JP5341478B2 - Manufacturing method of polylactic acid resin molded product - Google Patents

Manufacturing method of polylactic acid resin molded product Download PDF

Info

Publication number
JP5341478B2
JP5341478B2 JP2008284489A JP2008284489A JP5341478B2 JP 5341478 B2 JP5341478 B2 JP 5341478B2 JP 2008284489 A JP2008284489 A JP 2008284489A JP 2008284489 A JP2008284489 A JP 2008284489A JP 5341478 B2 JP5341478 B2 JP 5341478B2
Authority
JP
Japan
Prior art keywords
polylactic acid
temperature
acid
molded product
based resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008284489A
Other languages
Japanese (ja)
Other versions
JP2010110961A (en
Inventor
隆 黒瀬
信孝 本間
浩孝 岡本
誠 加藤
順平 河田
好秀 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Unitika Ltd
Toyota Central R&D Labs Inc
Original Assignee
Teijin Ltd
Unitika Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd, Unitika Ltd, Toyota Central R&D Labs Inc filed Critical Teijin Ltd
Priority to JP2008284489A priority Critical patent/JP5341478B2/en
Publication of JP2010110961A publication Critical patent/JP2010110961A/en
Application granted granted Critical
Publication of JP5341478B2 publication Critical patent/JP5341478B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、耐熱性のポリ乳酸系樹脂成形品の製造方法に関する。   The present invention relates to a method for producing a heat-resistant polylactic acid-based resin molded product.

環境対策技術の一つとして、資源循環型プラスチックが注目されている。その中でもポリ乳酸系樹脂の需要が高まりつつある。ポリ乳酸系樹脂は、植物から得ることができるため、非石油資源から製造されるカーボンニュートラルな素材として、循環型社会の構築に貢献し得るものである。また、ポリ乳酸系樹脂は、他の樹脂に比べて生分解性が高く、融点が140〜180℃と十分に高く、しかも透明性に優れるため、包装材料や透明性を生かした成形品等、幅広い分野での普及が期待されている。   Resource recycling plastics are attracting attention as one of the environmental countermeasure technologies. Among them, the demand for polylactic acid resin is increasing. Since the polylactic acid resin can be obtained from plants, it can contribute to the construction of a recycling society as a carbon neutral material produced from non-petroleum resources. In addition, since the polylactic acid-based resin is highly biodegradable compared to other resins, the melting point is sufficiently high as 140 to 180 ° C. and excellent in transparency, packaging materials and molded articles that make use of transparency, etc. It is expected to spread in a wide range of fields.

一方、ポリ乳酸系樹脂は溶融状態からの結晶化速度が小さく、金型温度が80℃以下の射出成形においては結晶化が不十分であるため耐熱性が低いという問題があった。十分な結晶化を行わず、例えば食器等として利用する場合には、熱湯や電子レンジを使用することができず用途が限定される。耐熱性を向上させるため、成形加工時における金型の冷却時間を長くしたり、成形後に成形品をアニール処理する等の方法が用いられているが、結晶化する過程で成形品が変形したり、生産性が悪い等の問題があった。このような問題を解決する手段として、マイカや炭酸カルシウム等の無機系造核剤や、有機系造核剤をポリ乳酸系樹脂に配合して、結晶化速度を向上させる技術が知られている。   On the other hand, the polylactic acid resin has a problem that the crystallization rate from the molten state is small and the heat resistance is low because the crystallization is insufficient in the injection molding at a mold temperature of 80 ° C. or less. When sufficient crystallization is not performed, for example, when used as tableware, hot water or a microwave oven cannot be used, and the application is limited. In order to improve heat resistance, methods such as increasing the cooling time of the mold during molding and annealing the molded product after molding are used, but the molded product may be deformed during the crystallization process. There were problems such as poor productivity. As a means for solving such a problem, a technique for improving the crystallization speed by blending an inorganic nucleating agent such as mica or calcium carbonate or an organic nucleating agent into a polylactic acid resin is known. .

例えば、(特許文献1)には、ポリ乳酸系樹脂、トリメシン酸トリアミド化合物等の有機系造核剤、可塑剤及び安定剤を含む樹脂組成物を、有機系造核剤の溶融ポリ乳酸系樹脂に対する溶解温度以上の温度にて混練し、成形工程に供することを特徴とする成形体の製造方法が開示されている。   For example, Patent Document 1 discloses a resin composition containing an organic nucleating agent such as a polylactic acid-based resin and a trimesic acid triamide compound, a plasticizer, and a stabilizer, and a molten polylactic acid-based resin as an organic nucleating agent. The manufacturing method of the molded object characterized by kneading | mixing at the temperature more than the melting temperature with respect to and using for a formation process is disclosed.

また、同じくトリメシン酸トリアミド化合物の造核剤を配合する例として、(特許文献2)には、(i)トリメシン酸トリシクロヘキシルアミド等のアミド系化合物、(ii)エステル系可塑剤、及び(iii)乳酸系ポリマー、を含有する乳酸系ポリマー組成物が開示されており、この組成物の乾燥ペレットを、射出成形機(型締圧40トン)にてバレル温度160〜200℃、射出時間10秒、金型温度90〜100℃の条件で成形すると耐熱性が向上する旨が述べられている。しかし、耐熱性の評価方法として荷重たわみ温度(JIS K7207)等の標準的な方法を用いず、試験片を80℃のギヤオーブンに入れ、24時間後の試験片の変形状態を目視により判断するのみであるため、実際の耐熱性は不明確であった。さらに、金型温度90〜100℃にて成形しているが、一般に金型温度80℃では水温調、90℃以上では油温調の成形設備が要求されるため、設備コスト、消費エネルギーの観点から、80℃以下の金型温度での成形が望まれている。   Similarly, as an example of blending a nucleating agent of a trimesic acid triamide compound, (Patent Document 2) includes (i) an amide compound such as trimesic acid tricyclohexylamide, (ii) an ester plasticizer, and (iii) ) A lactic acid-based polymer composition containing a lactic acid-based polymer is disclosed, and a dry pellet of this composition is barrel-heated at an injection molding machine (clamping pressure of 40 tons) at a barrel temperature of 160 to 200 ° C. and an injection time of 10 seconds. In addition, it is stated that heat resistance is improved when molding is performed under conditions of a mold temperature of 90 to 100 ° C. However, a standard method such as deflection temperature under load (JIS K7207) is not used as a heat resistance evaluation method, and the test piece is put in a gear oven at 80 ° C., and the deformation state of the test piece after 24 hours is visually determined. Therefore, the actual heat resistance was unclear. In addition, molding is performed at a mold temperature of 90 to 100 ° C. Generally, a molding temperature is required at a mold temperature of 80 ° C., and an oil temperature control is required at a temperature of 90 ° C. or higher. Therefore, molding at a mold temperature of 80 ° C. or less is desired.

さらに、(特許文献3)には、ポリ乳酸系樹脂100重量部に対しトリメシン酸トリス(t−ブチルアミド)等を0.01〜5重量部配合した樹脂組成物が開示され、この樹脂組成物を射出成形機にてバレル温度180〜210℃、金型温度30℃の条件で成形する例が記載されている。しかし、ポリ乳酸のTg(60℃)より低い金型温度30℃では結晶化は起こらないため、得られる耐熱性はかなり低い(荷重たわみ温度(低荷重):80℃程度)と考えられる。   Further, (Patent Document 3) discloses a resin composition in which 0.01 to 5 parts by weight of trimesic acid tris (t-butylamide) or the like is blended with 100 parts by weight of a polylactic acid resin. An example in which molding is performed under conditions of a barrel temperature of 180 to 210 ° C. and a mold temperature of 30 ° C. in an injection molding machine is described. However, since crystallization does not occur at a mold temperature of 30 ° C. lower than Tg (60 ° C.) of polylactic acid, the obtained heat resistance is considered to be considerably low (load deflection temperature (low load): about 80 ° C.).

特開2006−328163号公報JP 2006-328163 A 国際公開第03/042302号パンフレットInternational Publication No. 03/042302 Pamphlet 特開平10−87975号公報Japanese Patent Laid-Open No. 10-87975

上述のように、結晶造核剤としてトリメシン酸トリアミド化合物などが提案されているが、金型温度が80℃以下の場合、成形品の耐熱性はせいぜい80〜90℃程度であり不十分なものであった。そこで本発明は、80℃以下の金型温度で成形した場合であっても従来にない高い耐熱性を得ることができるポリ乳酸系樹脂成形品の製造方法を提供することを目的とする。   As described above, trimesic acid triamide compounds and the like have been proposed as crystal nucleating agents, but when the mold temperature is 80 ° C. or less, the heat resistance of the molded product is at most about 80 to 90 ° C., which is insufficient. Met. Accordingly, an object of the present invention is to provide a method for producing a polylactic acid-based resin molded product that can obtain unprecedented high heat resistance even when molded at a mold temperature of 80 ° C. or less.

通常、射出成形機に導入する樹脂組成物の最適な混練温度は、結晶造核剤の種類、粒径及びその使用量、ポリ乳酸系樹脂の種類、その他の添加物の量などに依存して変化するが、一般には210〜250℃、望ましくは220〜245℃が良いとされている。これは高温過ぎると熱分解を引き起こし、また低温過ぎると核剤が溶けないなどの問題があるため決められているものである。今回、本発明者らは、210℃以下で混練を行い、かつ造核剤の配合量、シリンダー温度、シリンダー内の滞留時間等を所定の範囲内に制御することにより、金型温度80℃以下で成形した場合にこれまでにない高い耐熱性が得られることを見出し、本発明を完成した。   Usually, the optimum kneading temperature of the resin composition to be introduced into the injection molding machine depends on the type of crystal nucleating agent, the particle size and the amount used, the type of polylactic acid resin, the amount of other additives, etc. Although it changes, generally it is said that 210-250 degreeC, desirably 220-245 degreeC is good. This is determined because there is a problem that if the temperature is too high, thermal decomposition will occur, and if the temperature is too low, the nucleating agent will not dissolve. At this time, the present inventors kneaded at 210 ° C. or lower, and controlled the mold temperature of the nucleating agent, the cylinder temperature, the residence time in the cylinder, etc. within a predetermined range, thereby lowering the mold temperature to 80 ° C. or lower. The present invention has been completed by finding that a high heat resistance unprecedented can be obtained when it is molded by the above method.

すなわち、本発明の要旨は次の通りである。
(1)ポリ乳酸系樹脂とトリメシン酸トリアミド化合物とを混練して得られる樹脂組成物を射出成形するポリ乳酸系樹脂成形品の製造方法であって、以下の条件で行うことを特徴とする前記製造方法。
(a)樹脂組成物中のトリメシン酸トリアミド化合物の配合量:0.7〜1.3重量%
(b)混練温度:200〜210℃
(c)シリンダー温度:210〜240℃
(d)シリンダー内の滞留時間:0.5〜2分
(e)金型温度:60〜85℃
(2)トリメシン酸トリアミド化合物が、トリメシン酸トリス(シクロヘキシルアミド)である前記(1)に記載のポリ乳酸系樹脂成形品の製造方法。
That is, the gist of the present invention is as follows.
(1) A method for producing a polylactic acid-based resin molded article by injection molding a resin composition obtained by kneading a polylactic acid-based resin and a trimesic acid triamide compound, which is performed under the following conditions: Production method.
(A) Blending amount of trimesic acid triamide compound in the resin composition: 0.7 to 1.3% by weight
(B) Kneading temperature: 200-210 ° C
(C) Cylinder temperature: 210-240 ° C
(D) Residence time in cylinder: 0.5-2 minutes (e) Mold temperature: 60-85 ° C
(2) The method for producing a polylactic acid-based resin molded article according to (1), wherein the trimesic acid triamide compound is trimesic acid tris (cyclohexylamide).

本発明によれば、ポリ乳酸系樹脂にトリメシン酸トリアミド化合物の結晶造核剤を添加して成形品を製造する際の、造核剤の添加量、混練・射出成形条件が最適化され、80℃以下の金型温度で射出成形を行う場合に、130℃以上という高い耐熱性を有する成形品を得ることができる。   According to the present invention, the amount of nucleating agent added and the kneading / injection molding conditions are optimized when a molded product is produced by adding a crystal nucleating agent of a trimesic acid triamide compound to a polylactic acid resin. When injection molding is performed at a mold temperature of ℃ or lower, a molded product having high heat resistance of 130 ℃ or higher can be obtained.

以下、本発明を詳細に説明する。
本発明における樹脂組成物はポリ乳酸系樹脂を含む。使用可能なポリ乳酸系樹脂としては、例えば、ポリ乳酸ホモポリマー、ポリ乳酸コポリマー、ポリ乳酸ホモポリマーとポリ乳酸コポリマーとのブレンド物等が挙げられる。ポリ乳酸ホモポリマーの場合には、特に限定されず、種々の光学純度の乳酸単位を有するポリマーが適用可能であるが、実質的にL−乳酸またはD−乳酸由来のモノマー単位のみで構成されるポリマーが好ましく用いられる。すなわち、L−乳酸単位またはD−乳酸単位がポリ乳酸を構成する全構造単位に対して80〜99.5モル%の範囲内であることが好ましい。このようなポリ乳酸ホモポリマーは、その入手が比較的容易であり、また高い融点を有するため、より優れた耐熱性が得やすくなる。
Hereinafter, the present invention will be described in detail.
The resin composition in the present invention contains a polylactic acid resin. Examples of usable polylactic acid-based resins include polylactic acid homopolymers, polylactic acid copolymers, blends of polylactic acid homopolymers and polylactic acid copolymers, and the like. In the case of polylactic acid homopolymer, it is not particularly limited, and polymers having lactic acid units of various optical purities are applicable, but it is substantially composed only of monomer units derived from L-lactic acid or D-lactic acid. A polymer is preferably used. That is, the L-lactic acid unit or the D-lactic acid unit is preferably in the range of 80 to 99.5 mol% with respect to all the structural units constituting the polylactic acid. Such polylactic acid homopolymer is relatively easy to obtain and has a high melting point, so that it becomes easier to obtain better heat resistance.

ポリ乳酸ホモポリマーは、既知の任意の重合方法により得ることができる。具体的には、乳酸の無水環状二量体であるラクチドを開環重合する方法(ラクチド法)や、乳酸を直接縮合重合する方法等が挙げられる。例えば、開環重合法による場合は、乳酸の環状二量体であるラクチドを、必要に応じて重合調整剤等と共に混合し、触媒を用いて重合させることによって得ることができる。ここでラクチドには、L−乳酸の2量体であるL−ラクチド、D−乳酸の2量体であるD−ラクチド、L−乳酸及びD−乳酸からなるDL−ラクチドがある。また、乳酸の直接縮合重合による場合は、L−乳酸もしくはD−乳酸又はこれらの混合物を直接脱水縮重合することにより目的のポリマーを得ることができる。重合に用いる乳酸は、入手が容易であるため植物から誘導されるものが好ましく、あるいは微生物により生成されるものを使用することも可能である。また、L−またはD−乳酸メチル、L−またはD−乳酸エチル等の乳酸誘導体を原料にして製造しても良い。   The polylactic acid homopolymer can be obtained by any known polymerization method. Specific examples include a method of ring-opening polymerization of lactide, which is an anhydrous cyclic dimer of lactic acid (lactide method), a method of directly condensation polymerization of lactic acid, and the like. For example, in the case of the ring-opening polymerization method, lactide, which is a cyclic dimer of lactic acid, can be obtained by mixing with a polymerization regulator or the like, if necessary, and polymerizing using a catalyst. Here, the lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, L-lactic acid, and DL-lactide composed of D-lactic acid. In the case of direct condensation polymerization of lactic acid, the desired polymer can be obtained by direct dehydration condensation polymerization of L-lactic acid, D-lactic acid or a mixture thereof. The lactic acid used for the polymerization is preferably derived from plants because it is easily available, or one produced by microorganisms can be used. Moreover, you may manufacture from lactic acid derivatives, such as L- or D-methyl lactate and L- or D-ethyl lactate, as a raw material.

また、上記ポリ乳酸コポリマーは、乳酸モノマー又はラクチドと、共重合可能な他の成分とが共重合されたものである。乳酸残基以外の他の構造単位の割合は、本発明の効果を損なわない範囲で適宜設定することができる。一般的には、全構造単位中、他の構造単位が50モル%以下、特に20モル%以下であることが好ましい。このような他の構造単位としては、2個以上のエステル結合形成性の官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等、及びこれら種々の構成成分よりなる各種ポリエステル、ポリエーテル、ポリカーボネート等を挙げることができる。   The polylactic acid copolymer is obtained by copolymerizing a lactic acid monomer or lactide and another copolymerizable component. The proportion of structural units other than lactic acid residues can be appropriately set within a range not impairing the effects of the present invention. Generally, it is preferable that other structural units are 50 mol% or less, and especially 20 mol% or less in all the structural units. Examples of such other structural units include dicarboxylic acids having two or more ester bond-forming functional groups, polyhydric alcohols, hydroxycarboxylic acids, lactones, and various polyesters and polyethers composed of these various constituents. And polycarbonate.

ジカルボン酸としては、コハク酸、アジピン酸、セバシン酸、アゼライン酸等の脂肪族ジカルボン酸や、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸等が挙げられる。   Examples of the dicarboxylic acid include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.

多価アルコールとしては、ビスフェノールにエチレンオキサイドを付加反応させたもの等の芳香族多価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、トリメチロールプロパン、ネオペンチルグリコールなどの脂肪族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のエーテルグリコール等が挙げられる。   Polyhydric alcohols include aromatic polyhydric alcohols such as those obtained by addition reaction of ethylene oxide with bisphenol, ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sorbitan, trimethylolpropane, neopentyl glycol And aliphatic glycols such as diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol.

ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシブチルカルボン酸等を挙げることができる。   Examples of hydroxycarboxylic acid include glycolic acid and hydroxybutylcarboxylic acid.

ラクトンとしては、グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−又はγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。   Examples of the lactone include glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, δ-valerolactone, and the like.

上記ポリ乳酸ホモポリマーもしくはコポリマーの分子量は、ゲルパーミエーションクロマトグラフ分析によるポリスチレン換算値の重量平均分子量(Mw)として、一般に50,000〜500,000程度、好ましくは100,000〜250,000程度であるが、これに限定されるものではない。分子量が小さ過ぎると、成形品の強度が低下したり、加水分解性の増大などに伴って安定性が低下する等、実用上必要な物性が得られにくく、逆に分子量が大き過ぎると、成形性が悪化する傾向があるため、これらを考慮して適宜設定される。   The molecular weight of the polylactic acid homopolymer or copolymer is generally about 50,000 to 500,000, preferably about 100,000 to 250,000 as a weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography analysis. However, the present invention is not limited to this. If the molecular weight is too small, it is difficult to obtain practically necessary physical properties such as reduced strength of the molded product or decreased stability due to increased hydrolyzability. Since there is a tendency for the property to deteriorate, it is appropriately set in consideration of these.

また、本発明における樹脂組成物には、必要に応じて、衝撃強度の改善や成型性の改善等を目的として、上記ポリ乳酸系樹脂に加えて、他の樹脂をブレンドしてもよい。ブレンドする樹脂としては、エチレン−プロピレン共重合ゴム、エチレン−プロピレン−ジエン共重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、アクリル系樹脂等を挙げることができる。このような他の樹脂の含有量は、ポリ乳酸系樹脂の結晶性を損なわない範囲で適宜設定することができ、具体的には樹脂組成物中40重量%以下、好ましくは10重量%以下である。   Moreover, in addition to the said polylactic acid-type resin, you may blend other resin with the resin composition in this invention for the purpose of the impact strength improvement, the improvement of a moldability, etc. as needed. Examples of the resin to be blended include ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer, polyurethane resin, polyamide resin, polyester resin, polycarbonate resin, and acrylic resin. The content of such other resins can be appropriately set within a range that does not impair the crystallinity of the polylactic acid-based resin. Specifically, it is 40% by weight or less, preferably 10% by weight or less in the resin composition. is there.

次に、本発明における樹脂組成物は、結晶造核剤としてトリメシン酸トリアミド化合物を含む。これにより、ポリ乳酸系樹脂の結晶化を促進し、成形品の耐熱性を向上させることができる。トリメシン酸トリアミド化合物としては、トリメシン酸またはその酸クロライドと、各種アミンとの反応によって得られるトリアミド化合物であれば適用可能であり、具体的には、トリメシン酸トリス(シクロヘキシルアミド)、トリメシン酸トリス(2−メチルシクロヘキシルアミド)、トリメシン酸トリス(3−メチルシクロヘキシルアミド)、トリメシン酸トリス(4−メチルシクロヘキシルアミド)、トリメシン酸トリス(2,3−ジメチルシクロヘキシルアミド)等を挙げることができる。その中でも、トリメシン酸トリス(シクロヘキシルアミド)は、ポリ乳酸系樹脂の結晶化速度向上に特に優れる点で好ましく用いられる。   Next, the resin composition in the present invention contains a trimesic acid triamide compound as a crystal nucleating agent. Thereby, crystallization of polylactic acid-type resin can be accelerated | stimulated and the heat resistance of a molded article can be improved. As the trimesic acid triamide compound, any triamide compound obtained by reaction of trimesic acid or its acid chloride with various amines can be applied. Specifically, trimesic acid tris (cyclohexylamide), trimesic acid tris ( 2-methylcyclohexylamide), trimesic acid tris (3-methylcyclohexylamide), trimesic acid tris (4-methylcyclohexylamide), trimesic acid tris (2,3-dimethylcyclohexylamide), and the like. Among these, trimesic acid tris (cyclohexylamide) is preferably used because it is particularly excellent in improving the crystallization speed of the polylactic acid resin.

トリメシン酸トリアミド化合物の平均粒子径は、特に限定されるものではないが、一般的には80μm以下、好ましくは5μm以下であることが好ましい。結晶核剤の平均粒子径が小さいと比表面積が大きくなり、結晶造核剤としての効果が高まる。一方、平均粒子径が大き過ぎると、トリメシン酸トリアミド化合物のポリ乳酸系樹脂への溶解が不十分となり、造核作用が低下して、得られる成形品の結晶化度・耐熱性が低下する傾向があるため好ましくない。   The average particle size of the trimesic acid triamide compound is not particularly limited, but is generally 80 μm or less, preferably 5 μm or less. When the average particle size of the crystal nucleating agent is small, the specific surface area is increased and the effect as a crystal nucleating agent is enhanced. On the other hand, if the average particle size is too large, the trimesic acid triamide compound will not be sufficiently dissolved in the polylactic acid resin, resulting in a decrease in nucleation and a tendency to decrease the crystallinity and heat resistance of the resulting molded product. This is not preferable.

樹脂組成物中のトリメシン酸トリアミド化合物の配合量は、0.7〜1.3重量%、特に0.9〜1.2重量%とすることが好ましい。配合量が0.7重量%に満たない場合、あるいは1.3重量%を超える場合には、結晶化速度が小さくなる傾向があるため好ましくない。   The blending amount of the trimesic acid triamide compound in the resin composition is preferably 0.7 to 1.3% by weight, particularly 0.9 to 1.2% by weight. If the blending amount is less than 0.7% by weight or exceeds 1.3% by weight, the crystallization rate tends to decrease, which is not preferable.

上記のポリ乳酸系樹脂、及びトリメシン酸トリアミド化合物に加えて、本発明における樹脂組成物には、必要に応じて種々の添加剤を配合することができる。添加剤の例としては、安定剤、酸化防止剤、紫外線吸収剤、顔料、着色剤、離型剤、可塑剤、香料、抗菌剤、帯電防止剤、滑剤、難燃剤、発泡剤、充填剤等が挙げられる。これら添加剤の配合量は、本発明の効果を損なわない範囲で適宜設定することができ、具体的にはトリメシン酸トリアミド化合物以外の添加剤の合計が、樹脂組成物全体に対して10重量%以下、特に2〜5重量%となるように設定することが好ましい。また、本発明における樹脂組成物には、各種フィラーを配合することもできる。各種フィラーの量は、樹脂組成物全体に対して30重量%以下、特に20重量%となるように設定することが好ましい。   In addition to the polylactic acid-based resin and the trimesic acid triamide compound, various additives can be blended in the resin composition of the present invention as necessary. Examples of additives include stabilizers, antioxidants, ultraviolet absorbers, pigments, colorants, mold release agents, plasticizers, fragrances, antibacterial agents, antistatic agents, lubricants, flame retardants, foaming agents, fillers, etc. Is mentioned. The blending amount of these additives can be appropriately set within a range not impairing the effects of the present invention. Specifically, the total amount of additives other than the trimesic acid triamide compound is 10% by weight with respect to the entire resin composition. In the following, it is particularly preferable to set it to 2 to 5% by weight. Moreover, various fillers can also be mix | blended with the resin composition in this invention. The amount of the various fillers is preferably set so as to be 30% by weight or less, particularly 20% by weight with respect to the entire resin composition.

上記各成分を混練することにより、樹脂組成物を得ることができる。各成分の混錬方法としては特に制限なく、従来公知の方法により混練することができる。例えば、V型ブレンダー、ヘルシェルミキサー、リボンブレンダー、タンブラーミキサーなどに各成分を仕込んで混練するドライブレンド法、さらにドライブレンドしたものを1軸または2軸押出機、ニーダー、ロール等で溶融混練し、冷却して例えば球形、円柱形もしくは角柱形等にペレット化する方法、あるいは、各成分を溶媒に溶かし、混合した後に溶媒を除去する溶液ブレンド法などにより行うことができる。   A resin composition can be obtained by kneading the above components. The kneading method of each component is not particularly limited and can be kneaded by a conventionally known method. For example, a dry blend method in which each component is charged and kneaded in a V-type blender, a Hell shell mixer, a ribbon blender, a tumbler mixer, etc., and further dry blended is melt kneaded with a single or twin screw extruder, kneader, roll, etc. It can be carried out by a method of cooling and pelletizing into, for example, a spherical shape, a cylindrical shape, or a prism shape, or a solution blending method in which each component is dissolved in a solvent and mixed to remove the solvent.

混練する際の温度は、200〜210℃、好ましくは205〜210℃とする。従来は、熱分解を抑制しつつ造核剤を溶解させる観点から、210〜250℃で混練を行っていたが、本発明ではこれよりも低い200〜210℃にて混練を行い、かつ後述の成形条件により射出成形を行うことによって、130℃超という高い耐熱性を得ることができる。   The kneading temperature is 200 to 210 ° C, preferably 205 to 210 ° C. Conventionally, kneading was performed at 210 to 250 ° C. from the viewpoint of dissolving the nucleating agent while suppressing thermal decomposition, but in the present invention, kneading was performed at 200 to 210 ° C., which is lower than this, and described later. By performing injection molding under the molding conditions, high heat resistance exceeding 130 ° C. can be obtained.

混練により得られた樹脂組成物は、公知の射出成形法を用いて種々の形状の成形品に容易に成形することができる。ここで射出成形には、狭義の射出成形の他、射出ブロー成形、射出押出ブロー成形、射出圧縮成形等も包含される。射出成形におけるシリンダー温度は210〜240℃、好ましくは225〜235℃、シリンダー内の樹脂組成物の滞留時間は0.5〜2分、好ましくは1〜1.5分とする。この条件下で成形することにより、上述の低い混練温度と相まって、従来にない高い耐熱性を得ることができる。しかも、得られる成形品は高強度で熱安定性に優れたものとなる。   The resin composition obtained by kneading can be easily molded into molded products of various shapes using a known injection molding method. Here, injection molding includes injection blow molding, injection extrusion blow molding, injection compression molding, and the like in addition to narrowly-defined injection molding. The cylinder temperature in the injection molding is 210 to 240 ° C., preferably 225 to 235 ° C., and the residence time of the resin composition in the cylinder is 0.5 to 2 minutes, preferably 1 to 1.5 minutes. By molding under these conditions, it is possible to obtain unprecedented high heat resistance in combination with the low kneading temperature. Moreover, the molded product obtained has high strength and excellent thermal stability.

金型温度は85℃以下、好ましくは60〜85℃、さらに好ましくは60〜80℃とする。金型温度が80℃以下であると、成形設備を油温調ではなく水温調で構成することができるため、設備コスト及び消費エネルギー節減の観点から好ましい。金型内における成形品の冷却時間は、ポリ乳酸系樹脂の種類や金型温度等によっても異なり、特に限定されるものではないが、一般的には20〜300秒、好ましくは30〜180秒程度である。   The mold temperature is 85 ° C. or less, preferably 60 to 85 ° C., more preferably 60 to 80 ° C. A mold temperature of 80 ° C. or lower is preferable from the viewpoint of equipment cost and energy consumption reduction because the molding equipment can be configured with water temperature control instead of oil temperature control. The cooling time of the molded product in the mold varies depending on the type of the polylactic acid resin and the mold temperature, and is not particularly limited, but is generally 20 to 300 seconds, preferably 30 to 180 seconds. Degree.

成形品は、必要に応じて、射出成形後にアニール処理を施すことができる。アニール処理により、ポリ乳酸の微結晶化が促進され、耐熱性をさらに向上させることができる。その場合のアニーリング条件は、一例を挙げると、60〜160℃で1〜60分程度であり、オーブン等を用いて行うことができる。   If necessary, the molded product can be annealed after injection molding. Annealing treatment promotes microcrystallization of polylactic acid and can further improve heat resistance. The annealing conditions in that case are, for example, about 60 to 160 ° C. for about 1 to 60 minutes, and can be performed using an oven or the like.

以上の製造方法により得られるポリ乳酸系樹脂成形品は、熱安定性に優れ、130℃超という高い耐熱性を有するため、これまで石油資源に由来していた樹脂成形品の代替品として種々の分野に応用可能である。具体的には、自動車用部材(インパネやコンソール等の内装部品など)、家電用部材(パソコン、ステレオ等の筐体)、歯車、一般雑貨、農業資材、建築資材、土木資材、食器類、玩具類等の用途に好適に用いることができる。   The polylactic acid-based resin molded product obtained by the above production method has excellent heat stability and high heat resistance of more than 130 ° C., so that it can be used as a substitute for resin molded products derived from petroleum resources so far. Applicable to fields. Specifically, automobile parts (interior parts such as instrument panels and consoles), household appliance parts (cases such as personal computers and stereos), gears, general goods, agricultural materials, building materials, civil engineering materials, tableware, toys It can use suitably for uses, such as a kind.

以下、実施例及び比較例により本発明をさらに詳細に説明するが、これらに限定されるものではない。
ポリ乳酸系樹脂として、U’z S09(トヨタ自動車株式会社製、分子量Mw=12万)を用い、トリメシン酸トリアミド化合物(結晶造核剤)として、トリメシン酸トリス(シクロヘキシルアミド)であるエヌジェスタ−TF−1(新日本理化株式会社)を用いた。まず、ポリ乳酸系樹脂とトリメシン酸トリアミド化合物とをドライブレンドにより混合した。混合した樹脂組成物中のトリメシン酸トリアミド化合物の配合量は、0.1重量%、0.5重量%、及び1.0重量%とした。次に、混合した樹脂組成物を2軸混練機で混練した。混練条件は、表1に示すように、混練温度:190〜230℃、スクリュー回転数:100または200rpm、材料供給量:2.5kg/hに設定した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, it is not limited to these.
N'z S09 (manufactured by Toyota Motor Co., Ltd., molecular weight Mw = 120,000) is used as a polylactic acid-based resin, and Trigestic acid triamide (Crystal Nucleating Agent) is used as NJESTA-TF which is trimesic acid tris (cyclohexylamide). -1 (New Nippon Rika Co., Ltd.) was used. First, a polylactic acid resin and a trimesic acid triamide compound were mixed by dry blending. The blending amount of the trimesic acid triamide compound in the mixed resin composition was 0.1 wt%, 0.5 wt%, and 1.0 wt%. Next, the mixed resin composition was kneaded with a biaxial kneader. As shown in Table 1, the kneading conditions were set to kneading temperature: 190 to 230 ° C., screw rotation speed: 100 or 200 rpm, and material supply amount: 2.5 kg / h.

上記の各条件にて混練した後、ペレタイズし、射出成形機に導入して所定条件下で射出成形を行った。成形条件は表1に示す通りであり、シリンダー温度:190℃または230℃、シリンダー内の樹脂組成物の滞留時間:1分または5分、金型保持時間:1分〜3分に設定した。金型温度は80℃に統一して行った。   After kneading under each of the above conditions, it was pelletized, introduced into an injection molding machine, and injection molded under predetermined conditions. The molding conditions are as shown in Table 1. The cylinder temperature was set to 190 ° C. or 230 ° C., the residence time of the resin composition in the cylinder was 1 minute or 5 minutes, and the mold holding time was set to 1 minute to 3 minutes. The mold temperature was unified at 80 ° C.

得られた成形品について、熱変形性の評価を行い、表1中に記号◎〜×で表した。また、成形品の荷重たわみ温度(JIS K7207、低荷重0.45MPa、昇温速度2℃/分)を測定し、耐熱性の評価を行った。その結果を表1に示す。   The obtained molded product was evaluated for heat deformability and represented in Table 1 by symbols ◎ to ×. Further, the deflection temperature under load of the molded product (JIS K7207, low load 0.45 MPa, temperature rising rate 2 ° C./min) was measured, and the heat resistance was evaluated. The results are shown in Table 1.

Figure 0005341478
Figure 0005341478

表1から明らかなように、トリメシン酸トリアミド化合物を1.0重量%配合し、かつ210℃で混練した樹脂組成物を、シリンダー温度230℃、滞留時間1分の条件下で射出成形した場合、130℃を超える荷重たわみ温度を示し、高い耐熱性を有することが分かった。   As is apparent from Table 1, when a resin composition containing 1.0% by weight of trimesic acid triamide compound and kneaded at 210 ° C. was injection molded under the conditions of a cylinder temperature of 230 ° C. and a residence time of 1 minute, The deflection temperature under load exceeding 130 ° C. was exhibited, and it was found that the film had high heat resistance.

一方、トリメシン酸トリアミド化合物の配合量を0.1重量%または0.5重量%とした場合には、型の中で変形してしまうか、離型性が改善されたとしても概して耐熱性が70〜80℃程度と低く、要求を満たさなかった。   On the other hand, when the amount of the trimesic acid triamide compound is 0.1% by weight or 0.5% by weight, the heat resistance is generally improved even if the mold is deformed or the releasability is improved. It was as low as about 70 to 80 ° C. and did not meet the requirements.

Claims (4)

ポリ乳酸系樹脂とトリメシン酸トリアミド化合物とを混練して得られる樹脂組成物を射出成形するポリ乳酸系樹脂成形品の製造方法であって、以下の条件で行うことを特徴とする前記製造方法。
(a)樹脂組成物中のトリメシン酸トリアミド化合物の配合量:0.7〜1.3重量%
(b)混練温度:200〜210℃
(c)シリンダー温度:210〜240℃
(d)シリンダー内の滞留時間:0.5〜2分
(e)金型温度:60〜85℃
(ただし、混練温度が210℃であり、且つシリンダー温度が240℃であり、且つシリンダー内の滞留時間が1分であり、且つ金型温度が80℃である場合を除く)
A method for producing a polylactic acid-based resin molded product by injection molding a resin composition obtained by kneading a polylactic acid-based resin and a trimesic acid triamide compound, which is performed under the following conditions.
(A) Blending amount of trimesic acid triamide compound in the resin composition: 0.7 to 1.3% by weight
(B) Kneading temperature: 200-210 ° C
(C) Cylinder temperature: 210-240 ° C
(D) Residence time in cylinder: 0.5-2 minutes (e) Mold temperature: 60-85 ° C
(However, the kneading temperature is 210 ° C., the cylinder temperature is 240 ° C., the residence time in the cylinder is 1 minute, and the mold temperature is 80 ° C.)
ポリ乳酸系樹脂とトリメシン酸トリアミド化合物とを混練して得られる樹脂組成物を射出成形するポリ乳酸系樹脂成形品の製造方法であって、以下の条件で行うことを特徴とする前記製造方法。A method for producing a polylactic acid-based resin molded product by injection molding a resin composition obtained by kneading a polylactic acid-based resin and a trimesic acid triamide compound, which is performed under the following conditions.
(a)樹脂組成物中のトリメシン酸トリアミド化合物の配合量:0.7〜1.3重量%(A) Blending amount of trimesic acid triamide compound in the resin composition: 0.7 to 1.3% by weight
(b)混練温度:200〜210℃(B) Kneading temperature: 200-210 ° C
(c)シリンダー温度:210〜235℃(C) Cylinder temperature: 210-235 ° C
(d)シリンダー内の滞留時間:0.5〜2分(D) Residence time in the cylinder: 0.5-2 minutes
(e)金型温度:60〜85℃(E) Mold temperature: 60-85 ° C
トリメシン酸トリアミド化合物が、トリメシン酸トリス(シクロヘキシルアミド)である請求項1又は2に記載のポリ乳酸系樹脂成形品の製造方法。 The method for producing a polylactic acid-based resin molded article according to claim 1 or 2 , wherein the trimesic acid triamide compound is trimesic acid tris (cyclohexylamide). 製造されるポリ乳酸系樹脂成形品の荷重たわみ温度(低荷重)が130℃超である請求項1〜3のいずれかに記載のポリ乳酸系樹脂成形品の製造方法。The method for producing a polylactic acid-based resin molded product according to any one of claims 1 to 3, wherein a deflection temperature under load (low load) of the produced polylactic acid-based resin molded product is higher than 130 ° C.
JP2008284489A 2008-11-05 2008-11-05 Manufacturing method of polylactic acid resin molded product Expired - Fee Related JP5341478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284489A JP5341478B2 (en) 2008-11-05 2008-11-05 Manufacturing method of polylactic acid resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284489A JP5341478B2 (en) 2008-11-05 2008-11-05 Manufacturing method of polylactic acid resin molded product

Publications (2)

Publication Number Publication Date
JP2010110961A JP2010110961A (en) 2010-05-20
JP5341478B2 true JP5341478B2 (en) 2013-11-13

Family

ID=42299930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284489A Expired - Fee Related JP5341478B2 (en) 2008-11-05 2008-11-05 Manufacturing method of polylactic acid resin molded product

Country Status (1)

Country Link
JP (1) JP5341478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698746A (en) * 2021-08-27 2021-11-26 昌亚新材料科技有限公司 Degradable heat-resistant polylactic acid pipe and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328163A (en) * 2005-05-24 2006-12-07 New Japan Chem Co Ltd Polylactic acid-based resin composition, molding of the same and method for molding the same
JP2006342259A (en) * 2005-06-09 2006-12-21 New Japan Chem Co Ltd Polylactic acid resin composition, its molded article and method for producing the same
JP2006348159A (en) * 2005-06-15 2006-12-28 New Japan Chem Co Ltd Polylactic acid-based resin composition, molded product thereof, and method for producing the same
JP2007002128A (en) * 2005-06-24 2007-01-11 New Japan Chem Co Ltd Polylactic acid based resin composition, its molded product and manufacturing method
JP2010070729A (en) * 2008-09-22 2010-04-02 Toyota Motor Corp Method for producing polylactic acid-based resin molding, and polylactic acid-based resin molding

Also Published As

Publication number Publication date
JP2010110961A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
KR102244819B1 (en) Biodegradable resin molded article, manufacturing method thereof, and pellet body used therein
EP1460107A1 (en) Polylactic acid-based resin compositions, molded articles and process for producing the same
JP2003192884A (en) Polylactic acid-based polymer composition, molded article and method for producing the molded article
JP4672409B2 (en) Aliphatic polyester resin composition
CA2917356A1 (en) Heat resistant polylactic acid
JPWO2013038770A1 (en) the film
WO2011043187A1 (en) Eyeglasses molded article, process for production of same, and eyeglasses
JP2007217513A (en) Polylactic acid resin composition and molded product
JP2006089643A (en) Resin composition and molded body thereof
KR101288445B1 (en) Biodegradable resin composition havign excellent thermostability and vessels comprising the same
JP2008239645A (en) Polylactic acid-based resin composition, method for producing the same and molded article
JP4996668B2 (en) POLYLACTIC ACID RESIN COMPOSITION, PROCESS FOR PRODUCING POLYLACTIC ACID RESIN COMPOSITION, MOLDED ARTICLE, DESK HOLDER FOR MOBILE PHONE, MOBILE PHONE INTERNAL CHASSIS COMPONENT, ELECTRONIC DEVICE CASE, ELECTRONIC DEVICE INTRODUCTION COMPONENT
JP5556009B2 (en) Molding method and molded article of resin composition
JP2003342452A (en) Injection moldings
JP2004143203A (en) Injection molded product
JP5341478B2 (en) Manufacturing method of polylactic acid resin molded product
JP2008248022A (en) Polylactic acid composition
JP2006089587A (en) Resin composition for lactic acid-based resin and its utilization
JP3773501B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP2010126643A (en) Impact-resistant polylactic acid resin composition
JP2004359828A (en) Lactic acid-based polyester composition and its molded article
JP2005139441A (en) Injection molded product
JP2003253106A (en) Resin composition and molded product made of the same
JP2005126498A (en) Resin composition and molding formed by using the same
JP4647895B2 (en) Method for promoting crystallization of injection molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees