JP5343101B2 - Detection signal correction method of angle sensor - Google Patents

Detection signal correction method of angle sensor Download PDF

Info

Publication number
JP5343101B2
JP5343101B2 JP2011060879A JP2011060879A JP5343101B2 JP 5343101 B2 JP5343101 B2 JP 5343101B2 JP 2011060879 A JP2011060879 A JP 2011060879A JP 2011060879 A JP2011060879 A JP 2011060879A JP 5343101 B2 JP5343101 B2 JP 5343101B2
Authority
JP
Japan
Prior art keywords
angle
sensor
offset voltage
detection sensor
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011060879A
Other languages
Japanese (ja)
Other versions
JP2012198048A (en
Inventor
由太郎 荒井
弘幸 井灘
長興 嘉山
昭雄 片岡
隆 井上
貴史 阿部
健次 上月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2011060879A priority Critical patent/JP5343101B2/en
Priority to KR1020110043655A priority patent/KR101440181B1/en
Priority to CN201110177463.1A priority patent/CN102679862B/en
Publication of JP2012198048A publication Critical patent/JP2012198048A/en
Application granted granted Critical
Publication of JP5343101B2 publication Critical patent/JP5343101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/18Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying effective impedance of discharge tubes or semiconductor devices
    • G01D5/183Sensing rotation or linear movement using strain, force or pressure sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core

Description

本発明は、ホール素子を用い微小角度の測定に適した角度センサの検出信号補正方法に関するものである。   The present invention relates to a detection signal correction method of an angle sensor suitable for measuring a minute angle using a Hall element.

一般的なホール素子においては、図6に示すように、金属の薄片であるホール素子1の磁束密度検出面であるチップ面Tに対して、直交する磁界の磁束密度をBとし、ホール素子1に定電流Iを流すと、ホール素子1は磁束密度Bによりローレンツ力を受けて起電力を発生する。ホール素子1の起電力である出力Vは、Kをホール係数、dをホール素子の厚みとすると、次の(1)式となる。
V=(K/d)B・I …(1)
In a general Hall element, as shown in FIG. 6, the magnetic flux density of a magnetic field orthogonal to the chip surface T which is a magnetic flux density detection surface of the Hall element 1 which is a thin metal piece is B, and the Hall element 1 When a constant current I is passed through the Hall element 1, the Hall element 1 receives an Lorentz force by the magnetic flux density B and generates an electromotive force. The output V, which is the electromotive force of the Hall element 1, is expressed by the following equation (1), where K is the Hall coefficient and d is the thickness of the Hall element.
V = (K / d) B · I (1)

このホール素子1を角度センサとして使用するには、チップ面Tが磁束方向と交叉する角度をホール素子1の出力として検出する。検出する角度が微小な場合に、ホール素子1のチップ面Tをマグネットによる磁束の向きと平行にしてホール素子1の感度を高める方法が、例えば特許文献1に開示されている。   In order to use the Hall element 1 as an angle sensor, the angle at which the chip surface T intersects the magnetic flux direction is detected as the output of the Hall element 1. For example, Patent Document 1 discloses a method of increasing the sensitivity of the Hall element 1 by making the chip surface T of the Hall element 1 parallel to the direction of the magnetic flux by the magnet when the angle to be detected is small.

微小な角度変位θを検出する場合は、図7に示すようにホール素子1を磁束密度Bの磁界中に配置し、θ=0では、ホール素子1のチップ面Tが磁束の方向と平行、つまりチップ面Tに対する磁束の方向が0゜となるように配置する。   When detecting a small angular displacement θ, the Hall element 1 is arranged in a magnetic field having a magnetic flux density B as shown in FIG. 7, and when θ = 0, the chip surface T of the Hall element 1 is parallel to the direction of the magnetic flux. That is, it arrange | positions so that the direction of the magnetic flux with respect to the chip surface T may become 0 degree.

このようにして、ホール素子1のチップ面Tを磁束と平行に配置すると、角度変位θに対する高い感度が得られる。配置したホール素子1が、図8に示すように磁束に対して傾くことで発生するホール素子1の出力Vを計測し、例えば1°の1000分の1程度の分解能を有する角度変位θを、次の(2)式により検出することができる。
V=(K/d)・B・I・sinθ …(2)
Thus, when the chip surface T of the Hall element 1 is arranged in parallel with the magnetic flux, high sensitivity to the angular displacement θ can be obtained. As shown in FIG. 8, the output V of the Hall element 1 generated when the arranged Hall element 1 is tilted with respect to the magnetic flux as shown in FIG. 8 is measured. For example, an angular displacement θ having a resolution of about 1/1000 of 1 ° is obtained. It can be detected by the following equation (2).
V = (K / d) · B · I · sin θ (2)

なお、角度変位θが0°近傍の微小角度とすると、sinθ≒θとなり、(2)式は(2)' 式となる。
V=(K/d)・B・I・θ …(2)'
If the angular displacement θ is a minute angle near 0 °, sin θ≈θ, and equation (2) becomes equation (2) ′.
V = (K / d) · B · I · θ (2) ′

一方、磁束密度Bの補正のために、図8に示すようにホール素子1と同種の基準用ホール素子2を同一磁界、又はその磁束密度に比例する成分が得られるように、そのチップ面Tが磁束の方向と直交するように配置する。基準用ホール素子2に定電流Iを加えると、基準用ホール素子2の出力Vsは、Ksをそのホール係数、厚みをdsとすると、(3)式が得られる。
Vs=(Ks/ds)・B・I …(3)
On the other hand, in order to correct the magnetic flux density B, as shown in FIG. 8, the chip surface T of the reference Hall element 2 of the same type as the Hall element 1 is obtained so that the same magnetic field or a component proportional to the magnetic flux density can be obtained. Is arranged so as to be orthogonal to the direction of the magnetic flux. When a constant current I is applied to the reference Hall element 2, the output Vs of the reference Hall element 2 is given by Equation (3) where Ks is the Hall coefficient and the thickness is ds.
Vs = (Ks / ds) · B · I (3)

これらの出力V、Vsについて、ホール素子1の出力Vを基準用ホール素子2の出力Vsで除すと、(4)式が得られる。
V/Vs=(K/d)・θ/(Ks/ds) …(4)
For these outputs V and Vs, when the output V of the Hall element 1 is divided by the output Vs of the reference Hall element 2, equation (4) is obtained.
V / Vs = (K / d) · θ / (Ks / ds) (4)

ここで、K、d、Ks、dsは定数なので、(4)式から磁束密度Bの経時変化などの影響を受けない安定した微小な角度変位θを検出することができる。   Here, since K, d, Ks, and ds are constants, it is possible to detect a stable minute angular displacement θ that is not affected by the change with time of the magnetic flux density B from the equation (4).

しかし、ホール素子1、2のホール係数K、Ksは温度の影響を受け易く温度依存性を有するので、多数のホール素子の中から温度特性が揃った一対のホール素子を選別し、ホール素子1、2として周囲温度の変動に対応している。   However, since the Hall coefficients K and Ks of the Hall elements 1 and 2 are easily affected by temperature and have temperature dependence, a pair of Hall elements having uniform temperature characteristics are selected from a large number of Hall elements, and the Hall element 1 is selected. 2 corresponds to fluctuations in ambient temperature.

特開2002−22485号公報Japanese Patent Laid-Open No. 2002-22485

このようにホール素子の選別を行っても、ホール素子に電流Iを供給することにより角度に依存しないオフセット電圧が発生することが知られている。しかし、図6に示すように配置して出力電圧を求める場合には、ローレンツ力による起電力が大きく、オフセット電圧値は極めて小さいので、一般にはオフセット電圧値は無視されている。   It is known that even when the Hall elements are selected in this way, an offset voltage independent of the angle is generated by supplying the current I to the Hall elements. However, when the output voltage is obtained by arranging as shown in FIG. 6, since the electromotive force due to the Lorentz force is large and the offset voltage value is extremely small, the offset voltage value is generally ignored.

しかし、磁束の方向とチップ面Tを平行にした微小角度の測定においては、ホール素子の内部抵抗による無視できない第1のオフセット電圧値が発生する。この第1のオフセット電圧値は周囲温度により変化し、出力V、Vsに重畳して角度測定に誤差を与えており、特に周囲温度が広範囲で変化する場合には対処が必要となる。   However, in the measurement of a minute angle in which the direction of the magnetic flux is parallel to the chip surface T, a first offset voltage value that cannot be ignored is generated due to the internal resistance of the Hall element. This first offset voltage value varies depending on the ambient temperature and is superimposed on the outputs V and Vs to give an error in angle measurement. In particular, when the ambient temperature varies over a wide range, it is necessary to take a countermeasure.

また、磁束の方向とホール素子1のチップ面Tを平行にした場合には、チップ面Tと直交し磁束に対向するカット面Cでローレンツ力に基づく起電力が発生し、温度変化に応じてホール素子1の出力Vに重畳し、同様に角度測定に誤差を与えていることが分った。   Further, when the direction of the magnetic flux and the chip surface T of the Hall element 1 are made parallel, an electromotive force based on the Lorentz force is generated on the cut surface C orthogonal to the chip surface T and facing the magnetic flux, and according to the temperature change It was found that an error was given to the angle measurement by superimposing it on the output V of the Hall element 1 as well.

本発明目的は、ホール素子が有する内部抵抗に基づく電流による第1のオフセット電圧値を含み、周囲温度に対応して変動し、ホール素子のカット面によるローレンツ力に起因する第2のオフセット電圧値を演算により除去することにより、微小角度の信号値の誤差を良好に補正する角度センサの検出信号補正方法を提供することにある。 An object of the present invention comprises a first offset voltage value by the current based on the internal resistance with the Hall element will vary in response to ambient temperature, a second offset voltage due to the Lorentz force due to the cut surface of the Hall element An object of the present invention is to provide a detection signal correction method of an angle sensor that corrects an error of a signal value of a minute angle by removing the value by calculation.

また、本発明に係る角度センサの検出信号補正方法は、磁束を一様に発生する磁界発生機構に対し相対的に回転可能とした軸に取り付け、前記磁界発生機構の磁界方向に対する相対角度を検出するホール素子から成る角度検出用センサを備え、測定角度が0°の零位角度において前記角度検出用センサの磁束密度検出面であるチップ面を前記磁界発生機構からの磁束の方向と平行に配置する角度検出用センサの検出信号補正方法において、オフラインにおいて、前記角度検出用センサを磁界方向と前記角度検出用センサのチップ面が並行になるように前記零位角度に固定し、所定の磁束を発生させた有磁界状態で、定電流を前記角度検出用センサに供給して、前記角度検出用センサの複数の周囲温度による内部抵抗に起因する第1のオフセット電圧値に前記角度検出用センサのカット面によるローレンツ力に起因する起電力を加えた第2のオフセット電圧値をそれぞれ測定し、前記第2のオフセット電圧値の温度特性を求める第1のステップと、オンラインでの角度測定中に、温度検出用センサによる周囲温度の測定を行い、前記角度検出用センサの出力から前記温度特性に該当する前記第2のオフセット電圧値を除去する補正を行う第2のステップとを有することを特徴とする。   In addition, the detection signal correction method of the angle sensor according to the present invention is attached to a shaft that is rotatable relative to a magnetic field generation mechanism that uniformly generates magnetic flux, and detects a relative angle of the magnetic field generation mechanism with respect to the magnetic field direction. And a chip surface, which is a magnetic flux density detection surface of the angle detection sensor, at a zero angle where the measurement angle is 0 °, is arranged in parallel with the direction of the magnetic flux from the magnetic field generating mechanism. In the detection signal correction method of the angle detection sensor, the angle detection sensor is fixed to the zero angle so that the magnetic field direction and the chip surface of the angle detection sensor are parallel to each other, and a predetermined magnetic flux is generated offline. In the generated magnetic field state, a constant current is supplied to the angle detection sensor, and a first offset caused by internal resistance due to a plurality of ambient temperatures of the angle detection sensor. A first step of measuring a second offset voltage value obtained by adding an electromotive force caused by the Lorentz force by the cut surface of the angle detection sensor to obtain a temperature characteristic of the second offset voltage value; During the on-line angle measurement, the ambient temperature is measured by the temperature detection sensor, and the second offset voltage value corresponding to the temperature characteristic is corrected from the output of the angle detection sensor. These steps are included.

また、本発明に係る角度センサの検出信号補正方法によれば、ホール素子に発生する第1のオフセット電圧値を含み、ホール素子のカット面に対する磁束により発生する第2のオフセット電圧値を周囲温度に従って除去し、微小角度の測定精度を向上させる。 In addition, according to the detection signal correction method of the angle sensor according to the present invention, the second offset voltage value including the first offset voltage value generated in the Hall element and generated by the magnetic flux with respect to the cut surface of the Hall element is set to the ambient temperature. To improve the measurement accuracy of minute angles.

実施例の縦断面図である。It is a longitudinal cross-sectional view of an Example. 実施例の横断面図である。It is a cross-sectional view of an example. 軸が回転した状態の説明図である。It is explanatory drawing of the state which the axis | shaft rotated. 実施例1の温度に対する誤差のグラフ図である。3 is a graph showing an error with respect to temperature in Example 1. FIG. 実施例2の温度に対する誤差のグラフ図である。6 is a graph showing an error with respect to temperature in Example 2. FIG. 一般的なホール素子の原理的説明図である。It is a principle explanatory view of a general Hall element. ホール素子の磁束密度検出面を磁束と平行に配置した場合の説明図である。It is explanatory drawing at the time of arrange | positioning the magnetic flux density detection surface of a Hall element in parallel with magnetic flux. ホール素子を傾けた場合の説明図である。It is explanatory drawing at the time of tilting a Hall element.

本発明を図1〜図5に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1において、透磁性材料から成るハウジング11には貫通孔12が設けられ、この貫通孔12には、同様に透磁性材料から成る軸13がベアリング14を介して回転可能に保持されている。軸13には、ホール素子から成る角度検出用センサ15が切欠部等に取り付けられており、軸13には例えば液面計のフロートが連結され、フロートの液位が軸13の微小角度の回転に変換されるようになっている。   In FIG. 1, a through hole 12 is provided in a housing 11 made of a magnetically permeable material, and a shaft 13 made of a magnetically permeable material is also rotatably held in the through hole 12 via a bearing 14. An angle detection sensor 15 made of a Hall element is attached to the shaft 13 at a notch or the like. For example, a float of a liquid level gauge is connected to the shaft 13, and the liquid level of the float rotates by a minute angle of the shaft 13. It has been converted to.

図2に示すように、貫通孔12の両側には軸13を挟み込むように、磁界発生機構である一対のマグネット16、16’が固定され、貫通孔12内ではN極からS極に向けて磁束密度Bの磁束が一様に発生している。角度検出用センサ15と同種のホール素子から成る基準用センサ17が、ハウジング11の外側又は内側のマグネット16、16’による磁界内に固定され、チップ面Tはマグネット16、16’の磁束方向と直交するように配置されされている。なお、この基準用センサ17は背景技術で説明した基準となるホール素子2に相当している。   As shown in FIG. 2, a pair of magnets 16 and 16 ′, which are magnetic field generation mechanisms, are fixed on both sides of the through hole 12 so as to sandwich the shaft 13, and in the through hole 12 from the N pole toward the S pole. A magnetic flux having a magnetic flux density B is uniformly generated. A reference sensor 17 composed of a Hall element of the same type as the angle detection sensor 15 is fixed in a magnetic field by magnets 16 and 16 ′ outside or inside the housing 11, and the chip surface T corresponds to the magnetic flux direction of the magnets 16 and 16 ′. It arrange | positions so that it may orthogonally cross. The reference sensor 17 corresponds to the reference Hall element 2 described in the background art.

またハウジング11内には、周囲温度を検出するための例えば測温抵抗体から成る温度検出用センサ18が配置されている。そして、角度検出用センサ15、基準用センサ17、温度検出用センサ18はリード線を介して信号処理部19に接続されている。   In the housing 11, a temperature detection sensor 18 made of a resistance temperature detector for detecting the ambient temperature is disposed. The angle detection sensor 15, the reference sensor 17, and the temperature detection sensor 18 are connected to the signal processing unit 19 through lead wires.

なお実施例においては、ハウジング11を固定し軸13が回転しているが、ハウジング11が回転し軸13を固定してもよく、磁界方向に対する相対角度を測定すればよい。   In the embodiment, the housing 11 is fixed and the shaft 13 is rotated. However, the housing 11 may be rotated and the shaft 13 may be fixed, and the relative angle with respect to the magnetic field direction may be measured.

図3に示すように、角度検出用センサ15はホール素子の磁束密度検出面であるチップ面Tが、マグネット16、16’の磁束方向と平行になる場合をθ=0となる零位角度に配置されている。また、温度検出用センサ18は角度検出用センサ15、基準用センサ17の周囲温度を検出する。信号処理部19は角度検出用センサ15、基準用センサ17に定電流Iを供給し、角度検出用センサ15の出力V、基準用センサ17の出力Vs、温度検出用センサ18の温度信号を検出し、後述するように演算処理して微小な角度変位θを算出する。   As shown in FIG. 3, the angle detection sensor 15 has a zero angle where θ = 0 when the chip surface T, which is the magnetic flux density detection surface of the Hall element, is parallel to the magnetic flux direction of the magnets 16 and 16 ′. Has been placed. The temperature detection sensor 18 detects the ambient temperature of the angle detection sensor 15 and the reference sensor 17. The signal processing unit 19 supplies a constant current I to the angle detection sensor 15 and the reference sensor 17 and detects the output V of the angle detection sensor 15, the output Vs of the reference sensor 17, and the temperature signal of the temperature detection sensor 18. Then, as will be described later, a small angular displacement θ is calculated through arithmetic processing.

軸13が回転すると、先に説明した(4)式に従って、2つのセンサ15、17の出力V、Vsを基に、信号処理部19において角度変位θを演算する。   When the shaft 13 rotates, the signal processor 19 calculates the angular displacement θ based on the outputs V and Vs of the two sensors 15 and 17 according to the equation (4) described above.

しかし、角度検出用センサ15は定電流Iを供給することで、次の(5)式のような角度変位θと無関係で内部抵抗に起因する第1のオフセット電圧値O1、つまり微小な角度変位θの測定においては無視し難い電圧が発生し、出力Vに重畳しているので補正が必要となる。
V=(K/d)・B・I・θ+O1 …(5)
However, the angle detection sensor 15 supplies the constant current I, so that the first offset voltage value O1 caused by the internal resistance, that is, the minute angular displacement is independent of the angular displacement θ as in the following equation (5). In the measurement of θ, a voltage that is difficult to ignore is generated and superimposed on the output V, so correction is necessary.
V = (K / d) · B · I · θ + O1 (5)

この(5)式において、第1のオフセット電圧値O1の影響を受けない出力Vを得るためには、第1のオフセット電圧値O1を出力Vから差し引く処理を行わねばならない。   In the equation (5), in order to obtain an output V that is not affected by the first offset voltage value O1, a process of subtracting the first offset voltage value O1 from the output V must be performed.

第1のオフセット電圧値O1は定電流Iに比例して発生し、かつこの第1のオフセット電圧値O1を発生させる内部抵抗Rは温度係数αを有しているので、第1のオフセット電圧値O1は基準温度25℃に対する温度変化幅である温度Δtに依存する一次式として近似した(6)式が成立する。
O1=I・R・(1+α・Δt) …(6)
The first offset voltage value O1 is generated in proportion to the constant current I, and the internal resistance R that generates the first offset voltage value O1 has a temperature coefficient α. O1 is an approximated expression (6) as a linear expression depending on the temperature Δt that is a temperature change width with respect to the reference temperature of 25 ° C.
O1 = I · R · (1 + α · Δt) (6)

この第1のオフセット電圧値O1を得るためには、オフラインにおいて恒温槽などで角度検出用センサ15に無磁界状態、つまりB=0で定電流Iを供給しながら温度Δtを変化させて、出力Vを求める。得られた温度特性のデータから、第1のオフセット電圧値O1を発生する内部抵抗R、温度係数αを算出する。或いは、温度Δtに対する第1のオフセット電圧値O1のテーブルを作成してもよい。なお、このデータを求める場合に、無磁界状態では(5)式の第1項は関係がなくなるので、角度変位θの大きさは何れでもよい。   In order to obtain the first offset voltage value O1, the temperature Δt is changed while the constant current I is supplied to the angle detection sensor 15 in a constant temperature bath or the like in a non-magnetic state, that is, B = 0, and output. V is obtained. From the obtained temperature characteristic data, the internal resistance R and the temperature coefficient α that generate the first offset voltage value O1 are calculated. Alternatively, a table of the first offset voltage value O1 with respect to the temperature Δt may be created. When obtaining this data, since the first term of the equation (5) is not relevant in the absence of a magnetic field, the magnitude of the angular displacement θ may be any.

また、基準用センサ17においても、同様にその出力Vsに次の(7)式のように第1の第1のオフセット電圧値O1sが重畳されている。
Vs=(Ks/ds)・B・I+O1s …(7)
Similarly, in the reference sensor 17, the first first offset voltage value O1s is superimposed on the output Vs as shown in the following equation (7).
Vs = (Ks / ds) · B · I + O1s (7)

基準用センサ17のチップ面Tによる内部抵抗をRr、温度係数をαsと
すると、第1のオフセット電圧値O1sは次の(8)式のように表せる。
O1s=I・Rr・(1+αs・Δt) …(8)
When the internal resistance of the reference sensor 17 by the chip surface T is Rr and the temperature coefficient is αs, the first offset voltage value O1s can be expressed as the following equation (8).
O1s = I · Rr · (1 + αs · Δt) (8)

基準用センサ17の第1のオフセット電圧値O1sについても、無磁界状態において、基準用センサ17に対し温度Δtを変化させてデータを求め、(8)式の内部抵抗Rr、温度係数αsを算出したり、温度Δtに対する第1のオフセット電圧値O1sのテーブルを作成すればよい。   The first offset voltage value O1s of the reference sensor 17 is also obtained by changing the temperature Δt with respect to the reference sensor 17 in the absence of a magnetic field, and the internal resistance Rr and temperature coefficient αs in equation (8) are calculated. Or a table of the first offset voltage value O1s with respect to the temperature Δt may be created.

オンラインでの角度測定中では、周囲温度を温度検出用センサ18により測定し、第1のオフセット電圧値O1、O1sを算出、又は記憶したテーブルから求めることにより、信号処理部19においてこれらを(5)、(7)式から差し引けば、第1のオフセット電圧値O1、O1sが除去された出力V、Vsが得られる。   During online angle measurement, the ambient temperature is measured by the temperature detection sensor 18, and the first offset voltage values O 1 and O 1 s are calculated or obtained from the stored table. ) And (7), the outputs V and Vs from which the first offset voltage values O1 and O1s have been removed are obtained.

このような補正をした後に、(4)式と同じ(9)式により、出力V、Vsを演算すれば、温度変動の影響を受けない安定した微小な角度変位θが信号処理部19により得られる。
V/Vs=(K/d)・θ/(Ks/ds) …(9)
After such correction, if the outputs V and Vs are calculated by the same equation (9) as the equation (4), the signal processing unit 19 can obtain a stable minute angular displacement θ that is not affected by the temperature fluctuation. It is done.
V / Vs = (K / d) · θ / (Ks / ds) (9)

図4は実施例1の第1のオフセット電圧値O1、O1sを除去した温度Δtの±50℃の範囲における実測したフルスケールに対する誤差(%:フルスケール 1°)の特性E1のグラフ図であり、特性E0は従来例の実測した誤差を示し、特性E1は特性E0と比べて第1のオフセット電圧値O1、O1sによる誤差が補正されている。   FIG. 4 is a graph of the characteristic E1 of the error (%: full scale 1 °) with respect to the actually measured full scale in the range of ± 50 ° C. of the temperature Δt from which the first offset voltage values O1 and O1s of Example 1 are removed. The characteristic E0 indicates an actually measured error of the conventional example, and the characteristic E1 is corrected for errors due to the first offset voltage values O1 and O1s as compared with the characteristic E0.

なお、基準用センサ17については、ローレンツ力に起因する(7)式の第1項の値は、第1のオフセット電圧値O1sよりも十分に大きく、微小な第1のオフセット電圧値O1sは無視することができるので、第1のオフセット電圧値O1sは求めずに、演算においても使用しなくともよい。   For the reference sensor 17, the value of the first term in the equation (7) due to the Lorentz force is sufficiently larger than the first offset voltage value O1s, and the minute first offset voltage value O1s is ignored. Therefore, the first offset voltage value O1s does not have to be obtained and may not be used in the calculation.

角度検出用センサ15により、図3に示すようにチップ面Tが磁束とほぼ平行になるようにして微小の角度変位θを測定する際に、チップ面Tと直交するカット面Cについても磁束密度Bによる影響を受けて、僅かながらも起電力が発生し出力Vに重畳する。本明細書では、第1のオフセット電圧値O1にこの起電力を加えて、第2のオフセット電圧値O2と定義することにする。   When the minute angular displacement θ is measured by the angle detection sensor 15 so that the chip surface T is substantially parallel to the magnetic flux as shown in FIG. 3, the magnetic flux density is also applied to the cut surface C orthogonal to the chip surface T. Under the influence of B, a slight electromotive force is generated and superimposed on the output V. In the present specification, the electromotive force is added to the first offset voltage value O1 to define the second offset voltage value O2.

カット面Cにおける厳密な意味でのローレンツ力は、電流Iと磁束の方向が平行であるために発生しないと考えられるが、ホール素子内では定電流は三次元的に流れ、磁束と直交する方向にも一部の電流が流れると推測され、ローレンツ力による微小な起電力が発生し、この起電力はホール素子特有の温度依存性を有している。   The Lorentz force in the strict sense on the cut surface C is considered not to occur because the current I and the direction of the magnetic flux are parallel to each other, but the constant current flows three-dimensionally in the Hall element and is perpendicular to the magnetic flux. Also, it is estimated that a part of the current flows, and a minute electromotive force is generated due to the Lorentz force, and this electromotive force has a temperature dependency unique to the Hall element.

なお、カット面Cに対する角度変位θの影響はcosθとして表されるが、角度変位θが極めて小さい範囲においてはcosθ=1とみなすことができる。   Although the influence of the angular displacement θ on the cut surface C is expressed as cos θ, it can be regarded that cos θ = 1 in a range where the angular displacement θ is extremely small.

図4において特性E1として残留している誤差は、主としてこのカット面Cに起因する起電力によるものであり、この起電力は図4からも温度Δtに対し直線的である。従って、この起電力は一定の磁束密度B内において、温度係数をβ、一定値をDとすると、温度Δtに関し一次式であるβ・Δt+Dと近似することができ、角度検出用センサ15の出力Vは、(5)式にこの起電力であるβ・Δt+Dを加えた次の(10)式とすることができる。
V=(K/d)・B・I・θ+O1+β・Δt+D …(10)
In FIG. 4, the error remaining as the characteristic E1 is mainly due to the electromotive force caused by the cut surface C, and this electromotive force is also linear with respect to the temperature Δt from FIG. Therefore, this electromotive force can be approximated to β · Δt + D, which is a linear expression with respect to the temperature Δt, where β is a temperature coefficient and D is a constant value in a constant magnetic flux density B, and the output of the angle detection sensor 15 V can be the following equation (10) obtained by adding this electromotive force β · Δt + D to equation (5).
V = (K / d) · B · I · θ + O1 + β · Δt + D (10)

そして、第2のオフセット電圧値O2は温度係数をγ、一定値をFとすると、次の一次式(11)となる。
O2=O1+β・Δt+D=I・R・(1+α・Δt)+β・Δt+D
=γ・Δt+F …(11)
The second offset voltage value O2 is represented by the following linear expression (11) where γ is a temperature coefficient and F is a constant value.
O2 = O1 + β · Δt + D = I · R · (1 + α · Δt) + β · Δt + D
= Γ · Δt + F (11)

実施例1においては、オフラインで無磁界状態において第1のオフセット電圧値O1、O1sを求めたが、実施例2では第2のオフセット電圧値O2は磁束により変動するので有磁界状態でデータを求める必要があり、更に(10)式の第1項を除去するためにはθ=0とする必要があり、第2のオフセット電圧値O2をこの状態求める。   In the first embodiment, the first offset voltage values O1 and O1s are obtained in an off-line and no magnetic field state. However, in the second embodiment, since the second offset voltage value O2 varies depending on the magnetic flux, data is obtained in a magnetic field state. Further, in order to remove the first term of the equation (10), it is necessary to set θ = 0, and the second offset voltage value O2 is obtained in this state.

即ち、オフラインで角度検出用センサ15に対し、恒温槽内でθ=0で磁束密度Bの有磁界状態において定電流Iを供給し、温度Δtを変化させて第2のオフセット電圧値O2のデータを求める。このデータから、温度Δtに対する第2のオフセット電圧値O2の一次式の定数γ、Fを算出し、或いは温度Δtに対する第2のオフセット電圧値O2のテーブルを作成する。   That is, a constant current I is supplied to the angle detection sensor 15 offline in the thermostatic chamber in a magnetic field state of θ = 0 and magnetic flux density B in the thermostat, and the temperature Δt is changed to change the data of the second offset voltage value O2. Ask for. From this data, linear constants γ and F of the second offset voltage value O2 with respect to the temperature Δt are calculated, or a table of the second offset voltage value O2 with respect to the temperature Δt is created.

なお、基準用センサ17の出力Vsではカット面Cによる起電力は生ぜず、また実施例1で説明したように第1のオフセット電圧値O1sは小さいので、実施例1のように求めることもできるが、この実施例2では無視してもよい。   Since the output Vs of the reference sensor 17 does not generate an electromotive force due to the cut surface C, and the first offset voltage value O1s is small as described in the first embodiment, it can be obtained as in the first embodiment. However, it may be ignored in the second embodiment.

オンラインでの角度測定時には、温度検出用センサ18により周囲温度Δtを測定し、記憶している一次式やテーブルを用いて、周囲温度Δtを基に第2のオフセット電圧値O2を求め、角度検出用センサ15の出力Vに重畳している誤差要因である第2のオフセット電圧値O2を除去する補正を信号処理部19により行うことにより、(9)式を基に精度の良い角度変位θが得られる。   When measuring the angle online, the ambient temperature Δt is measured by the temperature detection sensor 18, and the second offset voltage value O 2 is obtained based on the ambient temperature Δt using the stored primary equation or table to detect the angle. The signal processing unit 19 performs correction to remove the second offset voltage value O2 that is an error factor superimposed on the output V of the sensor 15 for use, so that an accurate angular displacement θ can be obtained based on the equation (9). can get.

図5は実施例2の温度Δtに対する角度変位θの実測した誤差(%:フルスケール 1°)の特性E2のグラフ図である。この特性E2は実施例1で得られた特性E1よりも更に良好な補正がなされている。   FIG. 5 is a graph of the characteristic E2 of the actually measured error (%: full scale 1 °) of the angular displacement θ with respect to the temperature Δt of Example 2. This characteristic E2 is corrected better than the characteristic E1 obtained in the first embodiment.

11 ハウジング
12 貫通孔
13 軸
14 ベアリング
15 角度検出用センサ
16、16’マグネット
17 基準用センサ
18 温度検出用センサ
19 信号処理部
DESCRIPTION OF SYMBOLS 11 Housing 12 Through-hole 13 Axis 14 Bearing 15 Angle detection sensor 16, 16 'magnet 17 Reference | standard sensor 18 Temperature detection sensor 19 Signal processing part

Claims (4)

磁束を一様に発生する磁界発生機構に対し相対的に回転可能とした軸に取り付け、前記磁界発生機構の磁界方向に対する相対角度を検出するホール素子から成る角度検出用センサを備え、測定角度が0°の零位角度において前記角度検出用センサの磁束密度検出面であるチップ面を前記磁界発生機構からの磁束の方向と平行に配置する角度検出用センサの検出信号補正方法において、
オフラインにおいて、前記角度検出用センサを磁界方向と前記角度検出用センサのチップ面が並行になるように前記零位角度に固定し、所定の磁束を発生させた有磁界状態で、定電流を前記角度検出用センサに供給して、前記角度検出用センサの複数の周囲温度による内部抵抗に起因する第1のオフセット電圧値に前記角度検出用センサのカット面によるローレンツ力に起因する起電力を加えた第2のオフセット電圧値をそれぞれ測定し、前記第2のオフセット電圧値の温度特性を求める第1のステップと、
オンラインでの角度測定中に、温度検出用センサによる周囲温度の測定を行い、前記角度検出用センサの出力から前記温度特性に該当する前記第2のオフセット電圧値を除去する補正を行う第2のステップとを有することを特徴とする角度センサの検出信号補正方法。
Mounted on a shaft that is rotatable relative to a magnetic field generating mechanism that uniformly generates magnetic flux, and includes an angle detection sensor that includes a Hall element that detects a relative angle of the magnetic field generating mechanism with respect to the magnetic field direction. In the detection signal correction method of the angle detection sensor, the chip surface which is the magnetic flux density detection surface of the angle detection sensor at a zero angle of 0 ° is arranged in parallel with the direction of the magnetic flux from the magnetic field generation mechanism.
In the offline state, the angle detection sensor is fixed at the zero angle so that the magnetic field direction and the chip surface of the angle detection sensor are parallel to each other, and a constant current is applied in a magnetic field state in which a predetermined magnetic flux is generated. Supply to the angle detection sensor and add an electromotive force due to the Lorentz force due to the cut surface of the angle detection sensor to the first offset voltage value due to the internal resistance due to a plurality of ambient temperatures of the angle detection sensor Measuring a second offset voltage value and determining a temperature characteristic of the second offset voltage value;
During the online angle measurement, the ambient temperature is measured by the temperature detection sensor, and the second offset voltage value corresponding to the temperature characteristic is corrected from the output of the angle detection sensor. And a detection signal correction method for an angle sensor.
前記相対角度は、補正した前記角度検出用センサの出力を、前記磁界発生機構の固定し磁束密度検出面であるチップ面を前記磁束の方向と直交するように配置した基準用センサの出力で除することにより算出することを特徴とする請求項1に記載の角度センサの検出信号補正方法。   The relative angle is obtained by dividing the corrected output of the angle detection sensor by the output of a reference sensor in which the chip surface, which is a fixed magnetic flux generation detection surface of the magnetic field generation mechanism, is arranged so as to be orthogonal to the direction of the magnetic flux. The detection signal correction method of the angle sensor according to claim 1, wherein the detection signal correction method calculates the detection signal. オフラインにおいて、無磁界状態で定電流を前記基準用センサに供給して、前記基準用センサの複数の周囲温度による内部抵抗に起因する基準用センサのオフセット電圧値をそれぞれ測定し、前記基準用センサのオフセット電圧値の温度特性を求め、
オンラインでの角度測定中に、前記温度検出用センサによる周囲温度の測定を行い、前記基準用センサの出力から前記温度特性に該当する前記基準用センサのオフセット電圧値を除去する補正を行うことを特徴とする請求項1又は2に記載の角度センサの検出信号補正方法。
In the offline state, a constant current is supplied to the reference sensor in the absence of a magnetic field, and the reference sensor offset voltage values caused by internal resistance due to a plurality of ambient temperatures of the reference sensor are respectively measured. The temperature characteristics of the offset voltage value of
During online angle measurement, the ambient temperature is measured by the temperature detection sensor, and correction is performed to remove the offset voltage value of the reference sensor corresponding to the temperature characteristic from the output of the reference sensor. 3. The detection signal correction method for an angle sensor according to claim 1, wherein the detection signal is corrected.
前記軸は液面計のフロートに連結したことを特徴とする請求項1〜の何れか1つの請求項に記載の角度センサの検出信号補正方法。 The angle sensor detection signal correction method according to any one of claims 1 to 3 , wherein the shaft is connected to a float of a liquid level gauge.
JP2011060879A 2011-03-18 2011-03-18 Detection signal correction method of angle sensor Active JP5343101B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011060879A JP5343101B2 (en) 2011-03-18 2011-03-18 Detection signal correction method of angle sensor
KR1020110043655A KR101440181B1 (en) 2011-03-18 2011-05-09 Correction method for detected signal in angle sensing
CN201110177463.1A CN102679862B (en) 2011-03-18 2011-06-29 The detection signal calibration method of angular transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060879A JP5343101B2 (en) 2011-03-18 2011-03-18 Detection signal correction method of angle sensor

Publications (2)

Publication Number Publication Date
JP2012198048A JP2012198048A (en) 2012-10-18
JP5343101B2 true JP5343101B2 (en) 2013-11-13

Family

ID=46812157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060879A Active JP5343101B2 (en) 2011-03-18 2011-03-18 Detection signal correction method of angle sensor

Country Status (3)

Country Link
JP (1) JP5343101B2 (en)
KR (1) KR101440181B1 (en)
CN (1) CN102679862B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896166B2 (en) 2013-03-15 2016-03-30 村田機械株式会社 Magnetic position sensor, moving body and moving body system
US10823764B2 (en) * 2017-09-01 2020-11-03 Te Connectivity Corporation Hall effect current sensor
US10564192B2 (en) * 2017-10-12 2020-02-18 Itx-M2M Co., Ltd. Hall sensor apparatus with temperature measurement function and current sensor apparatus with the same function
JP6965815B2 (en) * 2018-04-12 2021-11-10 愛知製鋼株式会社 Marker detection system and operation method of marker detection system
JP2020153813A (en) * 2019-03-20 2020-09-24 日本電産コパル電子株式会社 Noncontact angle sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295402A (en) * 1985-10-21 1987-05-01 Tokyo Keiso Kk Rotational angle detector
JPH03261869A (en) * 1990-03-13 1991-11-21 Omron Corp Apparatus for correcting output signal of hall element
JP4291936B2 (en) * 2000-07-12 2009-07-08 カヤバ工業株式会社 Rotation angle sensor
JP2003021503A (en) 2001-07-06 2003-01-24 Yamatake Corp Temperature-compensating device for angular sensor, and torque tube type measuring device
JP4044880B2 (en) * 2003-08-05 2008-02-06 株式会社日立製作所 Non-contact angle measuring device
JP2005351849A (en) * 2004-06-14 2005-12-22 Denso Corp Rotational angle detecting device and rotational angle detection method
JP4797609B2 (en) 2005-12-06 2011-10-19 株式会社デンソー Method for correcting temperature characteristics of rotation angle detection device and rotation angle detection device
CN201311272Y (en) * 2008-12-15 2009-09-16 银川英奥特自控有限公司 Non-contact high-precision angle sensor

Also Published As

Publication number Publication date
KR20120106506A (en) 2012-09-26
KR101440181B1 (en) 2014-09-12
CN102679862B (en) 2016-06-29
JP2012198048A (en) 2012-10-18
CN102679862A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP6491204B2 (en) Temperature compensation method of magnetic control field in hall sensor for OS adaptation
JP5343101B2 (en) Detection signal correction method of angle sensor
JP5096442B2 (en) Rotation angle measuring device, motor system and electric power steering system
US9863781B2 (en) Self-test for yaw rate sensors
JP2013533480A5 (en)
JP2011164019A5 (en)
US9297865B2 (en) Hall effect measurement instrument with temperature compensation
US6707292B2 (en) Magnetic circuit for a rotary position sensor
US20160238672A1 (en) Temperature Compensation Method Of Magnetic Control Fields In a Hall Sensor With OS Adaption
WO2021128419A1 (en) Magnetic encoder, absolute electrical angle measurement method and system, and readable storage medium
JP6897107B2 (en) Signal correction method for current sensor and current sensor
JP6897106B2 (en) Signal correction method for current sensor and current sensor
KR20120113162A (en) Device for detecting angle
JP2013156029A (en) Current sensor
US11067642B2 (en) Device for generating a magnetic field of calibration and built-in self-calibration magnetic sensor and calibration method using the same
JP6619974B2 (en) Encoder
US10191123B2 (en) Magnetic field measurement device
JPS60131404A (en) Measuring device for film thickness
JP5356737B2 (en) Rotation angle detector
KR102032463B1 (en) Apparatus for measuring steering angle of vehicle
JP2018054473A (en) Magnetic sensor and magnetic sensor system
JP6701995B2 (en) Magnetic field measuring device
JP2979708B2 (en) Precision magnetic flux density measuring device
KR200435856Y1 (en) A System to Compensate Vertical Component of Magnetic Field Sensor Using the Earth's Field
JP2011180009A (en) Position sensor and position detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130327

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130628

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5343101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250