JP5342206B2 - Method for producing hydrocarbon composition, hydrocarbon composition, lubricating base oil, lubricating oil composition - Google Patents

Method for producing hydrocarbon composition, hydrocarbon composition, lubricating base oil, lubricating oil composition Download PDF

Info

Publication number
JP5342206B2
JP5342206B2 JP2008261073A JP2008261073A JP5342206B2 JP 5342206 B2 JP5342206 B2 JP 5342206B2 JP 2008261073 A JP2008261073 A JP 2008261073A JP 2008261073 A JP2008261073 A JP 2008261073A JP 5342206 B2 JP5342206 B2 JP 5342206B2
Authority
JP
Japan
Prior art keywords
hydrocarbon
oil
composition
lubricating
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008261073A
Other languages
Japanese (ja)
Other versions
JP2010090253A (en
Inventor
一生 田川
▲昇▼ 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008261073A priority Critical patent/JP5342206B2/en
Priority to PCT/JP2009/067162 priority patent/WO2010041590A1/en
Publication of JP2010090253A publication Critical patent/JP2010090253A/en
Application granted granted Critical
Publication of JP5342206B2 publication Critical patent/JP5342206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、炭化水素組成物の製造方法及び炭化水素組成物、並びに潤滑油基油及び潤滑油組成物に関する。   The present invention relates to a method for producing a hydrocarbon composition, a hydrocarbon composition, a lubricating base oil, and a lubricating oil composition.

従来、軽油や重油等の燃料並びに潤滑油の分野では、炭化水素系基材の低温特性の改善が図られている。   Conventionally, in the fields of fuels such as light oil and heavy oil, and lubricating oils, improvement of low-temperature characteristics of hydrocarbon base materials has been attempted.

例えば、潤滑油の分野では、高度精製鉱油等の潤滑油基油に流動点降下剤等の添加剤を配合することによって、潤滑油の低温粘度特性の改善が図られている(例えば、特許文献1〜3を参照)。また、高粘度指数基油の製造方法としては、天然や合成のノルマルパラフィンを含む原料油について水素化分解/水素化異性化による潤滑油基油の精製を行う方法が知られている(例えば、特許文献4〜6を参照)。   For example, in the field of lubricating oils, the low temperature viscosity characteristics of lubricating oils are improved by blending additives such as pour point depressants with lubricating base oils such as highly refined mineral oils (for example, patent documents). 1-3). Further, as a method for producing a high viscosity index base oil, a method of refining a lubricating base oil by hydrocracking / hydroisomerization is known for a raw material oil containing natural or synthetic normal paraffin (for example, (See Patent Documents 4 to 6).

高粘度指数且つ低温特性に優れた潤滑油基油及び潤滑油組成物を得るには、水素化分解方法や水素化異性化方法による高度精製処理方法と、脱ろう方法が重要となっている。脱ろう方法としては、MEK等の脱ろう溶剤を用いた溶剤脱ろう方法や水素化脱ろう方法が主流となっている。
特開平4−36391号公報 特開平4−68082号公報 特開平4−120193号公報 特開2005−154760号公報 特表2006−502298号公報 特表2002−503754号公報
In order to obtain a lubricating base oil and lubricating oil composition having a high viscosity index and excellent low-temperature characteristics, a highly refined treatment method by a hydrocracking method or a hydroisomerization method and a dewaxing method are important. As the dewaxing method, a solvent dewaxing method using a dewaxing solvent such as MEK or a hydrodewaxing method has become the mainstream.
JP-A-4-36391 Japanese Patent Laid-Open No. 4-68082 Japanese Patent Laid-Open No. 4-120193 JP 2005-154760 A JP-T-2006-502298 JP-T-2002-503754

しかしながら、近時、炭化水素系基材の低温特性の向上に対する要求は益々厳しくなっており、かかる要求を十分に満足させることが困難となっている。特に、潤滑油基油の場合は、低温粘度特性に加えて高粘度指数化が求められるが、上記従来の潤滑油基油においてはこれら2つの要求が十分に両立されているとは言い難い。   However, recently, demands for improving the low-temperature characteristics of hydrocarbon-based substrates have become increasingly severe, and it has become difficult to sufficiently satisfy such demands. In particular, in the case of a lubricating base oil, a high viscosity index is required in addition to the low-temperature viscosity characteristics, but it is difficult to say that these two requirements are sufficiently compatible in the conventional lubricating base oil.

そこで本発明者らが検討したところ、従来の炭化水素系基材の低温特性が不十分となるのは、従来のMEK等による溶剤脱ろう方法では脱ろう温度より低い温度で析出する直鎖パラフィンや低分岐パラフィンを十分に除去できないことに起因しているとの知見を得た。   Therefore, the present inventors have examined that the conventional hydrocarbon base material has insufficient low-temperature characteristics because the conventional paraffin solvent precipitated by MEK and the like is precipitated at a temperature lower than the dewaxing temperature. And low-branched paraffin was not sufficiently removed.

なお、脱ろう温度を大幅に低下させることで低温特性を改善することは可能であるが、この方法の場合、多大なエネルギー消費を来たすだけでなく、脱ろう装置能力の限界や収率の悪化が懸念される。また、水素化脱ろう方法においては、初期の設備投資に多大なコストがかかることや、低温特性を改善するためには反応温度や分解率をより高く設定する等の過剰な処理を行う必要があるため、エネルギー消費や収率の悪化の点でさらなる改善の余地がある。その一方で、これらの方法により製造された炭化水素系基材あるいは添加剤を配合した製品が、製造後に規定の品質基準に見合わないことが判明した場合には、再製造や製造条件の見直しを強いられることになる。   Although it is possible to improve the low temperature characteristics by greatly reducing the dewaxing temperature, this method not only consumes a lot of energy, but also limits the dewaxing device capability and the yield. Is concerned. In addition, in the hydrodewaxing method, it is necessary to carry out excessive treatment such as setting up a higher reaction temperature and decomposition rate in order to improve the low-temperature characteristics because the initial capital investment is very expensive. Thus, there is room for further improvement in terms of energy consumption and yield deterioration. On the other hand, if it is found that a product containing a hydrocarbon base material or additive produced by these methods does not meet the specified quality standards after production, remanufacturing and reviewing the production conditions Will be forced.

本発明はこのような実情に鑑みてなされたものであり、その目的は、低温特性に優れる炭化水素組成物及びその製造方法を提供することを目的とする。また、本発明の他の目的は、該炭化水素組成物を含有し、低温粘度特性に優れ且つ高い粘度指数を有する潤滑油基油及び潤滑油組成物を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a hydrocarbon composition excellent in low-temperature characteristics and a method for producing the same. Another object of the present invention is to provide a lubricating base oil and a lubricating oil composition that contain the hydrocarbon composition, have excellent low-temperature viscosity characteristics, and have a high viscosity index.

本発明者らは、上記目的を達成するために、まず、分岐パラフィンのうち、従来の脱ろう方法では除去しきれなかった、低温特性の改善に障害となるおそれのある特定の分岐パラフィンの分離方法について検討した。その結果、尿素が、炭素数5以下の分岐基を有し、主鎖の末端から分岐位置までの炭素数が6以上である分岐パラフィンを選択的に包接(アダクト)することを新規に見出した。そして、かかる尿素の包接作用を利用することによって、炭化水素原料から低温性能の改善に障害となるおそれのある特定の分岐パラフィンを選択的に且つ効率良く分離できること、及び、得られる炭化水素組成物の低温特性を改善できることを見出し、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors firstly separated specific branched paraffins, which could not be removed by conventional dewaxing methods, and could hinder improvement in low-temperature characteristics. The method was examined. As a result, it was newly found that urea selectively includes (adducts) a branched paraffin having a branching group having 5 or less carbon atoms and having 6 or more carbon atoms from the end of the main chain to the branching position. It was. And, by utilizing the inclusion action of urea, it is possible to selectively and efficiently separate specific branched paraffins that may impede improvement of low temperature performance from hydrocarbon raw materials, and the resulting hydrocarbon composition The inventors have found that the low temperature characteristics of the product can be improved, and have completed the present invention.

すなわち、本発明は、潤滑油基油に用いられる炭化水素組成物の製造方法であって、炭素数5以下の分岐アルキル基を有する分岐パラフィンを含有する炭化水素原料と、尿素とを接触させ、炭化水素原料から、上記分岐パラフィンのうち少なくとも一方の末端から分岐位置までの炭素数が6以上である分岐パラフィンを尿素アダクト物として分離し、炭化水素組成物を得る工程を備える、炭化水素組成物の製造方法を提供する。 That is, the present invention is a method for producing a hydrocarbon composition used in a lubricating base oil, which comprises contacting a hydrocarbon raw material containing a branched paraffin having a branched alkyl group having 5 or less carbon atoms with urea. A hydrocarbon composition comprising a step of separating a branched paraffin having 6 or more carbon atoms from at least one end to a branch position from the hydrocarbon raw material as a urea adduct to obtain a hydrocarbon composition. A manufacturing method is provided.

本発明においては、上記炭化水素原料中の直鎖パラフィンの含有量が5質量%以下であることが好ましい。   In the present invention, the content of linear paraffin in the hydrocarbon raw material is preferably 5% by mass or less.

また、本発明は、上記本発明の製造方法により製造された、潤滑油基油に用いられる炭化水素組成物を提供する。 Moreover, this invention provides the hydrocarbon composition used for the lubricating base oil manufactured by the manufacturing method of the said invention.

また、本発明は、上記本発明の炭化水素組成物を含有する潤滑油基油を提供する。   The present invention also provides a lubricating base oil containing the hydrocarbon composition of the present invention.

また、本発明は、上記本発明の炭化水素組成物を含有する潤滑油組成物を提供する。   The present invention also provides a lubricating oil composition containing the hydrocarbon composition of the present invention.

本発明の炭化水素組成物の製造方法によれば、分岐パラフィンを含有する炭化水素原料から、炭素数5以下の分岐基を有し、主鎖の末端から分岐位置までの炭素数が6以上である分岐パラフィンを選択的に且つ効率良く分離除去することができる。さらに、炭化水素原料が直鎖パラフィンを含む場合には、当該直鎖パラフィンを上記特定の分岐パラフィンと共に分離除去することができる。そのため、上記製造方法によって製造される本発明の炭化水素組成物は優れた低温特性を有する。特に、本発明の炭化水素組成物を潤滑油基油及び潤滑油組成物の基材として用いることによって、低温粘度特性に優れ且つ高い粘度指数を有する潤滑油基油及び潤滑油組成物が実現可能となる。   According to the method for producing a hydrocarbon composition of the present invention, a hydrocarbon raw material containing a branched paraffin has a branching group having 5 or less carbon atoms, and the number of carbons from the end of the main chain to the branching position is 6 or more. Certain branched paraffins can be selectively and efficiently removed. Further, when the hydrocarbon raw material contains linear paraffin, the linear paraffin can be separated and removed together with the specific branched paraffin. Therefore, the hydrocarbon composition of the present invention produced by the above production method has excellent low temperature characteristics. In particular, by using the hydrocarbon composition of the present invention as a base material for a lubricating base oil and lubricating oil composition, a lubricating base oil and lubricating oil composition having excellent low temperature viscosity characteristics and a high viscosity index can be realized. It becomes.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本実施形態に係る炭化水素組成物の製造方法は、下記工程(1)〜(3)を備える。
(1)炭素数5以下の分岐アルキル基を有する分岐パラフィン(以下、「特定分岐パラフィン(A)」ということがある。)を含有する炭化水素原料と、尿素又は尿素溶液とを混合して接触させる工程、
(2)工程(1)で得られた混合物から特定分岐パラフィン(A)のうち少なくとも一方の末端から分岐位置までの炭素数が6以上である分岐パラフィン(以下、「特定分岐パラフィン(B)ということがある。)を尿素アダクト物(尿素包接物)として分離し、炭化水素含有成分を得る工程、及び、
(3)工程(2)で得られた炭化水素含有成分から過剰の尿素又は尿素溶液を分離・精製して炭化水素組成物を得る工程。
The method for producing a hydrocarbon composition according to this embodiment includes the following steps (1) to (3).
(1) A hydrocarbon raw material containing a branched paraffin having a branched alkyl group having 5 or less carbon atoms (hereinafter sometimes referred to as “specific branched paraffin (A)”) and urea or a urea solution are mixed and contacted. The process of
(2) A branched paraffin having 6 or more carbon atoms from at least one end to a branch position in the specific branched paraffin (A) from the mixture obtained in the step (1) (hereinafter referred to as “specific branched paraffin (B)”. Separating the water as a urea adduct (urea clathrate) to obtain a hydrocarbon-containing component, and
(3) A step of obtaining a hydrocarbon composition by separating and purifying excess urea or urea solution from the hydrocarbon-containing component obtained in step (2).

また、本実施形態に係る炭化水素組成物の製造方法は、必要に応じて、下記工程(4)〜(6)(分離工程又は再利用工程)を更に備えることが好ましい。
(4)工程(2)で得られた尿素アダクト物を尿素と被包接物とに分離する工程、
(5)工程(4)で得られた尿素を工程(1)に再利用する工程、及び、
(6)工程(4)で得られた被包接物を炭化水素原料の製造工程に再利用する工程。
Moreover, it is preferable that the manufacturing method of the hydrocarbon composition which concerns on this embodiment is further equipped with the following process (4)-(6) (separation process or a reuse process) as needed.
(4) A step of separating the urea adduct obtained in step (2) into urea and inclusions,
(5) Reusing the urea obtained in step (4) for step (1), and
(6) A step of reusing the inclusions obtained in step (4) for the production process of hydrocarbon raw materials.

炭化水素原料は、上記特定分岐パラフィン(A)を含有する限りにおいて特に制限されないが、灯油留分、軽油留分、重油留分、溶剤留分、あるいは潤滑油留分等、石油精製工程において得られる蒸留留分であることが好ましく、これらの中では潤滑油留分が特に好ましい。ここでいう潤滑油留分としては、例えば40℃における動粘度が、好ましくは1〜1000mm/s、より好ましくは2〜500mm/s、さらに好ましくは5〜100mm/sである。また、例えば100℃における動粘度が、好ましくは1〜100mm/s、より好ましくは1.5〜50mm/s、さらに好ましくは2〜20mm/sである。 The hydrocarbon raw material is not particularly limited as long as it contains the above-mentioned specific branched paraffin (A), but it is obtained in a petroleum refining process such as a kerosene fraction, a light oil fraction, a heavy oil fraction, a solvent fraction, or a lubricating oil fraction. The distillate fraction is preferred, and among these, the lubricating oil fraction is particularly preferred. As a lubricating oil fraction here, the kinematic viscosity in 40 degreeC becomes like this. Preferably it is 1-1000 mm < 2 > / s, More preferably, it is 2-500 mm < 2 > / s, More preferably, it is 5-100 mm < 2 > / s. For example, the kinematic viscosity at 100 ° C. is preferably 1 to 100 mm 2 / s, more preferably 1.5 to 50 mm 2 / s, and still more preferably 2 to 20 mm 2 / s.

潤滑油留分としては、潤滑油製造原料から、水素化分解/異性化工程、溶剤抽出工程、脱ろう工程(水素化脱ろう、溶剤脱ろう等)、水素化仕上げ工程、蒸留工程から選ばれる1つ又は2つ以上の工程を経て得られた潤滑油留分が好ましい。   Lubricating oil fraction is selected from lubricating oil production raw materials, hydrocracking / isomerization process, solvent extraction process, dewaxing process (hydrodewaxing, solvent dewaxing, etc.), hydrofinishing process, and distillation process. A lubricating oil fraction obtained through one or more steps is preferred.

さらに、潤滑油留分としては、溶剤精製工程と、溶剤脱ろう工程又は水素化脱ろう工程を経て得られた潤滑油留分、又は、水素化分解及び/又は水素化異性化工程と、溶剤脱ろう工程又は水素化脱ろう工程を経て得られた潤滑油留分がより好ましく、水素化分解及び/又は水素化異性化工程と、溶剤脱ろう工程又は水素化脱ろう工程を経て得られた潤滑油留分が特に好ましい。   Further, the lubricating oil fraction includes a solvent refining step, a lubricating oil fraction obtained through a solvent dewaxing step or a hydrodewaxing step, or a hydrocracking and / or hydroisomerization step, and a solvent. Lubricating oil fraction obtained through a dewaxing step or hydrodewaxing step is more preferred, obtained through a hydrocracking and / or hydroisomerization step and a solvent dewaxing step or hydrodewaxing step. A lubricating oil fraction is particularly preferred.

なお、炭化水素原料には、直鎖パラフィンが含まれていても良く、これも尿素との接触により包接されることになる。しかし、炭化水素原料中の直鎖パラフィン含有量が多い場合には、主目的である特定分岐パラフィン(B)の分離効率が悪化するおそれがあるとともに、過剰の尿素又は尿素溶液が必要となるため、炭化水素原料中の直鎖パラフィン含有量は、好ましくは5質量%以下であり、より好ましくは3質量%以下であり、さらに好ましくは1質量%以下であり、特に好ましくは0.5質量%以下である。   The hydrocarbon raw material may contain straight-chain paraffin, which is also included by contact with urea. However, when the content of linear paraffin in the hydrocarbon raw material is large, the separation efficiency of the specific branched paraffin (B), which is the main purpose, may be deteriorated, and an excessive urea or urea solution is required. The linear paraffin content in the hydrocarbon raw material is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0.5% by mass. It is as follows.

直鎖パラフィン含有量が5質量%以下の炭化水素原料としては、MEK等の脱ろう溶剤を用いた溶剤脱ろう方法により脱ろうされた原料あるいは水素化脱ろう方法により脱ろうされた原料が好適である。なお、本発明においては、これらの原料は直鎖パラフィンをある程度除去できていれば良いので、過剰な脱ろう条件を緩和することができるという利点もある。   As the hydrocarbon raw material having a linear paraffin content of 5% by mass or less, a raw material dewaxed by a solvent dewaxing method using a dewaxing solvent such as MEK or a raw material dewaxed by a hydrodewaxing method is suitable. It is. In the present invention, these raw materials only have to remove linear paraffin to some extent, so that there is an advantage that excessive dewaxing conditions can be relaxed.

また、炭化水素原料の粘度指数は、好ましくは80以上であり、より好ましくは100以上であり、さらに好ましくは120以上であり、特に好ましくは135以上であり、好ましくは180以下、より好ましくは170以下、さらに好ましくは160以下である。炭化水素原料の粘度指数を80以上とすることで低温から高温における適性な粘度を維持することができる。なお、粘度指数が180を超える場合は、目的とする炭化水素組成物の収率が悪化するおそれがあるとともに、所望の低温特性を得にくくなる。   Further, the viscosity index of the hydrocarbon raw material is preferably 80 or more, more preferably 100 or more, further preferably 120 or more, particularly preferably 135 or more, preferably 180 or less, more preferably 170. Hereinafter, it is more preferably 160 or less. By setting the viscosity index of the hydrocarbon raw material to 80 or more, an appropriate viscosity from a low temperature to a high temperature can be maintained. In addition, when a viscosity index exceeds 180, while there exists a possibility that the yield of the target hydrocarbon composition may deteriorate, it becomes difficult to obtain desired low-temperature characteristics.

また、炭化水素原料の流動点は、好ましくは10℃以下、より好ましくは0℃以下、さらに好ましくは−10℃以下、好ましくは−50℃以上、より好ましくは−40℃以上、さらに好ましくは−30℃以上である。炭化水素原料の流動点が10℃を超える場合、過剰に尿素又は尿素溶液が必要となり、特定分岐パラフィン(B)を除去する効率が悪化するおそれがあり、炭化水素原料の流動点が−50℃未満の場合、低温特性をさらに改善する本発明の目的に見合わない。   The pour point of the hydrocarbon raw material is preferably 10 ° C. or lower, more preferably 0 ° C. or lower, further preferably −10 ° C. or lower, preferably −50 ° C. or higher, more preferably −40 ° C. or higher, and still more preferably − 30 ° C or higher. When the pour point of the hydrocarbon raw material exceeds 10 ° C, urea or urea solution is excessively required, and the efficiency of removing the specific branched paraffin (B) may be deteriorated. The pour point of the hydrocarbon raw material is -50 ° C. If it is less than 1, it does not meet the object of the present invention to further improve the low temperature characteristics.

また、炭化水素原料中の分岐パラフィンの含有量(特定分岐パラフィン(A)及びその他の分岐パラフィンの含有量の合計)は、好ましくは40質量%以上、より好ましくは60質量%以上、さらに好ましくは80質量%以上、特に好ましくは90質量%以上に調整されてなることが好ましい。炭化水素原料中の分岐パラフィン含有量が40質量%未満の場合、高粘度指数の潤滑油基油を得にくくなる。   Further, the content of the branched paraffin in the hydrocarbon raw material (the total content of the specific branched paraffin (A) and the other branched paraffin) is preferably 40% by mass or more, more preferably 60% by mass or more, and still more preferably. It is preferably adjusted to 80% by mass or more, particularly preferably 90% by mass or more. When the content of branched paraffin in the hydrocarbon raw material is less than 40% by mass, it becomes difficult to obtain a lubricating base oil having a high viscosity index.

また、工程(1)において、炭化水素混合原料と尿素との割合は、特に制限はなく、特定パラフィンの一部又は全部を包接するために十分な尿素が存在していれば良いが、炭化水素原料1重量部に対し、好ましくは尿素を0.01〜10重量部、より好ましくは0.1〜5重量部、さらに好ましくは0.5〜4重量部、特に好ましくは1〜3の割合で使用する。尿素の割合が炭化水素混合原料1重量部に対し0.01重量部未満の場合、特定分岐パラフィン(B)の低減又は除去効果が低下する傾向にあり、10重量部を超える場合は、尿素を多量に必要とするだけでなく、尿素の割合に見合う効果が得られない傾向にある。   Further, in the step (1), the ratio of the hydrocarbon mixed raw material and urea is not particularly limited, and it is sufficient that sufficient urea is present to include part or all of the specific paraffin. Preferably, 0.01 to 10 parts by weight of urea, more preferably 0.1 to 5 parts by weight, still more preferably 0.5 to 4 parts by weight, and particularly preferably 1 to 3 parts by weight with respect to 1 part by weight of the raw material. use. When the ratio of urea is less than 0.01 part by weight with respect to 1 part by weight of the hydrocarbon mixed raw material, the effect of reducing or removing the specific branched paraffin (B) tends to decrease. Not only is a large amount required, but there is a tendency that an effect commensurate with the proportion of urea cannot be obtained.

なお、尿素は、炭化水素混合原料と混合する混合槽あるいは配管に別々に導入しても良いが、尿素は固体であることから、尿素溶液として溶剤に溶解させた状態で炭化水素混合原料と接触させることが好ましい。   Urea may be introduced separately into a mixing tank or piping to be mixed with the hydrocarbon mixed raw material, but since urea is a solid, it contacts with the hydrocarbon mixed raw material in a state dissolved in a solvent as a urea solution. It is preferable to make it.

尿素溶液に使用する溶剤としては、水や、メタノール、グリコール等の低級アルコール及びこれらの混合物等の尿素可溶性溶剤を使用することが好ましい。また、炭化水素原料との混和性が良く、常温においても接触効率を高めることができる観点から、必要に応じてベンゼン、トルエン、キシレン等の芳香族溶剤等の炭化水素系溶剤を併用しても良い。尿素溶液としては、尿素と水溶性溶剤又は水溶性溶剤と炭化水素系溶剤の混合物が好ましく、尿素とメタノール及び/又は水と炭化水素系溶剤との混合物がより好ましく、尿素とメタノールと芳香族溶剤との混合物がさらに好ましい。尿素溶液には、界面活性剤を添加しても良い。   As the solvent used for the urea solution, it is preferable to use a urea-soluble solvent such as water, lower alcohols such as methanol and glycol, and mixtures thereof. In addition, from the viewpoint of good miscibility with hydrocarbon raw materials and the ability to increase contact efficiency even at room temperature, hydrocarbon solvents such as aromatic solvents such as benzene, toluene and xylene can be used together as necessary. good. The urea solution is preferably a mixture of urea and a water-soluble solvent or a water-soluble solvent and a hydrocarbon solvent, more preferably a mixture of urea and methanol and / or water and a hydrocarbon solvent, urea, methanol and an aromatic solvent. And a mixture thereof is more preferable. A surfactant may be added to the urea solution.

尿素溶液における尿素と溶剤との混合割合は、特に制限はないが、溶剤1Lに対し、好ましくは尿素10〜1000g、より好ましくは尿素200〜800g、さらに好ましくは300〜700gである。   The mixing ratio of urea and the solvent in the urea solution is not particularly limited, but is preferably 10 to 1000 g of urea, more preferably 200 to 800 g of urea, and further preferably 300 to 700 g with respect to 1 L of solvent.

また、該溶剤中の尿素可溶性溶剤、好ましくはメタノール及び/又は水、より好ましくはメタノール、の割合は、好ましくは1〜100容量%、より好ましくは5〜50容量%であり、該溶剤中の炭化水素系溶剤、好ましくは芳香族溶剤、より好ましくはトルエン、の割合は、好ましくは0〜99容量%、より好ましくは50〜95容量%である。   The ratio of the urea-soluble solvent in the solvent, preferably methanol and / or water, more preferably methanol, is preferably 1 to 100% by volume, more preferably 5 to 50% by volume. The proportion of the hydrocarbon solvent, preferably an aromatic solvent, more preferably toluene, is preferably 0 to 99% by volume, more preferably 50 to 95% by volume.

工程(1)における炭化水素原料と尿素又は尿素溶液との接触は、常温で行うことができるが、接触温度としては、例えば0〜90℃、好ましくは10〜50℃、さらに好ましくは20〜40℃を例示できる。なお、溶剤として水を使用する場合は、例えば5〜90℃、好ましくは60〜80℃である。接触温度が前記上限値を超えると尿素が分解したり、溶剤が揮発するおそれがあり、接触温度が前記下限値未満であると炭化水素原料からワックス成分が析出したり、溶剤中の水分の凍結等の問題があり、効率が低下する傾向にある。   The contact between the hydrocarbon raw material and urea or urea solution in the step (1) can be performed at room temperature, and the contact temperature is, for example, 0 to 90 ° C, preferably 10 to 50 ° C, more preferably 20 to 40. C. can be exemplified. In addition, when using water as a solvent, it is 5-90 degreeC, for example, Preferably it is 60-80 degreeC. If the contact temperature exceeds the upper limit, urea may decompose or the solvent may volatilize. If the contact temperature is lower than the lower limit, a wax component may precipitate from the hydrocarbon raw material, or water in the solvent may freeze. Etc., and the efficiency tends to decrease.

工程(1)における炭化水素原料と尿素との接触時間は特に制限されず、得られる炭化水素組成物に必要な低温特性を得るために、また、特定分岐パラフィン(B)の一部又は全部を分離するために、工業的な製造効率に応じて任意に調整することができる。好ましい接触時間は、効率的に接触できれば瞬間的でもよいが、より好ましくは1分以上、より好ましくは10分以上、さらに好ましくは30分以上である。なお、接触時間が長すぎても接触時間を長くするほどの効果が小さくなり、製造効率が低下するため、好ましくは10時間以下、より好ましくは8時間以下である。   The contact time between the hydrocarbon raw material and urea in the step (1) is not particularly limited. In order to obtain low temperature characteristics necessary for the obtained hydrocarbon composition, a part or all of the specific branched paraffin (B) is added. In order to isolate | separate, it can adjust arbitrarily according to industrial manufacture efficiency. The preferable contact time may be instantaneous as long as the contact can be made efficiently, but is more preferably 1 minute or more, more preferably 10 minutes or more, and further preferably 30 minutes or more. Even if the contact time is too long, the effect of increasing the contact time is reduced and the production efficiency is lowered. Therefore, it is preferably 10 hours or less, more preferably 8 hours or less.

工程(1)において炭化水素原料と尿素又は尿素溶液を混合して接触させると、特定分岐パラフィン成分が包接(アダクト)され、混合物中に白色の粒状結晶が生成する。そこで、工程(2)において、混合物から結晶(尿素アダクト物)を分離して炭化水素含有成分を得る。   When the hydrocarbon raw material and urea or urea solution are mixed and brought into contact in the step (1), the specific branched paraffin component is included (adducted), and white granular crystals are generated in the mixture. Therefore, in step (2), crystals (urea adducts) are separated from the mixture to obtain hydrocarbon-containing components.

尿素アダクト物の分離方法としては、液体と固体を分離できる方法であればよく、特に制限はないが、例えば、静置法、ペーパーフィルタ、ろ布、金網等のろ過材によるろ過法、遠心分離法等が挙げられる。   The urea adduct separation method is not particularly limited as long as it is a method capable of separating a liquid and a solid. For example, a stationary method, a filtration method using a filter medium such as a paper filter, a filter cloth, a wire mesh, or a centrifugal separation. Law.

また、工程(3)においては、工程(2)で得られた炭化水素含有成分について、過剰の尿素又は尿素溶液の分離・精製を行う。例えば、炭化水素含有成分に過剰の水を加えることで、過剰の尿素と水溶性溶剤とを水相に移し、油相と分離できる。また、油相にトルエン等の軽質炭化水素系溶剤が存在する場合は、これを減圧蒸留等により留去することができる。このような分離・精製を経て、特定分岐パラフィン(B)が十分に低減又は除去された炭化水素組成物が得られる。   In step (3), the urea-containing component obtained in step (2) is subjected to separation / purification of excess urea or urea solution. For example, by adding excess water to the hydrocarbon-containing component, excess urea and a water-soluble solvent can be transferred to the water phase and separated from the oil phase. When a light hydrocarbon solvent such as toluene is present in the oil phase, it can be distilled off by distillation under reduced pressure. Through such separation and purification, a hydrocarbon composition in which the specific branched paraffin (B) is sufficiently reduced or removed is obtained.

また、工程(4)〜(6)に関し、上記により分離された尿素アダクト物を、洗浄工程、尿素と被包接物の分離工程、回収工程を経て精製することで、尿素及び被包接物は再利用することができる。分離された尿素は炭化水素原料との接触材料として、また、分離された被包接物は、水素化分解又は水素化異性化原料として、あるいはパラフィンワックスやイソパラフィン又はそれらの原料として再利用されても良い。さらに溶剤は蒸留等により分離し、再利用することができる。   Further, with respect to the steps (4) to (6), the urea adducts separated as described above are purified through a washing step, a separation step of urea and inclusions, and a recovery step, whereby urea and inclusions are obtained. Can be reused. The separated urea is reused as a contact material with a hydrocarbon raw material, and the separated inclusion is recycled as a hydrocracking or hydroisomerization raw material, or as paraffin wax, isoparaffin, or a raw material thereof. Also good. Further, the solvent can be separated and reused by distillation or the like.

本発明の炭化水素組成物は、上記製造方法により製造された炭化水素組成物である。炭化水素組成物としては、特に制限はないが、灯油、軽油、重油、溶剤、あるいは潤滑油基油又は潤滑油組成物が好ましく、これらの中では潤滑油基油又は潤滑油組成物が特に好ましい。   The hydrocarbon composition of the present invention is a hydrocarbon composition produced by the above production method. The hydrocarbon composition is not particularly limited, but is preferably kerosene, light oil, heavy oil, solvent, or a lubricating base oil or lubricating oil composition, among which a lubricating base oil or lubricating oil composition is particularly preferable. .

本発明における炭化水素組成物、好ましくは潤滑油基油の流動点は、炭化水素原料よりも好ましくは1ポイント(2.5℃)以上、より好ましくは2ポイント(5℃)以上低い流動点を有し、具体的には、好ましくは0℃以下、より好ましくは−15℃以下、さらに好ましくは−20℃以下であり、好ましくは−60℃以上、好ましくは−40℃以上、さらに好ましくは−35℃以上である。流動点が低いほど低温特性に優れた組成物が得られるが、炭化水素組成物の収率と低温特性とのバランスから、流動点を上記範囲とすることが好ましい。   The pour point of the hydrocarbon composition in the present invention, preferably the lubricating base oil, is preferably 1 point (2.5 ° C.) or higher, more preferably 2 points (5 ° C.) or lower than the hydrocarbon feedstock. Specifically, it is preferably 0 ° C. or lower, more preferably −15 ° C. or lower, further preferably −20 ° C. or lower, preferably −60 ° C. or higher, preferably −40 ° C. or higher, more preferably − 35 ° C or higher. The lower the pour point, the more excellent the low-temperature properties can be obtained, but the pour point is preferably in the above range from the balance between the yield of the hydrocarbon composition and the low-temperature properties.

本発明の炭化水素組成物、好ましくは潤滑油基油の凝固点は、炭化水素原料よりも好ましくは1ポイント(1℃)以上、より好ましくは3ポイント(3℃)、さらに好ましくは5ポイント(5℃)以上低い凝固点を有し、具体的には、好ましくは0℃以下、より好ましくは−15℃以下、さらに好ましくは−20℃以下であり、特に好ましくは−25℃以下であり、好ましくは−60℃以上、好ましくは−40℃以上、さらに好ましくは−35℃以上である。凝固点が低いほど低温特性に優れた組成物が得られるが、炭化水素組成物の収率と低温特性とのバランスから、凝固点を上記範囲とすることが好ましい。   The freezing point of the hydrocarbon composition of the present invention, preferably the lubricating base oil, is preferably 1 point (1 ° C.) or higher, more preferably 3 points (3 ° C.), and even more preferably 5 points (5 C.) having a low freezing point, specifically, preferably 0 ° C. or lower, more preferably −15 ° C. or lower, further preferably −20 ° C. or lower, particularly preferably −25 ° C. or lower, preferably It is −60 ° C. or higher, preferably −40 ° C. or higher, more preferably −35 ° C. or higher. The lower the freezing point, the more excellent the low-temperature properties can be obtained. However, the freezing point is preferably within the above range from the balance between the yield of the hydrocarbon composition and the low-temperature properties.

本発明の炭化水素組成物、好ましくは潤滑油基油の−25℃におけるBF粘度は、炭化水素原料よりも好ましくは500mPa・s以上、より好ましくは1000mPa・s以上、さらに好ましくは1500mPa・s以上、特に10000mPa・s以上低いBF粘度を有する。   The BF viscosity at −25 ° C. of the hydrocarbon composition of the present invention, preferably the lubricating base oil, is preferably 500 mPa · s or more, more preferably 1000 mPa · s or more, and even more preferably 1500 mPa · s or more than the hydrocarbon raw material. In particular, it has a low BF viscosity of 10,000 mPa · s or more.

本発明の炭化水素組成物、好ましくは潤滑油基油の粘度指数は、好ましくは80以上、より好ましくは95以上、さらに好ましくは115以上、特に好ましくは135以上であり、好ましくは170以下、より好ましくは165以下、さらに好ましくは160以下である。粘度指数が高いほど低温から高温に至るまで優れた潤滑性を維持できるが、高すぎると所望の低温特性を得にくくなる。   The viscosity index of the hydrocarbon composition of the present invention, preferably a lubricating base oil, is preferably 80 or more, more preferably 95 or more, further preferably 115 or more, particularly preferably 135 or more, preferably 170 or less, more Preferably it is 165 or less, More preferably, it is 160 or less. As the viscosity index is higher, excellent lubricity can be maintained from low temperature to high temperature, but if it is too high, it becomes difficult to obtain desired low temperature characteristics.

本発明の炭化水素組成物、好ましくは潤滑油基油の100℃における動粘度は、好ましくは1〜100mm/s、より好ましくは1.5〜50mm/s、さらに好ましくは2〜20mm/sであるが、下記の範囲にある潤滑油基油を分取することが好ましい。
(I)100℃における動粘度が1.5mm/s以上3.5mm/s未満、より好ましくは2.0〜3.0mm/sの潤滑油基油
(II)100℃における動粘度が3.5mm/s以上5mm/s未満、より好ましくは3.7〜4.5mm/sの潤滑油基油
(III)100℃における動粘度が5〜20mm/s、より好ましくは5.5〜11mm/s、特に好ましくは6〜8mm/sの潤滑油基油。
The kinematic viscosity at 100 ° C. of the hydrocarbon composition of the present invention, preferably a lubricating base oil, is preferably 1 to 100 mm 2 / s, more preferably 1.5 to 50 mm 2 / s, and even more preferably 2 to 20 mm 2. Although it is / s, it is preferable to fractionate the lubricating base oil in the following range.
(I) less than the kinematic viscosity at 100 ° C. is 1.5 mm 2 / s or more 3.5 mm 2 / s, more preferably kinematic viscosity at 2.0 to 3.0 mm 2 / s lubricating base oils (II) 100 ° C. Is 3.5 mm 2 / s or more and less than 5 mm 2 / s, more preferably 3.7 to 4.5 mm 2 / s of the lubricant base oil (III), the kinematic viscosity at 100 ° C. is 5 to 20 mm 2 / s, more preferably Is a lubricant base oil of 5.5 to 11 mm 2 / s, particularly preferably 6 to 8 mm 2 / s.

また、本発明における炭化水素組成物、好ましくは潤滑油基油の40℃における動粘度は、好ましくは1〜1000mm/s、より好ましくは2〜500mm/s、さらに好ましくは5〜100mm/sであるが、下記の範囲にある潤滑油基油を分取することが好ましい。
(IV)40℃における動粘度が6.0mm/s以上12mm/s未満、より好ましくは8.0〜12mm/sの潤滑油基油
(V)40℃における動粘度が12mm/s以上30mm/s未満、より好ましくは14〜29mm/sの潤滑油基油
(VI)40℃における動粘度が30〜80mm/s、より好ましくは32〜50mm/s、特に好ましくは33〜40mm/sの潤滑油基油。
Moreover, the kinematic viscosity at 40 ° C. of the hydrocarbon composition in the present invention, preferably the lubricating base oil, is preferably 1 to 1000 mm 2 / s, more preferably 2 to 500 mm 2 / s, and still more preferably 5 to 100 mm 2. Although it is / s, it is preferable to fractionate the lubricating base oil in the following range.
(IV) less than the kinematic viscosity at 40 ° C. is 6.0 mm 2 / s or more 12 mm 2 / s, more preferably 8.0~12mm 2 / s lubricating base oil (V) kinematic viscosity at 40 ° C. is 12 mm 2 / s or more and less than 30 mm 2 / s, more preferably 14 to 29 mm 2 / s of lubricating base oil (VI) having a kinematic viscosity at 40 ° C. of 30 to 80 mm 2 / s, more preferably 32 to 50 mm 2 / s, particularly preferably Is a lubricating base oil of 33 to 40 mm 2 / s.

100℃又は40℃における動粘度が前記下限値未満であると潤滑性能や蒸発特性が不十分となるおそれがあり、前記上限値を超えると所望の低温粘度特性を得にくくなる。   If the kinematic viscosity at 100 ° C. or 40 ° C. is less than the lower limit, the lubricating performance and evaporation characteristics may be insufficient, and if it exceeds the upper limit, it becomes difficult to obtain desired low-temperature viscosity characteristics.

本発明においては、上記基油のうち、少なくとも(II)及び/又は(V)の範囲にある潤滑油基油を分取することが特に好ましい。   In the present invention, it is particularly preferable to fractionate a lubricating base oil in the range of at least (II) and / or (V) among the above base oils.

本発明の炭化水素組成物を潤滑油基油の基材として用いる場合、該潤滑油基油は本発明の炭化水素組成物のみからなるものであってもよく、また、本発明の炭化水素組成物を他の潤滑油基油の1種又は2種以上と併用して潤滑油基油を構成してもよい。同様に、本発明の潤滑油組成物に含まれる潤滑油基油は、本発明の炭化水素組成物のみからなるものであってもよく、また、本発明の炭化水素組成物を他の潤滑油基油の1種又は2種以上と併用して潤滑油基油を構成してもよい。   When the hydrocarbon composition of the present invention is used as a base material for a lubricating base oil, the lubricating base oil may consist only of the hydrocarbon composition of the present invention, or the hydrocarbon composition of the present invention. The lubricant base oil may be constituted by using the product in combination with one or more of other lubricant base oils. Similarly, the lubricating base oil contained in the lubricating oil composition of the present invention may consist only of the hydrocarbon composition of the present invention, and the hydrocarbon composition of the present invention may be replaced with other lubricating oils. You may comprise a lubricating base oil in combination with 1 type, or 2 or more types of base oil.

なお、本発明の炭化水素組成物と他の潤滑油基油とを併用する場合、それらの混合基油中に占める本発明の炭化水素組成物の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。   When the hydrocarbon composition of the present invention and another lubricating base oil are used in combination, the proportion of the hydrocarbon composition of the present invention in the mixed base oil is preferably 30% by mass or more. 50% by mass or more is more preferable, and 70% by mass or more is still more preferable.

本発明の潤滑油基油と併用される他の基油としては、特に制限されないが、例えば100℃における動粘度が1〜100mm/sの鉱油系基油、合成系基油及び天然油脂系基油等から任意に選ばれる。鉱油系基油としては、例えば100℃における動粘度が1〜100mm/sの溶剤精製鉱油、水素化分解鉱油、水素化精製鉱油、溶剤脱ろう基油、水素化脱ろう基油などが挙げられる。 The other base oil used in combination with the lubricating base oil of the present invention is not particularly limited. For example, a mineral base oil, a synthetic base oil, and a natural fat / oil base having a kinematic viscosity at 100 ° C. of 1 to 100 mm 2 / s. Arbitrarily selected from base oils and the like. Examples of the mineral base oil include solvent refined mineral oil, hydrocracked mineral oil, hydrocracked mineral oil, solvent dewaxed base oil, and hydrodewaxed base oil having a kinematic viscosity at 100 ° C. of 1 to 100 mm 2 / s. It is done.

また、合成系基油としては、例えば100℃における動粘度が1〜100mm/sのポリα−オレフィン又はその水素化物、イソブテンオリゴマー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル(ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート等)、ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられ、中でも、ポリα−オレフィンが好ましい。ポリα−オレフィンとしては、典型的には、炭素数2〜32、好ましくは6〜16のα−オレフィンのオリゴマー又はコオリゴマー(1−オクテンオリゴマー、デセンオリゴマー、エチレン−プロピレンコオリゴマー等)及びそれらの水素化物が挙げられる。 Synthetic base oils include, for example, poly α-olefins having a kinematic viscosity of 1 to 100 mm 2 / s at 100 ° C. or hydrides thereof, isobutene oligomers or hydrides thereof, isoparaffins, alkylbenzenes, alkylnaphthalenes, diesters (ditridecyl). Glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl adipate, di-2-ethylhexyl sebacate, etc., polyol esters (trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate) , Pentaerythritol pelargonate, etc.), polyoxyalkylene glycol, dialkyl diphenyl ether, polyphenyl ether, etc., among others, poly α-olefins Preferred. As the poly α-olefin, typically, an oligomer or co-oligomer (1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.) having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, and those. Of the hydrides.

また、本発明の炭化水素組成物は、低温流動性向上剤、流動点降下剤あるいは粘度指数向上剤等、低温粘度特性をさらに改善可能な添加剤を含有させることが好ましい。   The hydrocarbon composition of the present invention preferably contains an additive that can further improve the low-temperature viscosity characteristics, such as a low-temperature fluidity improver, a pour point depressant, or a viscosity index improver.

例えば、本発明の炭化水素組成物を軽油やA重油等の重油の基材として用いる場合、本発明の炭化水素組成物に、流動点や目詰まり点を低下させるために必要な低温流動性向上剤(CFI)を配合することによって、低温性能に優れた軽油組成物又は重油組成物を得ることができる。低温流動性向上剤の配合量は、軽油組成物又は重油組成物の全量を基準として、好ましくは0.001〜0.1質量%である。   For example, when the hydrocarbon composition of the present invention is used as a base material for heavy oil such as light oil or A heavy oil, the low temperature fluidity improvement required for reducing the pour point and clogging point of the hydrocarbon composition of the present invention By blending the agent (CFI), a light oil composition or heavy oil composition excellent in low temperature performance can be obtained. The blending amount of the low-temperature fluidity improver is preferably 0.001 to 0.1% by mass based on the total amount of the light oil composition or heavy oil composition.

また、本発明の炭化水素組成物を潤滑油組成物の基材として用いる場合、本発明の炭化水素組成物に、流動点を低下させる流動点降下剤(PPD)及び/又は粘度指数向上剤(VM)を配合することによって、低温粘度特性に優れ且つ高い粘度指数を有する潤滑油組成物を得ることができる。流動点降下剤(PPD)の配合量は、潤滑油組成物の全量を基準として、好ましくは0.001〜2質量%、より好ましくは0.1〜1質量%である。また、粘度指数向上剤(VM)の配合量は、潤滑油組成物の全量を基準として、好ましくは0.1〜20質量%、より好ましくは0.1〜10質量%である。流動点降下剤の重量平均分子量は、好ましくは1万〜30万、より好ましくは5万〜20万のものが特に好ましく、さらに流動点降下剤としては、ポリメタアクリレート系のものが特に好ましい。また、粘度指数向上剤の重量平均分子量は、好ましくは1万〜100万、より好ましくは5万〜60万、さらに好ましくは20万〜40万である。   In addition, when the hydrocarbon composition of the present invention is used as a base material for a lubricating oil composition, the hydrocarbon composition of the present invention is added to a pour point depressant (PPD) and / or viscosity index improver ( By adding VM), a lubricating oil composition having excellent low temperature viscosity characteristics and a high viscosity index can be obtained. The blending amount of the pour point depressant (PPD) is preferably 0.001 to 2% by mass, more preferably 0.1 to 1% by mass, based on the total amount of the lubricating oil composition. The blending amount of the viscosity index improver (VM) is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass, based on the total amount of the lubricating oil composition. The weight average molecular weight of the pour point depressant is preferably 10,000 to 300,000, more preferably 50,000 to 200,000, and the pour point depressant is particularly preferably polymethacrylate. The weight average molecular weight of the viscosity index improver is preferably 10,000 to 1,000,000, more preferably 50,000 to 600,000, and still more preferably 200,000 to 400,000.

本発明の炭化水素組成物を潤滑油組成物の基材として用いる場合、上記流動点降下剤及び/又は粘度指数向上剤を含有させることで、特に潤滑油組成物の−30℃以下(−30℃、−35℃及び−40℃)におけるMRV粘度又はBF粘度を改善することができる。該潤滑油組成物の−30℃以下(−30℃、−35℃及び−40℃)におけるMRV粘度又はBF粘度は、炭化水素混合原料に上記流動点降下剤及び/又は粘度指数向上剤を含有させた場合よりも、好ましくは500mPa・s以上、より好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上、特に好ましくは3000mPa・s以上低いMRV粘度又はBF粘度を有する。なお、ここでいうMRV粘度とは、ASTM D 4684に準拠して測定されるMRV粘度をいい、BF粘度とは、JPI−5S−26−99に準拠して測定されるBF粘度をいう。   When the hydrocarbon composition of the present invention is used as a base material for a lubricating oil composition, by including the pour point depressant and / or viscosity index improver, in particular, the lubricating oil composition has a temperature of −30 ° C. or lower (−30 MRV viscosity or BF viscosity at ℃, -35 ℃ and -40 ℃) can be improved. MRV viscosity or BF viscosity at −30 ° C. or lower (−30 ° C., −35 ° C. and −40 ° C.) of the lubricating oil composition contains the above pour point depressant and / or viscosity index improver in the hydrocarbon mixed raw material. The MRV viscosity or BF viscosity is preferably 500 mPa · s or higher, more preferably 1000 mPa · s or higher, even more preferably 2000 mPa · s or higher, and particularly preferably 3000 mPa · s or higher. In addition, MRV viscosity here refers to MRV viscosity measured based on ASTM D 4684, and BF viscosity refers to BF viscosity measured based on JPI-5S-26-99.

本発明の炭化水素組成物には、さらに各種の添加剤、例えば燃料添加剤や潤滑油添加剤等の石油製品添加剤を含有させることができる。   The hydrocarbon composition of the present invention may further contain various additives, for example, petroleum product additives such as fuel additives and lubricating oil additives.

本発明の炭化水素組成物を潤滑油組成物の基材として用いる場合、併用される添加剤としては、特に制限されず、潤滑油の分野で従来使用される任意の添加剤を配合することができる。かかる潤滑油添加剤としては、具体的には、酸化防止剤、無灰分散剤、金属系清浄剤、極圧剤、摩耗防止剤、粘度指数向上剤、流動点降下剤、摩擦調整剤、油性剤、腐食防止剤、防錆剤、抗乳化剤、金属不活性化剤、シール膨潤剤、消泡剤、着色剤などが挙げられる。これらの添加剤は、1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。   When the hydrocarbon composition of the present invention is used as a base material for a lubricating oil composition, the additive used in combination is not particularly limited, and any additive conventionally used in the field of lubricating oil can be blended. it can. Specific examples of such lubricating oil additives include antioxidants, ashless dispersants, metallic detergents, extreme pressure agents, antiwear agents, viscosity index improvers, pour point depressants, friction modifiers, oiliness agents. , Corrosion inhibitors, rust inhibitors, demulsifiers, metal deactivators, seal swelling agents, antifoaming agents, colorants and the like. These additives may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明の炭化水素組成物を含有する潤滑油基油又は潤滑油組成物(すなわち本発明の潤滑油基油又は潤滑油組成物)の用途としては、具体的には、乗用車用ガソリンエンジン、二輪車用ガソリンエンジン、ディーゼルエンジン、ガスエンジン、ガスヒートポンプ用エンジン、船舶用エンジン、発電エンジンなどの内燃機関に用いられる潤滑油(内燃機関用潤滑油)、自動変速機、手動変速機、無断変速機、終減速機などの駆動伝達装置に用いられる潤滑油(駆動伝達装置用油)、緩衝器、建設機械等の油圧装置に用いられる油圧作動油、圧縮機油、タービン油、工業用ギヤ油、冷凍機油、さび止め油、熱媒体油、ガスホルダーシール油、軸受油、抄紙機用油、工作機械油、すべり案内面油、電気絶縁油、切削油、プレス油、圧延油、熱処理油などが挙げられ、これらの用途に本発明の潤滑油基油を用いることによって、各潤滑油の低温粘度特性と高粘度指数とを高水準で達成することができるようになる。   Specifically, the use of the lubricating base oil or lubricating oil composition containing the hydrocarbon composition of the present invention (that is, the lubricating base oil or lubricating oil composition of the present invention) includes gasoline engines for passenger cars and motorcycles. Gasoline engines, diesel engines, gas engines, gas heat pump engines, marine engines, lubricating oils used for internal combustion engines such as power generation engines (lubricants for internal combustion engines), automatic transmissions, manual transmissions, continuously variable transmissions, Lubricating oil (drive transmission device oil) used in drive transmission devices such as final reduction gears, hydraulic hydraulic fluid, compressor oil, turbine oil, industrial gear oil, refrigerator oil used in hydraulic devices such as shock absorbers and construction machinery , Anti-corrosion oil, heat medium oil, gas holder seal oil, bearing oil, paper machine oil, machine tool oil, slip guide surface oil, electrical insulating oil, cutting oil, press oil, rolling oil, heat treatment oil Etc. can be mentioned, by the use of a lubricating base oil of the present invention in these applications, it is possible to achieve a high level and a low-temperature viscosity characteristic and high viscosity index of the lubricating oil.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[実施例1]
(炭化水素原料1の製造)
原油常圧蒸留ボトムを減圧蒸留で分離した留分を、フルフラールで溶剤抽出した後で水素化処理し、次いで、メチルエチルケトン−トルエン混合溶剤で溶剤脱ろうした。溶剤脱ろうは、MEK及びトルエンの混合溶剤を使用し、溶剤/油比1.5倍、ろ過温度−25℃にて実施した。以下、このようにして得られた溶剤精製・溶剤脱ろう鉱油基油を炭化水素原料1(GpI基油)という。炭化水素原料1の性状を表1に示す。なお、炭化水素原料1の直鎖パラフィン含有量は0.5質量%未満であった。
(潤滑油基油1の製造)
炭化水素原料1を丸底フラスコに100g採取し、尿素200g、トルエン360ml及びメタノール40mlを加えて室温(約25℃)で6時間攪拌した。反応液を1ミクロンフィルターでろ過することにより、生成した白色粒状結晶(尿素アダクト物)と液相とを分離した。液相はさらに多量の水を混合し、尿素及びメタノールを含む水相と油相とを分離し、油相は減圧蒸留(エバポレータ)によりトルエンを留去して所望の炭化水素組成物(以下、「潤滑油基油1」という。)を得た。潤滑油基油1の炭化水素原料1に対する収率及び性状を表1に示す。
また、ろ過により得られた結晶(尿素アダクト物)について、トルエン50mlで6回洗浄し、回収した白色結晶をフラスコに入れ、純水300ml及びトルエン300mlを加えて80℃で1時間攪拌した。分液ロートで水相を分離除去し、トルエン相を純水300mlで3回洗浄し、トルエン相に乾燥剤(硫酸ナトリウム)を加えて脱水処理を行った後、トルエンを留去して尿素アダクト物から被アダクト物を得た。このようにして得られた被アダクト物の原料に対する割合(尿素アダクト量:質量百分率)を求めた。得られた結果を表1に示す。さらに、被アダクト物についてガスクロマトグラフィー及び13C−NMRで分析した結果、被アダクト物は、炭素数5以下の分岐基を有し、主鎖の末端から分岐位置までの炭素数が6以上である分岐パラフィンを主成分とし、直鎖パラフィンを少量含むことがわかった。より具体的には、被アダクト物中の99質量%以上が分岐パラフィンであり、また、被アダクト物の平均炭素数は27.2であった。
分岐パラフィン1分子あたりの分岐を有する炭素は平均0.87個であり、該分岐を有する炭素のうち末端から4番目以内の炭素とそれ以外の炭素の比が1:2.4であることが確認された。一方、分岐を有していないεメチレン炭素(13C−NMRスペクトルの0ppmから50ppmの範囲において、30ppmのピークに相当する炭素)によって構成される炭素鎖の長さはC10以上であることも確認された。
[Example 1]
(Manufacture of hydrocarbon raw material 1)
The fraction from which the crude oil atmospheric distillation bottom was separated by vacuum distillation was subjected to a hydrogenation treatment after solvent extraction with furfural, and then dewaxed with a methyl ethyl ketone-toluene mixed solvent. Solvent dewaxing was performed using a mixed solvent of MEK and toluene at a solvent / oil ratio of 1.5 times and a filtration temperature of -25 ° C. Hereinafter, the solvent refining / solvent dewaxing mineral oil base oil thus obtained is referred to as hydrocarbon raw material 1 (GpI base oil). Table 1 shows the properties of the hydrocarbon raw material 1. In addition, the linear paraffin content of the hydrocarbon raw material 1 was less than 0.5 mass%.
(Manufacture of lubricating base oil 1)
100 g of hydrocarbon raw material 1 was collected in a round bottom flask, 200 g of urea, 360 ml of toluene and 40 ml of methanol were added and stirred at room temperature (about 25 ° C.) for 6 hours. The reaction liquid was filtered through a 1 micron filter to separate the produced white granular crystals (urea adduct) from the liquid phase. The liquid phase is further mixed with a large amount of water, and the aqueous phase containing urea and methanol is separated from the oil phase. The oil phase is distilled under reduced pressure (evaporator) to distill off the toluene to obtain the desired hydrocarbon composition (hereinafter referred to as "Lubricant base oil 1") was obtained. The yield and properties of the lubricating base oil 1 relative to the hydrocarbon raw material 1 are shown in Table 1.
Moreover, about the crystal | crystallization (urea adduct thing) obtained by filtration, it wash | cleaned 6 times with 50 ml of toluene, the collect | recovered white crystal | crystallization was put into the flask, 300 ml of pure water and 300 ml of toluene were added, and it stirred at 80 degreeC for 1 hour. The aqueous phase was separated and removed with a separatory funnel, and the toluene phase was washed with 300 ml of pure water three times. A desiccant (sodium sulfate) was added to the toluene phase for dehydration, and then the toluene was distilled off to remove the urea adduct. The object to be adducted was obtained from the object. The ratio of the adduct to be obtained thus obtained to the raw material (amount of urea adduct: mass percentage) was determined. The obtained results are shown in Table 1. Furthermore, as a result of analyzing the adduct by gas chromatography and 13 C-NMR, the adduct has a branching group having 5 or less carbon atoms, and the number of carbons from the end of the main chain to the branching position is 6 or more. It was found that some branched paraffin was the main component and a small amount of linear paraffin. More specifically, 99% by mass or more in the adduct object is branched paraffin, and the average carbon number of the adduct object is 27.2.
The number of carbons having a branch per molecule of branched paraffin is 0.87 on average, and the ratio of the carbons within the fourth from the end of the carbons having the branch to other carbons is 1: 2.4. confirmed. On the other hand, the length of the carbon chain constituted by ε-methylene carbon having no branch (carbon corresponding to a 30 ppm peak in the range of 0 ppm to 50 ppm of 13 C-NMR spectrum) is also confirmed to be C10 or more. It was done.

[実施例2]
(炭化水素原料2の製造)
原油常圧蒸留ボトムを減圧蒸留で分離した留分を、脱留後水素化分解原料とし、これをVIII族遷移金属を主体とした金属を担持した触媒を用いて水素化分解し、次いで、メチルエチルケトン−トルエン混合溶剤で溶剤脱ろうした。溶剤脱ろうは、MEK及びトルエンの混合溶剤を使用し、溶剤/油比1.5倍、ろ過温度−30℃にて実施した。以下、このようにして得られた水素化分解・溶剤脱ろう鉱油基油を炭化水素原料2(GpIII基油)という。炭化水素原料2の性状を表1に示す。なお、炭化水素原料2の直鎖パラフィン含有量は0.5質量%未満であった。
(潤滑油基油2の製造)
炭化水素原料1に代えて炭化水素原料2を用いた以外は潤滑油基油1の製造と同様にして、所望の炭化水素組成物(以下、「潤滑油基油2」という。)を得た。潤滑油基油2の炭化水素原料2に対する収率及び性状を表1に示す。
また、ろ過により得られた結晶について、実施例1と同様にして処理し、得られた被アダクト物の原料に対する割合(尿素アダクト量:質量百分率)を求めた。得られた結果を表1に示す。さらに、被アダクト物についてガスクロマトグラフィー及び13C−NMRで分析した結果、被アダクト物は、炭素数5以下の分岐基を有し、主鎖の末端から分岐位置までの炭素数が6以上である分岐パラフィンを主成分とし、直鎖パラフィンを少量含むことがわかった。より具体的には、被アダクト物中の99質量%以上が分岐パラフィンであり、また、分岐パラフィンの平均炭素数は27.2であった。分岐パラフィン1分子あたり分岐を有する炭素は平均1.2個であり、該分岐を有する炭素のうち末端から4番目以内の炭素とそれ以外の炭素の比が1:3.6であることが確認された。一方、分岐パラフィンの分岐を有していないεメチレン炭素(13C−NMRスペクトルの0ppmから50ppmの範囲において、30ppmのピークに相当する炭素)によって構成される炭素鎖の長さはC10以上であることも確認された。
[Example 2]
(Manufacture of hydrocarbon raw material 2)
A fraction obtained by separating a crude oil atmospheric distillation bottom by vacuum distillation is used as a hydrocracking raw material after destillation, and this is hydrocracked using a metal-supported catalyst mainly composed of a Group VIII transition metal, and then methyl ethyl ketone. -Solvent dewaxing with toluene mixed solvent. Solvent dewaxing was performed using a mixed solvent of MEK and toluene at a solvent / oil ratio of 1.5 times and a filtration temperature of -30 ° C. Hereinafter, the hydrocracking / solvent dewaxing mineral oil base oil thus obtained is referred to as hydrocarbon feedstock 2 (GpIII base oil). Table 1 shows the properties of the hydrocarbon raw material 2. In addition, the linear paraffin content of the hydrocarbon raw material 2 was less than 0.5 mass%.
(Manufacture of lubricating base oil 2)
A desired hydrocarbon composition (hereinafter referred to as “lubricant base oil 2”) was obtained in the same manner as the production of the lubricating base oil 1 except that the hydrocarbon raw material 2 was used instead of the hydrocarbon raw material 1. . Table 1 shows the yield and properties of the lubricant base oil 2 with respect to the hydrocarbon raw material 2.
Further, the crystals obtained by filtration were treated in the same manner as in Example 1, and the ratio of the obtained adduct to the raw material (urea adduct amount: mass percentage) was determined. The obtained results are shown in Table 1. Furthermore, as a result of analyzing the adduct by gas chromatography and 13 C-NMR, the adduct has a branching group having 5 or less carbon atoms, and the number of carbons from the end of the main chain to the branching position is 6 or more. It was found that some branched paraffin was the main component and a small amount of linear paraffin. More specifically, 99% by mass or more in the adduct was branched paraffin, and the average carbon number of the branched paraffin was 27.2. The number of carbons having a branch per molecule of branched paraffin is 1.2 on average, and it is confirmed that the ratio of the carbon within the fourth from the end of the carbon having the branch to the other carbon is 1: 3.6. It was done. On the other hand, the length of a carbon chain constituted by ε-methylene carbon (carbon corresponding to a 30 ppm peak in the range of 0 ppm to 50 ppm of 13 C-NMR spectrum) having no branched paraffins is C10 or more. It was also confirmed.

[実施例3]
(炭化水素原料3の製造)
GpI基油の製造過程で得られた溶剤脱ろうエキストラクト(スラックワックス)を、VIII族遷移金属を主体とした金属を担持した触媒を用いて水素化分解/異性化し、次いで、貴金属含有量0.1〜5重量%に調整されたゼオライト系水素化脱ろう触媒を用い、315℃〜325℃の温度範囲で水素化脱ろうを行った。以下、このようにして得られたワックス分解/異性化・溶剤脱ろう鉱油基油を炭化水素原料3(GpIII+基油)という。炭化水素原料3の性状を表1に示す。なお、炭化水素原料3の直鎖パラフィン含有量は0.5質量%未満であった。
(潤滑油基油3の製造)
炭化水素原料1に代えて炭化水素原料3を用いた以外は潤滑油基油1の製造と同様にして、所望の炭化水素組成物(以下、「潤滑油基油3」という。)を得た。潤滑油基油3の炭化水素原料3に対する収率及び性状を表1に示す。
また、ろ過により得られた結晶について、実施例1と同様にして処理し、得られた被アダクト物の原料に対する割合(尿素アダクト量:質量百分率)を求めた。得られた結果を表1に示す。さらに、被アダクト物についてガスクロマトグラフィー及び13C−NMRで分析した結果、被アダクト物は、炭素数5以下の分岐基を有し、主鎖の末端から分岐位置までの炭素数が6以上である分岐パラフィンを主成分とし、直鎖パラフィンを少量含むことがわかった。より具体的には、被アダクト物中の99質量%以上が分岐パラフィンであり、また、被アダクト物の平均炭素数は1.3であった。
分岐パラフィン1分子あたりの分岐を有する炭素は平均28.4個であり、該分岐を有する炭素のうち末端から4番目以内の炭素とそれ以外の炭素の比が1:1.15であることが確認された。一方、分岐を有していないεメチレン炭素(13C−NMRスペクトルの0ppmから50ppmの範囲において、30ppmのピークに相当する炭素)によって構成される炭素鎖の長さはC11以上であることも確認された。
[Example 3]
(Manufacture of hydrocarbon raw material 3)
The solvent dewaxing extract (slack wax) obtained in the process of producing the GpI base oil was hydrocracked / isomerized using a metal-supported catalyst mainly composed of a Group VIII transition metal, and then noble metal content 0 The hydrodewaxing was performed at a temperature range of 315 ° C. to 325 ° C. using a zeolite hydrodewaxing catalyst adjusted to 1 to 5% by weight. Hereinafter, the wax decomposition / isomerization / solvent dewaxing mineral oil base oil thus obtained is referred to as hydrocarbon raw material 3 (GpIII + base oil). Properties of the hydrocarbon raw material 3 are shown in Table 1. In addition, the linear paraffin content of the hydrocarbon raw material 3 was less than 0.5 mass%.
(Manufacture of lubricating base oil 3)
A desired hydrocarbon composition (hereinafter referred to as “lubricating oil base oil 3”) was obtained in the same manner as in the production of the lubricating oil base oil 1 except that the hydrocarbon raw material 3 was used in place of the hydrocarbon raw material 1. . Table 1 shows the yield and properties of the lubricant base oil 3 with respect to the hydrocarbon raw material 3.
Further, the crystals obtained by filtration were treated in the same manner as in Example 1, and the ratio of the obtained adduct to the raw material (urea adduct amount: mass percentage) was determined. The obtained results are shown in Table 1. Furthermore, as a result of analyzing the adduct by gas chromatography and 13 C-NMR, the adduct has a branching group having 5 or less carbon atoms, and the number of carbons from the end of the main chain to the branching position is 6 or more. It was found that some branched paraffin was the main component and a small amount of linear paraffin. More specifically, 99% by mass or more of the adducts are branched paraffin, and the average number of carbons of the adducts is 1.3.
The number of carbons having a branch per molecule of the branched paraffin is 28.4 on average, and the ratio of the carbon within the fourth from the end of the carbons having the branch to the other carbon is 1: 1.15. confirmed. On the other hand, the length of the carbon chain constituted by ε-methylene carbon having no branch (carbon corresponding to a 30 ppm peak in the range of 0 ppm to 50 ppm of 13 C-NMR spectrum) is also confirmed to be C11 or more. It was done.

[比較例1〜3]
比較例1においては、炭化水素原料2を潤滑油基油(以下、「潤滑油基油4」という。)とし、その性状を評価した。また、比較例2、3においては、溶剤脱ろうの脱ろう温度をそれぞれ−33℃又は−35℃としたこと以外は炭化水素原料2の製造と同様にして、炭化水素組成物(以下、「潤滑油基油5」及び「潤滑油基油6」という)を得た。潤滑油基油4〜6の性状を表2に示す。
また、潤滑油基油4〜6のそれぞれについて、潤滑油基油1の製造と同様にして尿素で処理し、得られた被アダクト物の原料に対する割合(尿素アダクト量:質量百分率)をそれぞれ求めた。得られた結果を表2に示す。
[Comparative Examples 1-3]
In Comparative Example 1, the hydrocarbon raw material 2 was used as a lubricating base oil (hereinafter referred to as “lubricating base oil 4”), and its properties were evaluated. Further, in Comparative Examples 2 and 3, the hydrocarbon composition (hereinafter referred to as “hereinafter referred to as“ hydrocarbon composition ”) was prepared in the same manner as in the production of the hydrocarbon raw material 2 except that the dewaxing temperature of the solvent dewaxing was −33 ° C. Lubricating base oil 5 ”and“ lubricating base oil 6 ”) were obtained. Properties of the lubricating base oils 4 to 6 are shown in Table 2.
Further, each of the lubricating base oils 4 to 6 is treated with urea in the same manner as in the production of the lubricating base oil 1, and the ratio of the obtained adduct to the raw material (urea adduct amount: mass percentage) is obtained. It was. The obtained results are shown in Table 2.

表1から明らかなとおり、実施例1〜3で得られた潤滑油基油1〜3は、高い粘度指数を有し、その一方で、流動点、凝固点及びBF粘度などの低温特性に優れていることが確認された。特に−25℃におけるBF粘度は炭化水素原料に対し、実施例1では20000mPa・s以上、実施例2では約30000mPa・s以上、実施例3では1500mPa・s以上の改善効果が得られている。このように、常温での尿素処理によって低温特性の改善に障害となるおそれのある特定の分岐パラフィン(特定分岐パラフィン(B))を選択的に分離除去することができ、上記のように優れた特性を有する潤滑油基油を製造できることは、エネルギー消費及び収率の観点から非常に有用である。
一方、表2に示したように、比較例2では、炭化水素原料2に対する収率は実施例2のと同等であるものの、流動点や凝固点の低下はほとんど認められず、比較例3では実施例2の収率よりも悪化し、流動点や凝固点の改善度合いも実施例2よりも小さい。さらに、比較例2、3では尿素アダクト量が約4質量%以上であることから、脱ろう条件を厳しくしてエネルギー消費と収率を犠牲にしたとしても、低温特性の改善に障害となるおそれのある特定の分岐パラフィン(特定分岐パラフィン(B))を十分に分離除去できていないことがわかる。なお、比較例2、3でも−35℃におけるCCS粘度はある程度改善できるが、実施例2では3000mPa・s未満であったのに対し、3000mPa・sを超えるレベルに過ぎない。
As is apparent from Table 1, the lubricating base oils 1 to 3 obtained in Examples 1 to 3 have a high viscosity index, while being excellent in low temperature characteristics such as pour point, freezing point, and BF viscosity. It was confirmed that Particularly, the BF viscosity at −25 ° C. is 20,000 mPa · s or more in Example 1, about 30000 mPa · s or more in Example 2, and 1500 mPa · s or more in Example 3 with respect to the hydrocarbon raw material. Thus, the specific branched paraffin (specific branched paraffin (B)), which may interfere with the improvement of the low-temperature characteristics by the urea treatment at room temperature, can be selectively separated and removed, and is excellent as described above. The ability to produce lubricating base oils with properties is very useful in terms of energy consumption and yield.
On the other hand, as shown in Table 2, in Comparative Example 2, the yield with respect to the hydrocarbon raw material 2 was equivalent to that in Example 2, but almost no decrease in pour point or freezing point was observed. It is worse than the yield of Example 2, and the improvement degree of the pour point and freezing point is also smaller than that of Example 2. Furthermore, in Comparative Examples 2 and 3, since the urea adduct amount is about 4% by mass or more, even if the dewaxing conditions are severe and the energy consumption and the yield are sacrificed, there is a risk that the low temperature characteristics may be improved. It can be seen that certain branched paraffin (specific branched paraffin (B)) is not sufficiently separated and removed. In Comparative Examples 2 and 3, the CCS viscosity at −35 ° C. can be improved to some extent, but in Example 2, it was less than 3000 mPa · s, but only at a level exceeding 3000 mPa · s.

[実施例4〜6、比較例4〜6]
実施例4〜6においては、それぞれ上記の潤滑油基油1〜3及び下記の添加剤を用い、表3に示す組成を有する潤滑油組成物を調製した。また、比較例4〜6においては、それぞれ上記の炭化水素原料1〜3及び下記の添加剤を用い、表3に示す組成を有する潤滑油組成物を調製した。各潤滑油組成物について、−30℃又は−40℃におけるMRV粘度あるいは−40℃におけるBF粘度をそれぞれ測定した。得られた結果を表3に示す。なお、表3中、「Y.S.」はMRV粘度を測定する際に、一定時間内に測定が出来ない場合に重りを乗せて測定することを意味する。
(添加剤)
添加剤パッケージA:酸化防止剤、無灰分散剤、金属系清浄剤、摩耗防止剤、腐食防止剤、防錆剤、金属不活性化剤等を含む添加剤パッケージ。
添加剤パッケージB:酸化防止剤、無灰分散剤、金属系清浄剤、摩耗防止剤、腐食防止剤、防錆剤、金属不活性化剤等を含む添加剤パッケージ。
添加剤パッケージC:酸化防止剤、無灰分散剤、金属系清浄剤、摩耗防止剤、摩擦調整剤、腐食防止剤、防錆剤、金属不活性化剤等を含む添加剤パッケージ。
粘度指数向上剤D1:ポリメタアクリレート系粘度指数向上剤(重量平均分子量:100,000)
粘度指数向上剤D2:ポリメタアクリレート系粘度指数向上剤(重量平均分子量:300,000)
流動点降下剤E:ポリメタアクリレート系流動点降下剤(重量平均分子量:60,000)
[Examples 4-6, Comparative Examples 4-6]
In Examples 4 to 6, lubricating oil compositions having the compositions shown in Table 3 were prepared using the above lubricating base oils 1 to 3 and the following additives, respectively. Moreover, in Comparative Examples 4-6, the lubricating oil composition which has a composition shown in Table 3 was prepared using said hydrocarbon raw materials 1-3 and the following additive, respectively. About each lubricating oil composition, MRV viscosity in -30 degreeC or -40 degreeC or BF viscosity in -40 degreeC was measured, respectively. The obtained results are shown in Table 3. In Table 3, “YS” means that when the MRV viscosity is measured, if the measurement cannot be performed within a certain time, a weight is added.
(Additive)
Additive Package A: An additive package containing an antioxidant, an ashless dispersant, a metallic detergent, an antiwear agent, a corrosion inhibitor, a rust inhibitor, a metal deactivator, and the like.
Additive Package B: An additive package containing an antioxidant, an ashless dispersant, a metallic detergent, an antiwear agent, a corrosion inhibitor, a rust inhibitor, a metal deactivator, and the like.
Additive Package C: An additive package containing an antioxidant, ashless dispersant, metallic detergent, antiwear agent, friction modifier, corrosion inhibitor, rust inhibitor, metal deactivator, and the like.
Viscosity index improver D1: Polymethacrylate viscosity index improver (weight average molecular weight: 100,000)
Viscosity index improver D2: polymethacrylate viscosity index improver (weight average molecular weight: 300,000)
Pour point depressant E: Polymethacrylate pour point depressant (weight average molecular weight: 60,000)

表3に示したように、実施例4〜6の潤滑油組成物においては、比較例4〜6と比較して、−30℃以下のMRV粘度やBF粘度を飛躍的に低減することができ、大幅な低温粘度特性の改善効果が認められた。


As shown in Table 3, in the lubricating oil compositions of Examples 4 to 6, the MRV viscosity and BF viscosity of −30 ° C. or lower can be drastically reduced as compared with Comparative Examples 4 to 6. A significant effect of improving the low temperature viscosity characteristics was observed.


Claims (5)

潤滑油基油に用いられる炭化水素組成物の製造方法であって、
炭素数5以下の分岐アルキル基を有する分岐パラフィンを含有する炭化水素原料と、尿素とを接触させ、前記炭化水素原料から、前記分岐パラフィンのうち少なくとも一方の末端から分岐位置までの炭素数が6以上である分岐パラフィンを尿素アダクト物として分離し、炭化水素組成物を得る工程を備える、炭化水素組成物の製造方法。
A method for producing a hydrocarbon composition used in a lubricating base oil,
A hydrocarbon raw material containing a branched paraffin having a branched alkyl group having 5 or less carbon atoms is brought into contact with urea, and the number of carbon atoms from the hydrocarbon raw material to at least one end of the branched paraffin to the branch position is 6 The manufacturing method of a hydrocarbon composition provided with the process of isolate | separating the branched paraffin which is the above as a urea adduct thing, and obtaining a hydrocarbon composition.
前記炭化水素原料中の直鎖パラフィンの含有量が5質量%以下である、請求項1に記載の炭化水素組成物の製造方法。   The manufacturing method of the hydrocarbon composition of Claim 1 whose content of the linear paraffin in the said hydrocarbon raw material is 5 mass% or less. 請求項1又は2の製造方法により製造された、潤滑油基油に用いられる炭化水素組成物。 A hydrocarbon composition used for a lubricating base oil produced by the production method according to claim 1. 請求項3に記載の炭化水素組成物を含有する潤滑油基油。   A lubricating base oil containing the hydrocarbon composition according to claim 3. 請求項3に記載の炭化水素組成物を含有する潤滑油組成物。   A lubricating oil composition comprising the hydrocarbon composition according to claim 3.
JP2008261073A 2008-10-07 2008-10-07 Method for producing hydrocarbon composition, hydrocarbon composition, lubricating base oil, lubricating oil composition Expired - Fee Related JP5342206B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008261073A JP5342206B2 (en) 2008-10-07 2008-10-07 Method for producing hydrocarbon composition, hydrocarbon composition, lubricating base oil, lubricating oil composition
PCT/JP2009/067162 WO2010041590A1 (en) 2008-10-07 2009-10-01 Process for production of hydrocarbon composition, hydrocarbon composition, lube base oil and lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261073A JP5342206B2 (en) 2008-10-07 2008-10-07 Method for producing hydrocarbon composition, hydrocarbon composition, lubricating base oil, lubricating oil composition

Publications (2)

Publication Number Publication Date
JP2010090253A JP2010090253A (en) 2010-04-22
JP5342206B2 true JP5342206B2 (en) 2013-11-13

Family

ID=42100541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261073A Expired - Fee Related JP5342206B2 (en) 2008-10-07 2008-10-07 Method for producing hydrocarbon composition, hydrocarbon composition, lubricating base oil, lubricating oil composition

Country Status (2)

Country Link
JP (1) JP5342206B2 (en)
WO (1) WO2010041590A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026940B2 (en) * 2013-03-29 2016-11-16 Jxエネルギー株式会社 Lubricating base oil and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026504A (en) * 2001-05-10 2003-01-29 Sds Biotech:Kk Urea-containing agrochemical solid formulation and method for producing the same
JP5726397B2 (en) * 2007-03-30 2015-06-03 Jx日鉱日石エネルギー株式会社 Lubricating oil base oil, method for producing the same, and lubricating oil composition

Also Published As

Publication number Publication date
WO2010041590A1 (en) 2010-04-15
JP2010090253A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP6513780B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition
JP5633997B2 (en) Lubricating base oil and lubricating oil composition
JP5800449B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition
EP2484746B1 (en) Lubricant oil composition
JP5800448B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition
WO2010041591A1 (en) Lubricant base oil and a process for producing the same, and lubricating oil composition
JP5841657B2 (en) Lubricating oil composition for transmission
JP2007270062A (en) Lubricant base oil, lubricating oil composition and method for producing lubricant base oil
JP2015227471A (en) Base oil for lubrication oil, method for producing the same and lubrication oil composition
WO2010140391A1 (en) A lubricating oil composition and a method for making the same
WO2010140562A1 (en) Lubricant oil composition
JP5806797B2 (en) Lubricating oil base oil and method for producing the same, lubricating oil composition
JP6228742B2 (en) Lubricating oil composition
JP5690041B2 (en) Lubricating oil base oil, method for producing the same, and lubricating oil composition
JP5806795B2 (en) Lubricating oil base oil and method for producing the same, lubricating oil composition
JP5342206B2 (en) Method for producing hydrocarbon composition, hydrocarbon composition, lubricating base oil, lubricating oil composition
JP5552139B2 (en) Lubricating base oil, lubricating oil composition, and method for producing lubricating base oil
JP5805286B2 (en) Lubricating base oil and lubricating oil composition
JP2016014150A (en) Lubricant base oil, manufacturing method thereof and lubricant composition
JP5735017B2 (en) Lubricating base oil and lubricating oil composition
JP2014205860A (en) Lubricant base oil and manufacturing method therefor, lubricant composition
JP2014205859A (en) Lubricant base oil and manufacturing method therefor, lubricant composition
JP5759582B2 (en) Lubricating oil composition
JP2014080622A (en) Lubricant base oil, manufacturing method thereof and lubricant composition
JP2014198857A (en) Lubricant base oil and manufacturing method thereof and lubricant composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees