである。反射防止の観点から、可視光線の波長よりも短い間隔であることが好ましく、30nm〜500nmがより好ましく、100nm〜400nmがさらに好ましい。凸部の幅とは、凸部の基面における最大長さを意味する。凹部の幅とは、穴の基面における最大長さを意味する。
凸部の高さは、30nm〜50μmが好ましく、100nm〜600nmがより好ましい。凹部の穴の深さは、30nm〜50μmが好ましく、100nm〜600nmがより好ましい。
The width of the convex portion or the concave portion is 30 nm to 5 μm. From the viewpoint of preventing reflection, the interval is preferably shorter than the wavelength of visible light, more preferably 30 nm to 500 nm, and even more preferably 100 nm to 400 nm. The width of the convex portion means the maximum length on the base surface of the convex portion. The width of the recess means the maximum length on the base surface of the hole.
The height of the convex part is preferably 30 nm to 50 μm, and more preferably 100 nm to 600 nm. The depth of the concave hole is preferably 30 nm to 50 μm, and more preferably 100 nm to 600 nm.
本発明における微細パターンのピッチは、30nm〜5μmである。反射防止の観点から、可視光線の波長よりも短い間隔であることが好ましく、30nm〜500nmがより好ましく、100nm〜400nmがさらに好ましい。ピッチとは、ある方向に配置された凹部または凸部において隣接する2つの凹部または凸部の対応位置間の距離を意味し、配置方向によってその距離が異なる場合はその距離が最小となる方向の距離をいう。凹部と凸部が隣接する場合は両者の基面の対応位置間の距離をいうものとする。微細パターンのピッチはほぼ一定であることが好ましい。
本発明における凸部または凹部のアスペクト比は、0.2〜15である。低反射性と成形性の観点から0.5〜5が好ましい。アスペクト比とは、凸部(凹部)の幅に対する凸部(凹部)の高さ(深さ)の比であり、[凸部(凹部)の高さ(深さ)]/[凸部(凹部)の幅]の式で算出できる。
The pitch of the fine pattern in the present invention is 30 nm to 5 μm. From the viewpoint of preventing reflection, the interval is preferably shorter than the wavelength of visible light, more preferably 30 nm to 500 nm, and even more preferably 100 nm to 400 nm. The pitch means the distance between the corresponding positions of two adjacent recesses or projections in a recess or projection arranged in a certain direction. Say distance. When the concave portion and the convex portion are adjacent to each other, the distance between the corresponding positions of the base surfaces of the two is assumed. It is preferable that the pitch of the fine pattern is substantially constant.
The aspect ratio of the convex portion or the concave portion in the present invention is 0.2 to 15. From the viewpoint of low reflectivity and moldability, 0.5 to 5 is preferable. The aspect ratio is the ratio of the height (depth) of the convex portion (concave portion) to the width of the convex portion (concave portion), and [the height (depth) of the convex portion (concave portion)] / [convex portion (concave portion). ) Width].
(光透過率、反射率)
本発明において光または光線とは、可視光の波長領域の光や光線を意味する。
本発明の高光透過性フッ素樹脂フィルムの可視光線の光透過率および反射率は、その表面の微細パターンによって異なり、たとえばフィルム上に平坦部が多く存在するような構造では、より反射が起こりやすく光透過率は低くなる傾向にある。フィルム上の微細パターンは、フィルムの材質、転写条件、要求特性に応じて、適宜、最適化することが好ましい。
本発明の高光透過性フッ素樹脂フィルムは、可視光線の光透過率が94%以上であり、95%以上であることが好ましい。また、可視光線の反射率は3%以下であり、2%以下であることがより好ましい。
(Light transmittance, reflectance)
In the present invention, light or light means light or light in the wavelength region of visible light.
The light transmittance and reflectance of the visible light of the highly light-transmissive fluororesin film of the present invention vary depending on the fine pattern on the surface. For example, in a structure where there are many flat portions on the film, reflection is more likely to occur. The transmittance tends to be low. The fine pattern on the film is preferably optimized as appropriate according to the material of the film, transfer conditions, and required characteristics.
The high light-transmitting fluororesin film of the present invention has a visible light transmittance of 94% or more, and preferably 95% or more. Further, the reflectance of visible light is 3% or less, and more preferably 2% or less.
(接触角)
本発明の高光透過性フッ素樹脂フィルムの水接触角は110°以上であるが、125°以上であることが好ましい。
(Contact angle)
The water contact angle of the highly transparent fluororesin film of the present invention is 110 ° or more, but is preferably 125 ° or more.
<高光透過性フッ素樹脂フィルムの製造方法>
本発明の高光透過性フッ素樹脂フィルムを製造する方法は特に限定されないが、コストや生産性などを考慮して選択することが好ましい。たとえばホットプレス法、ホットエンボス法、ナノインプリント法、射出成形法などがあげられる。これらの中でも、フィルム上にnmからμmオーダーの微細な形状を生産性よく容易に形成できることから、ナノインプリント法を好適に用いることができる。
ナノインプリント法は、モールド上に形成された微細構造を、基材上に転写するものである。転写方法には、たとえば熱や活性エネルギー線を用いるものがある。
本発明の高光透過性フッ素樹脂フィルムの製造においては、フィルムに成形されるフッ素樹脂の特性から、熱による転写方法が好ましい。熱による転写方法は、樹脂を加熱して軟化させ、表面に微細構造を有する金型を押し当てることによって、該樹脂上に微細構造を転写するものである。
<Manufacturing method of highly light transmissive fluororesin film>
The method for producing the highly light-transmitting fluororesin film of the present invention is not particularly limited, but is preferably selected in consideration of cost and productivity. Examples thereof include a hot press method, a hot embossing method, a nanoimprint method, and an injection molding method. Among these, the nanoimprint method can be suitably used because a fine shape of nm to μm order can be easily formed on the film with good productivity.
The nanoimprint method transfers a fine structure formed on a mold onto a substrate. Some transfer methods use, for example, heat or active energy rays.
In the production of the highly light-transmitting fluororesin film of the present invention, a transfer method using heat is preferable from the characteristics of the fluororesin formed on the film. In the transfer method using heat, a resin is heated and softened, and a fine structure is transferred onto the resin by pressing a mold having a fine structure on the surface.
本発明の高光透過性フッ素樹脂フィルムの製造方法は、フッ素樹脂フィルムおよび/またはフッ素樹脂フィルムの表面に形成すべき微細パターンの反転パターンを有するモールド(以下、単に「モールド」という。)を加熱する工程(以下、「加熱工程」という。)と、該フィルムと該モールドとを圧着し、該モールド上の微細パターンを該フィルム上に転写する工程(以下、「圧着工程」という。)と、該フィルムと該モールドを冷却して、該フィルム上の微細パターンを定着させて、本発明の高光透過性フッ素樹脂フィルムを作製する工程(以下、「冷却工程」という。)と、該モールドから該フィルムを離脱させる工程(以下、「離脱工程」という。)との4つの工程を含む。 The method for producing a highly light-transmitting fluororesin film of the present invention heats a fluororesin film and / or a mold having a fine pattern reversal pattern to be formed on the surface of the fluororesin film (hereinafter simply referred to as “mold”). A step (hereinafter referred to as “heating step”), a step of pressure-bonding the film and the mold, and transferring a fine pattern on the mold onto the film (hereinafter referred to as “pressure-bonding step”); The step of cooling the film and the mold to fix the fine pattern on the film to produce the highly light-transmitting fluororesin film of the present invention (hereinafter referred to as “cooling step”), and the film from the mold 4 steps including a step of removing the slag (hereinafter referred to as “detachment step”).
[加熱工程]
加熱工程においては、原料フッ素樹脂フィルムおよび/またはモールドを加熱する。原料フッ素樹脂フィルムを加熱する場合は、フッ素樹脂の軟化点以上の温度に加熱することが好ましい。しかし、加熱しすぎるとフッ素樹脂の粘度が低くなりすぎて、圧着工程を円滑に進めることが難しくなることがある。原料フッ素樹脂フィルムを加熱する温度は、軟化点〜(軟化点+60℃)が好ましく、(軟化点+5℃)〜(軟化点+40℃)がより好ましい。
[Heating process]
In the heating step, the raw material fluororesin film and / or the mold is heated. When heating a raw material fluororesin film, it is preferable to heat to the temperature more than the softening point of a fluororesin. However, if it is heated too much, the viscosity of the fluororesin becomes too low, and it may be difficult to smoothly proceed with the crimping process. The temperature at which the raw material fluororesin film is heated is preferably from the softening point to (softening point + 60 ° C.), and more preferably from (softening point + 5 ° C.) to (softening point + 40 ° C.).
一方、モールドを加熱する場合も、フッ素樹脂の軟化点以上の温度に加熱することが好ましい。モールドを加熱する温度は、軟化点〜(軟化点+60℃)が好ましく、(軟化点+5℃)〜(軟化点+40℃)がより好ましい。この範囲の温度であれば、次の圧着工程において、原料フッ素フィルムの表面に効率的に微細パターンが形成できる。
加熱工程において、原料フッ素樹脂フィルムとモールドのいずれを加熱するか、もしくは両方を加熱するかは、次の圧着工程において、どのように圧着するかによって適宜決定すればよい。
On the other hand, also when heating a mold, it is preferable to heat to the temperature more than the softening point of a fluororesin. The temperature at which the mold is heated is preferably from the softening point to (softening point + 60 ° C.), and more preferably from (softening point + 5 ° C.) to (softening point + 40 ° C.). If it is the temperature of this range, a fine pattern can be efficiently formed in the surface of a raw material fluorine film in the following press-fit process.
In the heating step, which of the raw material fluororesin film and the mold is heated or both are heated may be appropriately determined depending on how the pressure bonding is performed in the next pressure bonding step.
[圧着工程]
圧着工程においては、下記(A)、(B)の二つの方法のいずれかが好ましい。
(A)フッ素樹脂の軟化点以上に加熱したモールドを、原料フッ素樹脂フィルムに圧着させる方法であって、圧着の際、原料フッ素樹脂フィルムは加熱されていても加熱されていなくてもよい圧着工程。
(B)フッ素樹脂の軟化点以上に加熱した原料フッ素樹脂フィルムに、モールドを圧着させる方法であって、圧着の際、モールドは加熱されていても加熱されていなくてもよい圧着工程。
[Crimping process]
In the crimping step, either of the following two methods (A) and (B) is preferable.
(A) A method of pressure-bonding a mold heated above the softening point of a fluororesin to a raw material fluororesin film, and at the time of press-bonding, the raw material fluororesin film may be heated or not heated. .
(B) A method of press-bonding a mold to a raw material fluororesin film heated above the softening point of the fluororesin, wherein the mold may be heated or not heated during the press-bonding.
いずれの方法を選択するかは、フッ素樹脂の性質、製造の容易さ、得られる高光透過性フッ素樹脂フィルム上の微細パターンの正確さや製造コストなどを考慮して選択すればよい。(A)、(B)いずれの圧着工程を選択するかによって、加熱工程で加熱すべき対象が決まる。
圧着工程における、原料フッ素樹脂フィルムおよびモールドの温度は、加熱工程によって決まる。圧着の圧力は、モールドの耐久性の観点から、ゲージ圧で、1MPa〜80MPaが好ましく、1MPa〜40MPaがより好ましく、1MPa〜20MPaがさらに好ましい。
Which method should be selected may be selected in consideration of the properties of the fluororesin, the ease of production, the accuracy of the fine pattern on the resulting highly light-transmissive fluororesin film, the production cost, and the like. The target to be heated in the heating step is determined depending on which one of the crimping steps (A) and (B) is selected.
The temperature of the raw material fluororesin film and the mold in the crimping process is determined by the heating process. From the viewpoint of mold durability, the pressure for pressure bonding is preferably 1 to 80 MPa, more preferably 1 to 40 MPa, and even more preferably 1 to 20 MPa in terms of gauge pressure.
[冷却工程]
冷却工程においては、圧着工程で圧着によって原料フッ素樹脂フィルム上に形成された微細パターンを、該フィルムを冷却して軟化点以下とすることによって定着させる。
冷却においては、原料フッ素樹脂フィルムおよびモールドの温度を、フッ素樹脂の軟化点以下の温度とするが好ましく、(フッ素樹脂の軟化温度−10℃)〜(フッ素樹脂の軟化温度−50℃)とすることがより好ましい。この範囲であると、原料フッ素樹脂フィルムに微細パターンが精度よく形成できる。
[Cooling process]
In the cooling step, the fine pattern formed on the raw material fluororesin film by pressure bonding in the pressure bonding step is fixed by cooling the film to be equal to or lower than the softening point.
In cooling, the temperature of the raw material fluororesin film and the mold is preferably set to a temperature not higher than the softening point of the fluororesin, and is preferably (softening temperature of fluororesin −10 ° C.) to (softening temperature of fluororesin −50 ° C.). It is more preferable. Within this range, a fine pattern can be accurately formed on the raw material fluororesin film.
[離脱工程]
離脱工程においては、高光透過性フッ素樹脂フィルムをモールドから離脱させる。離脱の際の高光透過性フッ素樹脂フィルムおよびモールドの温度は、冷却工程で冷却された温度となる。
円滑に離脱を行うために、予めモールドに離型剤を塗布しておいてもよいが、フッ素樹脂は軟化点が高い場合が多く、離型剤の熱劣化により、得られた高光透過性フッ素樹脂フィルムが黒ずむなどして光透過性が低下してしまうことがある。
一方、フッ素樹脂のフッ素含有量が高い場合には、フッ素樹脂フィルム自体の離型性が良好であるため、離型剤を用いることなく円滑に離脱工程を進めることができる。
[Leaving process]
In the separation step, the high light-transmitting fluororesin film is separated from the mold. The temperature of the highly light-transmitting fluororesin film and the mold at the time of separation becomes the temperature cooled in the cooling step.
A release agent may be applied to the mold in advance for smooth release, but fluororesin often has a high softening point, and the high light-transmitting fluorine obtained due to thermal degradation of the release agent The resin film may be darkened and the light transmittance may be reduced.
On the other hand, when the fluorine content of the fluororesin is high, the release process of the fluororesin film itself is good, so that the release process can be smoothly advanced without using a release agent.
本発明の高光透過性フッ素樹脂フィルムの製造方法に使用するモールドの材質としては、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアクリレート、ポリメタクリレート、ポリアリレート、エポキシ樹脂等の高分子材料、ニッケル、鉄、ステンレス鋼、シリコン、アルミナ等の金属類、石英ガラス等のガラス類、サファイヤ、ダイヤモンド、グラッシーカーボンの材料があげられる。モールドの表面は、フッ素樹脂フィルムとの離型性をさらに良好にするために別途ニッケルメッキされていてもよい。 The material of the mold used in the method for producing the highly light-transmitting fluororesin film of the present invention is a polymer such as polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyarylate, epoxy resin, etc. Materials, metals such as nickel, iron, stainless steel, silicon and alumina, glasses such as quartz glass, sapphire, diamond and glassy carbon are examples. The surface of the mold may be separately plated with nickel in order to further improve the releasability from the fluororesin film.
また、微細パターンを有するモールドは高価であることが多い。そこで、高価なモールドの破損などを防止するために、原版となる微細パターンを有するモールドをマスターモールドとして、マスターモールドから複製品であるレプリカのモールドを作成して、該レプリカモールドによってフッ素樹脂フィルムへの微細パターンの形成を行ってもよい。 Also, a mold having a fine pattern is often expensive. Therefore, in order to prevent damage to expensive molds, etc., a mold having a fine pattern as a master is used as a master mold, a replica mold that is a replica is created from the master mold, and the replica mold is used to create a fluororesin film. The fine pattern may be formed.
本発明の高光透過性フッ素樹脂フィルムは、光透過率が高く、光の反射率が低いだけでなく、フッ素樹脂の特徴である、耐熱性、耐薬品性、耐候性、電気特性にも優れる。このためこれらの諸特性が要求される用途で好適に用いることができる。例えば、ディスプレイ用反射防止フィルム、農業ハウス用フィルム、太陽電池表面材用フィルムなどである。これらの中でも、農業ハウス用フィルム、太陽電池表面材用フィルムとして特に好適に用いることができる。 The high light-transmitting fluororesin film of the present invention has not only high light transmittance and low light reflectance, but also excellent heat resistance, chemical resistance, weather resistance, and electrical characteristics, which are characteristics of the fluororesin. For this reason, it can use suitably in the use as which these various characteristics are requested | required. For example, an antireflection film for display, a film for agricultural house, a film for solar cell surface material, and the like. Among these, it can use especially suitably as a film for agricultural houses and a film for solar cell surface materials.
以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
例1、2は実施例であり、例3、4は比較例である。
各特性の評価は以下の方法で行った。
高光透過性フッ素樹脂フィルムの製造は、以下の装置、モールドを用いて行った。
ナノインプリント装置:明昌機工株式会社製、ナノインプリンターNM−0401
モールド:反射防止体Si金型原版(商品名、NTT−ATナノファブリケーション株式会社製、モールドサイズ:25mm×25mm、パターン領域:10mm×10mm、凸部の幅:0.3μm、凸部のピッチ:0.3μm、凸部の高さ:0.4μm、凸部のアスペクト比:1.3、凸部の形状:底面が真円の円錐形状)
[凹部の寸法]
凹部の寸法は、走査型電子顕微鏡(日立製作所社製、S−4800)により測長して見積もった。
[反射率、光透過率]
可視光線の反射率および光透過率の測定は、島津製作所社製分光光度計UV3600を用いて行った。
反射率の測定の際には、微細パターンを形成した面とは反対側の面からの反射の影響を抑えるために、裏面に黒色の塗料を塗布した後に、反射率の測定を行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
Examples 1 and 2 are examples, and examples 3 and 4 are comparative examples.
Each characteristic was evaluated by the following method.
Manufacture of the high light transmittance fluororesin film was performed using the following apparatuses and molds.
Nanoimprinting device: manufactured by Myeongchang Kiko Co., Ltd., Nanoimprinter NM-0401
Mold: Anti-reflective body Si original mold (trade name, manufactured by NTT-AT Nanofabrication Co., Ltd., mold size: 25 mm × 25 mm, pattern area: 10 mm × 10 mm, width of convex part: 0.3 μm, pitch of convex part : 0.3 μm, height of convex part: 0.4 μm, aspect ratio of convex part: 1.3, shape of convex part: conical shape with a perfect circle at the bottom)
[Dimension of recess]
The dimensions of the recesses were estimated by measuring with a scanning electron microscope (S-4800, manufactured by Hitachi, Ltd.).
[Reflectance, light transmittance]
Measurement of the visible light reflectance and light transmittance was performed using a spectrophotometer UV3600 manufactured by Shimadzu Corporation.
In measuring the reflectance, in order to suppress the influence of the reflection from the surface opposite to the surface on which the fine pattern was formed, the reflectance was measured after applying a black paint on the back surface.
[水の接触角]
水の接触角の測定は、協和界面科学社製CA−X150を用いて行った。
[耐候性]
耐候性は、各例において作製したフィルムサンプルを、南向き45°傾斜の屋外暴露台に設置して、30日暴露した後、転写フィルムの汚れの様子を目視で観察することにより評価した。
[Contact angle of water]
The water contact angle was measured using CA-X150 manufactured by Kyowa Interface Science Co., Ltd.
[Weatherability]
The weather resistance was evaluated by placing the film sample prepared in each example on an outdoor exposure table inclined 45 ° southward and exposing the film sample for 30 days, and then visually observing the stain on the transfer film.
[例1]
原料フッ素樹脂フィルムとしてETFEフィルム(旭硝子社製、フルオンETFE、80mm×80mm、厚み100μm)を用いた。モールドの上にETFEフィルムを置き、さらにETFEフィルムの上にガラス板を置き、ナノインプリント装置を用いて、圧着を行った。モールドとETFEフィルムを200℃に加熱し、圧力1500Nで5分間挟持した。その後、モールドとETFEフィルムを60℃まで冷却した。モールドとETFEフィルムを、60℃に保持したまま、モールドからETFEフィルムを手で剥離し、フッ素樹脂フィルムサンプル1を得た。
[Example 1]
An ETFE film (manufactured by Asahi Glass Co., Ltd., full-on ETFE, 80 mm × 80 mm, thickness 100 μm) was used as the raw material fluororesin film. An ETFE film was placed on the mold, a glass plate was placed on the ETFE film, and pressure bonding was performed using a nanoimprint apparatus. The mold and the ETFE film were heated to 200 ° C. and sandwiched at a pressure of 1500 N for 5 minutes. Thereafter, the mold and the ETFE film were cooled to 60 ° C. While the mold and the ETFE film were kept at 60 ° C., the ETFE film was peeled off from the mold by hand to obtain a fluororesin film sample 1.
フッ素樹脂フィルムサンプル1について、凹凸形状を有する表面を電子顕微鏡により観察したところ、底面が真円の円錐状からなる凹部の繰り返しパターンが形成されていた。微細パターンのピッチは0.3μmであり、凹部の幅は0.3μmであり、凹部のアスペクト比は1.3であった。
また、フッ素樹脂フィルムサンプル1について、光透過率、反射率、水の接触角、耐候性の評価を行った。結果を表1に示す。
About the fluororesin film sample 1, when the surface which has an uneven | corrugated shape was observed with the electron microscope, the repeating pattern of the recessed part which a bottom face consists of a cone shape with a perfect circle was formed. The pitch of the fine pattern was 0.3 μm, the width of the concave portion was 0.3 μm, and the aspect ratio of the concave portion was 1.3.
Moreover, the fluororesin film sample 1 was evaluated for light transmittance, reflectance, water contact angle, and weather resistance. The results are shown in Table 1.
[例2]
例1において、原料フッ素樹脂フィルムとしてETFEフィルムの代わりに、PFAフィルム(旭硝子社製、フルオンPFA、80mm×80mm、厚み50μm)を用いた以外は例1と同様にして、フッ素樹脂フィルムサンプル2を作製した。
フッ素樹脂フィルムサンプル2について、凹凸形状を有する表面を電子顕微鏡により観察したところ、底面が真円の円錐状からなる凹部の繰り返しパターンが形成されていた。微細パターンのピッチは0.3μmであり、凹部の幅は0.3μmであり、凹部のアスペクト比は1.3であった。
フッ素樹脂フィルムサンプル2について、光透過率、反射率、水の接触角、耐候性の評価を行った。結果を表1に示す。
[Example 2]
In Example 1, instead of the ETFE film as a raw material fluororesin film, a fluororesin film sample 2 was prepared in the same manner as in Example 1 except that a PFA film (Asahi Glass Co., Ltd., full-on PFA, 80 mm × 80 mm, thickness 50 μm) was used. Produced.
About the fluororesin film sample 2, when the surface which has an uneven | corrugated shape was observed with the electron microscope, the repeating pattern of the recessed part which the bottom face consists of a conical shape with a perfect circle was formed. The pitch of the fine pattern was 0.3 μm, the width of the concave portion was 0.3 μm, and the aspect ratio of the concave portion was 1.3.
The fluororesin film sample 2 was evaluated for light transmittance, reflectance, water contact angle, and weather resistance. The results are shown in Table 1.
[例3]
原料フッ素樹脂フィルムとして軟質ポリエチレンフィルム(厚み100μm)を用いた。モールドの表面には、あらかじめ、離型剤(ダイキン工業社製、オプツールDSX)を塗布した。
モールドの上にポリエチレンフィルムを置き、さらにポリエチレンフィルムの上にガラス板を置き、ナノインプリント装置を用いて、圧着を行った。モールドとポリエチレンフィルムを100℃に加熱し、圧力1500Nで5分間挟持した。その後、モールドとポリエチレンフィルムを25℃まで冷却した。モールドとポリエチレンフィルムを25℃に保持したまま、モールドからETFEフィルムを手で剥離し、転写ポリエチレンフィルムを得た。
[Example 3]
A soft polyethylene film (thickness: 100 μm) was used as the raw material fluororesin film. A mold release agent (manufactured by Daikin Industries, Ltd., OPTOOL DSX) was previously applied to the surface of the mold.
A polyethylene film was placed on the mold, a glass plate was placed on the polyethylene film, and pressure bonding was performed using a nanoimprint apparatus. The mold and the polyethylene film were heated to 100 ° C. and sandwiched at a pressure of 1500 N for 5 minutes. Thereafter, the mold and the polyethylene film were cooled to 25 ° C. While the mold and the polyethylene film were kept at 25 ° C., the ETFE film was peeled from the mold by hand to obtain a transfer polyethylene film.
転写ポリエチレンフィルムについて、凹凸形状を有する表面を電子顕微鏡により観察したところ、底面が真円の円錐状からなる凹部の繰り返しパターンが形成されていた。微細パターンのピッチは0.3μmであり、凹部の幅は0.3μmであり、凹部のアスペクト比は1.3であった。
また、転写ポリエチレンフィルムについて、光透過率、反射率、水の接触角、耐候性の評価を行った。結果を表1に示す。
About the transfer polyethylene film, when the surface which has an uneven | corrugated shape was observed with the electron microscope, the repeating pattern of the recessed part which a bottom face consists of a cone shape with a perfect circle was formed. The pitch of the fine pattern was 0.3 μm, the width of the concave portion was 0.3 μm, and the aspect ratio of the concave portion was 1.3.
The transfer polyethylene film was evaluated for light transmittance, reflectance, water contact angle, and weather resistance. The results are shown in Table 1.
[例4]
比較としてフィルムの表面に微細パターンの形成を行っていない、ETFEフィルム(旭硝子社製、フルオンETFE、80mm×80mm、厚み100μm)について、光透過率、反射率、水の接触角、耐候性の評価を行った。結果を表1に示す。
[Example 4]
As a comparison, evaluation of light transmittance, reflectance, contact angle of water and weather resistance of an ETFE film (manufactured by Asahi Glass Co., Ltd., full-on ETFE, 80 mm × 80 mm, thickness 100 μm) on which no fine pattern is formed on the surface of the film Went. The results are shown in Table 1.
本発明は、表面に微細パターンを有する、高光透過性フッ素樹脂フィルムを提供する。 The present invention provides a highly light-transmitting fluororesin film having a fine pattern on the surface.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008170712A JP5343420B2 (en) | 2008-06-30 | 2008-06-30 | High light transmittance fluororesin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008170712A JP5343420B2 (en) | 2008-06-30 | 2008-06-30 | High light transmittance fluororesin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010005998A JP2010005998A (en) | 2010-01-14 |
JP5343420B2 true JP5343420B2 (en) | 2013-11-13 |
Family
ID=41587019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008170712A Active JP5343420B2 (en) | 2008-06-30 | 2008-06-30 | High light transmittance fluororesin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5343420B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5093681B2 (en) * | 2008-06-30 | 2012-12-12 | 独立行政法人産業技術総合研究所 | Super water-repellent material and method for producing the same |
JP2012077147A (en) * | 2010-09-30 | 2012-04-19 | Lintec Corp | Water-repellent sheet |
JP5818306B2 (en) * | 2011-03-07 | 2015-11-18 | 学校法人東京理科大学 | Method for manufacturing transfer structure and matrix used therefor |
JP2013199617A (en) * | 2012-03-26 | 2013-10-03 | Sumitomo Electric Fine Polymer Inc | Antifouling film |
JP5788577B2 (en) * | 2014-08-27 | 2015-09-30 | Hoya株式会社 | Copy mold manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09155972A (en) * | 1995-12-12 | 1997-06-17 | Ykk Corp | Water repellant film and its manufacture |
JP2003215303A (en) * | 2002-01-18 | 2003-07-30 | Dainippon Printing Co Ltd | Antireflection article |
JP2007203576A (en) * | 2006-02-01 | 2007-08-16 | Oji Paper Co Ltd | Manufacturing process of double width nanoimprint roll for roll type imprint apparatus |
JP4714627B2 (en) * | 2006-04-14 | 2011-06-29 | パナソニック株式会社 | Method for producing structure having fine uneven structure on surface |
-
2008
- 2008-06-30 JP JP2008170712A patent/JP5343420B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010005998A (en) | 2010-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raut et al. | Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting | |
JP5343420B2 (en) | High light transmittance fluororesin film | |
EP2762930B1 (en) | Light-condensing film, solar cell module, and transfer mold | |
CN102004272B (en) | Optical device, manufacturing method thereof, and method of manufacturing master | |
US9469083B2 (en) | Inverted nanocone structures for multifunctional surface and its fabrication process | |
JP4655043B2 (en) | Mold, and method for producing substrate having transfer fine pattern | |
CN101678572A (en) | Mold, method for production of the mold, and method for production of substrate having replicated fine pattern | |
US20090041984A1 (en) | Structured Smudge-Resistant Coatings and Methods of Making and Using the Same | |
WO2016035245A1 (en) | Laminate, imaging device package, image acquisition apparatus, and electronic equipment | |
TW201023379A (en) | Light concentrating module | |
JPWO2005010572A1 (en) | Anti-reflective molded product and manufacturing method thereof | |
JP2007203576A (en) | Manufacturing process of double width nanoimprint roll for roll type imprint apparatus | |
TW201025647A (en) | Photovoltaic module | |
JP2007320072A (en) | Mold and its manufacturing method | |
JP2012014084A (en) | Optical element, manufacturing method thereof, and optical system, optical device, imaging apparatus, and camera with interchangeable lenses using the same | |
TWI382551B (en) | Solar concentrating module | |
JP6166472B2 (en) | Fingerprint-resistant film and electrical / electronic device | |
TW201133901A (en) | Guard substrate for optical electromotive force equipment, and its production process | |
JP2013199617A (en) | Antifouling film | |
EP2130659A1 (en) | Forming die and microlens formed by using the same | |
JP2012252149A (en) | Asperity pattern forming sheet and manufacturing method therefor, light diffusion body, stamper for manufacturing light diffusion body, and manufacturing method for light diffusion body | |
Feng et al. | Glass flow evolution and the mechanism of antireflective nanoprotrusion arrays in nanoholes by direct thermal imprinting | |
JP2012220675A (en) | Laminate, and antireflection article and water-repellent article | |
Park et al. | Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission | |
JP4410826B2 (en) | Multi-lens member, illumination device, and liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120925 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130618 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130729 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5343420 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |